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The accurate prediction of turbulent mixing induced by Rayleigh–Taylor (R–T),
Richtmyer–Meshkov (R–M) and Kelvin–Helmholtz (K–H) instabilities is very important
in understanding natural phenomena and improving engineering applications. In
applications, the prediction of mixing with the Reynolds-averaged Navier–Stokes (RANS)
equation remains the most widely used method. The RANS method involves two
aspects, i.e. physical modelling and model coefficients. Generally, the latter is determined
empirically; thus, there is a lack of universality. In this paper, inspired by the well-known
Reynolds decomposition, we propose a methodology to determine the model coefficients
with the following three steps: (i) preset a set of analytical RANS solutions by fully using
the knowledge of mixing evolutions; (ii) simplify the differential RANS equations to
algebraic equations by imposing the preset solutions to RANS equations; (iii) solve the
algebraic equations approximately to give the values of the entire model coefficients. The
specific application of this methodology in the widely used K–L mixing model shows
that, using the same set of model coefficients determined from the current methodology,
the K–L model successfully predicts the mixing evolutions in terms of different physical
quantities (e.g. temporal scalings and spatial profiles), density ratios and problems (e.g.
R–T, R–M, K–H and reshocked R–M mixings). It is possible to extend this methodology
to other turbulence models characterised with self-similar evolutions, such as K-ε mixing
models.

Key words: turbulent mixing, turbulence modelling

1. Introduction

When a heavy fluid is accelerated by a light fluid, or a shock impacts the interface
of two fluids, irregular perturbations present at the interface will develop, causing
Rayleigh–Taylor (R–T) (Lord Rayleigh 1882; Taylor 1950; Zhou, Zhang & Tian 2018)
instability and Richtmyer–Meshkov (R–M) (Richtmyer 1960; Meshkov 1969; Gao et al.
2016, 2017) instability, respectively. Later, triggered by the Kelvin–Helmholtz (K–H)
(Helmholtz 1868; Kelvin 1871) instability, which is caused by a shear velocity difference
at the interface of two fluids, the instabilities would quickly transition to turbulent

† Email addresses for correspondence: xiehansong19@gscaep.ac.cn; xiao_mengjuan@163.com

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

72
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-8529-7680
https://orcid.org/0000-0003-0853-2936
mailto:xiehansong19@gscaep.ac.cn
mailto:xiao{_}mengjuan@163.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2020.726&domain=pdf
https://doi.org/10.1017/jfm.2020.726


905 A26-2 Y.-S. Zhang, Z.-W. He, H.-S. Xie, M.-J. Xiao, and B.-L. Tian

mixing (Zhou 2017a). In most cases, the shock will further reflect and reshock the
mixing zone, accelerating the mixture of two fluids. The R–T, R–M, K–H and reshocked
R–M mixings occur widely and, in general, synchronously in several natural phenomena
(e.g. supernova explosions Burrows 2000) and engineering applications (e.g. inertial
confinement fusion Thomas & Kares 2012). Hence, accurately predicting these mixings
is essential (Zhou 2017b). For these problems, because of the large Reynolds number, the
Reynolds-averaged Navier–Stokes (RANS) simulation remains the widely used method for
practical applications (Dimonte & Tipton 2006; Morgan & Greenough 2016; Youngs 2017;
Zhou 2017b). Without considering numerical methods, the RANS simulation generally
involves two steps, namely, (i) establishing a physical model, and (ii) determining the
values of the model coefficients. For the former step, several models have been established
over the past several decades; we refer the interested reader to Zhou (2017b) for a
comprehensive review. In this paper we only focus on the latter. Without loss of generality,
we choose the basic and widely used two-equation K–L mixing model (Dimonte & Tipton
2006; Kokkinakis et al. 2015; Morgan & Greenough 2016; Morgan 2018; Zhang 2018) to
demonstrate our new methodology.

Although the K–L model was proposed several decades ago, a relatively full formulation
was given only in 2006 by Dimonte & Tipton (2006). After that, this model has been
improved to consider shear flows (Morgan & Greenough 2016), enthalpy diffusion and
others (Kokkinakis et al. 2015). Collecting all the improvements together, the K–L RANS
equations, in a coordinate-independent vector form, read as

ρ̄t + ∇ · (ρ̄ũ) = 0, (1.1)

(ρ̄ũ)t + ∇ · (ρ̄ũũ)+ ∇p̄ − ρ̄ḡ = −∇ · τ̄ , (1.2)

(ρ̄Ẽ)t + ∇ · [ũ(ρ̄Ẽ + p̄)] − ρ̄ũ · ḡ = DE + ∇ · [(μt/Nk)∇K̃f − τ̄ · ũ], (1.3)

(ρ̄Ỹα)t + ∇ · (ρ̄ũỸα) = ∇ · [(μt/NY)∇Ỹα], (1.4)

(ρ̄K̃f )t + ∇ · (ρ̄ũK̃f ) = −τ̄ : ∇ũ + ∇ · [(μt/Nk)∇K̃f ] + Skf , (1.5)

(ρ̄L̃)t + ∇ · (ρ̄ũL̃) = ∇ · [(μt/NL)∇L̃] + CLρ̄

√
2K̃f + CCρ̄L̃∇ · ũ, (1.6)

where g is the volume force (e.g. gravitation). Equations (1.1)–(1.6) describe the evolution
of mixed density ρ, velocity u, total energy E ≡ e + u · u/2 (exclusion of potential
energy), mass species Yα ≡ ρα/ρ of the media α, fluctuating/turbulent kinetic energy
Kf and turbulent eddy scale L with time t, respectively. The derivation of the equations
uses the famous Reynolds decomposition f ≡ f̄ + f ′ and Favre decomposition f ≡ f̃ + f ′′,
where ‘-’, ‘∼’, ‘′’ and ‘′′’ denote Reynolds averaged, Favre averaged f̃ ≡ ρ̄f /f̄ , Reynolds
fluctuation and Favre fluctuation, respectively. It is worth emphasizing that the current
form of total energy (1.3) exactly takes the same form as that of (17) given in Kokkinakis
et al. (2015) since Ẽ ≡ ρ̄E/ρ̄ = ẽ + ũkũk/2 + K̃f . However, the form of (1.3) is different
from that of (3) given in Kokkinakis, Drikakis & Youngs (2019), in which the potential
energy is included. The equation array is solved by coupling with the equation of state
(EOS), which establishes relations between inner energy e, pressure p and density ρ,
mass fraction Yα, temperature T . In this paper we only consider the mixing of two
ideal gas. Therefore, in correspondence with Livescu (2013), we use the assumptions of
iso-temperature (i.e. T = T1 = · · · = Tα) and partial pressure (i.e. p = ∑

pα) to calculate
the EOS of the mixture, and the linearly weighted assumption for species (i.e. f = ∑

Yαfα)
to calculate the fluid properties of the mixture.
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The terms on the right-hand side of (1.1)–(1.6) are the unclosed terms emerging from
an ensemble average, which are modelled with the mean fields under various assumptions
(e.g. gradient diffusion assumption −ρ̄ũ′′f ′′ = (μt/Nf )∇f̄ , where μt is the turbulent eddy
viscosity and Nf is the non-dimensional model coefficient to be determined). To improve
the realisability, the Reynolds stress τ̄ ≡ ρ̄ũ′′u′′ is modelled as τ̄ = CPρ̄K̃f I (I is the unit
tensor) in Dimonte & Tipton (2006), Kokkinakis et al. (2015) by neglecting the prediction
of shear effect, e.g. K–H mixing. To predict shear flow, Morgan & Greenough (2016)
recovered the classical closure τ = CPρ̄K̃f I − μts and s = ∇ũ + (∇ũ)T − 2(∇ · ũ)I/3,

where μt = Cμρ̄L̃
√

2K̃f , although this closure may cause numerical divergence for some
problems (Dimonte & Tipton 2006). Considering the importance of K–H mixing in
practical applications, Morgan and Greenough’s closure of Reynolds stress is adopted in
this study. As for the turbulent diffusion of total energy DE, it was modelled as DE = ∇ ·
[(μt/Ne)∇ẽ] in Dimonte & Tipton (2006). However, this model would cause an unphysical
temperature field, and the model of DE = ∇ · [(μt/Nh)∇h̃] improved by Kokkinakis et al.
(2015) would perform better. Here Skf is the source term of turbulent kinetic energy
equation and also the most important term in the K–L model. However, there is a
difference in the different papers in both specific expression and numerical implementation
(see Dimonte & Tipton (2006), Morgan & Greenough (2016) and Kokkinakis et al. (2015)
for details). Fortunately, the methodology proposed in this paper, in principle, works

for different forms. Therefore, the basic model, Skf = ρ̄

√
2K̃f [CBALg − 2CDK̃f /L̃] with

AL = CAL̃∇ρ̄/ρ̄ is used as an example in this paper. The first part denotes the production
term, with specific calculation of CB given in Kokkinakis et al. (2015). The second part
denotes the dissipation term, with the improved calculation of the local Atwood number
of AL given in Kokkinakis et al. (2015) as well.

In the K–L model there are 11 turbulent model coefficients, i.e. CA, CB, CC, CD, CP,

Cμ, CL, Nh (equivalently Ne), Nk, NL and NY . Before the implementation of the RANS
model, researchers need to determine their values. Among the model coefficients, only
a few can be determined. For instance, assuming that the mass in an eddy is conserved
under compression, one can derive CC = 1/3 (Dimonte & Tipton 2006). Again, one can
derive CP = 2/3 if the trace of the Reynolds stress tensor does not change before and after
modelling. For most model coefficients, however, their values are determined empirically,
posteriorly and generally for a specific problem (Dimonte & Tipton 2006; Kokkinakis
et al. 2015; Morgan & Greenough 2016). Consequently, these model coefficients lack
universality and predictability. In addition, because of the lack of a systematic method,
researchers often spend considerable time to adjust these model coefficients (Chiravalle
2006), but the corresponding RANS results are often unsatisfactory.

In 2006 significant progress in determining the model coefficients of the K–L model
was made by Dimonte & Tipton (2006). In this study, for a one-dimensional (1-D)
incompressible mixing problem at a near-unity density ratio, the model coefficients are
determined analytically (Dimonte & Tipton 2006). Later, this method was extended to
the K–L model considering shear effect (Morgan & Greenough 2016). In this method,
the model coefficients were determined by first imposing a set of presupposed analytical
evolution profiles to the RANS equation and then solving the RANS equation. However, as
discussed later, a part of the presupposed evolutions deviates from the physical evolutions.
Moreover, we think that it is this deviation that leads to the unsatisfactory predictions
of statistical profiles. To improve prediction, researchers have to go back again to adjust
model coefficients (Kokkinakis et al. 2015; Morgan & Greenough 2016). In table 1 we list
the values of 11 model coefficients used in different papers (Dimonte & Tipton 2006;
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Kokkinakis et al. 2015; Morgan & Greenough 2016). From this table and references
(Dimonte & Tipton 2006; Kokkinakis et al. 2015; Morgan & Greenough 2016), we can
find that (i) for the same mixing problems (e.g. R–T mixing), different model coefficients
have been used by different authors (Dimonte & Tipton 2006; Kokkinakis et al. 2015);
(ii) for the different mixing problems, different coefficients have been used by the same
authors (Dimonte & Tipton 2006); (iii) for the same problems and same authors, different
model coefficients have been used for cases with different density ratios (Kokkinakis et al.
2015), different quadratic growth coefficients (Morgan & Greenough 2016) and different
configurations of reshocked R–M mixing (Dimonte & Tipton 2006). For example, to
predict the mixing with different growth law caused by different initial perturbations,
most model coefficients in Morgan & Greenough (2016) differ by a factor as large as
seven. However, the authors did not document the detailed procedure about how to
adjust these model coefficients with Dimonte and Tipton’s method. In fact, because of
the unsatisfactory quantification of the shape of spatial profiles, we find that it is very
difficult to reproduce the evolution of both time scalings (e.g. mixing width and maximum
turbulent kinetic energy) and spatial profiles (e.g. profiles of species and turbulent kinetic
energy) at the same time by adjusting these model coefficients with this method.

Therefore, it is necessary to develop a systematic methodology to guide the adjustment
of turbulence model coefficients. In this paper we devote to developing such a
methodology with anticipation that (i) the model coefficients can accurately predict
the evolution of both time scalings and spatial profiles, as both of them are important
for engineering applications (Kokkinakis et al. 2015); (ii) the model coefficients are
independent of density ratios R since R varies widely and quickly in practical applications;
(iii) the model coefficients are the same for R–T, R–M, K–H and reshocked R–M mixing
problems as the four mixing problems often coexist in practical applications (Zhou 2017b).

This paper is structured as follows. In order to make it easier for readers to understand
this paper, some basic knowledge is first given in § 2, including mixing laws in § 2.1,
RANS problems in § 2.2 and RANS implementation in § 2.3. For experts working in the
mixing field, he or she can skip § 2 and read directly from § 3 for the current methodology.
In § 3 we will first present a general logic of the new method in § 3.1, followed by
detailed derivations of constraint relations among different model coefficients in § 3.2.
Applications of these constraint relations and current methodology are given in § 4. Firstly,
based on the constraint relations derived in § 3.2, detailed procedures to determine the
values of model coefficients by providing data of a specific R–T problem will be given
as an example in § 4.1. Next, in § 4.2, we have validated that, using the set of common
model coefficients determined in § 4.1, the K–L model has successfully reproduced the
mixing evolution in terms of different physical quantities (e.g. temporal scalings and
spatial profiles), density ratios and problems (e.g. R–T, R–M, K–H and reshocked R–M
mixings). Finally, discussions and conclusions are provided in §§ 5 and 6, respectively.

2. Background knowledge

2.1. Mixing laws
In this section we will briefly document the basic knowledge about the mixing evolution of
four kinds of mixing problems. As for the mixing evolution, we think it can be described in
three levels (Zhang et al. 2020): (i) mixing width, (ii) mean profiles (Ruan et al. 2019) and
(iii) flow structures. For practical applications, the most important thing is to predict the
evolution at the first two levels as, with this information, one can predict the first useful
quantity of mixed mass (Zhou, Cabot & Thornber 2016; Zhang et al. 2020). This may
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Mixing problems CC CD CP CL Nk NL NY Ne,h CA CB Cμ

R–T, R–M and reshocked R–Ma 1/3 1.25 2/3 1 1 0.5 1 1 2 0.84 1
R–Tb R = 3 : 1 1/3 0.92 2/3 1 1.5 0.125 1.125 1.125 2 0.86 0.70

R = 20 : 1 1/3 0.90 2/3 1 1.5 0.125 1.125 1.125 2 0.97 0.68
Cylinderc αb = 0.06 1/3 0.35 2/3 1 1 0.5 1 1 2 0.84 1

αb = 0.025 1/3 0.35 2/3 0.28 0.14 0.07 0.14 0.14 4.47 0.55 0.2
Current paperd αb = 0.05 1/3 0.20 2/3 0.19 0.43 0.04 0.35 0.35/γ, 0.35 11.2 0.76 1.19e

TABLE 1. The K–L model coefficients used in previous literature and in this paper.
aOnly the standard model coefficients are listed. For the reshocked R–M mixing experiment conducted by Poggi, Thorembey & Rodriguez (1998),

different model coefficients have been used (see Dimonte & Tipton (2006) for details).
bFor the problem with different density ratios R, there is a slight difference in some model coefficients (Kokkinakis et al. 2015).

cThe corresponding model coefficients (Morgan & Greenough 2016) are determined by using the classical R–T mixing problem with different quadratic
growth coefficients of the bubble mixing zone, i.e. αb.

dIn the current paper we do not think there should exist a set of universal model coefficients for all problems. In contrast, our methodology implies that the
values of the model coefficients are associated closely with a specific problem. For example, the quadratic growth coefficient αb in R–T mixing evolving
from long- and short-wave perturbations approximately takes the values of 0.05 and 0.025, respectively, according to Youngs (2013). Correspondingly,

different sets of model coefficients should be used for different αb. Here, we only list the values of model coefficients corresponding to αb = 0.05.
eThis set of model coefficients is slightly different from the one used in our previous work by Xiao, Zhang & Tian (2020), explained later in § 3.2.

However, this change is proven to have marginal influence on the final results of the previous work (Xiao et al. 2020).
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partially explain why RANS simulation, in comparison with large eddy simulation (LES)
and direct numerical simulation (DNS), remains the most popular method in practical
applications. Following this logic, in this section we only present the basic knowledge
about mixing at the first two levels, which will be fully used in deriving the constraint
relations of model coefficients in § 3.

We begin by giving a basic definition on mixing width. For either R–T or R–M mixing,
the mixing region consists of a bubble mixing zone (formed by the bubble structures
when light fluid penetrates into heavy fluid) and a spike mixing zone (formed by the spike
structures when heavy fluid penetrates into light fluid). The mixing width is defined as the
distance between the front part of the spikes and that of the bubbles and is often quantified
with the aid of volume species profiles φ̃1 (of heavy fluid), which relates with mass species
φ̃1 (of heavy fluid) (Thornber et al. 2010; Kokkinakis et al. 2019) as

φ̃1 = Ỹ1/[Ỹ1 + (1 − Ỹ1)R], (2.1)

where R ≡ ρ1/ρ2 is the density ratio of heavy fluid ρ1 to light fluid ρ2, and Ỹ1 is the
Favre-averaged mass fraction of heavy fluid. In the literature the following definitions of
mixing width are frequently used and widely accepted: (i) species-truncated mixing width
H, which is defined as the distance between the locations of φ̃1 = ψ and φ̃1 = 1 − ψ , with
ψ = 0.01 (Cook & Cabot 2006), 0.05 (Akula & Ranjan 2016; Roberts & Jacobs 2016) and
other values; (ii) species-integrated mixing width W, which is defined as the following
integration, along the mixing evolution direction x (Anderews & Spalding 1990; Thornber
et al. 2010):

W =
∫ +∞

−∞
φ̃1(1 − φ̃1) dx . (2.2)

In terms of measurement, it is more straightforward to describe the mixing width with the
first definition. Unfortunately, truncated by two concentration points, this definition may
produce a non-smooth evolution curve H(t) (Dimonte et al. 2004). The second definition
can significantly improve this smoothness by using the global concentration information
(Youngs 2013), and, for a given R, the latter differs from the former by just an approximate
constant factor (Dimonte et al. 2004). Therefore, the latter has been used widely in the
literature, especially in simulations. In this paper, for convenience in comparisons, both
definitions are used, and ψ = 0.01 is used for the first definition. For K–H mixing, the
mixing develops perpendicularly towards the convection direction y, i.e. along the x
direction. The following definition produces a non-dimensional velocity profile varying
smoothly from 0 to 1:

ṽnon-dim(x) ≡ [ṽ(x)− ṽlow]/[ṽhigh − ṽlow], (2.3)

where ṽlow and ṽhigh denote the lower and higher convection velocities of two fluids,
respectively (Brown & Roshko 1974; Slessor, Zhuang & Dimotakis 2000). Similar to the
first definition of R–T and R–M mixing models, the mixing width H in K–H mixing can
be defined by replacing φ̃1 with ṽnon-dim.

Classical R–T mixing. For the classical R–T turbulent mixing problem with constant
acceleration g, the mixing width grows quadratically with time t as

hb,s = αb,sAgt2, (2.4)

where subscripts b and s denote the spike mixing zone and bubble mixing zone,
respectively. Here hb,s is defined as the distance between the front part of bubbles/spikes
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and the initial unperturbed interface, respectively, and H ≡ hb + hs. The Atwood number
A ≡ (ρ1 − ρ2)/(ρ1 + ρ2) is a non-dimensional density ratio varying from 0 to 1. We
denote by α the quadratic growth coefficient. Now, it is clear that the value of α sensitively
depends on the initial perturbations (Ramaprabhu, Dimonte & Andrews 2005; Banerjee
& Andrews 2009; Youngs 2013). For the perturbation involving only short waves, α tends
to take the universal lower limit of 0.025 (Dimonte et al. 2004; Ramaprabhu et al. 2005).
In contrast, if the perturbation involves long waves, the corresponding α proportionally
depends on the amplitude of the initial perturbation, without the widely accepted and
validated formula (Dimonte 2004; Ramaprabhu et al. 2005; Mueschke & Schilling 2009;
Livescu, Wei & Petersen 2011; Youngs 2013). Up to now, the lowest and largest α observed
in simulations is 0.02 (Olson & Jacobs 2009; Cabot & Zhou 2013) and 0.12 (Youngs
2013), respectively. In contrast, α in most experiments is in the range of 0.05∼0.07 (Read
1984; Youngs 1989; Dimonte & Schneider 2000). Rayleigh–Taylor mixing is a process
that converts potential energy to kinetic energy and dissipation heat. Previous experiments
and numerical simulations show that the ratio of the generated kinetic energy to the
converted potential energy (ΔEk/ΔPE) approximates 0.5 (Dimonte et al. 2004; Cook &
Cabot 2006).

Classical K–H mixing. For the K–H turbulent mixing problem, the total mixing width
H(t) grows linearly with time t as (Brown & Roshko 1974)

H(t) = αKHΔṽt, (2.5)

where Δṽ is the shear velocity difference and αKH is a linear growth coefficient. The value
of αKH depends on many factors, such as the density ratio of two fluids and the convection
Mach number (see Slessor et al. (2000) for a comprehensive review). For a uniform density
flow, Brown & Roshko (1974) observed that αKH ≈ 0.18.

Classical and reshocked R–M mixing. For the classical R–M turbulent mixing problem
with impulsive acceleration or shock, the mixing width is a power function of time t
(Dimonte 2004), i.e.

hb,s(t) = h(0)(1 + t/tc)
θb,s, (2.6)

where tc ≡ θb,sh(0)/ḣ(0) is a characteristic time determined only by initial mixing width
h(0), initial growth speed ḣ(0) and power index θb,s. The subscripts b and s denote the
spike mixing zone and the bubble mixing zone, respectively. The total mixing width is
H ≡ hb + hs. Similar to R–T mixing, the evolution of H(t) in R–M mixing also sensitively
depends on the initial perturbations (Thornber et al. 2010). Up to now, the value of θb
is observed varying widely from 0.19 ∼ 0.67 (Liu & Xiao 2016; Krivets, Ferguson &
Jacobs 2017; Zhou 2017b), with θs∼θb and θs > θb in problems with small and large
R, respectively (Dimonte & Schneider 2000). With initial perturbations generated by a
short period of R–Tmixing, the impulsive accelerated linear electric motor (LEM) R–M
experiments obtained θb ≈ 0.25 for all R (Dimonte & Schneider 2000). Moreover, in
several applications, the shock may be reflected, reshocking the R–M mixing zone and
resulting in a rapid growth and complex variation of H(t) (Vetter & Sturtevant 1995;
Poggi et al. 1998). Our recent work (Li et al. 2019a,b) shows that, in this complex flow
the entire evolution of H(t) can be described by combining (i) the R–T effect caused by
acceleration history, (ii) the R–M effect inherited from previous turbulent mixing, and
(iii) the stretching/compression effect caused by waves.

It is necessary to discuss some common characteristics of the mentioned mixing
problems. Firstly, after the mixing has been fully developed, most statistical profiles evolve
self-similarly along both the temporal and spatial directions. In other words, the statistical
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profiles at different times can be collapsed together after rescaling the spatial coordinate
and amplitude. For example, the profiles of φ̃1(x) (R–T and R–M) and ṽnon-dim(x) (K–H)
can be collapsed by only rescaling the spatial coordinate. Again, the profiles of the
turbulent kinetic energy K̃f can be collapsed at different times by rescaling both the spatial
coordinate and amplitude. This property of self-similarity makes it possible to express
the evolution of the statistical profile f (x, t) in the form of separated temporal–spatial
variables,

f (x, t) = fref + f (t)f (xnon-dim), (2.7)

where fref denotes a reference profile without considering the temporal and spatial
evolutions, x denotes the dimensional spatial coordinate and xnon-dim ≡ x/	 denotes a
non-dimensional spatial coordinate rescaled by a characteristic length scale 	. For the
currently investigated mixing problems, the property of self-similarity implies that the
mixing width H(t) is a natural length scale. As explained in § 3.2, the length scale is
chosen as 	(t) ∼ H(t)/2 ∼ h(t) in this paper.

2.2. RANS problems
To check the effectiveness of model coefficients derived from the method documented in
this paper, some basic mixing problems are designed for tests. Firstly, we describe the test
problems used in RANS simulations in this section.

Classical R–T mixing. For the classical R–T mixing problem, a 1-D configuration
similar to Kokkinakis et al. (2015) is used. In this configuration the heavy and light
fluids are placed on the computational domain of [−8, 0] cm and [0, 20] cm, respectively.
A uniform gravity acceleration of g is imposed along the +x direction, and the value
of g is set to meet Ag = 1 cm s−2. In this paper two cases of A = 0.5 (R = 3 : 1)
and A = 19/21 ≈ 0.9 (R = 20 : 1) are simulated. A total of 2000 grids are distributed
uniformly across the computational domain. Two compressible ideal gases with adiabatic
exponent γ = 1.4 and molecular weight M = 0.0288 kg mol−1 are used to approximate
incompressible mixing. For ideal R–T mixing, the initial flow field should be in a state
of hydrostatic and thermodynamic equilibrium. The former implies u = 0, and the latter
implies T = constant. For incompressible R–T mixing, however, only the first constraint
is strictly adopted in the literature (Dimonte et al. 2004), and the second constraint is
generally replaced by other constraints since the thermodynamics has little influence
on the corresponding evolution. In this paper the frequently used assumption of an
adiabatic process (i.e. p/ργ = constant) is adopted (Dimonte et al. 2004). Combining this
assumption and the EOS of an ideal gas, we can integrate the momentum equations with
constraint of u = 0 to derive the initial profiles of density and pressure as

ρ̄0(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̄0H

[
1 + γ − 1

γ

ρ̄0H

p̄0I
g(x − xI)

]1/(γ−1)

, x < xI

ρ̄0L

[
1 + γ − 1

γ

ρ̄0L

p̄0I
g(x − xI)

]1/(γ−1)

, x ≥ xI

, (2.8)

p̄0(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p̄0I

[
1 + γ − 1

γ

ρ̄0H

p̄0I
g(x − xI)

]γ /(γ−1)

, x < xI

p̄0I

[
1 + γ − 1

γ

ρ̄0L

p̄0I
g(x − xI)

]γ /(γ−1)

, x ≥ xI

, (2.9)
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where xI = 0 is the interface position, the subscript 0 denotes the interface (throughout
this paper), p̄0I is the interface pressure, ρ̄0H and ρ̄0L denote the density located at x = 0−

(the side of heavy fluid) and x = 0+ (the side of light fluid), respectively. The density ρ̄0L
is fixed as 1 g cm−3, and ρ̄0H is correspondingly set as ρ̄0H = ρ̄0L(1 + A)/(1 − A) g cm−3.
The value of p̄0I will influence the shape of the density profile, and a larger value of p̄0I
would lead to a flatter density profile to approach the incompressible limit. Therefore, in
this study a large value, 6000 g cm−1 s−2, is used to guarantee that the variation of A in
the entire process is smaller than 1 %. The velocity is initialised as zero across the whole
field. The mass fraction of heavy fluid Ỹ1(x) is set as 1 for x < xI and 0 for x ≥ xI . For
the K–L model, inside the grids near the interface (|x | ≤ Δx , Δx is the mesh scale), the
initial turbulent kinetic energy K̃f (0) is set as K̃f (0) = CAgL̃(0) by a simple dimensional
analysis, where C is an arbitrary constant and set as C = 4; the initial length scale L̃(0) is
set as L̃(0) = 1 × 10−3 (Kokkinakis et al. 2015). Outside the interface region (|x | ≤ Δx),
either K̃f or L̃ is initialised as zero.

Classical K–H mixing. We use a two-dimensional configuration given in Chiravalle
(2006) to check the application of the current method for K–H mixing problems. In this
configuration, a rectangular computational domain of [−1.5, 1.5] × [0, 0.016] cm is used.
The flow field is initialised with a uniform density (ρ) of 1 g cm−3 and pressure (p) of
0.0127 Mbar. The velocity and mass fractions are set as (ũ, ṽ) = (0, 0.078 cm μs−1) and
Ỹ1(x) = 0 for the domain of x < 0 cm; (ũ, ṽ) = (0, 0.109 cm μs−1) and Ỹ1(x) = 1 for
others. The fluid is an ideal gas with a molecular weight M = 0.0288 kg mol−1 and γ =
1.4. Nearby the interface (|x | ≤ Δx), K̃f (0) and L̃(0) are set as K̃f (0) = 4 × 10−5 cm μs−2

and L̃(0) = 1 × 10−2 cm. In other regions, both are set as 0.
Classical and reshocked R–M mixings. We design a 1-D configuration by referring to

the 85th experiment conducted in Vetter & Sturtevant (1995) to confirm the application of
the current method for both classical and reshocked R–M mixing problems. In the R–M
mixing problem, no matter from which directions the shock wave impacts the interface,
mixing will occur. Hence, we introduce a signed A ≡ (ρR − ρL)/(ρR + ρL) to characterise
the configuration, where ρR and ρL denote the initial densities at the right and left of the
interface located at x = 0. Consequently, the positive (negative) A means that the first
shock impacts the interface from light (heavy) fluid to heavy (light) fluid. Based on this
definition, the following initialisation is used for classical and reshocked R–M mixings.

Classical R–M mixing with A = ±0.1,±0.5,±0.9:

(ρ̄, ũ, p̄, γ,M, Ỹ) =

⎧⎪⎨⎪⎩
(0.521379, 23.5498, 565.417, 1.4, 0.0288, 1), −221 ≤ x < −1,
(0.28, 0, 230, 1.4, 0.0288, 1), −1 ≤ x ≤ 0,
(0.28(1+A)/(1 − A), 0, 230, 1.4, 0.0288, 1), 0 < x ≤ 301.

(2.10)

Reshocked R–M mixing with A = 0.67 (the shock firstly sweep the interface from light
fluid to heavy fluid, Vetter & Sturtevant 1995; Tritschler et al. 2014; Thornber, Groom &
Youngs 2018):

(ρ̄, ũ, p̄, γ,M, Ỹ) =

⎧⎪⎨⎪⎩
(0.521379, 23.5498, 565.417, 1.4, 0.0288, 1), −61 ≤ x < −1,
(0.28, 0, 230, 1.4, 0.0288, 1), −1 ≤ x ≤ 0,
(1.4, 0, 230, 1.093, 0.146, 0), 0 < x ≤ 61.

(2.11)
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Reshock R–M mixing with A = −0.67 (the shock firstly sweeps the interface from
heavy fluid to light fluid; Poggi et al. 1998):

(ρ̄, ũ, p̄, γ,M, Ỹ) =

⎧⎪⎨⎪⎩
(0.28, 0, 245, 1.4, 0.0288, 1), −30 ≤ x < 0,
(1.4, 0, 245, 1.093, 0.1460), 0 ≤ x ≤ 0.1,
(2.806,−10.05, 527.1, 1.093, 0.146, 0), 0.1 < x ≤ 20,

(2.12)

where M is the molecular weight of the ideal gas, and the units of ρ, u, p,M and x are
kg m−3, cm ms−1, 102 Pa, kg mol−1 and cm, respectively. For all cases, the quantities
after the shock are calculated from the 1-D shock wave relation by using the shock Mach
number from the literature. For the reshocked R–M mixing with A = −0.67, the original
literature did not mention anything about pressure. In this paper the pressure is set to best
match the two times that the reflected compression wave and the rarefaction wave interact
with the mixing zone at t = 1.15 ms and t = 1.9 ms, respectively. For the reshocked
R–M mixings with A = 0.67 and A = −0.67, the wall is located at the right and left end
of the computational domain, respectively, and a corresponding wall-reflected boundary
condition is used. For the others, a non-reflecting boundary condition is imposed. As for
the grids, a uniform grid with Δx = 0.06 cm is used for reshocked R–M mixing with
A = 0.67 and Δx = 0.1 cm for others. As for the initialisation of K̃f and L̃, only L̃(0) is
specified close to the interface (|x | ≤ Δx). It is worth mentioning that the value of L̃(0)
associates closely with the grid resolution. In this paper we determine the initial value of
L̃(0) by matching the mixing width of RANS results to that of corresponding experiments.
Specifically, L̃(0) is set as 0.05, 0.06 and 0.046 cm for classical R–M mixing, reshocked
R–M mixing with A = 0.67 and reshocked R–M mixing with A = −0.67, respectively.

2.3. RANS implementation
Due to the introduction of many additional closure terms, we find that correctly
implementing the K–L model is not a trivial matter. However, a comprehensive discussion
of the numerical implementation of the K–L model is beyond the scope of the current
paper and will be addressed in other studies. In this paper we brief the points that need
special attention.

Firstly, we discuss additional constraints on K̃f and L̃. In the implementation of the K–L
model, to avoid the termination of calculation caused by K̃f and L̃, additional constraints of
K̃f = max{εKf , 0} and L̃ = max{εL, 0} are imposed to exclude the appearance of 0/0 and
avoid the unphysical negative value, where εKf and εL are infinitesimal quantities nearing
zero. As for the specific value of εKf and εL, they are set by further considering the start-up
process. During the start-up stage, the magnitude of the source term of the turbulent kinetic
energy equation (i.e. Skf ) contributes dominantly to the evolution of K̃f . According to (1.5),
a large and native Skf may lead to the appearance of negative K̃f . It is really possible that
this situation happens during the start-up stage, as Skf ∼ −K̃3/2

f /L̃ ∼ −ε3/2
Kf
/εL and both

εKf and εKf are infinitesimal values. The values of εKf and εL can be set by analysing (1.5).
If we neglect all terms on the right-hand side of (1.5) except the dissipation term, under
the assumption of constant ρ̄, the equation can be simplified to

D
√

K̃f /Dt = −
√

2CDK̃f /L̃, (2.13)
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where D is the material derivative. Integrating (2.13) with an explicit method gives
√

K̃f =√
K̃f (0)[1 − √

2CD

√
K̃f (0)/L̃(0)Δt], where Δt denotes the time step. Hence, to avoid the

occurrence of negative K̃f at the start-up stage, we can impose √
εKf 
 εL to guarantee

that
√

K̃f (0)/L̃(0) 
 1. Based on these analyses, in this paper we set εKf = 1 × 10−40 and
εL = 1 × 10−16.

Secondly, we discuss numerical methods used to solve governing equations. Based on
a lot of numerical practices, we find that it is difficult to correctly implement the K–L
model, especially for the mixing problem involving strong discontinuity and strong shear.
When a strong discontinuity occurs in the mixing region (e.g. shock), the solution of
closure terms involving a spatial gradient (e.g. ∂xi f ) would easily produce non-physical
numerical oscillations and is sensitive to the grid resolution (Moran-Lopez & Schilling
2013), resulting in incorrect and non-convergent results. Besides this, compared with the
classical K–L model (Dimonte & Tipton 2006; Kokkinakis et al. 2015), the modelling of
shear effect in the current model sets higher requirements on the stability of numerical
methods, time step and grid resolutions. In practice, to explore applicable numerical
schemes, we first implement the numerical scheme given in Kokkinakis et al. (2015)
without considering the shear effect. Using the same grid resolution (Kokkinakis et al.
2015), we reproduce the R–T results. However, when the shear effect is included, we
find that a convergent result can be obtained only with a shorter time step, a higher grid
resolution and a longer time for transition to the self-similar stage. Moreover, when the
shock of R–M is involved, we find that it is very difficult to obtain a physical evolution
because it is difficult to obtain a numerical solution without any unphysical numerical
oscillation, especially for mixing problems involving multi-materials (i.e. the specific
heat ratio γ1 /= γ2) or shock. Consequently, unphysical and non-convergent results may be
produced because of the numerical oscillations. Therefore, to correctly implement the K–L
model, the first general principle is to avoid any numerical oscillation by carefully selecting
numerical methods. Under this principle, for mixing problems of R–T, R–M, K–H and
reshocked R–M considered in this paper, we find that it is difficult to obtain satisfactory
results with unified numerical schemes. To explore satisfactory numerical schemes, a lot
of numerical combinations have been tested. The main numerical aspects analysed in this
paper include a difference scheme and Riemann solver used to calculate the convection
terms, and the numerical technique to calculate the local Atwood number AL in Skf . For
all analyses, the time term is advanced by the third Runge–Kutta method, with a very
small Courant–Friedich–Lecy stability of 0.05 to improve the stability. To reduce the
numerical dissipation, a low-Mach modification number (Thornber et al. 2008a,b) is used
during the reconstruction of the half-point flux of convection term, and the second-order
central difference scheme is applied to calculate the turbulent diffusion term. In table 2
we list the satisfactory numerical combinations for different problems, in the form of
‘difference scheme + Riemann solver’. In this table MMD2 and MUSCL5 denote the
conventional total variation diminishing (TVD) (Harten 1997; Sweby 1984) scheme with
second-order min-mod limiter and improved fifth-order limiter (Kim & Kim 2005a,b),
respectively. The HLL (Harten, Lax and van Leer (Harten, Lax & Leer 1983)) Riemann
solver for contact discontinuity (HLLC) (Toro, Spruce & Speares 1994) is used to estimate
the inter-cell numerical flux with pressure-based wave speed. We find that the numerical
combinations listed in table 2 can effectively prevent unphysical oscillations for problems
involving either shock or multi-material, although the numerical mechanism needs further
exploration in the future. From this table we find that the combination of TVD scheme
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Mixing problems Numerical schemes

Classical R–T A = 0.1 : MUSCL5/MMD2 + HLL
Classical R–T A = 0.3/5/7/9 : MUSCL5/MMD2 + HLLC
Classical K–H MUSCL5/MMD2 + HLL
Classical R–M A = ±0.1/3/5/7,−0.9 : MUSCL5/MMD2 + HLLC
Classical R–M A = 0.9 : MUSCL5 + HLL,MMD2 + HLLC
Reshocked R–M (A = 0.67) MUSCL5/MMD2 + HLLC
Reshocked R–M (A = −0.67) MUSCL5 + HLLC,MMD2 + HLLC

TABLE 2. Numerical schemes used for problems investigated in this paper.

(either MMD2 or MUSCL5)+ HLLC works for most problems that are consistent with
Kokkinakis et al. (2015). However, this combination does not always work for all problems.
In this paper the RANS results are obtained with the underlined numerical combinations,
in which the fifth-order difference scheme, instead of the second-order MMD2, is used to
accelerate the convergence and to reduce the number of grids. Finally, the local Atwood
number AL is calculated with the improved scheme (Kokkinakis et al. 2015), not with
the original scheme (Dimonte & Tipton 2006). However, the method used to evaluate the
value of half-point density is different from that given in Kokkinakis et al. (2015). In
this paper the value of half-point density is directly ‘interpolated’ with the second-order
central difference scheme, in contrast to that of ‘reconstruction’ with the TVD scheme and
van Leer limiter in Dimonte & Tipton (2006) and Kokkinakis et al. (2015) (see details in
literature).

All the RANS simulations are implemented in the code of finite difference for
compressible fluid dynamics (CFD2) developed by You-sheng Zhang et al. since 2016.
The MPI-based parallel CFD2 is devoted to providing a unified framework for solving
the partial difference equation array. The CFD2 integrates several numerical schemes
and solvers and is particularly effective in solving problems involving multiscale
(e.g. turbulence), multi-materials (e.g. interface instability) and multi-physics (e.g.
elastoplasticity, flow and others).

3. Current methodology

3.1. Overall ideas
Before the formal presentation of the new methodology, we briefly review previous
methods in determining the model coefficients of the turbulent mixing model using
figure 1.

In practical applications, the effective method, which is also used widely, is to adjust
model coefficients to match several conducted (physical or numerical) experiments,
symbolized as nodes I-V in figure 1. Specifically, as shown by the dashed arrows in
figure 1, for a specific flow problem, researchers can obtain a corresponding RANS
solution F RANS (node III) by first providing a set of specific model coefficients (node I)
and then solving the RANS equation set (1.1)–(1.6) noted as ∂G(F RANS) = 0 (node II).
Obviously, researchers expect that the RANS solution F RANS can approach the physical
evolution F phy , in terms of temporal scalings and statistical profiles (node IV). To realise
such a goal, researchers must artificially adjust these model coefficients many times before
obtaining a satisfactory F RANS ≈ F phy (node V). What is worse, as these adjustments are
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Preset

evolution

Fapri

RANS

equations

RANS
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Model

coefficients

∂G{F} = 0

RANS

solution

Physical

evolution

∂G{F} = 0CA...NL... FRANS FPhy

New idea?

Basic problems 1-D, incompressible, R–T/R–M/K–H, R→1

Adjust coefficients

Consis tence?
I II III IV

V

2 3 4 5 6 7 1

FIGURE 1. The schematic demonstration of the traditional (dashed arrows, nodes I-V) and
current (solid arrows, nodes 1–7) methods in determining the model coefficients of the turbulent
mixing model.

artificial, it is generally difficult to obtain a set of model coefficients producing satisfactory
temporal scalings and statistical profiles at the same time and for different problems. After
calibrating a set of model coefficients with some conducted experiments, these model
coefficients are then assumed to work for other problems. As the model coefficients are
determined empirically in this method, the degree of confidence of RANS prediction is
questionable, especially for extrapolation problems.

To avoid the empirical property of the aforementioned method, a systematically
analytical method was developed by Dimonte & Tipton (2006) for the K–L mixing model,
symbolized as nodes 1–7 in figure 1. In this method, by presetting a specific and special
form of F RANS (node 2) with the knowledge of mixing evolutions (node 1), the authors
analytically solved the RANS equation array by fully using the self-similar property of
mixing evolution (node 3). Then a set of algebraic constraint relations about these model
coefficients is derived. Jointly solving the constraint relations gives the values of all model
coefficients (node 4). Solving the RANS equation with these model coefficients (node 5),
researchers can obtain the RANS evolution (node 6). Obviously, the best result is that the
RANS solutions can asymptotically approach the physical evolution (node 7), and, thus,
the seven nodes consist an ideal cycle.

Dimonte and Tipton’s method has been widely accepted and also generalized in the
continued study (Morgan & Greenough 2016). Unfortunately, the recent study implies
that this method cannot properly reproduce physical profiles (Kokkinakis et al. 2015).
For example, the K̃f profile predicted by these model coefficients is parabolic, as assumed
in the specific form of F RANS (Dimonte & Tipton 2006). However, the results of reliable
numerical simulations (Kokkinakis et al. 2015) show that the profile of K̃f does deviate
from the parabolic profile. To match the RANS profiles with physical profiles, researchers
have to adjust the model coefficients again (Kokkinakis et al. 2015). However, Dimonte
and Tipton’s method failed in guiding the adjustment of the model coefficients in such
a situation. We think that the failure of Dimonte and Tipton’s method in predicting the
statistical profiles is essentially attributed to the non-physical assumption about the specific
form of F RANS, i.e. F̄ apri. However, we find it is difficult to simply extend this method
because a strict analytical solution of the RANS equation (node 3), and, thus, a set of
model coefficients (node 4), can be obtained if and only if the specific F RANS assumed by
Dimonte & Tipton (2006) (node 2) is used.

In this paper, based on Dimonte and Tipton’s work, we propose an approximate
method to determine a set of model coefficients that can reproduce the physical evolution
in both temporal scalings and spatial profiles. Although the idea is similar to that of
Dimonte and Tipton’s work, as shown by the solid arrows (nodes 1–7) in figure 1, it is
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necessary to re-emphasize the overall logic as follows. Firstly, for a basic mixing problem,
the corresponding physical evolution F phy (node 1) is actually known (see § 2.1). Secondly,
the goal of RANS simulation is to produce F RANS → F phy (node 7). Therefore, the ideal
RANS solution (node 6) is actually deterministic. Next, it is natural to ask the question:
given the deterministic RANS model (node 5) and RANS evolution F RANS (node 6), what
kind of model coefficients (node 4) should be set in the RANS model to produce such a
solution?

The above question is trivial but its answer is non-trivial. In this paper we put forward a
new method to try to answer this question. In this method, in contrast to the traditional
method of forward solving F RANS (from node I to node IV), we inversely solve the
model coefficients by giving F RANS (from node 1 to node 4), as shown in figure 1.
The thinking is trivial, but the realisation of such a thinking needs a new idea, which
will be presented in the next paragraph. This method is first applied to the basic 1-D
incompressible problems with R → 1. For these simple problems, we can derive a set of
algebraic constraint relations, from which many sets of possible model coefficients can
be obtained. Here, during this derivation, we specifically leave one degree of freedom
with below consideration. In practical applications, problems generally involve unsteady
and widely varied R. Therefore, the model coefficients should work not only for problems
with R → 1 but also for arbitrary R. The remaining degree of freedom is just used to meet
the additional requirement. Considering this additional requirement, a unique set of model
coefficients is determined.

This new method or idea is inspired by the famous Reynolds decomposition. In 1895
Reynolds proposed the well-known Reynolds decomposition to study turbulence, i.e.

f = f̄ + f ′, (3.1)

where f denotes a fluctuating signal of an arbitrary physical quantity in a turbulence
field, f̄ is the corresponding statistical signal averaged along either temporal, spatial or
ensemble directions, and its deviation from f is defined as fluctuation f ′. Now, we will
introduce an idea similar to the Reynolds decomposition to determine the values of the
model coefficients. Noting that (i) on the one hand, it is nearly impossible to formulate
RANS solution F RANS exactly in advance, and (ii) on the other hand, a satisfactory RANS
solution should approximately capture the physical evolution (i.e. F RANS ≈ F phy), we thus
define a decomposition similar to Reynolds decomposition as

F RANS ≡ F̄ apri + F ′, (3.2)

where F̄ apri is an a priori analytical evolution set by referring to the physical evolution
of the classical 1-D mixing problem as F̄ apri ≈ F phy , and its deviation from F RANS is a
high-order small quantity F ′. The substitution of this decomposition into a symbolised
RANS equation gives

∂G(F̄ apri + F ′) = 0. (3.3)

It is nearly impossible to give an analytical F̄ apri that accurately equals F RANS; so,
either F ′, or equivalently ∂G(F̄ apri), would not equal zero at arbitrary spatial position x .
Interestingly, at any given time t, integrating (3.3) along the mixing evolution direction x
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would yield ∫
∂G(F̄ apri + F ′) dx = ∂G

(∫
F̄ apri dx +

∫
F ′ dx

)
= 0, (3.4)

where the order of integrals and differentials is exchanged. For this integration form, as
long as the profile of F̄ apri is assumed closely enough to that of F RANS,

∫
F ′ dx would be

much smaller than
∫

F̄ apri dx and, thus, can be neglected to give an approximation as∫
∂G(F̄ apri) dx ≈ 0. (3.5)

As will be demonstrated later, the approximated integration relation of (3.5) is crucial in
establishing algebraic relations among model coefficients.

Now for a fully developed 1-D turbulent mixing, as discussed in § 2.1, its physical
profiles evolve self-similarly. The a priori analytical solution of the RANS equation, F̄ apri,
can thus be approximately formulated in a separated temporal–spatial variable form by
referring to (2.7) to give

F̄ apri(x, t,CA, . . . ,NL) ≈ F phy = F ref + F (t,CA, . . . ,NL)F (xnon-dim,CA, . . . ,NL). (3.6)

Based on this form, substituting (3.6) into (3.5) would yield many algebraic relations
among model coefficients. Firstly, algebraic constraint relations among model coefficients
can be obtained directly by considering the independence of temporal evolution on
the spatial variable. Secondly, the integration would eliminate the spatial variable x ,
further producing additional algebraic constraint relations among model coefficients.
Consequently, the values of model coefficients can be obtained by solving all the algebraic
constraint relations jointly.

Following the above logic, the model coefficients determined with the new method can
produce F RANS exactly equalling F̄ apri if and only if the preset F̄ apri is just the exact RANS
solution. This ideal situation cannot be achieved in practice. In practice, what we can
do is just to preset an a priori evolution F̄ apri ≈ F phy . Consequently, the corresponding
coefficient obtained can only produce F RANS ≈ F phy . To obtain a set of model coefficients
producing F RANS → F phy , we need to further slightly adjust some coefficients by fully
using the algebraic constraint relations established in this paper, as demonstrated in § 4.1.

3.2. Derivations for problems with quasi-unity density ratio
Following the aforementioned logic, the closer the value of

∫
F ′ dx approaches to zero, the

more accurate the current method is. In other words, if the value of F̄ apri is close to that of
F RANS then F RANS is closer to F phy . Therefore, it is crucial to preset an a priori evolution
F̄ apri. In this paper we preset F̄ apri by referring to the physical evolution F phy of 1-D R–T,
R–M and K–H mixing problems. Specifically, similar to Dimonte & Tipton (2006), we
preset F̄ apri with the simplest 1-D incompressible mixing problem with R → 1. In this
section we only derivate the constraint relations among model coefficients for problems
with R → 1. The extension from R → 1 to arbitrary R will be discussed in § 4.1.

As discussed in § 2.1, the evolution is self-similar when the turbulent mixing is fully
developed. According to (2.7), to formulate the self-similar evolution, a length scale is
needed. Obviously, the mixing width is a natural length scale. For problem with R → 1,
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considering the symmetry in the mixing width between the bubble mixing zone and the
spike mixing zone, the half-width of the total mixing zone is used as the length scale in
this paper, i.e. 	(t) = H(t)/2 = h(t). Using this length scale, two non-dimensional length
scales are defined as

χ(x, t) ≡ x/h(t), X(x, t) ≡ 1 − χ 2(x, t). (3.7a,b)

Obviously, across the mixing zone and for the problem with R → 1, the first definition
yields a signed spatial coordinate χ ∈ [−1, 1], which can be used in formulating the
physical quantity whose spatial profile is asymmetric about the interface, such as the
mass fraction. In contrast, the second definition yields an unsigned spatial coordinate
X(x, t) ∈ [0, 1], which can be used in formulating the symmetrical physical quantity, e.g.
turbulent kinetic energy.

By referring to the self-similar evolution of 1-D R–T, R–M and K–H mixing problems,
we preset the F̄ apri across the mixing zone with the aid of the above definitions as

F̄ apri(x) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẽ(x, t) = ẽref + ẽ0(t)X,

h̃(x, t) = h̃ref + h̃0(t)X,

Ỹ1(x, t) = 1/2 − χ/2,

K̃f (x, t) = K̃f 0(t)Xs,

L̃(x, t) = L̃0(t)Xr,

ṽKH(x, t) = (ṽlow + ṽhigh)/2 + χ(ṽhigh − ṽlow)/2,

(3.8)

where the subscript 0 denotes the central position of the mixing zone. Equation (3.8) gives
the analytical evolution, in the form of separated temporal and spatial variables, of inner
energy ẽ, enthalpy h̃, mass fraction Ỹ1, turbulent kinetic energy K̃f and turbulent eddy scale
L̃, respectively. In particular, the K–H mixing problem is two-dimensional in essence, and
we also formulate the additional velocity parallel to the unperturbed interface ṽKH (only
for K–H mixing problems) with the velocity of low-speed fluid ṽlow and the velocity of
high-speed fluid ṽhigh.

Similar to Dimonte and Tipton’s work, the variation of ṽ, ẽ, h̃ and Ỹ1 with
spatial coordinator χ is approximated simply with a linear function. Obviously, this
approximation would lead to a sharp transition from the mixed zone to the unmixed
zone. In fact, this transition is smooth in physics, and a formulation with a heaviside-like
function is more reasonable. However, the use of a linear function not only makes
analytical solutions possible but also can drastically simplify the operations. Therefore,
this approximation is preserved, and the deviation of smooth transition from sharp
transition is further considered through slight adjustments of some parameters (i.e. the
shape parameter shown in § 4.1). As for the evolution of turbulent kinetic energy K̃f

and turbulent eddy scale L̃, their variations are approximated with a power law function
of symmetrical spatial coordinators, i.e. Xs and Xr. In Dimonte & Tipton (2006), to
analytically solve the RANS equation, the values of r and s are specified as r = 1/2 and
s = 1. However, the implicit LES results (Youngs 2013; Kokkinakis et al. 2015) imply
that this approximation actually deviates from the physical evolution. We think it is this
unphysical approximation that leads to the failure of Dimonte and Tipton’s method in
predicting the spatial profiles. To avoid this unphysical assumption, in this paper we do
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not limit the values of real r and s. Moreover, all the profiles are formulated with the
form of separated variables. The terms explicitly include a time variable quantifying
the evolution of amplitude at the interface 0, while the terms explicitly include spatial
variables quantifying the shape of the spatial profiles. Finally, in physics the evolution of
the length scale of the characteristic eddy L̃0(t) closely relates to the mixing width h(t).
To connect the two quantities, we introduce a non-dimensional β(t) to quantify their ratio,
and due to the self-similarity, this ratio is further assumed as a steady constant, i.e.

β(t) ≡ L̃0(t)/h(t) ≈ const. (3.9)

As discussed in § 3.1, the values of model coefficients are determined by imposing the
F̄ apri into the RANS equation. For the 1-D incompressible mixing problem with R → 1,
the general RANS equation can be simplified as

Dẽ/Dt = DE −
√

2K̃f [CBAL(x)g − 2CDK̃f /L̃], (3.10)

DỸ1/Dt = ∂x [CμL̃
√

2K̃f /NY(∂x Ỹ1)], (3.11)

DK̃f /Dt = ∂x [CμL̃
√

2K̃f /Nk(∂x K̃f )] + CμL̃
√

2K̃f (∂x ṽ)
2︸ ︷︷ ︸

only K−H

+
√

2K̃f [CBAL(x)g︸ ︷︷ ︸
only R−T

−CD2K̃f /L̃],

(3.12)

DL̃/Dt = ∂x [CμL̃
√

2K̃f /NL(∂x L̃)] + CL

√
2K̃f , (3.13)

where DE = ∂x [CμL̃
√

2K̃f /Ne(∂x ẽ)] or DE = ∂x [CμL̃
√

2K̃f /Nh(∂x h̃)] in different papers,

AL(x) ≡ [CAL̃(x)/ρ̄]∂x ρ̄ is x-dependent local Atwood number, Df /Dt ≡ ∂t(ρ̄f )+ ∇ ·
(ρ̄ũf ) is material derivation and the terms CμL̃

√
2K̃f (∂x ṽ)

2 and CBAL(x)g are involved
only for K–H and R–T problems, respectively. Equation (3.10) is derived by subtracting
the turbulent kinetic energy equation (1.5) and mean kinetic energy equation from the total
energy equation (1.3), and the mean kinetic energy equation can be obtained through a dot
product operation between the momentum equation (1.2) and velocity.

Before further derivations, we first introduce the following differential relations to
simplify the derivations:

˙̃L0(t)/L̃0(t) = ḣ(t)/h(t), (3.14)

Df /Dt = f0(t)qXq−1(x, t)2χ 2 ˙̃L0(t)/L̃0(t)+ Xq(x, t)ḟ0(t), (3.15)

f (x, t) ≡ fconst + f0(t)Xq(x, t), (3.16)

∂x(Xq) = qXq−1∂x X = 2χqXq−1/h(t), (3.17)

∂x [Xl∂x(Xq)] = ∂x [−2χqXq+l−1/h(t)] = 2q[2(q + l − 1)χ 2Xq+l−2 − Xq+l−1]/h2(t).
(3.18)
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Here both q and l are real, fconst is a constant and ḟ denotes a derivation to time. Equation
(3.14) is derived from (3.9). In addition, we also introduce the integral relations

f1(r) ≡
∫ 1

0
X(r−1) dχ ≈ 1.1/(r + 0.3)+ 0.16, (3.19)

f2(r) ≡
∫ 1

0
Xr dχ ≈ 0.935/(r + 1.25)+ 0.25, (3.20)

f3(r) ≡
∫ 1

0
X1−r dχ ≈ −0.92/(r − 2.25)+ 0.26, (3.21)

f4(r) ≡
∫ 1

0
X2(1−r) dχ ≈ −0.52/(r − 5/3)+ 0.22, (3.22)

f5(r) ≡
∫ 1

0
X dχ = 2/3, (3.23)

f6(r) ≡
∫ 1

0
X3−4r dχ ≈ −0.25/(r − 1.07)+ 0.22, (3.24)

where the real number r ∈ (0, 1). It is worth pointing out that the expression of f5(r)
is different from the form of our earlier work by Xiao et al. (2020), where f5(r) ≡∫ 1

0 X1−2r dχ ≈ −0.447/(r − 1.11)+ 0.26 was used and its value approximates to 0.75
when r = 0.2. This is because the new expression (3.23) is under more rigorous derivation,
as shown later by (3.43)–(3.48). However, this change is proven to have marginal influence
on the final results of the previous work (Xiao et al. 2020). Except for the (3.23),
other integrals cannot be expressed with elementary functions. Therefore, they are first
calculated numerically and then fitted with the inverse proportion function of the second
expression, as shown in figure 2.

Now we begin to determine the values of model coefficients. We begin from the model
coefficients that did not appear in (3.10)–(3.13), i.e. CP and CC. Different from the original
K–L model (Dimonte & Tipton 2006), to describe the K–H shear mixing problem, the
classical eddy viscosity hypothesis is used in the current model. To model the Reynolds
stress with an equal trace, the following classical constant CP is used:

CP = 2/3. (3.25)

As for CC, due to the incompressible constraint, it vanishes in (3.13) from (1.6). In (1.6)
the term CCρ̄L̃∇ · ũ describes compression effects. Following Dimonte & Tipton (2006)
we determine CC by assuming that the total mass in the eddies ∝ ρ̄L̃3 is conserved under
compression, namely,

D(ρ̄L̃3)/Dt = 3L̃2ρ̄(DL̃/Dt)+ L̃3(Dρ̄/Dt) = 0. (3.26)

Substituting the continuity equation of Dρ̄/Dt = −ρ̄∇ · ũ into (3.26) gives

ρ̄(DL̃/Dt) = ρ̄L̃∇ · ũ/3. (3.27)

Comparing this relation with (1.6) implies that

CC = 1/3. (3.28)
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FIGURE 2. The variations of newly defined integrals f1,2,3,4,6(r), as shown in (3.19)–(3.22),
(3.24) with power index r. The symbols give the variations by numerically integrating
(3.19)–(3.22), (3.24). The lines plot the variations with fitted function, as shown on the right-hand
side of (3.19)–(3.22), (3.24). The comparisons show that the fitted functions agree very well with
numerical integrals in the range of r ∈ (0, 1).

As mentioned above, the mixing model is driven by the production term of the turbulent
kinetic energy equation. Specifically, for the K–L model and (3.12), the production
term CBAL(x)g is established from the buoyancy term of the buoyancy-drag model
(Dimonte 2000; Zhang et al. 2016), which is very successful in predicting the evolution
of mixing width, the most important quantity. Naturally, the mixing width predicted by
the K–L model is also determined dominantly by the buoyancy term CBAL(x)g, with the
strongest driving source located at the centre of mixing zone, i.e. CBAL(0)g. Therefore,
to ensure that the mixing width predicted by the K–L model is comparable to that by the
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buoyancy-drag model, we require that CBAL(0)g has the same level as the source term
of buoyancy-drag model CBAg. In other words, AL(0) ∼ A. From the definition of AL(x),
L̃(x, t) and β, we can derive the following relations with one-order difference:

AL(x) ≈ CAL̃0(t)
ρ̄

ρh − ρl

2h(t)
Xr ≈ CAL̃0(t)

h(t)
ρh − ρl

ρh + ρl
Xr ≈ CAβAXr. (3.29)

Here the approximation ρ̄ ≈ (ρh + ρl)/2 is used. Obviously, to meet the requirement of
AL(0) ∼ A, we need to set

CA = 1/β. (3.30)
For the species equation, substituting (3.8) into (3.11) and using the relations of

(3.14)–(3.18) yield

NY
˙̃L0/[Cμβ

2(2r + s)
√

2K̃f 0] = Xr+s/2−1. (3.31)

Noting that the left-hand and right-hand sides of (3.31) depend only on time and spatial
coordinates, respectively, the equality exists if and only if r + s/2 − 1 = 0. Thus, we have

r = 1 − s/2, (3.32)

NY
˙̃L0 = 2Cμβ

2
√

2K̃f 0. (3.33)

In physics the positive turbulent kinetic energy and length scale of eddy imply that the
power index r and s in (3.8) should be larger than zero. Equation (3.32) further implies
that r ∈ (0, 1). From the above derivation we can find the constraint on the power index
r and s of the profiles of turbulent kinetic energy and length scale of eddy, i.e. (3.32),
essentially comes from the a priori approximation that the profile of mass fraction varies
linearly with spatial coordinate χ .

Similar to the above operations for species equation, we further substitute (3.8) into the
equation of turbulent eddy scale, i.e. (3.13). After some complex operations with the aid
of (3.14)–(3.18), we finally obtain

[ ˙̃L0(t)− 2rCμβ
2
√

2K̃f 0/NL]2r(1 − X)Xr−1 + [ ˙̃L0(t)+ 2rCμβ
2
√

2K̃f 0/NL]Xr

= CL

√
2K̃f 0X(1−r). (3.34)

Furthermore, to simplify the expressions, we define non-dimensional ϕ1 and ϕ2 as

ϕ1(r) ≡ 2Cμβ
2/(CLNL), (3.35)

ϕ2(r) ≡ 2 ˙̃L0(t)/(CL

√
2K̃f 0), (3.36)

where both ϕ1 and ϕ2 implicitly depend on the power index r. With these definitions, (3.33)
becomes

NY = 2NLϕ1(r)/ϕ2(r). (3.37)

More importantly, (3.34) can be rearranged to give

FL[X(χ), r] ≡ [ϕ2(r)− 2rϕ1(r)]r(1 − X)Xr−1 + [ϕ2(r)/2

+ ϕ1(r)r]Xr − X(1−r) = 0. (3.38)

It can be easily verified that FL[X(χ), r] ≡ 0 by giving ϕ1(r) = ϕ2(r) = 1 and r = 1/2,
which is the special solution given by Dimonte & Tipton (2006). However, as we
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FIGURE 3. The variations of newly defined integrals ϕ1,2(r) (as shown in (3.41) and (3.42)) with
power index r. The symbols give the variations by numerically integrating (3.41) and (3.42). The
lines plot the variations with fitted function, as shown on the right-hand side of (3.41) and (3.42).
The comparisons show that the fitted functions agree very well with numerical integrals in the
range of r ∈ (0, 1).

mentioned above, a shortcoming of Dimonte and Tipton’s special solution is that the
corresponding model coefficients obtained could not reproduce the physical profiles. In
this paper we devote to finding an approximate solution for arbitrary r and s. To achieve
this goal, based on the logic presented in § 3.1, we turn to require that the integral of
FL[X(χ), r] across the mixing zone approximates zero. Furthermore, considering that
(3.38) involves both ϕ1(r) and ϕ2(r), we implement the integral for both X and χ to
uniquely determine the values of ϕ1(r) and ϕ2(r), i.e.

∫ 1

0
FL[X(χ), r] dχ = 0, (3.39)∫ 0

1
FL[X(χ), r] dX = 0, (3.40)

where, due to the symmetry, the non-dimensional integral interval is from 0 to 1.
Substituting the definition of FL[X(χ), r] given in (3.38) into (3.39) and (3.40), we can
finally obtain the following relations after some complex operations:

ϕ2(r) = G3(r)G4(r)− f3(r)G1(r)
G2(r)G4(r)− G5(r)G1(r)

≈ −17.8/(r − 4.95)− 3, (3.41)

ϕ1(r) = G3(r)
G1(r)

− ϕ2
G2(r)
G1(r)

≈ 0.92/(r + 0.09)− 0.56. (3.42)

Here G1(r) ≡ 2r − (2r2 + r)/(r + 1), G2(r) ≡ (r − 1/2)/(r + 1)− 1, G3(r) ≡ 1/(r −
2), G4(r) ≡ (2r2 + r)f2(r)− 2r2f1(r) and G5(r) ≡ rf1(r)+ (1/2 − r)f2(r). Similar to fi(r),
(3.41) and (3.42) show that both ϕ1(r) and ϕ2(r) cannot be expressed with elementary
functions, and we also use the inverse proportion function to fit their numerical integrals,
as shown in figure 3. From figure 3 we can find that the current method successfully
reproduces Dimonte and Tipton’s results of ϕ1(r) = ϕ2(r) = 1 at r = 1/2.
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Similarly, with the aid of (3.9), (3.14)–(3.18), (3.32), (3.35) and (3.36), we can also
derive the following evolution equation for K̃f by substituting (3.8) into (3.12):[

ϕ2(r)
4

− (1 − r)NLϕ1(r)
Nk

]
4(1 − r)(1 − X)X1−2r

+
⎡⎣ 1

CL

L̃0(t)

(2K̃f 0)

˙̃Kf 0√
2K̃f 0

+ (1 − r)NLϕ1(r)
Nk

⎤⎦ X2(1−r)

= −CD

CL
X3−4r + Cμβ

2

4CL

(Δṽ)
2

2K̃f 0

X︸ ︷︷ ︸
only K−H

+ 1
CL

L̃0(t)

(2K̃f 0)
CBA0gX︸ ︷︷ ︸

only R−T

, (3.43)

where the last two terms exist only for K–H and R–T mixing problems, respectively.
Equation (3.43) is too complex to derive a general constraint among model coefficients.
Here, we search for a possibly additional constraint with the principle that this constraint
can minimise the complicity of (3.43). We find that the following constraint can greatly
simplify (3.43):

ϕ2(r)/4 = ϕ1(r)(1 − r)NL/Nk. (3.44)

Under the constraint of (3.44), (3.43) becomes⎡⎣ 1
CL

L̃0(t)

(2K̃f 0)

˙̃Kf 0√
2K̃f 0

+ ϕ2(r)
4

⎤⎦ X2(1−r) = −CD

CL
X3−4r + Cμβ

2

4CL

(Δṽ)
2

2K̃f 0

X︸ ︷︷ ︸
only K−H

+ 1
CL

L̃0(t)

(2K̃f 0)
CBAgX. (3.45)

Later, we will use (3.45) to derivate other constraint relations of the model coefficients.
A further analytical operation of (3.45) is possible if r = 1/2, as demonstrated by

Dimonte & Tipton (2006). For arbitrary real r, however, an analytical operation is nearly
impossible. To derive the constraint relations among model coefficients, we rethink the
problem from two opposite perspectives. From a forward viewpoint, we are looking for
such a set of model coefficients to reproduce the physical evolution of either R–T, R–M or
K–H mixing problems. From a converse viewpoint, the physical evolution of R–T, R–M
and K–H mixing problems should also meet (3.45). Therefore, the constraint relations
among model coefficients can be approximately established by imposing the physical
evolution law into (3.45), and not directly solve the equation. Next, this idea will be used
for K–H, R–M and R–T mixing problems.

Firstly, for the K–H mixing problem, the growth of the total mixing width is given in
(2.5). Combining (2.5), (3.9) and (3.36) and the relation of H(t) = 2h(t), we can derive

K̃f 0 = [βαKHΔṽ/(ϕ2CL)]2/2. (3.46)

With the aid of (3.46), (3.45) can be simplified to

FKH
K [X(χ), r] ≡ ϕ2(r)X2(1−r)/4 − CμCL(ϕ2/αKH)

2X/4 + X3−4rCD/CL

= 0. (3.47)
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Using the same idea adopted in L̃, we can derive an approximate constraint relation with
the weak constraint of

∫ 1
0 FKH

K [X(χ), r] dχ = 0 as

Cμ = ϕ2(r)f4(r)+ 4f6(r)CD/CL

CLf5(r)[ϕ2(r)/αKH]2 . (3.48)

Secondly, for the classical R–M mixing problem with impulsive g ≈ 0, the growth of
the mixing width is given in (2.6). Combining (2.6), (3.9) and (3.36), we can derive that

1
CL

L̃0(t)

(2K̃f 0)

˙̃Kf 0√
2K̃f 0

= ϕ2L̃0
¨̃L0

2 ˙̃L2
0

= ϕ2

2
θ − 1
θ

. (3.49)

With the aid of (3.49), (3.45) can be simplified into

FRM
K [X(χ), r] ≡ [

ϕ2(r)(θ − 1)/(2θ)+ ϕ2(r)/4
]

X2(1−r) + X3−4rCD/CL = 0. (3.50)

Using the same idea adopted in L̃, we can derive an approximate constraint relation with
the weak constraint of

∫ 1
0 FRM

K [X(χ), r] dχ = 0 as

CL = CD

(2θ)−1 − 3/4
f6(r)

ϕ2(r)f4(r)
. (3.51)

Thirdly, for the classical R–T mixing problem with constant g, the growth of the mixing
width is given in (2.4). Combining (2.4), (3.9) and (3.36), we can derive that

L̃0

2K̃f 0

= (CLϕ2)
2

16βαbAg
, (3.52)

˙̃Kf 0√
2K̃f 0

= CLϕ2

4
2K̃f 0

L̃0

. (3.53)

With the aid of (3.52) and (3.53), (3.45) can be simplified into

FRT
K [X(χ), r] ≡ ϕ2(r)

2
X2(1−r) − CB

CL

(
CLϕ2

4

)2 1
βαb

X + CD

CL
X3−4r = 0. (3.54)

Using the same idea adopted in L̃, we can derive an approximate constraint relation with
the weak constraint of

∫ 1
0 FRT

K [X(χ), r] dχ = 0 as

CB = 24αb

CACL

[
f4(r)

2ϕ2(r)
+ CD

CL

f6(r)
ϕ2

2(r)

]
. (3.55)

Furthermore, the increment of turbulent kinetic energy and decrement of potential energy
are expressed as, respectively,

ΔEk =
∫ h

−h
ρ̄K̃f dx =

∫ h

−h
ρ̄(x)K̃f 0(t)[1 − (x/h)2]

2(1−r)
dx ≈ (ρh + ρl)K̃f 0hf4(r), (3.56)

ΔPE =
(∫ 0

−h
ρlgx dx +

∫ h

0
ρhgx dx

)
−

(∫ 0

−h
ρ̄gx dx +

∫ h

0
ρ̄gx dx

)
≈ ρh − ρl

6
gh2,

(3.57)
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where the mean density ρ̄(x) is approximated as ρ̄(x) ≈ ((ρh + ρl)/2)+ ((ρh − ρl)/2h)x .
Using (2.4), (3.9) and (3.36), we can derive ΔEk/ΔPE = 48αbf4(r)/[ϕ2(r)CACL]2,
which gives

CA = 1
CLϕ2(r)

√
48αbf4(r)
(Ek/ΔPE)

. (3.58)

Similar to the quadratic growth coefficient of the mixing width, we also define a quadratic
growth coefficient of maximum turbulent kinetic energy αK as αK ≡ K̃f 0/(A0gt)2.
Combining this definition and (2.4), (3.9) and (3.36) and (3.58), we can derive that

αK = αb
(Ek/ΔPE)

6f4(r)
, (3.59)

which will be used in the next section to determine the final model coefficients.
Finally, with the aid of (3.9), (3.14)–(3.18), (3.32), (3.35) and (3.36) and assuming that

γ is constant, we can also derive the following inner energy equation by substituting (3.8)
into (3.10):

ϕ2(r)CL

L̃0(t)
ẽ0(t)(1 − X)+ ˙̃e0(t)X = Ψ

2β2Cμ

L̃0(t)
[2(1 − X)− X] − CBAgX + CD

(2K̃f 0)

L̃0(t)
X3−4r.

(3.60)

Here, corresponding to different models (Kokkinakis et al. 2015), Ψ = γ ẽ0/Nh or ẽ0/Ne.
In principle, we can conduct similar operations for the turbulent kinetic energy equation to
derive new constraint relations among model coefficients. However, considering that little
knowledge is known for the evolution of inner-energy-associated quantities, we determine
the coefficients of Ne or Nh with the following idea. The inner energy equation consistent
with (3.10) is

(ρ̄ẽ)t + ∂x [ũ(p̄ + ρ̄ẽ)] = DE − Skf . (3.61)

For the incompressible limit with γ = constant, we have e = p/[ρ(γ − 1)], where p ≡
p0 + p′, p0 → ∞ and p0 � p′. The dominant terms of (3.61) at A → 0 then gives

∂x

(
γ p0

γ − 1
u
)

= ∂x

[
μt

Ne
∂x

(
p0

γ − 1
1
ρ̄

)]
or ∂x

(
γ p0

γ − 1
u
)

= ∂x

[
μt

Nh
∂x

(
γ p0

γ − 1
1
ρ̄

)]
.

(3.62a,b)

Consequently, we can obtain

∂x

[
u − μt

γNe
∂x

(
1
ρ̄

)]
= 0 or ∂x

[
u − μt

Nh
∂x

(
1
ρ̄

)]
= 0. (3.63a,b)

In addition, for the incompressible limit, the mass fraction (1.4) can be reduced to (see
the detailed derivations in Livescu 2013) ∇ · (ũ − (μt/NY)∇(1/ρ̄)) = 0, whose 1-D form
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reads as

∂x

[
u − μt

NY
∂x

(
1
ρ̄

)]
= 0. (3.64)

Comparison of (3.64) and (3.63a,b) yields the constraint relations

Ne = NY/γ or Nh = NY, (3.65a,b)

where the different constraint relations correspond to different models (Kokkinakis et al.
2015).

Equations (3.25), (3.28), (3.30), (3.32), (3.37), (3.41), (3.42), (3.44), (3.48), (3.51),
(3.55), (3.58), (3.59) and (3.65a,b) involve 21 variables. These include one variable
characterising the fluid property (i.e. γ ), seven variables characterising mixing
evolution (i.e. αb, αKH, θ,ΔEk/ΔPE, s, r, αk), two variables defined in this paper
(i.e. ϕ1, ϕ2) and 11 variables of model coefficients CA,CB,Cc,CD,CP,Cμ,CL,Nh(Ne),
Nk,NL,NY . Among the seven variables characterising mixing evolution, five variables
of αb, αKH, θ,ΔEk/ΔPE, s have clear physical meaning and can be easily measured in
either numerical simulations or experiments. Therefore, the values of five variables are
actually known, at least for experts working in this field. Furthermore, except for the
known property parameter γ , the number of remaining variables to be determined are 15.
The derived 14 algebraic relations, so there is only one degree of freedom. Consequently,
given the value of any one undetermined variable, the others can be uniquely determined.
Considering that (i) the drag coefficient CD has a more clear physical meaning, and (ii) the
value of CD has been widely investigated in either buoyancy-drag model (Dimonte 2000;
Zhang et al. 2016) or K–L model (Dimonte & Tipton 2006; Morgan & Greenough 2016),
in this paper we leave the one degree of freedom to CD.

Now given αb, αKH, θ,ΔEk/ΔPE, s, γ and CD, the final expressions to calculate the
model coefficients are collected, in an order that each coefficient can be determined
explicitly one by one, as

r = 1 − s/2, (3.66)

Cc = 1/3, (3.67)

Cp = 2/3, (3.68)

CL = CD

(2θ)−1 − 3/4
f6(r)

ϕ2(r)f4(r)
, (3.69)

CA = 1
CLϕ2(r)

√
48αbf4(r)
(ΔEk/ΔPE)

, (3.70)

CB = 24αb

CACL

[
f4(r)

2ϕ2(r)
+ CD

CL

f6(r)
ϕ2

2(r)

]
, (3.71)

Cμ = ϕ2(r)f4(r)+ 4f6(r)CD/CL

CLf5(r)(ϕ2(r)/αKH)
2 , (3.72)

NL = 2Cμ

CLC2
Aϕ1(r)

, (3.73)

Nk = NL4(1 − r)
ϕ1(r)
ϕ2(r)

, (3.74)
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NY = 2NL
ϕ1(r)
ϕ2(r)

, (3.75)

Ne = NY/γ or Nh = NY, (3.76a,b)

where fi(r) (i = 1, . . . . . . , 6) and ϕi(r) (i = 1, 2) are given in (3.19)–(3.24) and
(3.41)–(3.42), respectively.

Using (3.66)–(3.76a,b), it can be verified that Dimonte and Tipton’s model
coefficients can be recovered by giving αb = 0.0625, αKH = 0.5, θ = 0.25, ΔEk/ΔPE =
0.5, s = 1, γ = 1.4 and CD = 1.25, thus validating the rationality of the current
methodology indirectly. Moreover, giving αb, αKH, θ,ΔEk/ΔPE, s, γ and CD, we can
always obtain a set of model coefficients with the current method. Solving the RANS
equation with such a set of model coefficients would produce corresponding RANS
evolution F RANS, from which we can measure another set of αb, αKH, θ,ΔEk/ΔPE and s.
A comparison of the two sets of αb, αKH, θ,ΔEk/ΔPE and s can directly evaluate the
approximation level of the current methodology. For the classical R–T, R–M and K–H
mixing problems in § 2.2, the systematic RANS calculation for problems with R → 1 and
for different values of αb, αKH, θ,ΔEk/ΔPE, s, γ and CD are conducted with CFD2 code.
Without giving all the results, we summarize that although there exists a slight deviation
between F̄ apri and F RANS, the model coefficients obtained with the current methodology
can always produce F RANS ≈ F phy ≈ F̄ apri. As an example, in figure 4 we demonstrate a
specific result for the R–T test problem with A = 0.1. In this case, we set αb = 0.05, αKH =
0.18, θ = 0.25, ΔEk/ΔPE = 0.5, s = 4/3 and γ = 1.4 based on our understanding of
mixing problems (see also § 2.1). The initial value of CD is tentatively set as 1/(2

√
2) by

referring to Morgan & Greenough (2016). In figure 4 we can see that the RANS evolutions,
either temporal or spatial scalings, are close to those preset evolutions, thus validating the
current methodology. Moreover, as the above methodology is essentially an approximation
theory, a slight deviation of F RANS from F̄ apri can be observed. However, the deviation has
less influence on the determination of model coefficients and can be further improved by
slightly adjusting a parameter shown in the next section.

4. Applications

4.1. Procedures for determining coefficients (a specific example)
In the previous section we document the derivations of the current theory and demonstrate
that the model coefficients determined with the current method successfully produce
F̄ apri ≈ F RANS ≈ F phy . However, before applying this method to practical applications,
some problems still need to be solved. For problems with R → 1, RANS simulation with
model coefficients calculated from (3.66)–(3.76a,b) can produce F RANS ≈ F phy ≈ F̄ apri if
the desired evolution F phy and a specific CD are given. However, we have not shown how
to determine the remaining degree of freedom of CD. Consequently, for the same desired
F phy , different sets of model coefficients can be obtained by different values of CD. The
following questions arise. (i) Among all the possible model coefficients for the problem
with R → 1, is there a set of model coefficients suitable for all R? (ii) Moreover, if the
answer to the first question is yes then how does one find such a set of model coefficients
with the aid of constraint relations (3.66)–(3.76a,b)? In this section, we will answer the
two questions by applying the current method to a specific R–T mixing problem and
demonstrate detailed procedures of determining model coefficients.

We try to answer the questions from the description of the evolution of mixing. As
discussed in § 2.1, the mixing evolution can be described in three levels. In terms of
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FIGURE 4. Comparison of the temporal evolutions (left) of (a) maximum turbulent kinetic
energy K̃max

f , (b) mixing width of bubble mixing zone hb, and (c) self-similar parameter β
versus Agt2 and the spatial profiles (right) of (d) the volume fraction of a heavy fluid φ̃1,
(e) re-normalised turbulent kinetic energy K̃f /K̃max

f and ( f ) re-normalised length scale L̃/L̃max

versus (x − hb)/(hs − hb) between RANS evolutions (solid lines) and preset evolutions (dashed
lines). In this study the superscript max denotes the maximum value of quantity over the entire
mixing zone at any given time. The RANS results of the R–T test problem with A = 0.1 are
calculated with a set of model coefficients determined by αb = 0.05, αKH = 0.18, θ = 0.25,
ΔEk/ΔPE = 0.5, s = 4/3, γ = 1.4 and CD = 1/(2

√
2) (Morgan & Greenough 2016). The

preset evolutions are given according to the current theory. Specifically, the preset evolutions
of K̃f /K̃max

f , hb and β are given theoretically by (3.59), (2.4) and both (3.30) and (3.70),

respectively. The spatial profiles of φ1, K̃f /K̃max
f and L̃/L̃max are given by (3.8).
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FIGURE 5. Variation of the measured αb of RANS results with Atwood number A (or equivalent
R) and model coefficient CD. The RANS results are obtained with the model coefficients
determined by providing αb = 0.05, αKH = 0.18, θ = 0.25, ΔEk/ΔPE = 0.5, s = 4/3, γ = 1.4
and different values of CD. In this figure, αb corresponding to five values of CD = 0.1 (black
line), 0.2 (red line), 0.4 (green line), 0.8 (blue line) and 1.6 (cyan line) is plotted. The values of
αb vary slightly with the methods used to calculate αb. If the mixing width is assumed growing
as hb = αbAg(t + ts)2, one can derive h1/2

b = α
1/2
b

√
Ag(t + ts), where ts is the time origin of

bubbles (Clark & Zhou 2003; Cabot & Cook 2006). In this situation, when plotting h1/2
b versus√

Agt, the asymptotic slope of the curve can be regarded as α1/2
b , and thus αb. In contrast, if the

mixing width is assumed growing as hb = αbAgt2, αb is the asymptotic slope when plotting hb
versus Agt2. The slight difference between the two methods has been discussed in Cabot & Cook
(2006) and Zhou (2017b). In this figure αb is measured using the latter method.

practical applications, the most important and fundamental level is the first level of the
mixing width. If the mixing width is correctly captured, predicting higher levels (e.g.
mixing profile) would not be too bad. Based on the analysis, we present the critical idea in
determining the remaining degree of freedom of CD, and, thus, the model coefficients, as
follows: final CD can be determined if its corresponding model coefficients can correctly
predict the evolution of the mixing width at all density ratios. For the R–T mixing problem,
the mixing width increases as shown in (2.4). Moreover, based on experiments (Read
1984; Youngs 1989; Dimonte & Schneider 2000) and numerical simulations (Zhou 2017a),
researchers have identified that the quadratic grow coefficient αb, equivalently to hb,
is nearly independent of density ratios, provided that the initial perturbations are similar
(Dimonte 2004; Ramaprabhu et al. 2005; Banerjee & Andrews 2009; Olson & Jacobs
2009; Zhou 2017b).

Based on the above analysis, we determine the remaining degree of freedom, CD, as
per the following steps: (i) calculate model coefficients by providing the same values
of αb, αKH, θ,ΔEk/ΔPE, s and γ and different values of CD; (ii) for different values
of R, implement RANS simulations with the model coefficients obtained in step (i);
(iii) measure αb obtained from RANS results and plot the variations of αb with R and CD;
(iv) select CD that produces the R-independent αb. In figure 5, after implementing the
above procedures, we plot the variations of αb with A and CD. From this figure we can
see that the value of αb decreases monotonically as A when CD = 0.4, 0.8 and 1.6, and
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increases slightly as A when CD = 0.1. Only when CD = 0.2, αb takes the constant value
of 0.05 at all density ratios. Hence, the value of CD = 0.2 is used hereafter.

With the aforementioned procedures, all the model coefficients can be determined,
but the problem is not over. As mentioned in §§ 3.1 and 3.2, the model coefficients
determined from (3.66)–(3.76a,b) can only produce F RANS ≈ F phy but cannot produce
F RANS → F phy , as the current method is essentially an approximation method. Specifically,
in this method the profiles of φ̃1 and K̃f /K̃max

f are preset as (1 − χ)/2 and Xs, respectively,
and the corresponding RANS profiles are closest to the preset profiles (see figure 4).
Consequently, a sharp transition nearby the outer edge of the mixing zone can be
observed, slightly different from the smooth transition in experiments and numerical
simulations (DNS or LES). Although a slight difference comes from approximations of the
current method, it is possible to slightly adjust the model coefficients to produce profiles
approaching physical results, based on the understanding of the current method. Next, we
will address this problem.

To better quantify the shape of a profile, we have segmented a profile into the following
two superposed parts: (i) the first part describes the skeleton shape of the entire profile;
(ii) the second part describes the spatial change of a local gradient. Under this description,
the preset profiles of φ̃1 and K̃f /K̃max

f with (1 − χ)/2 and Xs capture only the first part
of the physical profiles. The second part, although much smaller than the first part, is
not considered in the above method. In physics the second part is closely associated with
diffusion and more specifically diffusion coefficients. Therefore, to fine-tune the second
part of a profile, we can multiply the corresponding diffusion coefficients obtained from
the above method by a non-dimensional shape factor Π . For example, to slightly adjust
the shape of the mass fraction profile, we can modify (3.75) to the following equation:

NY = 2ΠNL
ϕ1(r)
ϕ2(r)

. (4.1)

Correspondingly, the Ne,h should be updated with (3.76a,b). Consequently, the adjustment
of the profile shape of the mass/volume fraction can also influence the turbulent kinetic
energy profile. Therefore, we only need to adjust the value of the shape factor.

Based on the above analysis, for RANS profiles to approach physical results, we can
adjust the first and second parts of the profiles. The first part can be achieved by adjusting
the power index s for the turbulent kinetic energy profile. The second part can be achieved
by adjusting the shape factor Π in (4.1). In principle, the values of s and Π can be
determined with the experimental or numerical profiles of the volume fraction φ̃ and
turbulent kinetic energy K̃f at A → 0. However, no smooth profile at A → 0 can be
obtained from the published literature. Hence, we have to determine their values using the
smooth profiles at a larger A, such as the LES data produced by Kokkinakis et al. (2015). In
figure 6 we plotted the variations of volume fraction profiles and re-normalised turbulent
kinetic energy with power index s and shape factor Π . In the left figure we can see that
the shape of the turbulent kinetic energy profile indeed varies with s, while the shape of
the volume fraction profile is almost unchanged, as expected by the current theory. In the
right figure we can see that the shape of both the volume fraction and turbulent kinetic
energy profiles varies withΠ , which is consistent with above analysis. Comparing the left
and right figures, we find that the trend and degree of the variations are not similar. As for
the degree of variation, the left figure shows that the profiles vary slightly with s, while
the right figure shows that the profiles vary strongly with Π . As for the trend of variation,
both figures show that the profile of the volume fraction becomes slower and shifts towards
the same direction (right) with the increment of either Π or s. In contrast, the profile of
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FIGURE 6. Variation of the profiles of the volume fraction of a heavy fluid φ̃1, re-normalised
turbulent kinetic energy K̃f /K̃max

f with power index s (a) and shape factor Π (b). The RANS
results of the R–T test problem with A = 0.9 (R = 20 : 1) are calculated with a set of model
coefficients determined by providing αb = 0.05, αKH = 0.18, θ = 0.25, ΔEk/ΔPE = 0.5, γ =
1.4, CD = 0.2 and different s and Π . In the left figure the shape factor Π is fixed as 1, and s
increases from 4/3 (black solid lines) to 1.8 (red dashed lines). In the right figure s is fixed as 4/3,
and the shape factor Π increases from 1 (black solid lines) to 2 (red dashed lines).

the turbulent kinetic energy shifts towards the right and left direction corresponding to the
increment of Π and s, respectively. Using the difference in variation trend and variation
amplitude, one can always adjust s and Π to match the RANS results with the physical
results. Figure 7 shows the comparison between the mixing evolution predicted by implicit
LES (Youngs 2013; Kokkinakis et al. 2015) and current RANS simulations. The RANS
evolutions are obtained by adjusting s and Π with the aforementioned logic to match the
LES results. From the comparison, we can find that RANS profiles of both φ̃1 and K̃f /K̃max

f
almost coincide with LES profiles.

Up to now, we have successfully reproduced the spatial profile of physical evolution,
as shown in figure 7. However, in this figure we can also see that the temporal scalings
of RANS results has a slight deviation from that of LES results. This is because the
initial input parameters influencing the temporal scalings (e.g. αb, αKH, θ , ΔEk/ΔPE) have
not been carefully determined. In fact, we can adjust the temporal scalings of the RANS
results by adjusting the corresponding input parameters with the aid of relations derived
in this paper. For example, the left graph of figure 7 shows that the RANS evolution of
W (equivalently to hb and αb) is similar to implicit LES results, and the linear growth rate
of K̃max

f (equivalently to αK) of LES results is about 1.1 times of RANS results. Hence,
according to (3.59), we only need to multiply the initial value of ΔEk/ΔPE, i.e. 0.5, by 1.1
(which equals to 0.55). After considering this adjustment, the new RANS evolutions are
compared with those of LES (Youngs 2013; Kokkinakis et al. 2015) in figure 8. From this
figure we can see that RANS evolutions, either the temporal scalings or spatial profiles,
almost completely coincide with those of LES results, validating the method developed
above.

4.2. Applications to various problems
In § 4.1 we have demonstrated the process to determine a set of model coefficients with
the constraint relations in § 3.2. From the procedures we can see that the determination

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

72
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.726


Methodology for determining coefficients of turbulent mixing 905 A26-31

0

0

0.2

–2–4

0.4

0.6

0.8

1.0

0 2 4 6 810

LES
RANS

LES

Volume

fraction

RANS

X/W

W (cm)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

20 30 40 50 60 70 80 90 100

0.019254Agt2

Agt2 (cm)

0.017Agt2–0.1

Kf
max (cm2 s–2)

Kf /Kf
max

(a) (b)

FIGURE 7. The comparison of the mixing evolution predicted by RANS (black lines) and
implicit LES (Youngs 2013; Kokkinakis et al. 2015) (red dashed lines in the left figure and
hollow red rings in the right figure). The left figure plots the evolution of integral mixing width
W and maximum turbulent kinetic energy K̃max

f versus Agt2, and the dashed lines show the
corresponding linear growth rate of LES (Kokkinakis et al. 2015). The right figure plots the
spatial profiles of the volume fraction of a heavy fluid φ̃1 and re-normalised turbulent kinetic
energy K̃f /K̃max

f versus re-normalised spatial coordinate X/W. The RANS results of the R–T test
problem with A = 0.9 (R = 20 : 1) are calculated with a set of model coefficients determined by
providing αb = 0.05, αKH = 0.18, θ = 0.25, ΔEk/ΔPE = 0.5, γ = 1.4, CD = 0.2, s = 1.6 and
Π = 1.3.
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FIGURE 8. Comparison between RANS and LES (ΔEk/ΔPE = 0.55,A = 0.9). For captions,
see figure 7.

only needs physical evolution data of a specific problem. In § 4.1 the implicit LES data
of R–T mixing at A = 0.9 are used. Based on these reliable data, we demonstrate that
the final model coefficients can be determined by substituting the input parameters,
αb = 0.05, αKH = 0.18, θ = 0.25, ΔEk/ΔPE = 0.55, CD = 0.2, s = 1.6 and Π = 1.3,
into (3.66)–(3.74), (4.1) and (3.76a,b). The corresponding values of model coefficients
are listed in table 1. In practical applications, the problems involve R–T, R–M, K–H and
reshocked R–M mixing synchronously, and the density ratio varies widely, as discussed
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FIGURE 9. Comparison between RANS and LES (ΔEk/ΔPE = 0.55,A = 0.5). For captions,
see figure 7.

in the introduction. Therefore, it is necessary to show whether the model coefficients
obtained in § 4.1 work for different problems and ratios or not. In this section we will
apply the model coefficients determined for R–T mixing at A = 0.9 to other problems
and density ratios, with detailed descriptions of problem configurations given in § 2.2.
The results will show that such a set of model coefficients can be applied to different
problems and density ratios.

Firstly, we demonstrate the applicability of the model coefficients to R–T mixing at
different density ratios. In figure 9 we plot the comparison of the mixing evolutions
predicted by LES (Youngs 2013; Kokkinakis et al. 2015) and RANS for R–T mixing
at A = 0.5 (R = 3 : 1). Similar to the results shown in figure 8, the comparison shows
that the evolution of either temporal scalings or spatial profiles of RANS results almost
coincides with LES results. Up to now, the best solution is the RANS simulation conducted
by Kokkinakis et al. (2015). In Kokkinakis et al. (2015) different model coefficients
for R = 3 : 1 and R = 20 : 1 are used (see table 1) to best match the RANS with LES
results. However, because of the lack of theoretical method about how to adjust the model
coefficients, this study failed to match the evolution of mixing width W and turbulent
kinetic energy K̃max

f simultaneously. In contrast, the method developed in this study
not only successfully reproduces the evolution of temporal scalings or spatial profiles
simultaneously, but what is more important is that this reproduction is for problems with
different density ratios and the same set of model coefficients, highlighting its significance.

Next, the applicability of the same model coefficients for K–H mixing is demonstrated
in figure 10. In this figure we plot the temporal evolution of total mixing width H,
maximum turbulent length scale L̃max and maximum turbulent kinetic energy K̃max

f . For
this kind of mixing problem, the total mixing width H(t) should grow linearly in time
with a slope equal to 0.18Δṽ, as discussed in § 2.1. As shown in figure 10, H(t) grows
linearly over time, with a slope of 0.18Δṽ. Similarly, the maximum turbulent length
scale L̃max also grows linearly with time, leading to a self-similar proportion constant
β and validating the assumption of (3.9). The maximum turbulent kinetic energy K̃max

f

approaches a constant value after a transient period of approximately 2 μs, consistent
with physics and other RANS results (Chiravalle 2006). Unfortunately, for this case, no
corresponding experimental or DNS data of K̃f is available for comparison. Moreover, it
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FIGURE 10. The temporal evolutions of total mixing width H(t) (a), maximum turbulent eddy
scale L̃max (t) (a) and maximum turbulent kinetic energy K̃max

f (b) with time t for K–H mixing.
The solid lines denote the RANS results calculated with the same model coefficients as those of
R–T mixing at A = 0.9. The red dashed lines in the left figure denote the temporal scalings.

is worth pointing out that Morgan, Schilling & Hartland (2018) found that it is difficult
for k-L-type models to simultaneously match desired K–H turbulence intensity and
growth rates. They successfully solved this problem by introducing an additional length
scale equation. Noted that the improvement of the model closure form is beyond the scope
of this paper, we recommend readers to read Morgan et al. (2018) for further details.

To further check whether the same set of model coefficients apply for classical R–M
mixing or not, figure 11 shows the temporal evolutions of total mixing width, bubble
mixing width and spike mixing width for classical R–M mixing at different density ratios,
with the impact of shock on the interface from either a heavy (A < 0) or light (A > 0) fluid
direction. Different from the classical R–T mixing problem, in classical R–M mixing,
the nominal centre of mixed zones would move over time, resulting in a difficulty in
quantifying the width of the bubble/spike mixing zone (i.e. hb,s). To measure hb/hs of
RANS results, in this paper we conduct a corresponding simulation with dense grids but
without the K–L mixing model. Next, we use the result to determine the nominal evolution
of material interface corresponding to φ̃1 = 0.5. Finally, the values of hb,s are determined
by measuring the distance from the outer edge of the RANS mixing zone to the nominal
material interface. Obviously, hb,s measured by this method is not strict, and errors may
be introduced, especially at the early stage where hb,s is very small. For instance, at the
early stage, we can see the unphysical phenomenon of hb > hs in some subfigures of
figure 11. However, in general, this method can effectively measure the physical hb,s. From
the log-log plots in figure 11 we can see that all RANS results successfully produce the
power scaling of hb,s ∝ tθb,s , with θb ∼ 0.25 and θs ≥ θb for all cases. This can be more
clearly shown in figure 12, which directly plots the comparison of θb and θs between
the present results at A = ±0.1,±0.5,±0.9 and the LEM experimental measurements
(Dimonte & Schneider 2000). It reveals that θs ≈ θb at small Atwood number (|A| ≤ 0.5)
and θs > θb at larger Atwood number, where the mixing grows asymmetrically. These
results agree very well with the existing numerical simulations and experiments (Dimonte
& Schneider 2000; Zhou 2017b), validating the effectiveness of the current method for
classical R–M problems.
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FIGURE 11. The temporal evolutions of the total mixing width H(t) (black lines), bubble mixing
width hb(t) (red lines) and spike mixing width hs(t) (blue lines) of classical R–M mixing at
(a) A = 0.1, (b) A = −0.1, (c) A = 0.5, (d) A = −0.5, (e) A = 0.9 and ( f ) A = −0.9. The solid
lines denote the RANS results calculated with the same model coefficients as those of R–T
mixing at A = 0.9. The dashed lines denote the fitted temporal scalings.

The above examples demonstrate the applicability of the same model coefficients for
a single mixing phenomenon. As discussed in the introduction, practical applications
generally involve R–T, R–M and K–H mixing phenomena synchronously. As we discussed
in § 2.1, the reshocked R–M mixing is just such an example. Hence, we use this problem
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FIGURE 13. The temporal evolutions of the total mixing width H(t) of reshocked R–M mixing
problem with (a) A = 0.67 and (b) A = −0.67. The solid lines denote the RANS results
calculated with the same model coefficients as those of R–T mixing at A = 0.9. The symbols
denote the experiment results conducted by Vetter & Sturtevant (1995) (a) and Poggi et al.
(1998) (b). See Xiao et al. (2020) for more details.

to comprehensively examine the effectiveness of the same set of model coefficients for
complex problems. The RANS results are plotted in figure 13 and compared with the
measurements of corresponding experiments. From the comparisons, we can see that the
temporal evolution of the total mixing width highly coincides with that of experimental
results, with the impact of shock on the interface from either a light (A = 0.67) or heavy
(A = −0.67) fluid direction. In fact, predicting mixing width evolution with the RANS
model has been conducted by many researchers (Dimonte & Tipton 2006; Zhou 2017b;
Moran-Lopez & Schilling 2013). To the best of our knowledge, with the same set of
model coefficients, no study can successfully reproduce the reshocked R–M experiments
conducted by Vetter & Sturtevant (1995) (A > 0) and Poggi et al. (1998) (A < 0) at
the same time, especially with such a good degree of collapse. A more comprehensive
validation of the set of parameters on reshocked R–M problems can be found in our recent
paper (Xiao et al. 2020).

In short, all the above examples demonstrate the possibility of using the same RANS
model coefficients for mixing problems involving different configurations, density ratios
and physical quantities.
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5. Discussions

As mentioned in the introduction, a turbulence model includes two aspects: physical
modelling and model coefficients. The accurate prediction of mixing evolution with the
RANS model needs a precondition that both parts are correct. In this paper we only
consider the determination of model coefficients, and document all details of the current
method. To demonstrate this method, constraint relations and model coefficients are
derived with an example of a K–L turbulence model. Essentially, what we present in this
paper is a methodology. The most important matter is not the final values of the model
coefficients but the ideas hidden behind the determination of model coefficients, along
with detailed reasons explained as follows.

Recalling the procedure of the current method in determining model coefficients, we
can find that the values of the model coefficients are essentially coupled with physical
modelling itself. If we modify physical modelling to achieve our expectation of F RANS →
F phy , we have to adjust some model coefficients, although it is possible that sometimes
the magnitude of this adjustment is negligible. However, the current method implies that
this step, in principle, is necessary, and it gives a theoretical guidance on how to adjust
the model coefficients step by step. Taking the modelling of turbulent diffusion of total
energy DE as a specific example, DE is modelled as ∇ · [(μt/Nh)∇ẽ] and ∇ · [(μt/Nh)∇h̃]
in Dimonte & Tipton (2006) and Kokkinakis et al. (2015), respectively. Applying the
current method to the two physical models, we can derive that the corresponding
model coefficients should meet the relation of Nh = γNe, derived from (3.65a,b). As a
consequence, without considering the rationality of physical modelling itself, different
physical modelling can give the same RANS results when matched model coefficients are
used correspondingly. This will improve our understanding about the influence of different
modelling on the RANS results. For example, in Kokkinakis et al. (2015) the influence of
different modelling of DE on RANS results is estimated under the same value of Nh = Ne,
while the current study suggests that in such a comparison it is more appropriate using
Nh = γNe. Considering this dependence of model coefficients on physical modelling,
when a new or improved RANS model is developed, we suggest that the methodology
and procedures documented in this paper should always be executed to determine a set of
corresponding model coefficients. In fact, our recent work on the k-ε model also validates
this methodology, and the derived set of model coefficients is proven to be applicable to
the tested benchmark cases here. This work will be presented and discussed in the near
future.

Moreover, even for a deterministic model, a set of universal model coefficients for all
problems does not exist. Considering the K–L mixing model given in this paper as an
example, the current method shows that the model coefficients are determined by the input
parameters – αb, αKH, θ,ΔEk/ΔPE, s, γ and CD. Naturally, for different input parameters,
the model coefficients are different. Here, we briefly discuss two situations. The first
situation is associated with initial perturbations. As we discussed in § 2.1, in physics αb
and θ depend on initial perturbations (Dimonte 2004; Ramaprabhu et al. 2005; Livescu
et al. 2011; Youngs 2013). In this paper the values, αb = 0.05 and θ = 0.25, are given
by referring to the LEM experiments (Dimonte & Schneider 2000). For perturbations
composed entirely of short waves, the corresponding αb ≈ 0.025 (Dimonte et al. 2004)
should be used. Similarly, for K–H mixing, the growth rate αKH = 0.18 should be changed
for experiments different from Brown & Roshko (1974), such as experiments conducted
by Bell & Mehta (1990) (αKH ∼ 0.08). It also shows that an additional degree of freedom
should be added for Bell & Mehta (1990) experiments, as discussed by Morgan et al.
(2018). Therefore, our work implies that there does not exist a set of universal model
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coefficients for all problems; what exists for all problems are the constraint relations
derived from the current methodology, e.g. (3.66)–(3.74), (4.1) and (3.76a,b). The second
situation is associated with the fluid property γ . According to (3.65a,b), γ will influence
the value of Ne. For two fluids with the same γ , the value of Ne will vary according
to the changing values of γ and can be determined using (3.65a,b). For two fluids with
different γ , such as the reshocked R–M mixing investigated in this study, the situation
becomes complex. Because of the lack of a constant γ across the mixing zone, it is
impossible to obtain a constant Ne with (3.65a,b). Therefore, in this paper we prefer to
model DE as DE = ∇ · [(μt/Nh)∇h̃], instead of DE = ∇ · [(μt/Ne)∇ẽ]. If the latter model
was used, we suggest using a varied Ne according to (3.65a,b), in which γ is treated as the
spatial-dependent heat ratio of the mixture, i.e. γ ≡ p̄/ρ̄ẽ + 1.

6. Conclusions

In the foreseeable future the prediction of mixing with a RANS model will remain a
priority for engineering applications. Over the past several decades, although considerable
efforts have been made to improve the turbulence mixing model, the uncertainty in
determining model coefficients still challenges the academic community. During this
period, Dimonte and Tipton’s method significantly advanced the determination of model
coefficients. This method is established on a very specific assumption on the shape of
the mixing profile. Unfortunately, this assumption was later found to be inconsistent with
reliable numerical simulations. In this paper, based on our understanding of Dimonte
and Tipton’s work, we give up the assumption on the specific shape of the mixing
profile. Instead, we only assume that the mixing profile meets a certain type of shape.
Moreover, inspired by the idea of Reynolds decomposition, the RANS evolution has been
segmented into two parts. Based on our knowledge of the mixing problems, the main
part is formulated a priori in the form of separated temporal–spatial variables. After
substituting the formulations into the RANS equation, a critical idea of integrating the
RANS equation across the mixing zone has been introduced, yielding a set of approximate
constraint relations among model coefficients.

By fully using the derived constraint relations, the values of the model coefficients can
be accurately determined with only three steps in the following order to produce F RANS →
F phy: (i) determine the drag coefficient CD with the additional requirement that a set of
model coefficients should be appropriate for arbitrary density ratios; (ii) reproduce the
physical spatial profiles by adjusting the shape factor; (iii) reproduce the physical temporal
scalings by adjusting some growth law associated input parameters. The above order is
determined because the adjustment of the shape factor does not significantly affect the
evolution of temporal scalings (such as the realised αb and ΔEk/ΔPE), and, thus, we
do not suggest to change the order arbitrarily. Using the same set of model coefficients
determined with the above steps, the K–L model successfully reproduces the physical
evolutions of mixing problems, in terms of different physical quantities (e.g. temporal
scalings and spatial profiles), density ratios and different problems (R–T, R–M, K–H and
reshocked R–M).

Finally, in this paper the K–L mixing model is just used as an example to elaborate
key ideas and procedures. According to the discussions in § 5, we can conclude that the
most important thing in this paper is the methodology and not the specific values of the
model coefficients. It is possible to apply the current method to other mixing models and
turbulence models with self-similar evolutions.
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