
Introduction

High-latitude environments experience frequent algal
blooms during the spring–early summer retreat of the
seasonal sea ice cover. These can generate high pulses of
biogenic particulate export from surface waters, especially
when algal assemblages are composed of diatoms.
Furthermore, satellite observations showed that each year
the Ross Sea exhibits the most spatially extensive biomass
in the Southern Ocean (Comiso et al. 1993, Sullivan et al.
1993, Arrigo et al. 1998). Recently, Smith & Gordon (1997)
and Smith et al. (2000) were able to confirm the
hyperproductive nature of the Ross Sea through a series of
spring process studies in its southern portion. Due to the
high preservation potential, the Ross Sea continental shelf is
an area of high accumulation of biogenic silica in the
sediments (Ledford-Hoffman et al. 1986, DeMaster et al.
1996, Langone et al. 1998). 

Moored instruments can provide water column data
throughout the year, even when pack ice covers the sea
surface in winter. Sediments record environmental
conditions at the time of their formation, and the study of
sediments can shed light on water column processes. The
establishment of a link between water column fluxes
measured by traps and sediment deposition and
accumulation onto the sea bottom can allow a better

understanding of the relative importance of particle sinking
processes and the factors that influence particle
biogeochemistry and transport. In the framework of the
project BIOSESO II (Biogenic Sedimentation in the
Southern Ocean), which was focused on the relationship
between biogeochemical processes, CO2 budget, and
climate change, particular attention has been dedicated to
Ross Sea sediment composition, accumulation and links to
water column processes. The aim of this paper is to compare
trap fluxes and sediment accumulation at sites D, F, and H
(Fig. 1), which are particularly relevant to understanding the
formation and transit of deep shelf waters (Jacobs et al.
1985). The study presented here also contributes to the
project CLIMA (Climatic Long-term Interaction for the
Mass Balance in Antarctica).

Study areas 

The Ross Sea has a peculiar geomorphology, characterized
by a deep and irregular continental shelf, with an average
depth of 500 m. The central portion alternates banks 
(~ 300 m) and basins (> 500 m), characterized by an
elongate shape and oriented north to north-east. The shelf
slopes towards the continent and is more rugged and deeper
on its western side. Near Victoria Land, glacial erosion has
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created narrow transverse troughs, that can exceed 1000 m
depth. This study focuses on three sites, located in the
western (site D) and central (sites F and H) sectors of the
Ross Sea continental shelf. 

Site D is within the polynya of Terra Nova Bay, at 75°06'S
and 164°13'E. This is an area of high productivity
(Saggiomo et al. 2002), although less productive than the
southernmost Ross Sea polynya (Smith et al. 1996, Smith &
Gordon 1997, Goffart et al. 2000). The polynya also plays
an important role in the production of sea ice (Kurtz &
Bromwich 1985) and in the formation of the High Salinity
Shelf Water (HSSW), the densest water mass of the whole
Southern Ocean (Jacobs et al. 1985, Van Woert 1999,
Budillon & Spezie 2000).

Site F is located at 77°59'S and 177°01'W, near the edge
of the Ross Ice Shelf (RIS). The RIS is the widest floating
ice shelf of the Antarctic, covering a surface of about 
330 000 km2. It extends over nearly half the continental
shelf and can reach a thickness of 250 m at its northernmost
side. The RIS plays a role in the formation of the Ice Shelf
Water (ISW). 

Site H is located at 75°56'S and 177°36'W, on the outer
continental shelf, not far from the shelf break. Sites F and H
are positioned along the pathway of the ISW emerging from
beneath the RIS and were chosen in order to follow its
spreading towards the continental slope. 

At the sites reported in this study the chemical
constituents (Accornero 1999, Accornero et al. 1999, 2003,

Martini et al. 2001) and biological components (Accornero
& Gowin in press, Accornero et al. 2000, in press) of water
column downward fluxes have been investigated since
1995. Conversely, although sediment texture and
composition have been already described (Dunbar et al.
1985), biogeochemical processes at the seafloor are poorly
known. Surface sediments in the Ross Sea are composed of
unsorted ice-rafted debris, siliceous and calcareous biogenic
debris and terrigenous silts and clays (Dunbar et al. 1985).
Coarse terrigenous deposits predominate in Terra Nova Bay
(site D), due to the inputs of David and Campbell glaciers.
The seafloor of the central outer shelf (site H) is covered by
a mixture of ice-rafted debris and fine grained current
derived terrigenous sediments, while along the RIS, east of
approximately 180° (site F), terrigenous silts and clays
make up the bulk of surface sediments (Dunbar et al. 1985).

Materials and methods

Sediment gravity cores and box-cores were collected at the
three sites (Fig. 1) during the 1994/95 Italian Antarctic
expedition. In particular, we took gravity core 148c and box
core 148bc from near mooring D; gravity core 77c and box
core 77bc from site H; and gravity core 34c from site F. Box
cores were described and then plastic tubes were inserted
into the sediment to obtain several short cores, 24–34 cm
long. These short cores, after having been scanned for
whole-core magnetic susceptibility, were sub-sampled to
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Fig. 1. Study area and sampling sites
(D, F, H). The location of other
moorings (A and B) in the western
Ross Sea is also shown. 
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obtain sediment sections 1–3 cm thick. Following magnetic
susceptibility measurements and X-radiography, gravity
cores were split in half, visually described and sub-sampled.
Parameters measured throughout the sediment cores include
porosity, dry bulk density, organic carbon, biogenic silica,
and grain size composition. 

Organic carbon (OC) was determined using a Fisons
Elemental Analyzer NA2000 after a pre-treatment with 1.5
M HCl to eliminate the carbonate fraction. Biogenic silica
(BSi) content was determined through a progressive
dissolution method (DeMaster 1981), followed by
colorimetric analysis. We used 0.5 M NaOH as an extractant
in view of the significant concentrations of biogenic silica
usually found in Antarctic samples (DeMaster 1981). The
extraction was carried out on 20 mg of sediment at 85°C,
taking 0.2 ml aliquots for analysis every hour for 4 hours. 

Conventional 14C ages, listed in Table I, were determined
by AMS on bulk organic matter. The analyses were carried
out by the Woods Hole Oceanographic Institution AMS
Facility. 

Trap experiments were described by Accornero et al.
(1999, 2003). The lithic fraction was obtained through the
formula: %Lithics = 100 - (%OC × 2) - %BSi - %CaCO3,
following Monaco et al. (1990). The carbonate component
was always negligible in our samples.

Results and discussion

Figure 2 shows the depth distribution of physical properties,
such as porosity, magnetic susceptibility and grain size in
box cores 148bc (site D), 77bc (site H), and gravity core 34c
(site F). Biogenic silica and organic carbon concentration-
depth profiles are also displayed. Tables I and II report 14C
ages and composition of both trap materials and superficial
sediments, whereas Tables III and IV summarize sediment
accumulation rates and trap fluxes. We comment mainly on
box cores (from sites D and H) because they preserved the
topmost part, whereas gravity cores may have lost some
surficial sediment. As we do not have a box core from site F,
the gravity core is used in this case for the discussion.
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Table I. Conventional 14C ages.

Site (core) Depth 14C age Error
(cm) (yr BP) (yr)

D (148c) 0–2 4080 50
D (148c) 19–22 15350 100
H (77c) 0–1 8870 35
H (77c) 15–17 14400 60
F (34c) 0–2 7210 40
F (34c) 20–22 30700 190

Fig. 2. Depth profiles of whole-core magnetic susceptibility,
porosity, biogenic silica and OC concentrations, and grain size
composition in box cores 148bc, 77bc and in gravity core 34c.

Table II. Comparison between the composition of the material collected in
bottom traps and surficials sediments. 

Site BSi (%) OC (%) Si/C (%)
trap sed trap sed trap sed

D 69.8 7.1 3.6 0.29 19.4 24.6
H 52.9 7.50 10.6 0.46 5.0 16.3
F 44.2 4.5 7.5 0.37 5.8 12.2

Table III. Sediment accumulation rates and mass accumulation rates of
particles and biogenic components. 

Site Sediment Mass Surficial Surficial Lithics
accumulation accumulation opal OC

rate flux rate flux flux
(cm kyr-1) (g m-2 yr-1) (g m-2 yr-1) (g m-2 yr-1) (g m-2 yr-1)

D (148c) 1.73 19.46 1.38 0.056 17.97
H (77c) 1.7 18.80 1.41 0.086 17.22
F (34c) 0.85 7.64 0.34 0.028 7.24
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Sediment features

According to the visual description, the topmost sediment
of Site D (box core 148bc) was loose mud with traces of
bioturbation. The sandy component became prevalent in the
subsurficial sediment (representing up to 70%) and the
presence of gravels is significant. Here, biogenic silica and
organic carbon are very low: BSi reaches 4.5% at the top
but decreases to c. 1% at depth, whereas organic carbon
concentrations range between 0.15 and 0.3%.

At Site H (box core 77bc) the topmost sediment was
composed of sandy mud with some organisms at the surface
and a few burrows. Clasts were uniformly distributed
throughout the sediment. The mud component increased
downward with some fluctuations and then remained rather
constant from about 23 cm to the bottom. Magnetic
susceptibility was low and characterized by only minor
changes below 10 cm depth. The highest values of OC
characterized the topmost 7 cm whereas biogenic silica
peaked at 4.5–8 cm depth (11.5%). While BSi significantly
decreased below 35.5 cm depth, OC concentrations
remained rather constant between 0.25 and 0.33%.

At site F (gravity core 34c), we retrieved a gravity core,
226 cm long. Figure 2 shows the depth distribution down to
50 cm depth. The surficial sediment (0–4 cm) was a grey
mud, whereas a sandy mud, with medium compaction and
sparse clasts, prevailed below the core top. OC was 0.37%
in the topmost level and decreased to nearly constant levels
below 10 cm depth. The surficial value suggested that the
core top was preserved in spite of gravity coring. Biogenic
silica had a rather constant profile with values in the interval
4–6%. 

According to the profiles of Fig. 2, the muddy sediment
was maximal at site F and minimal at site D. This can be due
to the bottom water currents that may resuspend fine
materials and advect them away. Furthermore, the
proximity of continental sources can supply coarse
sediments at site D. The highest values of magnetic
susceptibility were found in box core 148bc at 20 cm depth
(Fig. 2), probably due to the direct influence of continental
material. Although the sediment is generally finer, the same
explanation holds for the high values shown by core 34
whereas the sediment at site H, which is far from direct
continental sources, had the lowest magnetic susceptibility. 

Surficial sediments (down to 5–10 cm depth) are often
characterized by higher values of BSi and OC, due to the
recent inputs. These features represent the onset of the

seasonally open marine conditions but the differences with
respect to the underlying sediment are minor. In fact,
surficial concentrations of biogenic silica were relatively
low in these samples (4.4–9.7%), compared to other sites of
the Ross Sea. For instance, at other mooring sites of the
western Ross Sea such as A and B (Fig. 1), biogenic silica
concentrations of c. 10–30% were measured in surficial
sediments by Ravaioli et al. (1999). The same authors found
values of 0.8–1.2% for OC surficial concentrations. 

A comparison between the composition of bottom trap
materials (averaged over the years of observation) and
surficial sediments is shown in Table II. The decrease in
accumulating sediment was 7–10 and 12–23 times for BSi
and OC, respectively. 

Accumulation rates

We calculated sediment and mass accumulation rates using
the time difference between the two conventional 14C ages
obtained for each core (Table I). The high radiocarbon ages
obtained for organic matter in surficial sediment sections
are typical for the Antarctic continental shelves where they
range from 1.5 to 10 ka (DeMaster et al. 1996). This is due
to both the high reservoir effect and to the contamination
with old organic carbon that can be supplied from a number
of different sources (DeMaster et al. 1996, Domack et al.
1999). Table III shows calculated sediment accumulation
rates, mass accumulation rates and opal, OC and lithics
fluxes. Results show that sediment accumulation rates are
similar at sites D and H (1.73 and 1.76 cm ka-1,
respectively) and much lower at F (0.85 cm ka-1). Mass
accumulation rates are 19.46, 18.80 and 7.64 g m-2 y-1 at D,
H and F, respectively. 

Mass accumulation rates were used, together with
surficial concentrations of biogenic silica and OC, to
calculate the fluxes of biogenic particles onto the sediment
net of the amounts dissolved/degraded at the sediment water
interface (Table III). 

Water column fluxes and sediment accumulation

Trap fluxes measured at the sites are summarized in
Table IV. Site D was characterized by the highest biogenic
silica fluxes by far: 11–17 g m-2 yr-1 vs 2.35 and 3.32 g m-2

yr-1 at H and F, respectively. The same pattern was shown by
OC even if the difference was much less important
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Table IV. Trap flux data. D values from 1995 to 1997 are from Accornero et al. (2003), F values for 1995 are from Accornero et al. (1999).

site year trap trap depth water depth TMF BSi OC Lithics
(m) (m) (g m-2 yr-1) (g m-2 yr-1) (g m-2 yr-1) (g m-2 yr-1)

D 1995–2000 top 180 998 17.85 11.57 0.96 4.36
bottom 879 998 25.60 17.86 0.92 5.90

H 1995 bottom 530 625 4.44 2.35 0.47 1.15
F 1995–1997 bottom 423 602 7.51 3.32 0.56 3.07
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(0.92–0.96 vs 0.47 and 0.56 g m-2 yr-1). The differences are
likely to result from the different phytoplankton species
characterizing the polynya of Terra Nova Bay (TNB) with
respect to the area in front of the RIS. In fact, the TNB
polynya is a diatom-dominated area (Arrigo et al. 1999),
although non siliceous algae can largely contribute to the
planktonic assemblages in late spring and early summer
(Fonda Umani et al. 2002). On the contrary, the region near
the central RIS is dominated by the prymnesiophyte
Phaeocystis antarctica, a non siliceous alga whose
downward fluxes supply OC-enriched particulates to the
bottom sediments (El-Sayed et al. 1983, DiTullio et al.
2000, Goffart et al. 2000). However, even the relatively
high fluxes measured at site D were rather low if compared
with trap fluxes obtained in other areas of the Ross Sea
(DeMaster et al. 1992, Dunbar et al. 1998, Collier et al.
2000). For instance, Dunbar et al. (1998) reported fluxes of
9–71 g m-2 yr-1 of BSi and 1–7 g m-2 yr-1 of OC, suggesting
shelf-wide average values of 30 g BSi m-2 yr-1 and 5 g OC
m-2 yr-1. 

The availability of both trap and surface sediment data
allowed the calculation of the transfer of materials from the
water column to the seabed. A model was constructed
assuming that lithic particle fluxes are conservative (Fig. 3).
In the case of site D (Fig. 3a), the mass balance of lithic
particles requires the contribution of laterally advected
material between the two traps (1.54 g m-2 yr-1) and between
the bottom trap and the seabed (12.07 g m-2 yr-1). The
assumption is that the material advected to the bottom trap
has the same composition as the material collected by the
upper trap. Therefore, the advected BSi and OC fluxes were
calculated using the advected flux of lithics and the ratio of
lithics and biogenic materials in the trap. For example,
taking into account the OC at site D, an extra flux of 0.34 g
m-2 yr-1 is required between the two traps following the
indication obtained from the lithics: the sum of this flux
with that measured by the upper trap gives an estimate of
1.30 g m-2 yr-1. However, the bottom trap measured 0.92 g
m-2 yr-1, and this requires the degradation of 29% of the
total. The same approach was used for the bottom trap-
sediment system. In this case the assumption is that the
advected material is either similar to the material of the
bottom trap (giving a flux of 1.88 g m-2 yr-1) or to the
surface sediment (supporting a flux of 0.04 g m-2 yr-1). The
amount of OC preserved in the lower part of the water
column is 2% or 5.8%, according to the hypothesis chosen
for the composition of the advective flux. The preservation
is 1.4 and 4.1% with respect to the composition of the
sediment recovered by the upper trap. This means that the
maximum degradation occurs between the bottom trap and
the sediment and/or within the surficial sediment. The slight
discrepancy observed for BSi between the two traps (the
calculated flux is lower than the measured one) can be due
to the uncertainties affecting measured data and
assumptions. 
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Fig. 3 Water column fluxes and sediment mass accumulation rates
of lithics and biogenic components at site D(a), H(b) and F(c).
Model calculated values are reported in italics. Only the data
relative to the bottom trap are available for sites H and F. 

c.

b.

a.
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Model calculations show that lateral advection is always
required to balance vertical fluxes and the effects of
dissolution/degradation processes, as shown also by Fig. 3b
& 3c. Nelson et al. (1996) estimated that for the whole Ross
Sea preservation is 21.5% and 4.9% for silica and organic
carbon, respectively. From our data BSi preservation with
respect to the bottom trap is 2.5–7.3, 4–38, and 4.3–9.7% at
sites D, H and F, respectively. On the other hand 2–5.8,
1.2–15.6, and 2.1–4.8% of organic carbon are preserved at
the same sites. The average values for BSi and OC are
similar, thus suggesting a lower degree of decoupling of the
two cycles. The low preservation of biogenic components
could be due to the low sediment accumulation rate that
enhance the residence time of biogenic materials in the
proximity of the sediment-water interface. This effect also
explains why the biogenic material sinking through the
water column has a scarce influence on the sediment at the
three sites. 

In addition, the sinking of particles can be strongly
affected either by strong currents that can transport particles
away from the site of formation (Jaeger et al. 1996) or by
the vertical displacement of isopycnal surfaces as suggested
by Accornero et al. (1999) for site F. However, the fluxes
recorded by the upper trap at site D are low if compared to
other sites of the Ross Sea and this can be due to the effects
of lower production and/or physical control over the sinking
process.

Conclusions

The characteristics of the sediment at three mooring sites in
the Ross Sea were studied. Even though these areas are
productive, the water column fluxes and the accumulation
of BSi and OC in sediments are low. The apparent lack of
export efficiency depends on the relative importance of
production, removal and dissolution/degradation processes.
Furthermore, the preservation of biogenic components
appears lower than at other mooring sites of the Ross Sea,
probably due to the low sediment accumulation rates and,
consequently, the high residence time in the surficial
sediment. A simple model was constructed assuming a
conservative behaviour of the lithics through the water
column. The contribution of advected material is necessary
to account for the mass balance of both lithic and biogenic
components. Results show that lateral advection is higher
close to the bottom. The preservation of both BSi and OC is
higher at site H than at sites D and F. 
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