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Abstract

The tapeworms of fishes (Chondrichthyes and Actinopterygii) account one-third (1670 from
around 5000) of the total tapeworm (Platyhelminthes: Cestoda) species diversity. In total 1186
species from 9 orders occur as adults in elasmobranchs (sharks, rays and chimaeras), and 484
species from 8 orders mature in ray-finned fishes (referred to here as teleosts). Teleost tape-
worms are dominated by freshwater species (78%), but only 3% of elasmobranch tapeworms
are known from freshwater rays of South America and Asia (Borneo). In the last 2 decades,
vast progress has been made in understanding species diversity, host associations and inter-
relationships among fish tapeworms. In total, 172 new species have been described since
2017 (149 from elasmobranchs and 23 from teleosts; invalidly described taxa are not included,
especially those from the Oriental region). Molecular data, however, largely limited to a few
molecular markers (mainly 28S rDNA, but also 18S and cox1), are available for about 40%
of fish tapeworm species. They allowed us to significantly improve our understanding of
their interrelationships, including proposals of a new, more natural classification at the
higher-taxonomy level (orders and families) as well as at the lower-taxonomy level (genera).
In this review, we summarize the main advances and provide perspectives for future research.

Introduction

Tapeworms (Cestoda) are parasitic flatworms (Platyhelminthes: Neodermata) that occur as
adults almost exclusively in the intestinal tract of all major vertebrate groups, including elas-
mobranchs (Chondrichthyes: Holocephali and Elasmobranchii; here called elasmobranchs for
simplicity) and ray-finned fishes (Actinopterygii; here called teleosts for simplicity). They are
characterized by (1) the absence of a digestive tract (intestine), (2) the presence of hair-like
structures called microtriches on their surface, (3) the anterior end of the body called the sco-
lex and (4) a usually long, dorsoventrally flattened body (strobila) that contains multiple sets of
genital organs (proglottids) in most groups (except for the earliest diverged orders called
monozoic, i.e. with a single set of genital organs) (Khalil et al., 1994; Caira and Jensen,
2017). Adult fish tapeworms vary in overall length from less than a millimetre up to 2 m
(Eubothrium crassum), but their larvae (metacestodes) are usually much smaller (Williams
and Jones, 1994; Chervy, 2002). ‘Fish tapeworms’ here refer to all tapeworms that mature in
elasmobranchs and teleosts.

Caira and Jensen (2014) and Scholz and Kuchta (2017a) provided an overview of the cur-
rent knowledge on elasmobranch and teleost tapeworms, respectively. Caira et al. (2014) pro-
vided evidence for the unexpected radiation of elasmobranch tapeworms and its importance in
deciphering the evolutionary history of all tapeworms, and finally Caira and Jensen (2017)
summarized updated information on all tapeworms in a comprehensive monograph. Data
on nominal species of all tapeworms, including hosts, localities and authorities not listed
herein, are available (and continually updated) in the freely available on-line Global Cestode
Database (Caira et al., 2022).

Here we briefly review the history of fish tapeworm research, focusing on the recent appli-
cation of molecular tools, diversity of fish tapeworms, their systematics, host–parasite associa-
tions and distribution.

Pre-molecular era

Research on tapeworms has a long tradition, mainly because some species infecting humans
(such as the pork tapeworm Taenia solium and beef tapeworm Taenia saginata or the
broad fish tapeworm Dibothriocephalus latus) were known since the Middle Ages and were
already known to Linnaeus (1758). However, intensive research on tapeworms began much
later, especially in the 20th century, with relatively few fish tapeworms described in the
18th and 19th centuries (Fig. 1).

The first fish tapeworm – larvae of trypanorhynchs (now Tetrarhynchus argentinae; see
Southwell, 1929) – was recorded as early as in the 17th century by Redi (1684), who isolated
its larvae from various organs of the herring smelt Argentina sphyraena and was probably the
first helminthologist who studied fish tapeworms. The first adult fish tapeworm described was
Bothriocephalus scorpii by Müller (1776) from the sculpin Myoxocephalus scorpius off
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Denmark, followed by the description of the largest fish tape-
worm E. crassum by Bloch (1779) from the Atlantic salmon
Salmo salar in Germany. The first adult elasmobranch tapeworm
was Gilquinia squali, described by Fabricius (1794) from the dog-
fish Squalus acanthias off Denmark (see Caira et al., 2022).

Fish tapeworms have been most intensively studied in temper-
ate regions, including Europe, the former USSR, Japan and North
America (Dubinina, 1987; Williams and Jones, 1994; Hoffman,
1999). The life cycles of most pathogenic fish tapeworms were
elucidated in the 20th century, but this almost exclusively involves
freshwater taxa (mainly those of bothriocephalideans, caryophyl-
lideans and proteocephalids [= Onchoproteocephalidea I; for
simplicity and to avoid confusion, called thereafter as proteoce-
phalideans]; see below). In contrast, little attention has been
paid to the life cycles and ecology of marine fish tapeworms,
mainly because of obstacles of laboratory experiments with mar-
ine animals (Jensen and Bullard, 2010). The first elasmobranch
tapeworm life cycle elucidated was that of the trypanorhynch
Grillotia erinaceus, which involves 2 intermediate hosts, copepods
and fish (Ruszkowski, 1934).

The original concept of higher-level classification of tapeworms
dates back to Van Beneden (1850) and van Beneden in Carus
(1863), who recognized several groups that are now considered
orders, such as Diphyllidea, Caryophyllidea or Tetraphyllidea, fol-
lowed by the monographs of Wardle and McLeod (1952) and
Yamaguti (1959) which set important milestones in terms of tape-
worm systematics. Classification of cestodes at a higher taxonomic
level was based mainly on the scolex morphology (Fig. 2) and the
characteristics of the genital system (see Schmidt, 1986; Khalil et al.,
1994). The most important taxonomic categories are the orders
and their delimitation was relatively uncontroversial (Wardle and
McLeod, 1952; Yamaguti, 1959; Schmidt, 1986), with 14 orders
recognized in the most comprehensive monograph published in
the pre-molecular era (Khalil et al., 1994).

Onset of the molecular era

Molecular phylogenetic studies

Molecular tools, particularly sequences of 18S rDNA, were used
in tapeworms beginning in the late 1990s (Králová et al., 1997;

Fig. 1. Species diversity of fish tapeworms (elasmobranch tapeworms in blue, teleost tapeworms in green): (A) cumulative curve of species of fish tapeworms
described since 1776; (B) numbers of species of fish tapeworms described every year since 1970; note steady or even slowly lowering rate of description of
new species of teleost tapeworms within the last 50 years.
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Liu et al., 1997), but the study of Mariaux (1998) should be con-
sidered the starting point of the molecular phylogeny era in tape-
worms, followed by studies of Olson and Caira (1999) and
Kodedová et al. (2000), which included 16 and 33 species of
fish tapeworms, respectively.

At the beginning of the 21st century, intensive efforts were made
to verify the reliability of the existing classification of tapeworms.
The initial studies, based primarily on partial 18S rDNA sequences,
surprisingly identified the internally proglottized Spathebothriidea
as the most basal ‘true’ tapeworms (Eucestoda) (Olson and Caira,
1999; Kodedová et al., 2000). However, more comprehensive studies
later confirmed the transition of cestode body plan from monozoy
(Caryophyllidea) to polyzoy, i.e. the consequent evolution of strobi-
lization and the formation of attachment organs on the scolex from

simple bothria (bothriate groups) to sucker-like attachment organs
(acetabulate groups) (Olson et al., 2001).

Waeschenbach et al. (2007, 2012) and Caira et al. (2014) have
provided the most robust phylogenetic dataset for all tapeworm
orders to date. These studies confirmed unexpectedly high radi-
ation of elasmobranch tapeworms (Caira et al., 2014; Fig. 3; see
section ‘Remarkable achievements’). They also provided strong
support for the previous ordinal classification of tapeworms,
with only a few exceptions, such as the non-monophyly of the
Pseudophyllidea (divided now into 2 unrelated orders,
Bothriocephalidea and Diphyllobothriidea – Kuchta et al.,
2008a) and the existence of several independent lineages of
elasmobranch tapeworms that merit elevation to the ordinal
level (see below and Waeschenbach and Littlewood, 2017).

Fig. 2. Scanning electron micrographs of scoleces of representatives of orders of fish tapeworms: (A) Archigetes vadosus (Caryophyllidea) from Ictiobus bubalus,
USA; (B) Diplocotyle olrikii (Spathebothriidea) from Myoxocephalus scorpius, off Svalbard Archipelago, Norway; (C) Haplobothrium globuliforme (Haplobothriidea)
from Amia calva, USA; (D) plerocercoid of Dibothriocephalus latus (Diphyllobothriidea) from Perca fluviatilis, Italy; (E) Halysioncum reginae (Diphyllidea) from
Pastinachus ater, off Madagascar; (F) Pterobothrium sp. (Trypanorhyncha) from Styracura schmardae, off Belize; (G) Kirstenella gordoni (Bothriocephalidea) from
Heterobranchus bidorsalis, Kenya; (H) plerocercoid of Clistobothrium sp. 3 of Caira et al. (2020a, 2020b) (Phyllobothriidea) from Oncorhynchus gorbuscha, off
Alaska; (I) Gangesia bengalensis (Onchoproteocephalidea I – Proteocephalidae) from Wallago attu, India; (J) Nippotaenia perccotti (Nippotaeniidea) from
Perccottus glenii, Slovakia; (K) Ichthyolepis africana (Cyclophyllidea: Dilepididae) from Marcusenius macrolepidotus, South Africa; (L) merocercoid of
Neogryporhynchus lasiopeius (Cyclophyllidea: Gryporhynchidae) from Tilapia sparrmanii, Zimbabwe.
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Molecular markers used

The molecular markers used in studies of tapeworms depend on
the taxonomic level studied. For higher level classification
(ordinal and familiar), only partial 18S rDNA sequences were ori-
ginally used, with the addition of partial 28S rDNA sequences as
proposed by Olson et al. (2001). Domains D1–D3 of 28S rDNA
have become the gold standard in most taxonomic and phylogen-
etic studies of fish tapeworms and a high number of their
sequences are available, usually supplemented with other markers
suitable for lower-level classification (genus and species levels),
such as internal transcribed spacers (ITS-1, 5S rDNA, ITS-2) of
the nuclear ribosomal DNA region. This region became popular
some 15–20 years ago for taxonomic studies at the species level
to discriminate closely related taxa. However, these markers can
cause artefacts in some groups, such as Bothriocephalidea,
Caryophyllidea and Diphyllobothriidea (Bouzid et al., 2008;
Brabec et al., 2012, 2016), which partly concerns also some mito-
chondrial genes, especially the complete cytochrome c oxidase
subunit I (cox1). The last marker is most commonly used in
recent lower-level phylogenetic and population genetical studies
of tapeworms. The most sequenced fish tapeworm to date is the
invasive Asian fish tapeworm Schyzocotyle acheilognathi (syn.
Bothriocephalus acheilognathi), with more than 100 sequences

each of 18S, 28S and ITS. Details of currently available molecular
markers of fish tapeworms can be found in the GenBank database
and Table 1.

Mitogenomics (mtDNA) and next-generation sequencing (NGS)

In contrast to the Cyclophyllidea and Diphyllobothriidea, which
may parasitize humans, very few data are available on mitochon-
drial genomes of fish tapeworms. To date, very few mitochondrial
genomes of fish tapeworms are available. Waeschenbach et al.
(2012) used large fragments of mtDNA (more than 4000 bp)
together with 18S and 28S rDNA to reconstruct the relationships
of 23 tapeworm species from all 18 orders. Brabec et al. (2016)
characterized complete mitochondrial genomes and nuclear
rRNA operons of 8 geographically distinct isolates of the bothrio-
cephalidean S. acheilognathi, representing the parasite’s global
diversity spanning 4 continents. These authors also demonstrated
the limited utility of nuclear rRNA sequences, including ITS,
which likely misled previous phylogenetic and population genetic
studies of S. acheilognathi because of the presence of considerable
intragenomic sequence variation (i.e. the presence of multiple
paralogous sequences of these genomic loci within an individual)
within the rDNA and ITS, as well as the other rRNA operon loci

Fig. 3. Phylogenetic relationships of tapeworms (Cestoda); modified from Caira et al. (2014) and updated from Caira and Jensen (2017). A single species of adult
cyclophyllideans was found in teleosts (host pictogram in parentheses). Freshwater hosts in green, marine hosts in blue (combined if tapeworms occur in both
environments considering proportion of their species).
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of S. acheilognathi (Brabec et al., 2016). In addition, Brabec et al.
(2018) developed a set of 15 polymorphic microsatellite markers
for future population genetic and phylogeographic studies
of S. acheilognathi. Moreover, Li et al. (2017) sequenced mito-
chondrial genomes of 3 caryophyllidean tapeworms and S. achei-
lognathi. A comparative analysis of 54 cestode mitogenomes of 52
species, which included 40 cyclophyllideans (16 species of Taenia
and 9 species of Echinococcus), revealed that Atractolytocestus
huronensis had the longest mitogenome of all tapeworms (15
130 bp long) and that mitogenomes of all 3 caryophyllideans
sequenced (A. huronensis, Breviscolex orientalis and Khawia
sinensis) had the lowest A–T content (58.6–65.6%) of all cestodes
(Li et al., 2017). An unpublished sequence of the mitogenome of
another caryophyllidean, Caryophyllaeus brachycollis from China,
is deposited in the GenBase database (KT028770).

In the case of elasmobranch tapeworms, Trevisan et al. (2019)
sequenced the mitogenome of Anindobothrium anacolum and
Rhinebothrium reydai. Trevisan et al. (2021) obtained complete
mtDNA sequences of 86 specimens from 5 orders. At that time,
these data nearly doubled the mtDNA dataset available for ces-
todes and an expansion of the representation of the cestode orders
by about 1/3. The complete mtDNA of fish tapeworms is around
13 500 bp long and contains 12 protein-coding genes, 22 tRNA
(trn) genes and 2 rRNA genes, following the pattern of flatworms
(Brabec et al., 2016; Trevisan et al., 2021).

NGS data are scarce for fish tapeworms (e.g. Brabec et al., 2016,
2018; Trevisan et al., 2019, 2021). To date, there are only 6 transcrip-
tomes, all diphyllobothriideans that use fish as intermediate hosts
(Dibothriocephalus dendriticus, D. latus, D. nihonkaiensis, Ligula
intestinalis, Schistocephalus solidus, and Spirometra mansoni), and
3 published genomes for D. latus, S. solidus and S. mansoni com-
pared with at least 13 available genomes for cyclophyllideans
(International Helminth Genomes Consortium, 2019). However,
new high-throughput data are currently being generated for several
fish tapeworms (J. N. Caira, University of Connecticut, Storrs, USA;
J. Brabec, Biology Centre CAS, České Budějovice, Czech Republic,
personal communication, 2022).

Remarkable achievements

Species diversity

The last 2 decades have seen unprecedented progress in the study
of the diversity of fish tapeworms (Caira et al., 2017a). Several
monographs have been published on individual elasmobranch
tapeworm orders, namely Trypanorhyncha – Palm (2004),
Lecanicephalidea – Jensen (2005), Diphyllidea – Tyler (2006)
and Phyllobothriidea – Ruhnke (2011). Caira and Jensen (2014)
and Scholz and Kuchta (2017a) presented concise reviews
(‘digest’) of elasmobranch and teleost tapeworms, respectively,
but the major achievements were summarized in a monograph
by Caira and Jensen (2017) that provides detailed information
on all cestode orders.

Another milestone is the establishment of the Global Cestode
Database (www.tapewormdb.uconn.edu; Caira et al., 2022), which
contains taxonomic and nomenclatural data on most of the
described cestode species with their original hosts and localities,
availability of type material and in most cases also with their ori-
ginal descriptions and images. To date (as of 1 June 2022), there
are 12 790 records, including 1334 nominal generic names (804
valid) and 11 456 nominal species names (3400 valid species
have been included to date, representing 68% of ∼5000 known
valid tapeworm species, with the fish tapeworm orders almost
fully represented – Caira and Jensen, 2017; Caira et al., 2022).
Moreover, the database also contains extensive literature, particu-
larly original descriptions of new species that are available elec-
tronically (a total of 4779 papers and monographs is available
online in the Global Cestode Database).

Since 2000, the pace of descriptions of new cestode taxa from
fish has accelerated, with an increase of 527 new species that
represent almost 1/2 of known species of elasmobranch tape-
worms and 75 new species of teleost tapeworms, as shown by
comparing the data of Caira and Jensen (2017) with the current
status (Fig. 1, Table 2). The highest increase in species richness
since 2017 is seen in the Rhinebothriidea (38 new species, includ-
ing 15 spp. of Rhinebothrium), Phyllobothriidea (37 new species,

Table 1. Number of DNA sequences of tapeworms, including species parasitizing fish, i.e. teleosts and elasmobranchs (data as of 31 May 2022)

Marker No. of sequences No. of species Most sequenced fish tapeworms Order

18S rDNA 2003 ∼470 Schyzocotyle acheilognathi (119) Bothriocephalidea

Neobothriocephalus aspinosus (26) Bothriocephalidea

Tentacularia coryphaenaea (22) Trypanorhyncha

28S rDNA 2924 ∼640 Proteocephalus ambloplitis (130) Onchoproteocephalidea I

S. acheilognathi (130) Bothriocephalidea

Wenyonia virilis (23) Caryophyllidea

Ef 1-α 233 ∼22 No multiple sequences per species

16S rDNA 1162 ∼220 P. ambloplitis (322) Onchoproteocephalidea I

Caryophyllaeus laticeps (9) Caryophyllidea

Rhinebothrium sp. 1a (8) Rhinebothriidea

ITS-1 + 2 2486 ∼200 S. acheilognathi (110) Bothriocephalidea

Atractolytocestus huronensis (20) Caryophyllidea

Atractolytocestus sagittatus (19) Caryophyllidea

cox1 8684 ∼340 A. huronensis (47) Caryophyllidea

S. acheilognathi (39) Bothriocephalidea

Bothriocephalus cuspidatus (36) Bothriocephalidea

aElasmobranch tapeworms.

1880 Tomáš Scholz and Roman Kuchta

https://doi.org/10.1017/S0031182022001202 Published online by Cambridge University Press

https://www.tapewormdb.uconn.edu
https://doi.org/10.1017/S0031182022001202


including 7 spp. of Scyphophyllidium), Onchoproteocephalidea II
(22 new species, including 15 spp. of Acanthobothrium),
Trypanorhyncha (20 new spp.), ‘Tetraphyllidea’ (19 new spp.),
Caryophyllidea (13 new spp.) and Onchoproteocephalidea I (12
new spp.) (Caira et al., 2022).

Currently, nearly 1200 species of elasmobranch tapeworms
and nearly 500 species of teleost tapeworms are recognized as
valid (Fig. 4, Table 2; Caira et al., 2022). Elasmobranch diversity
hot spots are indeed restricted to regions where recent sampling
has occurred, with tropical marine regions predominating
(Caira and Jensen, 2017). For teleost tapeworms, the main hot
spot of diversity is South American fresh water, i.e. the Amazon
and Paraná river basins (de Chambrier et al., 2017), where 7
new species have been described since 2017 (Alves et al., 2020,
2021), but there are still many undescribed taxa (unpublished
data). Another hot spot is North America, especially the southern
USA, where 10 new caryophyllidean species have been described
since 2017 (Scholz and Oros, 2017). In contrast, very few new spe-
cies have been described from other regions, including the
Afrotropical region (3 new spp.), and only 2 valid species from
the Oriental region (Scholz and de Chambrier, 2012; Scholz
et al., 2022a).

Molecular tools also allowed us to discover cryptic species
diversity in some groups, such as caryophyllideans of the genus
Paracaryophyllaeus in loaches (Cobitoidei) in the Palaearctic
region and Bothriocephalus in the Nearctic region (Scholz et al.,

2014; Choudhury and Scholz, 2020). However, the number of
cryptic species of fish tapeworms discovered is rather low, most
likely due to the predominant use of 28S rDNA sequences and
the small number of specimens studied, which prevents the dis-
covery of genetically similar but distinct taxa.

Taxonomic revisions of fish tapeworms in the Oriental region
have shown that the actual number of valid species is much lower.
Our recent studies of freshwater teleost tapeworms, based on new
material from Bangladesh, Cambodia, India, Indonesia and
Vietnam, have substantially reduced the number of valid species of
teleost tapeworms in this region, where dozens of species and
many ‘new’ genera have been inadequately and often invalidly
described (nomina nuda or species inquirendae), mostly based on
only 1 or 2 poorly fixed specimens found in a few teleost species,
such as catfishes Clarias batrachus, Heteropneustes fossilis, Wallago
attu, Sperata seenghala, snakeheads Channa spp. and zig-zag eels
Mastacembelus spp. (Kuchta and Scholz, 2007, 2017a). Similarly,
Ash et al. (2011a, 2011b) recognized only 9 of 78 caryophyllidean
species described from C. batrachus and H. fossilis, or only 4 of 48
species of proteocephalideans described from W. attu and S. seen-
ghala (Ash et al., 2012, 2015). A similar situation also occurs in
bothriocephalideans, where at least 80 species (57 since 2000) from
7 genera (Apicobothrium, Circumoncobothrium, Mastalobothrium,
Polyonchobothrium, Probothriocephalus, Ptychobothrium and
Senga) have been described very superficially and often in violation
of the International Code of Zoological Nomenclature (Ride et al.,

Table 2. Number of valid species of tapeworms in 2022

Total species Fish speciesa % Fresh water Marine Genera Genera in fish

Teleosts

Amphilinidea 8 (8) 7 (7) 88 6 1 6 6

Bothriocephalidea 135 (131) 131 (129) 97 42 89 49 49

Caryophyllidea 130 (117) 130 (117) 100 117 0 44 44

Cyclophyllidea >3000 (0) 1 (0) 0 1 0 437 1

Haplobothriidea 2 (2) 2 (2) 100 2 0 1 1

Nippotaeniidea 6 (6) 6 (6) 100 6 0 1 1

Onchoproteocephalidea I 334 (318) 201 (194) 60 201 0 73 59

Spathebothriidea 6 (6) 6 (6) 100 3 3 6 5

Total >3621 484 13 378 93 617 166

Freshwater species 78%

Elasmobranchs

Cathetocephalidea 6 (6) 6 (6) 100 0 6 3 3

Diphyllidea 59 (59) 59 (59) 100 0 59 6 6

Gyrocotylidea 12 (10) 12 (10) 100 0 12 1 1

Lecanicephalidea 94 (90) 94 (90) 100 3 91 29 29

Litobothriidea 9 (9) 9 (9) 100 0 9 1 1

Onchoproteocephalidea II 271 (246) 271 (246) 100 18 253 12 12

Phyllobothriidea 111 (69) 111 (69) 100 1 110 21 21

Rhinebothriidea 175 (136) 175 (136) 100 15 160 24 24

Trypanorhyncha 337 (315) 337 (315) 100 2 335 84 84

‘Tetraphyllidea’ relicts 119 (104) 119 (104) 100 0 123 84 84

Total 1193 1189 100 39 1158 265 265

Freshwater species 3%

All tapeworms >4814 1632 34 417 1251 882 431

Numbers from Caira and Jensen (2017) in parentheses. Total numbers in bold.
aIncluding orders using fish as final (definitive) host, with the exception of Diphyllobothriidea (71 spp.) and Tetrabothriidea (70 spp.).
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1999) from a single host species, the zig-zag eel Mastacembelus
armatus, in India and southeast Asia. The first and probably only
valid species (and genus) from M. armatus was described by Johri
(1956) as Senga lucknowensis (see Kuchta and Scholz, 2007;
Kuchta et al., 2008b). The situation is even worse for the notorious
genus Senga (and its synonyms), where no less than 152 (!) species
have been described from 36 species of snakeheads and zig-zag
eels in India, Pakistan and other southeast Asian countries.
Provisionally, only 14 species are considered valid (Kuchta and
Scholz, 2007, 2017a; Caira et al., 2022), but the actual number of
valid taxa may be even lower. A similar situation exists for S. achei-
lognathi, where 24 species from 5 genera are considered synonyms
(see Kuchta et al., 2008b, 2018). Moreover, all these taxonomic
changes proposed more than 10 years ago are constantly ignored
by local authors who continue to describe ‘new’ taxa, including gen-
era, from the same host species. The same problem, but to a some-
what lesser extent, exists also with the elasmobranch tapeworms of
the Oriental region. Editors of scientific journals are strongly urged
to avoid publishing these invalid and scientifically unsound
descriptions of ‘new’ taxa, which only pollute the literature.

Phylogenetic interrelationships and new classification

Recent collaborative efforts of cestodologists have allowed us to
greatly improve our understanding of the interrelationships
between all groups of tapeworms and their evolutionary history.
New molecular phylogenetic data have confirmed the crucial
role of fish tapeworms in the evolution of all tapeworms and
also led to major changes in their higher classification. These
new data revealed (or confirmed) the following:

(1) Transition from monozoy to polyzoy in cestode evolution and
consecutive development of the scolex from simple attachment
organs to bothriate structures (1, 2 or 4 attachment grooves),
followed by the development of acetabulate attachment
organs (usually with 4 suckers or bothridia) (Fig. 3; Olson
et al., 2001; Waeschenbach et al., 2007, 2012; Caira et al.,
2014). New data collected in the last 2 decades suggest the

evolutionary scenario that the non-strobilate orders
(Gyrocotylidea, Amphilinidea and Caryophyllidea) form the
basal lineages of cestodes followed by the bothriate orders,
while the acetabulate orders are the most derived (Fig. 3;
Caira et al., 2014).

(2) Non-monophyly of fish tapeworms, i.e. independent, repeated
colonization of elasmobranchs and teleosts with different, dis-
tantly related lineages of cestodes during their evolution
(Caira et al., 2014). Molecular data confirmed at least 8 colo-
nizations of freshwater environments (Fig. 3). Chimaeras, as
members of an apparently relict vertebrate group, were
most likely colonized by tapeworm progenitor represented
recently only by gyrocotylideans (Kuchta et al., 2017;
Barčák et al., 2021). However, chimaeras also harbour, albeit
rarely, derived tapeworms, namely Prochristianella clarkeae
(broad host range) (Trypanorhyncha) and Chimaerocestos
prudhoei (specific) (Phyllobothriidea).

In contrast, further colonization of elasmobranchs (rays and
sharks) originally occurred in more recently diverging groups,
such as trypanorhynchs and diphyllideans, but surprisingly
after the colonization of marine and even freshwater teleosts
(Amphilinidea, Caryophyllidea, Spathebothriidea) and probably
also tetrapods (Diphyllobothriidea) and ancient freshwater bowfin
fishes (Haplobothriidea) (Caira et al., 2014) (Fig. 3). However, the
interrelationships between the individual orders (especially the
basal ones) are not well supported by any available molecular
data (Waeschenbach and Littlewood, 2017). Furthermore, reliable
dating of individual colonization events is problematic because
fossils of flatworms, including parasitic Neodermata, are com-
pletely lacking. However, it is assumed that the Neodermata
must have parasitized the stem group Gnathostomata between
the Cambrian and Ordovician (Littlewood, 2006).

(3) Probably most surprising is the extraordinary diversity of
elasmobranch tapeworms (Caira and Jensen, 2014, 2017;
Caira et al., 2014), which belong to 8 orders and at least 9

Fig. 4. Pie chart documenting species diversity of fish tapeworms, i.e. proportion of species numbers of individual orders of fish tapeworms.
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other independent lineages that may represent new independ-
ent orders (Fig. 3).

(4) The taxonomic significance of some previously used traditional
morphological characters has been questioned. The position of
the internal longitudinal musculature relative to the reproduct-
ive organs used in higher classification of Caryophyllidea and
Proteocephalidae (Onchoproteocephalidea I) is not congruent
with molecular data (de Chambrier et al., 2004, 2015; Brabec
et al., 2012; Scholz et al., 2021a). It is therefore obvious that
this apparently homoplastic character is not suitable to define
(sub)families. Also, the shape of the scolex seems to represent a
homoplastic character that does not reflect the interrelation-
ships at the level of families and even genera of some groups,
such as bothriocephalideans, lecanicephalideans, proteocepha-
lideans and ‘tetraphyllideans’ (Brabec et al., 2015; de
Chambrier et al., 2015; Jensen et al., 2016; Caira et al., 2017b).

(5) New molecular phylogenetic data have led to significant
changes in the classification and nomenclature of fish tape-
worms at different taxonomic levels (ordinal, familial and
generic). At the ordinal level, not all groups deserved changes
and their ordinal status has been confirmed (see below). In
contrast, taxonomic changes were made in some groups,
based on the presence of independent lineages of fish tape-
worms that deserve to be elevated to ordinal or subordinal
rank (Fig. 3; Caira et al., 2014; Caira and Jensen, 2017).

Monozoic groups

The 2 most basal groups (orders) of tapeworms, namely the
Gyrocotylidea (spiral intestine of the chimaeras) and the
Amphilinidea (body cavities of freshwater and marine teleosts,
including sturgeons, and turtles), called Cestodaria and some-
times classified as a subclass (Schmidt, 1986), have a 10-hooked
lycophore larva (decacanth) and a non-proglottized body without
scolex, and have been considered sister groups to all other ‘true’
tapeworms (Eucestoda), which have a 6-hooked larva called a
hexacanth (Conn and Świderski, 2008). However, the available
molecular data do not support the monophyly of the
‘Cestodaria’, as the Gyrocotylidea most likely forms a sister
group to all other tapeworms, including the Amphilinidea
(Waeschenbach et al., 2012; Caira et al., 2014). However, the
interrelationships of these most basal tapeworms are not yet suf-
ficiently resolved (Waeschenbach et al., 2012; Caira and Jensen,
2017).

Caryophyllidea (parasites of cypriniform and siluriform tele-
osts, intestines, exclusively freshwater). Scholz et al. (2021a) pre-
sented the most comprehensive multi-gene molecular phylogeny
of this group, encompassing ∼50 and 75% of the known species
and genus diversity, respectively (Scholz and Oros, 2017).
Phylogenetic reconstructions provided high support for 3 major
lineages that were only partially consistent with previously recog-
nized families. In contrast, host association and biogeographical
distribution play key roles in circumscribing the 3 well-supported
clades revealed by molecular data (Scholz et al., 2021a). The most
basal caryophyllideans seem to be species of Balanotaenia from
catfishes in Australasia and/or Lytocestoides tanganyikae from
cichlids in Africa (Scholz et al., 2021a).

Polyzoic bothriate groups

Spathebothriidea (parasites of marine and freshwater teleosts
including sturgeons) are a small group with a relatively low host
specificity. Phylogenetic interrelationships have been studied by
Kuchta et al. (2014), and the most basal species seems to be the
marine Spathebothrium simplex with a simple scolex without
specialized attachment organs.

Pseudophyllidea (parasites of a wide range of vertebrates;
share the presence of bothria as attachment organs). Based on
molecular, morphological and ecological evidence, the long recog-
nized order Pseudophyllidea proposed by Carus (1863) was sup-
pressed by Kuchta et al. (2008a) and 2 new, not closely related
orders, Diphyllobothriidea and Bothriocephalidea, were proposed
(see below).

Diphyllobothriidea, so-called ‘broad tapeworms’ (parasites of
marine, freshwater and terrestrial tetrapods; teleosts usually serve
as a second-intermediate host; formerly part of the
Pseudophyllidea). The molecular interrelationships of more
than 30 of 70 known species have been studied using multigene
and mitogenome analyses (Waeschenbach et al., 2017;
Fraija-Fernández et al., 2021). Three major lineages were recog-
nized that correspond well to the 3 recognized families that
include parasites of frogs (the most basal lineage), reptiles and
the most derived group with parasites of birds and mammals,
including humans (causing diphyllobothriosis or sparganosis).
Humans were found to have been accidental hosts at least 4
times during the diphyllobothriidean evolution (Waeschenbach
et al., 2017). Fraija-Fernández et al. (2021) sequenced the com-
plete mitochondrial genome (mtDNA) of 13 representatives and
added nodal resolution to major branches (families) of the order.

Diphyllidea (parasites of marine batoids and rarely of sharks).
This small group of small tapeworms was revised and the
sequences of 31 of 59 recognized species were analysed. Based
on molecular and morphological evidence, 4 new genera were
proposed, with Halysioncum to be the most basal genus (Caira
et al., 2013, 2017c; Abbott and Caira, 2014).

Trypanorhyncha (most species-rich order of elasmobranch
tapeworms; larvae in invertebrates and teleosts; with 2 species,
Paroncomegas araya and Paroncomegas baeri, specific parasites
of freshwater stingrays in South America). Two robust molecular
phylogenetic studies based on extensive datasets (66 of 335 known
species) have been published (Palm et al., 2009; Olson et al.,
2010). Two new, well-supported suborders (lineages) have been
erected, Trypanobatoida and Trypanoselachoida, which parasitize
primarily rays and sharks, respectively (Olson et al., 2010). The
interrelationships of this species-rich order are not yet adequately
understood, because available molecular data represent only about
one-fifth of the known taxa (Beveridge et al., 2017).

Bothriocephalidea (parasites of marine and freshwater tele-
osts and rarely of amphibians; formerly part of the
Pseudophyllidea). Brabec et al. (2015) evaluated the interrelation-
ships of this order using multi-gene molecular phylogenetic ana-
lyses that included 59 of 135 recognized species, covering 70% of
recognized genera. The order proved to be monophyletic, but 3 of
4 recognized families appeared non-monophyletic. Only the fam-
ily Bothriocephalidae is monophyletic, and forms the most
derived lineage of the order which comprises a single freshwater
clade and several marine clades (including the most species-rich
and polyphyletic genus Bothriocephalus). Biogeographical pat-
terns within the freshwater clade indicate that monophyletic
lineages have evolved in Africa and North America (Brabec
et al., 2015). The most basal genera seem to be fresh water
(Marsipometra and/or Bathybothrium) or marine (Abothrium
or Parabothrium) (Brabec et al., 2015).

Polyzoic acetabulate groups

Litobothriidea (small group in 1 genus; parasitize exclusively
pelagic sharks). With one exception (enigmatic Litobothrium
aenigmaticum), all possess a scolex consisting of a single apical
sucker followed by a series of pseudosegments, part of which is
cruciform (Caira et al., 2017d). In contrast, the scolex of L. aenig-
maticum consists of a simple dome-shaped scolex proper and an
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extended cephalic peduncle housing 4 distinct tissue types (Caira
et al., 2017d). The order Lithobothriidea is considered a sister
taxon to all acetabulate tapeworms (Fig. 3; Caira and Jensen,
2014; Caira et al., 2014, 2017d).

Lecanicephalidea (parasites of elasmobranchs, mainly rays;
with only a few freshwater species). Jensen et al. (2016) presented
the first assessment of the phylogenetic interrelationships of the
order and confirmed its monophyly. However, 61 species repre-
senting 22 of the 25 valid genera were found to have an apparent
conflict between scolex morphology and proglottid anatomy,
complicating the assignment of many of these genera to families.
Proglottid anatomy was found to be much more conserved and
informative of phylogenetic relationships than scolex morph-
ology, and genera lacking apical structures (such as the
Paraberrapecidae) were confirmed to be the earliest diverging
lineages (Jensen et al., 2016). The order is divided into 8 families
based on molecular data (Jensen et al., 2016, 2017).

Rhinebothriidea (formerly part of the Tetraphyllidea; para-
sites of elasmobranchs, with 15 known species in freshwater
rays). The order was erected by Healy et al. (2009) based on
molecular data and is characterized by the possession of a scolex
consisting of 4 bothridia borne on stalks. Ruhnke et al. (2015,
2017) proposed 4 families of the order and erected several new
genera. The order contains the second most species-rich genus
of elasmobranch tapeworms, Rhinebothrium, with 63 valid spe-
cies, including 11 species from freshwater rays in South
America that form a monophyletic group with species parasitizing
potamotrygonid stingrays (Reyda and Marques, 2011), and 2 spe-
cies from freshwater whipray in Borneo (Healy, 2006) that are not
closely related to the Neotropical taxa (Ruhnke et al., 2017).
Moreover, 1 Anindobothrium species from Amazonian potamo-
trygonids and Sungaicestus kinabatanganensis from Bornean
giant freshwater whipray have been recently discovered (Ruhnke
et al., 2017, Trevisan et al., 2017). Rhinebothriideans adapted to
a freshwater environment at least 4 times, with the most basal spe-
cies appearing to be new genus 11 sensu Ruhnke et al. (2015)
(Ruhnke et al., 2017).

Cathetocephalidea (formerly part of the Tetraphyllidea; para-
sites of pelagic sharks). This is a very small but peculiar order
characterized by a scolex consisting of an anterior globose or
transversely extended region and a posterior rugose base with
or without a papillary band (Caira and Jensen, 2014). Caira
et al. (2014) found this small order deeply nested among the acet-
abulate orders of cestodes. Sanguilevator yearsleyi from the broad-
fin shark Lamiopsis tephrodes off Borneo has a unique scolex with
internal chambers and channels that appear to sequester host
blood cells, making it possibly the only known tapeworm species
that ingests blood (Caira et al., 2005).

Phyllobothriidea (formerly part of the Tetraphyllidea; para-
sites of elasmobranchs; 1 species in fresh water). Based on their
molecular phylogenetic analyses, Caira et al. (2014) elevated the
family Phyllobothriidae to ordinal status. Caira et al. (2021a,
2021b) provided the most comprehensive phylogenetic analysis
of this order; their dataset included species from 15 of the 18 gen-
era, as well as 3 new genera. Members of the order have simple,
undivided bothridia, each bearing an apical sucker. The most
species-rich genus is now Scyphophyllidium with 45 species, as
6 genera have been synonymized with this genus, and the most
basal genus appears to be Clistobothrium (Caira et al., 2020a,
2021). Surprisingly, 1 species of Scyphophyllidium, originally
described as Anindobothrium guariticus and later transferred to
Nandocestus, was described from freshwater potamotrygonid stin-
grays in South America (Caira et al., 2021a).

Onchoproteocephalidea (a highly controversial order consisting
of members of the long recognized order Proteocephalidea parasit-
izing freshwater teleosts and tetrapods – Onchoproteocephalidea I,

and taxa of the former ‘tetraphyllidean’ family Onchobothriidae
from elasmobranchs – Onchoproteocephalidea II). Caira et al.
(2014) proposed this new order based on molecular data, but no
morphological, biological or ecological synapomorphies for the
order have been identified to characterize this rather heterogeneous
assemblage of tapeworms.

Tapeworms of the former order Proteocephalidea
(Onchoproteocephalidea I) are parasites of freshwater teleosts
(60% of species) and some tetrapods (amphibians, reptiles and
1 in mammals) that are currently placed in a single family,
Proteocephalidae (see de Chambrier et al., 2017). The most com-
prehensive phylogenetic study included more than 100 of 334
now recognized species from 54 genera (80% of all recognized
genera) (de Chambrier et al., 2015). The results confirmed the ori-
gin of proteocephalideans in the Old World with the most basal
groups appearing in catfishes (Gangesiinae) or reptiles
(Acanthotaeniinae), with more recent dispersal followed by radi-
ation in teleosts, particularly pimelodid catfishes in South
America. Most of the subfamilies and species-rich genera proved
to be non-monophyletic, requiring a profound systematic
reorganization of this cestode group, abandoning the traditional
subfamily system (de Chambrier et al., 2015, 2017).

Onchoproteocephalidea II of Caira and Jensen (2017) con-
sists of hooked cestodes parasitizing rays and sharks. They encom-
pass the most species-rich genus of elasmobranch tapeworms
Acanthobothrium with 211 valid species (Caira et al., 2022; Van
der Spuy et al., 2022), including 11 species described from giant
freshwater whipray in Borneo and potamotrygonid stingrays in
South America (Fyler and Caira, 2006; Caira et al., 2022).
Moreover, all 7 species of Potamotrygonocestus with unique acet-
abula and unipronged hooks are specific parasites of potamotry-
gonid stingrays in South America (Marques et al., 2003) and may
represent elasmobranch tapeworms most closely related to pro-
teocephalideans (Caira et al., 2017e).

Nippotaeniidea (small group, exclusive in freshwater teleosts).
They have only been found in freshwater gobiids (Perciformes)
and osmeroids (Osmeriformes) in the Palaearctic region and
New Zealand (Scholz et al., 2017a). They are closely related to
the Tetrabothriidea, Cyclophyllidea (both groups parasitize tetra-
pods) and some tetraphyllidean relicts, but their relationships are
still not clearly resolved (Caira et al., 2014; Waeschenbach and
Littlewood, 2017).

Cyclophyllidea (mature in tetrapods; 1 species has recently
been described from freshwater teleosts). This is the most species-
rich order, comprising over 3000 species (more than 60% of tape-
worm diversity) that are parasites of tetrapods, especially birds
and mammals, including humans (Mariaux et al., 2017).
However, adults had never been found in bony fishes until
Scholz et al. (2020) described the dilepidid Ichthyolepis africana
in 6 species of elephantfishes (Mormyriformes) across Africa.
The new species belongs to the dilepidid lineage consisting of
tapeworms of African swifts (Apodidae) (Scholz et al., 2020).

‘Tetraphyllidea’ relicts. This group tentatively includes more
than 100 species of acetabulate elasmobranch tapeworms with
highly diverse morphologies that form at least 9 independent
lineages of acetabulate tapeworms that may represent new orders
(Caira et al., 2017b) (Fig. 3). Recently, numerous morphological
and molecular data have been added to these groups, including
descriptions of new genera such as Ambitalveolus (Eudy et al.,
2019; Caira et al., 2021; Caira and Jensen, 2021, 2022; Jensen
et al., 2021; Sadeghi Kamachali and Haseli, 2022; Stephan and
Caira, 2022).

(6) Several genera of fish tapeworms, including taxa of medical
and veterinary importance, were found to be non-
monophyletic, resulting in nomenclatural changes at the
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genus level. For example, the bothriocephalidean genus
Schyzocotyle was resurrected by Brabec et al. (2015) to accom-
modate the important fish pathogen and invasive Asian fish
tapeworm S. acheilognathi (see Scholz et al., 2012; Kuchta
et al., 2018).

A molecular phylogenetic study by Waeschenbach et al. (2017)
resulted in several taxonomic changes in the genera containing
human-infecting broad tapeworms (Diphyllobothriidea), espe-
cially resurrection of the genus Dibothriocephalus that accommo-
dates freshwater and terrestrial species, including human
parasites, such as D. latus, D. nihonkaiensis and D. dendriticus,
and the genus Adenocephalus with the Pacific broad tapeworm
that infects humans on the Pacific coast of South America, with
marine teleosts serving as a source of human infections (Kuchta
et al., 2015), and the synonymy of Diplogonoporus (including
parasites of humans) with Diphyllobothrium by Waeschenbach
et al. (2017).

Host associations

As noted above, both elasmobranchs and teleosts were independ-
ently colonized several times during the evolution of tapeworms,
including the most basal gyrocotylideans, amphilinideans and
caryophyllideans, but also recently by divergent acetabulate
groups such as nippotaeniideans (Caira et al., 2014; Fig. 3). In
elasmobranchs, the next colonization event after the establishment
of gyrocotylidean–holocephalan association occurred much later,
most likely by ancestors of the recent Trypanorhyncha and
Diphyllidea, which expanded in both sharks and rays (Caira
et al., 2014, 2017c; Beveridge et al., 2017). Using a relaxed molecu-
lar clock model calibrated by host fossil data, the Trypanobatoida of
rays was estimated to have diversified around the Jurassic–
Cretaceous boundary, whereas the Trypanoselachoida of sharks
was estimated to have diversified later, in the mid-Cretaceous
(Olson et al., 2010).

Teleosts have also been colonized independently several times
(Fig. 3). Tapeworms occur in their most basal groups, i.e. the 2
orders of the most basal superorder Chondrostei, namely
Polypteriformes and Acipenseriformes (proteocephalideans,
bothriocephalideans and amphilinideans – Kuchta et al., 2012;
de Chambrier et al., 2017; Scholz and Kuchta, 2017b). Fishes of
both orders of another ancient superorder Neopterygii (orders
Amiiformes and Lepisosteiformes) have also been colonized by
relatively derived proteocephalidean tapeworms, and bowfin
(Amia calva) also by haplobothriideans (Brabec et al., 2015;
Scholz et al., 2022a, 2022b). Adult tapeworms also occur in the
most basal superorder Teleostei, as in the Osteoglossiformes
(2 amphilinideans in Arapaima gigas), Elopiformes (bothrioce-
phalideans) and Anguilliformes (1 proteocephalidean and 2
bothriocephalideans) (de Chambrier et al., 2017; Kuchta and
Scholz, 2017a; Scholz and Kuchta, 2017b). With the exception
of amphilinideans, all of the above-mentioned tapeworms belong
to more derived groups, so their colonization of ancient fish
groups was apparently the result of host switching.

Bothriocephalideans have spread in marine and freshwater tel-
eosts, with a few taxa switching to amphibians (Kuchta and
Scholz, 2017a). Further colonization of freshwater teleosts has
occurred much later by members of acetabulate tapeworms
(Fig. 3), particularly proteocephalideans, which have adapted to
an extraordinarily wide range of distantly related orders, includ-
ing basal ray-finned species such as the Polypteriformes,
Amiiformes and Lepisosteiformes, as well as the recently diver-
gent orders Centrarchiformes, Cichliformes, Gobiiformes and
‘Perciformes’, but also other vertebrate groups (de Chambrier
et al., 2017).

Species of 4 orders (Caryophyllidea, Haplobothriidea,
Onchoproteocephalidea I and Nippotaeniidea) live exclusively
in fresh water. In the Spathebothriidea, the most basal extant spe-
cies (S. simplex) is a parasite of marine snailfish, while the most
basal bothriocephalideans may occur in freshwater hosts (see
above; Brabec et al., 2015). Interestingly, the number of marine
species among teleost tapeworms accounts only for 22% of
known species (Scholz and Kuchta, 2017a; Table 1).

There are 1200 described species of elasmobranch fishes (Last
et al., 2016), of which an estimated 40% have been examined for
tapeworms from which almost 1200 species have been described
(Table 2; Caira et al., 2017a). Nearly all elasmobranch species
examined for parasites harbour at least 1 tapeworm species
(Caira et al., 2001), but each elasmobranch species may harbour
an average of 6 tapeworm species, 4 of which have strict host spe-
cificity (Randhawa and Poulin, 2010). In addition, it is estimated
that there are at least 3600 undescribed tapeworm species from
‘known’ elasmobranchs (Randhawa and Poulin, 2010; Caira
et al., 2017a). Most species of elasmobranch tapeworms were
described after 1986 (Fig. 1; Randhawa and Poulin, 2019).

The number of known teleosts is much higher, with at least 35
000 described species (10 000 in fresh water and 15 000–20 000
marine) (Reis et al., 2016). To date, only a small number of
them has been examined for parasites. A large sample of more
than 8000 freshwater teleosts of at least 300 species from 5 bior-
egions revealed an overall prevalence of 16%, with the highest spe-
cies diversity in the Neotropical realm (Kuchta and Scholz,
2017a).

In total 101 proteocephalidean species from 81 catfish species
have been reported in South America, representing an average of
1.2 proteocephalidean species per host species (Alves et al., 2017;
present data). Catfishes are probably the most suitable teleost
group in which new tapeworms are to be discovered, but the
known species diversity is still very low when compared to the
diversity of elasmobranch tapeworms. The diversity of catfishes
in South America alone is much higher than the total diversity
of elasmobranchs in the whole world (estimated at 1915 spp. by
Reis et al., 2016). When extrapolated to the currently recognized
species of proteocephalideans, the total diversity of proteocepha-
lideans in South American siluriforms could reach 2400 species.
However, this is almost certainly overestimation because proteoce-
phalideans are mainly found in members of a single family
Pimelodidae, and 85 proteocephalideans have been reported
from 38 pimelodid species, i.e. 2.2 tapeworm species per host.
Considering the existence of at least 113 pimepodid species
(based on Froese and Pauly, 2022), there could be at least 250 pro-
teocephalidean species just in fishes of this single family alone. In
contrast, species diversity of proteocephalideans in other catfishes
is much lower (they occur in only another 8 families). Overall,
rough estimates of proteocephalidean diversity in South
America vary between 1000 and 2000 species, suggesting that
we have described only 5–10% of the freshwater teleost tape-
worms of South America.

The prevalence and diversity of tapeworms in marine teleosts
is low and also varies among different ocean depths. The shelf,
epipelagic (up to 200 m) and mesopelagic fauna (up to 1000 m)
is relatively poor, whereas the cestode fauna of deep-sea teleosts
appears to be much richer. Kuchta and Scholz (2007) reported
that only 4 of 500 teleosts of 37 species from 11 sites in the epi-
pelagic Atlantic Ocean off Scotland were infected with only 2 spe-
cies of adult tapeworms. In contrast, 20 of 286 teleosts from 42
species in the deep sea off the Outer Hebrides were infected
with 5 species of bothriocephalideans (Kuchta and Scholz, 2007).

Among marine teleosts, only the family Centrolophidae
(Scombriformes) represents a ‘hot spot’ of tapeworm diversity.
To date, 16 bothriocephalid species have been reported from 9
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centrolophid species, corresponding to 1.8 tapeworm species per
host species. Considering the existence of 32 species of centrolo-
phids (Froese and Pauly, 2022), there could be as many as 57 spe-
cies of bothriocephalid tapeworms.

Caira and Jensen (2014, 2017) reviewed all groups of elasmo-
branch tapeworms, which are generally strictly host-specific (oiox-
enous; strict specialists), with the exception of Trypanorhyncha,
where strict host specificity at the species level is not the general
pattern (Palm, 2004; Caira and Jensen, 2014). A remarkable case
of suprageneric specialist or even low generalist (euryxeny) has
also been reported for some species of Rhinebothrium by
Golzarianpour et al. (2021). In general, tapeworms are parasites
of all groups of elasmobranchs (with the greatest diversity in
rays), including recent freshwater lineages in South America and
Southeast Asia (Caira and Jensen, 2014, 2017).

Scholz and Kuchta (2017a) found no general patterns in host
use at the level of definitive hosts of teleost tapeworms, as they are
found in distantly related fish groups, particularly proteocephali-
deans (see above). They parasitize mainly fishes of 3 teleost
orders, namely Siluriformes, Cypriniformes and ‘Perciformes’
(=sensu lato). More than 60% of teleost tapeworms are specialists
(Scholz and Kuchta, 2017a). Extremely low host specificity (eur-
yxenous; high generalists) was rarely observed (8%), mainly
among bothriocephalideans, including the most opportunistic
helminth, S. acheilognathi, which has been reported from more
than 300 freshwater actinopterygian species as well as axolotls,
snakes and birds (Kuchta et al., 2018).

Kuchta et al. (2020) critically revised tapeworms of cyprini-
form fishes known in Europe and North America and found
that their host specificity is more strict than previously hypothe-
sized by Scholz and Kuchta (2017a), primarily due to the pre-
dominance of highly specific caryophyllideans in Nearctic
catostomids (Uhrovič et al., 2021a, 2021b, 2022).

Life cycles

The life cycles and transmission patterns of fish tapeworms, includ-
ing marine taxa, are poorly understood (Williams and Jones, 1994;
Beveridge, 2001; Poulin et al., 2016). To date, at least 1 complete
cycle is known for representatives of only 11 of the 18 tapeworm
orders (Table 3). Life cycles are best known in 2 freshwater groups,
proteocephalideans and caryophyllideans (Table 3). In elasmo-
branch tapeworms, life cycles are clarified only for a few species of
the Trypanorhyncha and Rhinebothriidea. The first-intermediate
hosts are mainly copepods (confirmed in 7 orders), less frequently
amphipods or crayfish (Amphlinidea, Spathebothriidea) or oligo-
chaetes (Caryophyllidea). The second-intermediate host is not
required in fish tapeworms of at least 6 orders, but may be involved
in at least 7 orders, with teleost fish (including the cyclophyllidean
family Gryporhynchidae) or rarely crustaceans and cephalopods
serving as second-intermediate hosts (Table 3). Tetrapods, including
humans, may also serve as intermediate or accidental hosts in some
taxa of the Cyclophyllidea (Mesocestoidae, Taeniidae) and in the
Diphyllobothriidea (Spirometra).

The main obstacles to studying life cycles are the lack of diag-
nostic features in larval stages and the difficulty of maintaining
experimental hosts in the laboratory, particularly marine inverte-
brates and fish. The application of DNA sequencing allowed the
assignment of different ontogenetic stages of tapeworms, which
helped to elucidate their development (Aznar et al., 2007;
Jensen and Bullard, 2010; Caira et al., 2020b). For example,
Caira et al. (2020b) confirmed molecularly the systematic position
of well-known larvae infecting marine mammals tentatively desig-
nated as Monorygma grimaldii and Phyllobothrium delphini, as
well as several larvae from marine teleosts that are molecularly
related to the phyllobothriidean genus Clistobothrium.

Recently, Appy et al. (2019) experimentally investigated the life
cycle of Rhinebothrium urobatidium (Rhinebothriidea) from the
round stingray Urobatis halleri off California and found that the
copepod Tigriopus californicus (Harpacticoidea) and gobies
(Clevelandia ios) serve as the first- and second-intermediate
hosts, respectively. This is the first completed life cycle of a rhine-
bothriidean tapeworm and the fourth known cycle of elasmo-
branch tapeworms (Table 3).

Zoogeographical distribution

The biogeographical data collected in the last 2 decades also made
it possible to significantly expand the distributional ranges of
many fish tapeworms. The distributional ranges of marine tape-
worms are more extensive compared to those of freshwater taxa
and even span most of the globe. Overall, tropical and subtropical
areas are richest in elasmobranchs (Naylor et al., 2012a, 2012b) as
well as their tapeworms (Caira and Jensen, 2014, 2017; Randhawa
and Poulin, 2019). However, for some species of trypanorhynchs
or phyllobothriideans, a near cosmopolitan distribution including
Arctic areas has been demonstrated (Palm et al., 2007; Beveridge
et al., 2017; Caira and Jensen, 2017).

The distribution of teleost tapeworms differs markedly from one
another, with no obvious general pattern (see Scholz and Kuchta,
2017a). However, individual lineages are generally restricted to a single
continentorbiogeographical region (Amphilinidea,Bothriocephalidea,
Caryophyllidea, Nippotaeniidea and Proteocephalidae). Particularly
little is known about the distribution of ‘deep-sea’ fish tapeworms
(Kuchta et al., 2008b; Klimpel et al., 2009; Brabec et al., 2015).
Most tapeworms of freshwater teleosts (and those of freshwater
rays) have much more restricted distributions, usually confined to
1, at most 2, zoogeographical regions. Teleost tapeworms are
more diverse in the temperate zones of the Northern Hemisphere,
i.e. Nearctic and Palaearctic regions, than in the tropics, with the
exception of proteocephalideans in the Neotropical region, where
they account for up to 95% of all tapeworm species (with the e-
xception of 2 amphilinideans and 4 bothriocephalideans) (Scholz
and Kuchta, 2017a). Caryophyllideans dominate in the Nearctic
region, along with proteocephalideans also in the Ethiopian and
Palaearctic realms.

Unnatural distributions as a result of human activities are
exhibited by invasive species that include caryophyllideans (A.
huronensis, Khawia japonica, K. sinensis), bothriocephalideans
(S. acheilognathi) and nippotaeniideans (Nippotaenia perccotti)
(Scholz and Kuchta, 2017a). Caryophyllideans and S. acheilog-
nathi have been introduced to Europe, North America,
Australia and Africa probably from East Asia by infected carps
(Cyprinus carpio and Ctenopharyngodon idella) (Oros et al.,
2004, 2009; Scholz et al., 2015, 2018a; Kuchta et al., 2018), but
N. perccotti was introduced relatively recently from Asia to
Central and Eastern Europe by the invasive Chinese sleeper
Perccottus glenii (Mierzejewska et al., 2012; Kvach et al., 2013).

Tapeworms as fish pathogens and causative agents of human
fish-borne zoonoses

There are relatively few fish tapeworms that can be transmitted to
humans. The eggs of invasive S. acheilognathi have been detected
once in the stool of a human, but most likely as an incidental
infection (Yera et al., 2013). Moreover, some trypanorhynch lar-
vae such as Hepatoxylon trichiuri and Nybelinia surmenicola
have been reported (as accidental pseudoparasites) in 4 cases,
apparently after accidentally ingesting an infected second-
intermediate host (Heinz, 1954; Grimmo and Buckley, 1961;
Ikikuchi et al., 1981; Fripp and Mason, 1983). In fact, only the lar-
vae (plerocercoids) of a few fish diphyllobothriideans (mainly D.
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latus, D. nihonkaiensis and Adenocephalus pacificus) can cause the
disease called diphyllobothriosis in humans (see Scholz and
Kuchta, 2016; Scholz et al., 2019; Králová-Hromadová et al.,
2021).

There are also relatively few cestodes, especially their larvae
(metacestodes), that are actually pathogenic to fish (Williams
and Jones, 1994; Dick et al., 2006; Scholz et al., 2021b, 2021c).
Plerocercoids of species of Dibothriocephalus are commonly
found in the viscera and musculature of freshwater and marine
teleosts, especially salmonids, including those in aquaculture,
and can adversely affect heavily infected fish (Williams and
Jones, 1994; Scholz et al., 2021b). Plerocercoids of
Proteocephalus ambloplitis in North American centrarchids and
larvae of trypanorhynch tapeworms in marine teleosts may also
pose a threat to local fish populations because of their pathogen-
icity (Williams and Jones, 1994).

Invasive parasites are a major threat to biodiversity and non-
native parasites introduced to new regions can also negatively
affect the health of cultured fish in newly colonized regions.
Parasites introduced into new areas with their non-native hosts
alter natural host–parasite interactions, which can lead to the
emergence of disease in native species (Šimková et al., 2019).
Most invasive tapeworms are found in cyprinids, particularly

common carp, which have contributed to the spread of several
successful invaders among tapeworms (see above).

Unresolved problems and prospects of future research

Despite vast progress over the past 2 decades, it is evident that
only a small fraction of the global cestode diversity, including
fish tapeworms, has been adequately described. The following
obstacles should be overcome in future research to better charac-
terize the true diversity of extant tapeworms in elasmobranchs
and teleosts:

(1) Limited accessibility of potential fish hosts. Serious barriers
include restrictions related to the availability of less common
or protected hosts, and restrictions on the export of biological
samples based on the Nagoya Protocol (Nagoya Protocol on
Access to Genetic Resources and the Fair and Equitable
Sharing of Benefits Arising from their Utilization to the
Convention on Biological Diversity), which seriously impair
or even prevent any international collaboration in research.
Limited accessibility to biological samples, both hosts and
their parasites, can have negative consequences for the

Table 3. Survey of life cycles by tapeworm orders

Order
First-intermediate

host (IH 1)
Second-intermediate

host (IH 2)
Species
numbera Remarks

Gyrocotylidea ? ? 0 Egg and larva known. Is there any IH?

Amphilinidea Amphipods, crayfish – 2 Studied sturgeon and turtle species

Caryophyllidea Oligochaetes – 20 Progenesis possible (Archigetes)

Haplobothriidea Copepods Teleosts 1

Diphyllobothriidea Copepods Teleosts, (tetrapods) 16 Studied mainly human-infecting species;
Cephalochlamydidae (most basal group) uses
only IH 1

Spathebothriidea Amphipods – 2 Progenesis possible

Diphyllidea ? (Teleosts, shrimps) 0 Larvae in teleosts; molecularly confirmed (Bray
and Olson, 2004)

Trypanorhyncha Copepods Teleosts, shrimps,
cephalopods

3 Additional paratenic hosts included; IH 2 known
for many species

Bothriocephalidea Copepods (Teleosts) 10 IH 2 known only for Triaenophorus

Litobothriidea ? ? 0

Lecanicephalidea ? ? 0

Rhinebothriidea Copepods Teleosts, (molluscs) 1 Recently elucidated cycle (Appy et al., 2019);
larvae in molluscs; molecularly identifiedb

Cathetocephalidea ? ? 0

Phyllobothriidea ? Teleosts, cetaceans Larvae in teleosts; molecularly confirmedb

Onchoproteocephalidea I Copepods – 22 Teleosts may serve as paratenic hosts

Onchoproteocephalidea II ? (Teleosts) Larvae in teleosts; molecularly confirmedb

Nippotaeniidea Copepods – 1

Tetrabothriidea ? (Teleosts?) 0 Teleosts are predicted, but not confirmed as
IH 2

Cyclophyllidea Invertebrates,
vertebrates

(Invertebrates,
vertebrates)

140 Mostly IH 1; teleosts as IH 2 in the family
Gryporhynchidae

‘Tetraphyllidea’ relicts ? (Teleosts, molluscs) 0 Larvae in molluscs and teleosts molecularly
confirmedb

?, no cycle known.
aNumber of species with known complete life cycle.
bJensen and Bullard (2010).
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advancement of biodiversity studies, especially in countries
with the strictest Nagoya Protocol regulations.

(2) Methodological obstacles. A seemingly very trivial issue,
proper processing of tapeworm samples, remains one of the
major obstacles in tapeworm studies. The unfortunate prac-
tice of studying long dead, non-fresh or frozen fish hosts,
and the use of inappropriate fixation or inadequate processing
(flattening, relaxation or use of fixatives in the case of teleost
tapeworms, lack of ethanol-fixed vouchers for molecular
studies, etc.), as well as headless and/or fragmented speci-
mens, lead to poor and incomplete morphological descrip-
tions of new taxa, including where internal structures are
often misinterpreted or not adequately characterized (Oros
et al., 2010; Scholz et al., 2018b). It is strongly recommended
to collect only complete tapeworms with the scolex from
freshly killed fish after they have been gently cleaned in saline
and fixed in hot fixative (for teleost tapeworms), including
preservation of molecular vouchers, i.e. hologenophores/
paragenophores (Pleijel et al., 2008; Scholz et al., 2018b).

(3) Correct host identification. Host taxonomy and nomenclature
are constantly changing (especially for elasmobranchs with
over 300 new species described in the last 20 years), which
can complicate their correct identification and thus assess-
ment of the range of cestode host specificity. It is strongly
recommended that tapeworm hosts always be adequately
documented by photographs and tissue samples for DNA
genotyping for each infected host should be deposited
(Caira and Jensen, 2014; Scholz et al., 2018b).

(4) Taxonomic crisis. The recent biodiversity crisis is accompan-
ied by a taxonomic crisis, i.e. a continuous loss of taxonomic
expertise, including limited funding of taxonomic studies.
Factors that have led to this crisis include unfavourable evalu-
ation of taxonomy by other scientists, insufficient funding,
declining effort to properly identify specimens in biodiversity
studies, methods of global diversity assessment, penalization
of large, long-term work and faunal surveys and bureaucratic
obstacles that hinder fieldwork (Löbl, 2018).

(5) International collaborations. The exceptional achievements of
the international cestode consortium of the projects funded
by NSF-PBI (Caira and Jensen, 2017) are strong evidence of
the need for international scientific collaboration in future
studies on fish tapeworms. The greater the number of authors
per study, the higher its quality, suggesting that more colla-
borations between taxonomists and experts from other fields
are needed to produce more comprehensive species character-
izations (Poulin and Presswell, 2016).

Our understanding of tapeworm evolution and phylogenetic rela-
tionships has improved considerably, especially for fish tapeworms.
However, several important questions still remain unanswered, in
part because of the lack of resolution of tapeworm relationships at
the order level, such as in the so-called ‘Tetraphyllidea relicts’,
whose members represent at least 9 independent lineages that
may be established as new orders (see above; Fig. 3). The prevailing
practice of deriving taxonomic conclusions and proposals for new
classification, even at the ordinal level, from single-gene phylogenies
(especially short sequences of the 28S rRNA gene) is somewhat
problematic because phylogenies of cestodes based on a single
marker, including mitochondrial genes, may not capture their evo-
lutionary history (Trevisan et al., 2021).

A serious problem is also the limited suitability of some of the
molecular markers widely used so far, especially ITS, since its para-
logues have been detected in some species of the Caryophyllidea,
Bothriocephalidea and Diphyllobothriidea (Bouzid et al., 2008;
Králová-Hromadová et al., 2010, 2012; Bazsalovicsová et al.,
2011; Brabec et al., 2016). The situation is particularly unfavourable

with respect to the use of common molecular markers in caryo-
phyllideans, one of the most basal groups of all cestodes. Brabec
et al. (2012) evaluated the utility of 2 nuclear and 2 mitochondrial
molecular markers (ssrDNA and lsrDNA, nad3 and cox1) for esti-
mating caryophyllidean interrelationships. They found that these
markers did not contain sufficient phylogenetic signal. Moreover,
Brabec et al. (2012) detected multiple trnK + nad3 + trnS + trnW
+ cox1 haplotypes within individuals, suggesting gene exchange
between the mitochondrial and nuclear genomes. The presence
of such nuclear paralogues (i.e. numts) makes the search for
informative markers to estimate their evolution unusually problem-
atic, especially compared to other major tapeworm lineages (Brabec
et al., 2012).

Multigene phylogenies are largely absent in fish tapeworms,
with exception of phylogenetic studies on individual orders
(see Waeschenbach and Littlewood, 2017), which were based on
sequences of 2 nuclear and 2 mitochondrial gene sequences.
Phylogenomic approaches have not been applied at all, even to
the most ‘problematic’ groups with poor resolve position within
the cestode tree, such as the Gyrocotylidea, Amphilinidea,
Onchoproteocephalidea and ‘Tetraphyllidea-like’ lineages.
Trevisan et al. (2021) call for a comprehensive evidence frame-
work to be conducted in tapeworm phylogeny studies and con-
sider the characterization of the new mitochondrial genomes a
good step to provide a valuable resource for future studies on
the evolutionary relationships of tapeworms. Another problem
with some groups, particularly Trypanorhyncha, is the insuffi-
cient representation of the sequenced taxa to cover most of the
diversity of a given group (Beveridge et al., 2017).

More molecular data are of course also needed for a better
understanding of the actual host associations of fish tapeworms
and their geographical distribution, including deciphering the
most plausible scenario of colonization of individual fish groups
by tapeworms and colonization of individual zoogeographical
regions. Last but not least, molecular tools should be increasingly
used in ecologically oriented research of fish tapeworms and in
studies of their life cycles. The eDNA metabarcoding of ontogen-
etic stages of fish tapeworms also represents a promising tool that
should be increasingly used in ecological and epidemiological
studies and in screening the occurrence and species diversity of
tapeworms in aquatic ecosystems. It is evident that quite good
progress has been made in cestodology, but much remains to be
unravelled and many interesting evolutionary and ecological
questions to be answered.
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