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Abstract
This paper obtains an optimal strategy in a finite horizon time for a portfolio of a defined contribution
(DC) pension fund for an investor with the CRRA utility function. It employs the optimal stochastic con-
trol method in a financial market with two different asset markets, one risk-free and another one risky asset
in which its jump follows either by a finite or infinite activity Lévy process. Sensitivity of jump parameters
in an uncertainty financial market has been studied.
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1. Introduction
There are several types of pension plans in the insurance market which differ in terms of advan-
tages and financing. These plans categorise in two parts: (1) defined contribution (DC) pension
plans and (2) defined benefit (DB) pension plans. In this paper, we focus on investment of the
DC pension plans. The most original question that we face in these designs is: “what is the best
investment strategy of these funds in a finite horizon time?”

In a defined contribution pension plan, each client opens a separate personal account and all
benefits granting plus/minus income, and also returns and assailed related to this account will
be recorded. During retirement, the retirement benefits of each member are made from their
account. Of course at this point, account balances can be used to purchase an annual salary and
to create a regular income for the individual. In this type of plan, the risk is fully realised by the
plan’s members. Defined contribution pension plans in recent years at the level of the world have
been grown dramatically. In all these plans, especially the defined contribution pension plans,
the market investment is a key element which needs a considerable attention from their execu-
tive managers. Another type of pension contract is the “TimePension” product. It assigns a high
allocation to equities and high risky assets. Such kind of investment leads to a high expectations
in both returns and pension’s benefits. Since the TimePension plans are offered after retirement
period in the form of an annuity, they also called smoothed investment-linked annuity pension
schemes, see Jørgensen and Linnemann (2012) and Linnemann et al. (2015) for more details.

In this paper, we focus on investing (in a finite horizon time) for a person who purchased a
DC retirement product. Moreover, we assumed that an investment portfolio is a combination of
two risky and risk-free assets. Then, we derive an optimal strategy for such portfolio. Optimal
allocation of capital among a set of financial assets under conditions of uncertainty and risk is
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a well-established research field in modern finance theory. In this respect and before Merton
(1969) contribution to the field, most portfolio selection models have only considered one-period,
static models based onMarkowitz’s mean variance (1952) modern portfolio theory. In (1969) and
(1975), Merton studied “the combined problem of optimal portfolio selection and consumption
rules for an individual in a continuous-timemodel.” As a particular case, he examined in detail the
two-asset model (a risk free asset and a risky one) with constant relative risk aversion or iso-elastic
marginal utility.

This topic still receive a considerable attention from authors. For instance, Xu and Gao (2020)
provided a closed-form solution for the optimal portfolio control problem of a DC pension. Dong
and Zheng (2020) applied the concavification and dual control method to solve an optimal invest-
ment problem for a DC pension fund. Yao et al. (2020) considered the stochastic inflation rate
which described by a discrete-time of the Ornstein-Uhlenbeck process to derive an analytical
expressions for the efficient investment strategy for a DC pension fund. Dong and Zheng (2019)
for a DC pension fund whose its manager is a loss averse person derived an optimal investment
strategy in terms of the dual controlled process and the dual value function.

Merton’s original works developed under the geometric Brownian motion assumption, for the
risky asset’s dynamics, reduced to a non-linear Hamilton-Jacobi-Bellman, say HJB, partial differ-
ential equation. To obtain an explicit solution for such equation, a wide range of intertemporal
economic decision problems under uncertainty have been developed by authors, see Korn (1997)
and many references thereinafter. In the case that asset returns are modelled by a general Lévy
process, see Cox and Huang (1989), Kullsen (2000), Emmer and Klüppelberg (2004), Choulli and
Hurd (2001) and Liu et al. (2003).

Using a stochastic differential equation with a jump to model stock market has been received
several attention from authors. For instance, Øksendal and Sulem(2005) used a jump-diffusion
process to model the financial market.

Moreover, many authors employed the optimal control strategy for a pension contract in a
high-frequency market. For example, Liang and Ma (2015) computed the optimal asset allocation
of a pension fund with mortality risk and salary risk. They considered two stochastic processes for
themortality and the salary risk. Gao (2008) considered a portfolio problem in the complete finan-
cial market with stochastic interest rate. He found an explicit solution for the optimal investment
strategy under the logarithm utility function. Deelstra et al. (2003) defined the optimal guaran-
tee as a solution of the contributor’s optimisation programme and found the solution explicitly.
They analysed the impact of the main parameters, and particularly the sharing rule between the
contributor and the pension fund. We improve their findings in two directions: (1) we derive an
exact solution for the value function with a better guess in the optimal structure problem, and
(2) we study the impact of jump parameters in calculating the optimal strategy. To calculate an
optimal strategy, similar to Pasin and Vargiolu (2010), we employ an exponential additive process
to model risky assets.

The rest of this article is organised as follows. Section 2 collects some elements that play vital
roles in the rest of this article. Using the stochastic optimal control method, section 3 calculates the
optimal investment strategy for an asset which its stock dynamic has a jump process. In section 4,
we define and price a pension contract for a customer who pays his/her total premium at issue
time. Finally, in section 5 the numerical implementation of the results have been given.

2. Preliminaries
We start the model’s description by assuming that an expected utility maximising, risk-averse
economic agent makes investment decisions in a continuous-time setting in a finite time horizon
[0, T] in a market modelled by a complete filtered probability space (�,F , {Ft}t∈[0,T], P). All
the processes in this paper are adapted to the filtration {Ft}t∈[0,T] which describes the flow of
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information in a given time period. Moreover, we assume that the market composes of two
underling securities: (1) A safe and risk-free asset (e.g. a bond or a bank account) described by

dB(t)
B(t)

= r(t)dt, B(0)= 1 (1)

for a locally deterministic interest rate process r(t) and (2) A risky asset (e.g. a stock) specified by
the stochastic dynamics for its return as

dS(t)
S(t)

=
(
μ(t)+ 1

2
σ (t)2

)
dt + σ (t)dZ(t)+

∫ ∞

−∞
(ex − 1)N(dt, dx), S(0)= S0 (2)

where μ(t) and σ (t) are two adapted processes, respectively, representing the drift and diffusion
parts of the rate of return and Z(t) is a standard Brownian motion and N(·, ·) is a Poisson random
counting measure with the compensator �(·, ·) both defined on R

+ ×R. Moreover, we assume
that the compensator�(·, ·) for any measurable random function�(t, x):=�(ω, t, x) satisfies

E

⎛
⎝∫

R

�(t, x)N(dt, dx)

⎞
⎠=

∫
R

�(t, x)�(t, dx)dt (3)

Hereafter now, we assume that the jump and the Brownian parts in the stock dynamic are inde-
pendent. Note that the measure�(t, dx) specifies the intensity of the aggregate jump arrival rate,
and for practical purposes, we could assume it to depend on a deterministic/stochastic state vari-
able νt via �(t, dx)=�(νt , dx). We may think of this state variable as representing the current
level of the market or business activity (e.g. trading volume or liquidity) or some other related
micro-level indicator and assume that it follows a stochastic differential equation of the form

dνt =m(νt , t)dt + σ (νt , t)dZνt
wherem(νt , t), σ (νt , t) are the drift and diffusion parts of the state variable νt and Zνt is a standard
Brownian motion. In such a situation, we will assume that the drift μ, the diffusion σ and the
interest rate r are all deterministic functions of time and the state variable. We should note that:
in the special case that the jump arrival rate is proportional to the state according to

�(νt , dx)= νt�(dx) (4)

Financial models with jumps can be decomposed as the jump-diffusion models and models with
infinite number of jumps in every interval, say infinite activity models. The regular price for the
jump-diffusion models can be obtained by a diffusion process, which its jumps punctuated at ran-
dom intervals. Such the jumps represent rare events-crashes and large drawdowns, see Merton
(1976) and the Kou (2002) for some examples on such approach. For the infinite activity mod-
els, since dynamics of jumps is already rich enough to generate non-trivial small time behaviour,
one does not need to introduce a Brownian component. Moreover, Madan (2001), among other
authors, has been argued that such infinite activity models give a more realistic description of
the price process at various time scales. It is worthwhile mentioning that, many models from this
class can be constructed via a Brownian subordination, which gives them additional analytical
tractability compared to jump-diffusion models.

In this article, we consider two models, one in class of the finite activity models and one from
class of the infinite activity models. The following model assumptions introduce such two models.
Model Assumption 1. (Kou Model: Finite Activity Case) The double exponential jump-diffusion
model or Kou model is a finite activity model, whose its jump’s size distribution follows a two-sided
exponential distribution with density function
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fX(x)= pβ1e−β1xI{x>0} + qβ2eβ2xI{x<0} (5)
where β1 > 1, β2 > 0 governing the decay of the tails for the distribution of positive and negative
jump sizes and p ∈ [0, 1], p+ q= 1 representing the probability of an upward jump.

To calculate the optimal strategy, we need the following Kou Lévy measure, given by Kou (2004)
as�(dx)= λfX(x)dx.
Model Assumption 2. (Variance Gamma Model: Infinite Activity Case) The variance gamma
model could be considered as an extension of the Brownian motion process with drift which is
obtained by a random time change specified by a gamma process as:

Xt = θτt + ρZ(τt)
where θ and ρ are some given constants and for fixed l> 0, and ω> 0, the gamma process τt =
γt(l,ω) has mean rate lω and variance rate l2ω.

We also note in passing that the last integral term in (2) indicates the presence of jumps in
stock price dynamics, first considered by Merton (1975), where he assumed that the stock follows
a jump-diffusion process with a Poissonian (slow) arrival rate (see also Liu et al. 2003 for a recent
study about implications of jumps in pricing and volatility on investment strategies). However,
we consider here the more realistic choice of Lévy processes with extremely fast (potentially infi-
nite) jump rates. The specific example can be the variance gamma (VG) process which is a pure
jump Lévy process with an infinite arrival rate of small jumps, and this process introduced to the
literature by Madan and Seneta (1990). It is well-known that the VG process is a pure jump Lévy
process. In other words, the volatility in the stock dynamic is zero (σ = 0).

In the VG model, the Lévy compensator measure could be represented as

�(dx)= 1
x
e−

x
λu I{x>0} − 1

x
e

x
λd I{x<0}

where λu and λd are the positive solutions of equation λu − λu = θ l and λuλu = 1
2ρ

2l, which
are λu = 1

2

(√
θ2l2 + 2ρ2l+ θ l

)
and λd = 1

2

(√
θ2l2 + 2ρ2l− θ l

)
. Under some deterministic

measure�( · ), we may able to simplify several of our results, see below for more details.
Suppose {W(t)}t∈[0,T] denotes the wealth process of the investor representing the total accu-

mulated wealth at time t. We need the following definitions before any further progress.
Definition 1. A portfolio process (or portfolio strategy) is a real-valued progressively measurable
process {π(t)}t∈[0,T], where almost surely, satisfies∫ T

0
|π(t)W(t)|2dt<∞

In the sequel, we assume that the investor maintains a self-financing portfolio by allocating his/her
wealth among the two underlying assets in such a way that any wealth change is only due to
consumption or gains/losses from the investment in the bond and the stock. In this respect, the
wealth processWπ := {Wπ (t)}t∈[0,T] corresponding to a self-financing portfolio strategy π will be
the unique solution of the following stochastic differential equation

dWπ (t) =
((

r(t)+ π(t)
(
μ(t)+ 1

2
σ (t)2 − r(t)

))
Wπ (t)

)
dt + π(t)Wπ (t)σ (t)dZ(t)

+π(t − )Wπ (t−)
∫ ∞

−∞
(ex − 1)N(νt , dx), Wπ (0)=W0 (6)

A self-financing strategy π is said to be admissible if Wπ (t)≥ 0, P− a.s., for all t ≥ 0. The set of
all admissible strategies will be denoted byA.
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Definition 2. The CRRA utility function is given by

U(x; γ ) = x1−γ

1− γ
I(0,1)∪(1,∞)(γ )+ log (x)I{1}(γ ) (7)

The above definition provides two popular utility functions: the power utility (U(x)=
(x1−γ )/(1− γ )) and the logarithm utility (U(x)= log (x)).

3. Optimal Portfolio Allocation Rule in a Finite Horizon Time
In this section, we evaluate an optimal strategy, in a finite horizon (0, T] time scale, with respect
to two utility functions, given by Definition 2. Our idea for a finite horizon case has been inspired
from Merton (1975). Moreover, we formulate the problem of choosing an optimal portfolio by
selecting rules π∗ from

J(W, t)= sup
{π(s)}0≤s≤t

Et
(
U(Wπ (T))

)
(8)

where Et denotes the conditional expectation operator with respect to σ -algebra Ft and U( · ) is a
given utility function.

In order to obtain the optimality equations, we employ the dynamic programming principle
and stochastic optimal control theory. Such an approach derives us to the following non-linear
Hamilton-Jacobi-Bellman, say HJB, partial differential equation

0 = Jt + sup
{π(t)}

{(
r + π

(
μ+ 1

2
σ 2 − r

))
WtJW + 1

2
π2σ 2W2

t JWW

+
∫ ∞

−∞
[
J
(
W(1+ π(ex − 1)), t

)− J(W, t)
]
�(νt , dx) (9)

where JW and Jt , respectively, denote the first partial derivatives of J(W,t) with respect toW and t
and similarly for higher derivatives.

Now set the right-hand side of equation (9) to beK(Wt , π). A candidate for the optimal control
π∗ is obtained by taking partial derivatives of K(Wt , π) with respect to πt and equate to be 0. For
convenience, we call such equations by the first-order conditions and note them by FOC.

Under the above first-order condition, say FOC, the HJB equation, given by equation (9), can
be simplified by(

μ+ 1
2
σ 2 − r

)
WtJW + π∗σ 2W2

t JWW +
∫ ∞

−∞
∂

∂π
J(W(1+ π∗(ex − 1)), t)�(νt , dx)} = 0

Hereafter now, we calculate the optimal strategy under the CRRA utility function, given by
Definition 2.

A general form of the logarithm utility function in a finite horizon time can be represented
by

U(Wt)= e−αT log (Wt) (10)

Following Aït-Sahalia et al. (2009)’s approach, we solve generally equation (9) by assuming (and
then verifying) that the indirect utility function J can be decomposed as

J(W, t)=U(Wt)f (t)+ g(t) (11)

where f (t) and g(t) are deterministic functions capturing the investment opportunity that depends
on calendar time.
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In the following, we evaluate f (t) and g(t) under the logarithm utility function, given by
equation (10), then we implicity determine an optimal portfolio in a finite horizon time (0, T].
Theorem 1. Suppose the coefficientsμ, σ , and r given by equation (1) and νt ≡ ν. is a constant state.
Moreover, suppose that there is a solution J for equation (9) and there is a deterministic function π∗
that is solution of the following equation

− π∗σ 2 +
(
μ+ 1

2
σ 2 − r

)
+
∫ ∞

−∞
(ex − 1)

1+ π∗(ex − 1)
�(νt , dx)= 0 (12)

Then, under the logarithm utility function and following the Aït-Sahalia et al. (2009)’s approach, we
have

f (t) = K, (13)

g(t) = Ke−αT(T − t)
(
r + π∗

(
μ+ 1

2
σ 2 − r

)
− 1

2
π∗2σ 2 +ψ(π∗)

)
, (14)

where ψ(π∗)= ∫∞
−∞ log (1+ π∗(ex − 1))�(νt , dx)

Proof. Under the FOC condition and by substituting the optimal strategy and (11) and the
utility function from (10) into the HJB equation (9), we get J(Wt , t)= e−αT log (Wt)f (t)+ g(t),
JW = e−αTf (t)/Wt , JWW = −e−αTf (t)/Wt2, Jt = e−αT log (Wt)f ′(t)+ g′(t). Therefore,

0 = e−αT log (Wt)f ′(t)+ g′(t)+
(
r + π∗

(
μ+ 1

2
σ 2 − r

))
e−αTf (t)− 1

2
π∗2σ 2e−αTf (t)

+e−αTf (t)
∫ ∞

−∞
log (1+ π∗(ex − 1))�(νt , dx) (15)

Following Aït-Sahalia et al. (2009)’s approach, to remove Wt from equation (15), we assume
f ′(t)= 0, and consequently, f (t)=K is constant function. Now, by substituting f (t) in equation
(15), we derive g(t) with boundary condition g(T)= 0.

A general form of the power utility function is

U(Wt)= e−αTWt1−γ

1− γ
(16)

Again following the Aït-Sahalia et al. (2009)’s approach, one may assume

J(Wt , t)=U(Wt)f (t) (17)

where f (t) is a deterministic function which captures the investment opportunity that depends on
calendar time. In the special case that νt is a constant for all t, we could find the explicit solution
of the HJB equation (9).

In the following, we evaluate f (t) under the power utility function, given by equation (16), then
we implicity determine an optimal portfolio in a finite horizon time (0, T].

Theorem 2. Suppose the coefficients μ, σ and r in equations (1) and (2) are driven by a constant
state νt ≡ ν.Moreover, suppose that there is a solution J for equation (9) and there is a deterministic
function π∗ that is solution of the following equation

−γ σ 2π∗ +
(
μ+ 1

2
σ 2 − r

)
+
∫ ∞

−∞
(
1+ π∗ (ex − 1

))−γ (ex − 1)�(ν, dx)= 0 (18)
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Then, under the power utility function and following the Aït-Sahalia et al. (2009)’s approach, we
have

f (t) = exp

{[
(1− γ )

(
r + π∗

(
μ+ 1

2
σ 2 − r

))
− γ (1− γ )π∗2σ 2

2
+ ϕ(π∗)

]
(T − t)

}
(19)

where φ(π∗)= ∫∞
−∞

(
(1+ π∗(ex − 1))1−γ − 1

)
�(νt , dx) and boundary condition f (T)= 1.

Proof. Similar to the logarithm utility function (given by Theorem, 1), we use the FOC con-
dition to compute strategy policy (π∗). Under the power utility function and following the
Aït-Sahalia et al. (2009)’s J is J(Wt , t)= e−αTWt1−γ f (t)/(1− γ ), JW = e−αTf (t)Wt−γ , JWW =
−γ e−αTf (t)Wt−γ−1 and Jt = e−αTWt1−γ f ′(t)/(1− γ ).

Therefore, f ′(t)+K(π∗)f (t)= 0. Now applying the boundary condition f (T)= 1, the desired
result will be arrived.

The following lemma provides the optimal strategy under the Kou model (Model Assumption,
1) and the variance gamma model (Model Assumption, 2).
Lemma 1. Under the Kou model (Model Assumption, 1) and the variance gamma model (Model
Assumption, 2) the optimal strategy π∗ given by Theorem (2) is, respectively, solution of the following
equations

0 = −γ σ 2π∗ +
(
μ+ 1

2
σ 2 − r

)
+V(π∗)

0 = [(μ− r)+M(π∗)

where

V(π∗) =
∫ 1

0

[
λpβ1

(
1+ π∗t − t

)−γ
(1− t)β1+γ−2 − λqβ2

(
1− π∗t

)−γ
(1− t)β2−1

]
tdt,

M(π∗) =
∫ 1

0

⎡
⎣(1− π∗t

)−γ ⎛⎝ t(1− t)
1
λd

ln (1− t)

⎞
⎠ −

(
1− t(1− π∗)

1− t

)−γ ( −t(1− t)
1
λu

(1− t) ln (1− t)

)]
dt

1− t

Proof. To compute the integral part of equation (18), one may separate such integral into two
parts and used the Kou Lévy measure to obtain

V(π∗)=
∫ 0

−∞
λqβ2

(
1+ π∗(ex − 1)

)−γ (ex − 1)eβ2xdx

+
∫ ∞

0
λpβ1

(
1+ π∗(ex − 1)

)−γ (ex − 1)e−β1xdx

Similarly, the desired result obtains for the variance gamma measure (with σ = 0) as

M(π∗) = −
∫ 0

−∞
(
1+ π∗(ex − 1)

)−γ (ex − 1)
1
x
e

x
λd dx+

∫ ∞

0

(
1+ π∗(ex − 1)

)−γ (ex − 1)
1
x
e−

x
λu dx

In the next step, we change variable for positive part of integral to x= − ln (1− t) and for negative
part of integral to x= ln (1− t) and get the desired result.

Following by the Gaussian integration method, we can numerically solve the optimal strategy
which reported in the numerical section.

To obtain result of Lemma 1, under the Logarithm utility function, one may set γ = 1.
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4. Application to Insurance
Now as an application of the above findings, we consider a DC pension contract which its pol-
icyholders pay their constant premium P in full at the beginning of the contract. Moreover, we
assume that at maturity time T, a given policyholder is alive. Following Iscanoglu-Cekic (2016)’s
approach, we suppose that the value of pension fund Wt , at time t invests into two risky and
risk-free markets, and their returns accumulates into policyholder’s account after subtracting
deducting participation costs. More precisely, we assume that (1) the risk-free market is described
by equation (1) and (2) the riskymarket is described by equation (2) andmodelled by eitherModel
Assumption 1 or Model Assumption 2.

Therefore, the portfolio’s value of such policyholder at time t is

dWπt
t =

(
rt + πt

(
μt + 1

2
σ 2
t − rt

))
Wπt

t dt + πtσtWπt
t dZt

+π(t − )Wπt (t − )
∫ ∞

−∞
(ex − 1)N(νt , dx) ,Wπt

0 = P (20)

Such contract consists of three accounts: (1) the investment wealth account Wπt
t , with optimal

strategy π∗
t , (2) the customer account Ct and (3) the reserve account Rt . In general, the relation

between such three accounts is:

Wπt
t = Ct + Rt t ∈ [0, T]

Now, we consider the following two scenarios.
Scenario 1. Under this scenario the insurer guaranties interest rate g for the customer account.
Therefore, the customer account and the reserve account at time t can be restated, respectively, as

Ct = PI{0}(t)+
[
(1+ g)Ct−1 + τ

(
Wπ∗

t
t − (1+ g)Ct−1

)]
I{1,2,··· ,T}(t),

Rt =
[
Wπ∗

t
t − (1+ g)Ct−1 − τ

(
Wπ∗

t
t − (1+ g)Ct−1

)]
I{1,2,··· ,T}(t)

where τ ∈ [0, 1] is the contributing rate that updated by the insurance company and (1− τ ) of
investing in the risky market is allocated in the reserve account.

It worthwhile mentioning that, under Scenario 1, the contract account updates at the beginning
of each year, therefore, we should choose t ∈ {0, · · · , T}.
Scenario 2. Since under this scenario the policyholder just receives gain if the market’s return exceeds
the guaranteed interest rate g otherwise he/she receives zero. Therefore, the customer account and
the reserve account at time t can be restated, respectively, as

Ct
+ = PI{0}(t)+

[
(1+ g)Ct−1 + τ

[
Wπ∗

t
t − (1+ g)Ct−1

]+]
I{1,2,··· ,T}(t),

Rt+ =
[
Wπ∗

t
t − (1+ g)Ct−1 − τ

[
Wπ∗

t
t − (1+ g)Ct−1

]+]
I{1,2,··· ,T}(t)

where [A]+ =max [A, 0] and τ ∈ [0, 1] is the contributing rate that updated by the insurance
company and (1− τ ) of investing in risky market is allocated in the reserve account.

When the market performance is bad and the market is very volatile, the reserve account
helps the insurance company to deal with of its liabilities. It worthwhile to mention that such
two accounts updated at the end of each year.
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4. Fair Pricing Contract
Now, we evaluate the fair price of such a DC pension contract under both Scenarios 1 and 2. Such
a fair price arrives from the equivalence principle under risk-neutral probability measure. Because
of the jumps, the risk-neutral probability measure is not unique. Following Kou andWang (2004),
we can choose a particular risk-neutral measure Q∗. Under this risk neutral probability measure,
the asset price S(t) still follows:

dS(t)
S(t)

= (α − λ∗ς∗) dt + σdZ∗(t)+
∫ ∞

−∞

(
eX

∗ − 1
)
N∗(dt, dx), S(0)= S0 (21)

where Z∗(t) is the standard Brownian motion under Q∗, N∗ is a Poisson random measure with
intensity λ∗ and random jump sizes X∗

1 , X
∗
2 , X

∗
3 , · · · are independent and identically distributed

random variables.
Moreover, note that parameter ς∗ under in the Kou model is given by equation (22) and under

the variance gamma model given by equation (23).

ς∗:=E

[
eX

∗]− 1= p∗β∗
1

β∗
1 − 1

+ q∗β∗
2

β∗
2 + 1

− 1 (22)

Since, we focus on a risk-neutral probability measure in this section, to simplify the notation
(without causing much confusion), we shall drop the superscript ∗ in the parameters, i.e. using
p, β1, q, β2 rather than p∗, β∗

1 , q∗, β∗
2 .

ς∗:=E

[
eX

∗]− 1=
Ei
(
− ε(1−λ∗

u)
λ∗
u

)
Ei
(
− ε
λ∗
u

) +
Ei
(
− ε(1−λ∗

d)
λ∗
d

)
Ei
(
− ε
λ∗
d

) − 1 (23)

where Ei( · ) represents the exponential integral. In this case, for computing ς∗, we used the jump
size distribution that introduced in section 5.

We defined investment wealth account ∗Wπt
t , under risk-neutral probability measure:

d∗Wπt
t = (rt + πt

(
α − λ∗ς∗ − rt

)) ∗Wπt
t dt + πtσt

∗Wπt
t dZ∗

t

+ π(t − )∗Wπt (t − )
∫ ∞

−∞
(ex

∗ − 1)N∗(νt , dx), ∗Wπt
0 = P (24)

Under the equivalence principle, the premium in full, say P, which pays at issue time, is deter-
mined such that the expected value of discounted value of the terminal value in the customer
account at issue time 0, say VC

0 , is equal to the premium P.
To do so, we write the customer account at the maturity time T as

CT = (1+ g)TC0 + τ

T∑
t=1

[∗Wπ∗
t

t − (1+ g)Ct−1
]
(1+ g)T−t (25)

Note that, before the maturity date T at the end of each year, there is no cash flow for the customer
account. In the other, the only cash flow happens at the maturity time T, when the insurer pays
the terminal value CT to the policyholder. We are ready to support the model if we have cash flow
in wealth account. In this way, if we call the cash flow CFt , then we have:

d∗Wπt
t = (rt + πt

(
α − λ∗ς∗ − rt

)+ CFt
)∗Wπt

t dt + πtσt
∗Wπt

t dZ∗
t

+ π(t − )∗Wπt (t − )
∞∫

−∞
(ex

∗ − 1)N∗(νt , dx), ∗Wπt
0 = P
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Suppose VC
0 denotes the market value of the customer account at issue time t = 0 and ef = eα −

1 represents the discretely compounded annual risk-free interest rate. Discounting the terminal
value CT to issue time t = 0, we get the initial price of this contract under both Scenarios 1 and 2,
respectively, as following:

VC
0 =

(
1+ g
1+ ef

)T

C0 + τ

(1+ ef )T
E
Q∗
( T∑

t=1

[∗Wπ∗
t

t − (1+ g)Ct−1
]
(1+ g)T−t

)
(26)

VC+
0 =

(
1+ g
1+ ef

)T

C0 + τ

(1+ ef )T
E
Q∗
( T∑

t=1

[∗Wπ∗
t

t − (1+ g)Ct−1
]+

(1+ g)T−t
)

(27)

Now, for the fair price under both Scenarios 1 and 2 can be archived.
Under the Scenario 1, the fair price can be obtained in a closed form, while for the Scenario 2,

such the fair price has to be found numerically. In this paper, we price the pension fund contract
in two scenarios. In fact, we calculated both equations (26) and (27). In equation (26), due to
the linearity of the expectation, the expectation passed through the summation, and therefore, we
calculated E(Wt) as the following. But in equation (27), since the expectation cannot pass through
the summation (because there is [A]+ =max [A, 0]), so it has to be solved numerically, which will
be presented in numerical section. Since, we did not need E(Rt) and E(Ct) in our calculations, we
did not calculate them. We may use from them in future work. The following theorem provide
the exact fair price.
Theorem 3. Assume that the coefficients μ, σ and r in equation (24) are given constants. Then, the
stochastic differential equation (24) have the following exact solution

∗Wπt
t = ∗Wπt

0 e
(
η− 1

2 δ
2
)
t+δZt exp

⎧⎨
⎩
∫ t

0

∞∫
−∞

y(x)N(νt , dx)

⎫⎬
⎭

where η= (rt + πt (α − λ∗ς∗ − rt)), δ = πtσt and y(x)= ln (1+ π(ex − 1))

Proof. Following Øksendal (2013) and Lamberton and Lapeyre (2007), we begin by calculating
the stochastic differential equation (24) without any jump term. For this purpose, we define the
following auxiliary factors Ft = e−δZt+ 1

2 δ
2t , Yt = Ft∗Wπt

t and f (t, ∗Wπt
t )= η∗Wπt

t .
Using these auxiliary factors, we may conclude that

dYt
dt

= Ftf
(
t, F−1

t Yt
)

= ηYt (28)

Now, we add the jump factor to the above solution and get

∗Wπt
t =

(
e(η−

1
2 δ

2)t+δZt∗Wπt
0

) N(t)∏
i=0

(1+Ui)

where Un is size of every jump and N(t) is the number of jump. In our model, the size of every
jump is Ui = π(exi − 1).

By setting y(x)= ln (1+ π(ex − 1)), we may have

∗Wπt
t =

(
e(η− 1

2 δ
2)t+δZt∗Wπt

0

)
exp

{
ln

(
N(t)∏
n=0

(1+ π(ex − 1))

)}

=
(
e(η− 1

2 δ
2)t+δZt∗Wπt

0

)
exp

{
N(t)∑
n=0

ln ((1+ π(ex − 1)))

}

https://doi.org/10.1017/S1748499521000270 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499521000270


Annals of Actuarial Science 377

Due to the continuity of time, ∗Wπt
t can be restated as

∗Wπt
t =

(
e(η−

1
2 δ

2)t+δZt∗Wπt
0

)
exp

{∫ t

0

∫ ∞

−∞
y(x)N(νt , dx)

}

This observation completes the desired result.

Now, we derive the expectation of the investment account ∗Wπt
t under the first scenario

(Scenario, 1).
Lemma 2. Under the Scenario 1, one may conclude that

E
(∗Wπt

t
)= (eηt∗Wπt

0
)
exp

{(∫ ∞

−∞
(
π(ex − 1)

)
�(νt , dx)

)
t
}

Proof. Since the jump part and the Brownian part are independent, one may evaluate such an
expectation as

E
(∗Wπt

t
)=E

(
e(η−

1
2 δ

2)t+δZt∗Wπt
0

)
×E

(
exp

{∫ t

0

∫ ∞

−∞
y(x)N(νt , dx)

})

Using property of the expectation on the Brownian part, we have

E

(
e(η−

1
2 δ

2)t+δZt∗Wπt
0

)
= eηt∗Wπt

0

Using the following exponential formula for Lévy processes (see Cont and Tankov, 2004, for more
details),

E

(
exp

{∫ t

0

∫ ∞

−∞
y(x)N(νt , dx)

})
= exp

{(∫ ∞

−∞
(
π(ex − 1)

)
�(νt , dx)

)
t
}

the expectation of the jump part can be calculated.

In the following, we determine the expectation of the jump part for Model Assumption 1 and
Model Assumption 2.

Example 1. In this case, we computed
∫ ∞

−∞
(
π(ex − 1)

)
�(νt , dx), for the variance gamma model

(Model Assumption, 2). For this purpose, we used the variance gamma Lévy measure
∫ ∞

−∞
(
π(ex − 1)

)
�(νt , dx)= νt

∫ 0

−∞
−π(ex − 1)

e
x
λd

x
dx+ νt

∫ +∞

0
π(ex − 1)

e−
x
λu

x
dx

For the negative part of integral sets x= ln (1− t) and x= − ln (1− t) for the positive part of
integral, we have∫ ∞

−∞
(
π(ex − 1)

)
�(νt , dx)=

∫ 1

0

νtπ t
ln (1− t)

(
(1− t)

1
λd

−1 − (1− t)
1
λu −2

)
dt

Following Gradshteyn and Ryzhik (2014)’s findings, we have∫ 1

0

(1− xp)nxq−1

(1− x) ln (x)
dx =

n∑
k=0

(− 1)k−1 ln
(
�
[
(n− k)p+ q

])∀n> 1, q> 0, np>−q

For our case, set the parameters n= 2, p= 1, x= 1− t and q= 1
λd

for the negative part and q=
1
λu

− 1 for the positive part of integral. Therefore, we may calculate the desired integral explicitly.
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Now, we consider the Kou model, given by Model Assumption 1.
Example 2. Consider Model Assumption 1 with the Kou Lévy measure, the integral of the jump
part can be restated and evaluated as∫ ∞

−∞
(
π(ex − 1)

)
�(νt , dx) =

∫ 0

−∞
κ2(ex − 1)eβ2xdx+

∫ +∞

0
κ1(ex − 1)e−β1xdx

= κ2
β2

− κ1
β1

+ κ1
β1 − 1

− κ2
β2 + 1

where κ2 = λqβ2π and κ1 = λpβ1π .

5. Numerical Results
To simulateWt in Theorem 3, we employ Applebaum (2009)’s approach, which said that the inte-

gral of
∫ ∞

−∞
y(x)N(t, dx) in a wealth equation has the compound Poisson distribution. We should

recall that every compound Poisson distribution has an intensity λ and jump size distribution
F(x).

For the case of an infinite activity model for stock price behaviour, such as the variance
gamma Lévy process, we follow Cont and Tankov (2004)’s recommendation and approximate
such an infinite activity variance gamma process by a compound Poisson process with capital

�(ε)=
∫ ∞

ε

�(dx) and the jump size distribution Pε(x)= �(dx)
�(ε) I(ε,∞)(x), where�(dx) is the VG

Lévy measure given by

�(dx) = 1
x
e−

x
λu 1{x>0} − 1

x
e

x
λd 1{x<0}

The intensity and jump size distribution in the VG model, given by Model Assumption 2, have
the following two positive and negative jumps

�1(ε) =
∫ ∞

ε

exp{−x/λu}
x

dx= −Ei
(

− ε

λu

)

�2(ε) = −
∫ −ε

−∞
exp{x/λd}

x
dx= −Ei

(
− ε

λd

)
where Ei( · ) represents the exponential integral introduced by Gradshteyn and Ryzhik (2014).
Moreover, the jump size distribution is

Pε1(x) = exp{−x/λu}
x�1(ε)

1x≥ε

Pε2(x) = −exp{x/λd}
x�2(ε)

1x≤−ε

To generate the jump size of this distribution, we employ the rejection method introduced by
Cont and Tankov (2004) and Devroye (2006). For this purpose, for the positive jump distribution
and for all x≥ ε, it is obvious that

Pε1(x)≤ f ε1 (x)
λue−ε/λu
ε�1(ε)

where f ε1 (x)= e−
(x−ε)
λu
λu

1x≥ε is a probability density function. Following Cont and Tankov (2004)’s

results, f ε1 (x) has the survival function Fε1(x)= e−
(x−ε)
λu 1x≥ε .
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Algorithm 1: The algorithm to evaluate positive jump distribution.

Random variables with distribution Pε1(x) may be simulated using the rejection method as sug-
gested by Devroye (2006). Similar to the positive jump distribution, we use this method for the
negative jump distribution. Observe that for all x≤ −ε, we have

Pε2(x) ≤ f ε2 (x)
λde−ε/λu
ε�2(ε)

where f ε2 (x)= e
(x−ε)
λd
λd

1x≤−ε is a probability density function and its corresponding survival func-

tion is Fε2(x)= e
(x−ε)
λd 1x≤−ε .

The following algorithm represents our simulation method for A times replication to gen-
erate the random variable of these distributions. Also, the following algorithm represents our
simulation method for A times replication to generate the random variable of these distributions.

Optimal allocation and fair price under the CRRA investor utility functions (the power utility
and the logarithm utility) in a risky stock based on the moment data reported in Campbell (1997)
and under Model Assumption 2 and Model Assumption 1 for both Scenarios 1 and 2 have been
calculated and represented in Tables 1, 2, 3 and 4.

In this paper, we have designed two contracts to ensure that the premium received from the
insurer is repaid with guarantee rate g. In addition, by investing in risky and risk-free markets, we
share her in the benefits of this investment. We also priced the contracts without guarantee rate
and showed it by (NG)VC+

0 and (NG)VC
0 for two scenarios. The results show us when we do not

consider guarantee rate, the contract is out of fair mode. The significantly point of this paper is
that our main contract is mentioned under the second scenario, and to compare this contract, we
designed another contract under the first scenario.We know that the first scenario is not attractive
to the customer at all. Numerical results indicate this fact. The comparison is based on the results
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Table 1. Optimal allocation and fair price under the power utility function in a risky stock based on themoment
data reported in Campbell (1997) with T = 20, r= 0.04, P= 0.7, μ= 0.28, τ = 0.12, g= 0.02 and γ = 3 under
Model Assumption 2 and both Scenarios 1 and 2. In the simulation, there are 200 steps in each year.

θ l ρ π∗ VC+0 VC0 (NG)VC+0 (NG)VC0
−0.00799 0.6 0.864 0.3901 0.7081 0.5672 0.7215 0.6048

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.0007 0.5 0.872 0.3947 0.7051 0.5685 0.7227 0.6121
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.004282 0.5 0.794 0.3943 0.7094 0.5738 0.7222 0.6143
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.00245 0.4 0.671 0.4019 0.7162 0.5819 0.7526 0.6255
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.001514 0.4 0.632 0.4021 0.7146 0.5839 0.7450 0.6271

Table 2. Optimal allocation and fair price with logarithm utility function in a risky stock based on the moment
data reported in Campbell (1997) with T = 20, r= 0.04, P= 0.7, μ= 0.28, τ = 0.12, g= 0.02 and γ = 1 under
Model Assumption 2 and both Scenarios 1 and 2. In the simulation, there are 200 steps in each year.

θ l ρ π∗ VC+0 VC0 (NG)VC+0 (NG)VC0
−0.001328 0.6 0.632 0.7365 0.7214 0.5603 0.7517 0.5956

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.00532 0.5 0.746 0.7299 0.7220 0.5595 0.7502 0.5939
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.00799 0.5 0.861 0.7284 0.7163 0.5548 0.7466 0.5732
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.00305 0.4 0.872 0.7442 0.7184 0.5579 0.7389 0.5842
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.00245 0.4 0.883 0.7433 0.7106 0.5564 0.7380 0.5908

Algorithm 2: The algorithm to evaluate negative jump distribution.
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Table 3. Optimal allocation and fair price with power utility function in a risky stock based on different
intensity of double exponential β and different risk aversion coefficient in utility function with T = 2, r=
0.04, σ = 0.16, p= 0.5, τ = 0.12, g= 0.02 and μ= 0.28 under Model Assumption 1 and both Scenarios 1 and
2. In the simulation, there are 200 steps in each year.

γ β π∗ VC+0 VC0 (NG)VC+0 (NG)VC0
3 5.3 0.3878 0.7277 0.5597 0.7523 0.5904

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 6.1 0.3810 0.7366 0.4876 0.7654 0.5512
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 7.5 0.3213 0.7256 0.4843 0.7485 0.5707
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 8.2 0.3176 0.7135 0.4830 0.7431 0.5661

Table 4. Optimal allocation and fair price with the logarithm utility function in a risky stock based on differ-
ent intensity of double exponential β with T = 20, r= 0.04, σ = 0.16, p= 0.5, τ = 0.12, g= 0.02 andμ= 0.28
under Model Assumption 1 and both Scenarios 1 and 2. In the simulation, there are 200 steps in each year.

γ β π∗ VC+0 VC0 (NG)VC+0 (NG)VC0
1 6.3 0.6961 0.7217 0.5049 0.7541 0.5706

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 7.9 0.5917 0.7342 0.5138 0.7718 0.5829
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 8.4 0.5774 0.7400 0.5113 0.7865 0.5549
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 8.8 0.5670 0.7407 0.4934 0.7884 0.5425

Figure 1. The behaviour of optimal strategy with ρ = 0.584, l= 0.5, μ= 0.28, γ = 3 and different amount of θ in VG jump
measure.

of Monte Carlo simulations with 200 time steps in each year. In Figures 1 and 2, we represent
sensitivity of the investment strategy with respect to change of jump parameters in the variance
gamma process. As one may observe from these two figures, the investment strategy does not
change too much by changing such parameters.
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Figure 2. The behaviour of optimal strategy with θ = −0.00799, l= 0.5,μ= 0.28, γ = 3 and different amount of ρ in VG jump
measure.

6. Conclusion and Suggestion
This article considers the problem of impact of two categories of jump processes from the Lévy
family on the optimal investment strategy of a risk-averse investor in a finite horizon time. Similar
to Cont and Tankov (2009), we employed jump parameters in our model to take into account
both uncertainty and the risk of falling stock prices. Moreover to consider a wide range of possible
processes, we considered both finite and infinite activity Lévy processes. To derive an application,
we consider the problem of finding an optimal investment strategy in a finite horizon time for a
defined contribution (DC) pension fund which its revenue has been invested into two risk-free
and risky markets. The solution for such problem has been given under two different scenarios
and two Lévy processes.

For a future possible study, we suggest the above optimality investment strategy in the presence
of a consumption function in an infinite horizon time. Moreover, in Scenario 2, we assumed τ and
g are two given constants. For a future work, one may consider the problem of calculating these
two parameters based on a stock behaviour.
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