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SUMMARY
In this paper we present an experimental comparison
between different decentralized controllers for industrial
robot manipulators. In spite of the fact that robot manip-
ulators are highly nonlinear and coupled multivariable
systems, decentralized controllers have been widely adopted
in industrial environments for trajectory tracking, because
of their simplicity and their fault tolerance feature. Different
kinds of controllers have been investigated: the typical PID-
based controller, a nonlinear three-term controller devised
by Tarokh, and a variable structure control law, a dis-
continuous integral control, both in the continuous and in
the discretised version. Allowances are made for the tuning
of the parameters in order to obtain low tracking errors.
Results show that better performances are obtained by
controllers other than PID, especially by the discontinuous
integral control, so that they appear to be particularly
appropriate for the use in industrial robots.

KEYWORDS: Robot manipulators; Robot control; Decentralized
control; PID control; Variable structure control.

1. INTRODUCTION
Dexterous and skilled motions in industrial robot manip-
ulators require reliable and robust joint controllers in order
to guarantee low trajectory tracking errors, despite uncer-
tainties in the robot dynamics and external disturbances. It
is well-known that a mechanical manipulator is a highly
coupled nonlinear system whose parameters are very
difficult to estimate, so that the control design is a very hard
task which has been addressed by a large number of
researchers. Many proposed control schemes take into
account the full robot dynamics with the aim of cancelling
the nonlinearities and decoupling the system. Then, a linear
control law is applied.1 Adaptive control can be exploited in
this context in order to cope with system uncertainties.2

However, this results in a significant increasing of the
control architecture complexity so that these schemes are
very difficult to implement in practice in an industrial
setting. For these reasons, decentralized control, in which
each joint is controlled separately by a simple position
servoloop, has been widely adopted by the robotics industry.

This is mainly due to the ease of implementation and
because of the fault tolerance feature since only one joint is
affected in the case of a component failure. This allows the
robot to continue operating, although in a limited capacity,
so that it can be placed in a safe position by means of other
unaffected joints. It is apparent how this characteristic is
particularly desirable in applications such as hazardous
material handling. Furthermore, fault detection and isolation
is faster and more convenient with independent joint
control. Several decentralized adaptive control schemes
have been presented in the literature (see e.g. references
3–7). However, the most adopted controller for industrial
robots are still based on Proportional-Integral-Derivative
(PID) controllers, with the addition of functionalities
(filters, feedforward actions and so on) that can be exploited
to improve the performances. This seems to be due to the
fact that PID controllers have a simple structure, are widely
known, easy to tune and provide adequate performances for
basic pick-and-place tasks, where only point-to-point
motion is of concern. Moreover, despite the publication of
many theoretical works, not many experimental results have
been discussed in the literature,8–10 and a full comparison
between PID and novel techniques has not been deeply
performed. In order to replace conventional controllers in
the industrial context, it is necessary to show that it is
possible to overcome the limits of PID controllers in
trajectory tracking; besides, a full understanding of the
significance of all the parameters of the new control laws
and a detailed discussion of the problems that might arise
still have to be provided.

The aim of this paper is to analyse and compare different
decentralized controllers in order to provide information on
their use and the results they can achieve. Among the several
control laws provided in the literature, we selected a few of
them whose theoretical analysis has been performed in
details and that are easy to implement and therefore suitable
for industrial applications; they do not require any knowl-
edge of the robot dynamics and the stability proof is
obtained under mild conditions. These controllers are the
PID-based ones where the control scheme basically consists
of an inner velocity loop and an outer position loop, a
nonlinear three term controller proposed by Tarokh11 and the
discontinuous integral control (both in the continuous and
discretised version), which is a kind of variable structure
sliding mode controller, which has been recently
devised.12–16

The paper is organized as follows: In Section 2 the
adopted controllers are described. In Section 3 the experi-
mental setup is presented. Experimental results are shown in
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Section 4 and discussed. The effect of friction compensation
is examined in Section 5. Conclusions are drawn in the last
section.

2. DECENTRALIZED CONTROLLERS FOR
MECHANICAL MANIPULATORS
It is well-known that the dynamic model of a n-joint
manipulator can be written as follows:

M(u )ü + C(u,u̇ )u̇ + g(u ) + f (u̇ ) + ud (t) = u(t)

where u is the n3 1 joint angle vector, u(t) is the n3 1 input
torque vector, M(u ) is the n3 n inertia matrix, C(u,u̇ ) is the
n3 n matrix representing the centrifugal and Coriolis terms,
f (u̇ ) is the n3 1 vector of the frictional terms, g(u ) is the
n3 1 vector of the gravity terms, and ud(t) is a n3 1 vector
representing unknown disturbances. Figure 1 shows a
typical scheme of a decentralized or independent joint
control, where the torque ui to be generated by the i-th
actuator is based only on the value of the position of the i-th
joint and on its time derivatives:

ui = ui (ui , u̇i , udi , u̇di ) i = 1, . . . , n.

Generally, defining the position error as ei(t) = udi 2 ui,
equation (1) is rewritten as:

ui = ui (ei , ėi ) i = 1, . . . , n.

In this framework, we chose different decentralized control
laws that seem particularly suitable to be employed in an
industrial context, due to their simplicity.

2.1 PID control
The typical PID-based control for robot manipulators
basically consists of two nested regulators, i.e. an inner loop
for velocity and an outer loop for position regulation, as
shown in Figure 2. It has to be noted that the velocity
control loop cannot be necessary (which means that the
motor amplifiers are configured in “current” mode), but
when it is present, it is generally tuned first and is often
implemented by an analog device embedded in the drive of
the motor. On the contrary, the position control loop is
always realized by a digital microprocessor. In this paper we
adopted the two loops scheme, since we have seen it
provides the best results for our testbed. Both the two loops
have been implemented in software.

The well-known general expression of a PID controller is
the following:

u(t) = KpSe(t) +
1
Ti
Et

0
e(t)dt + Td

de(t)
dt D , (2)

where Kp is the proportional gain and Ti and Td are,
respectively, the integral and derivative time constants. In
addition to the classical three actions, different functional-
ities can be selected by the user to improve the tracking
performances. Specifically, the input of the PD part can be
low-pass filtered to avoid the amplification of high-
frequency noise and the value of the integral term can be
limited, as well as the maximum error to be integrated, to
avoid the wind-up effect. Moreover, feedforward terms (i.e.
the commanded velocities and accelerations are multiplied
by scalar factors to provide an additional control action) can
be utilized to increase the transient performances. The
resulting control variable has to be saturated to avoid that
the maximum DAC output is exceeded and, most important,
that velocity/torque limits of the motors are not surpassed
and it can be also low-pass filtered to prevent the excitation
of high-frequency modes and the occurring of vibrations. It
is worth stressing that the properties of the Proportional-
Integral-Derivative terms are generally well understood by
the industrial operators and many tuning techniques have
been devised.17 The tuning of the other additional parame-
ters is more critical and it might not be worthy to use them.
For our system, we found that only low-pass filtering the
error derivative signal was useful to improve the perform-
ances for all the experimented trajectories.

2.2 Tarokh’s nonlinear three-term control
The nonlinear control law proposed by Tarokh in 1996,11

consists of three terms and is described by the following
expression:

ui (t) = kihi (t) + pihi (t)Et

0
h2

i (t ) dt

+ qi sgn (hi (t))Et

0
uhi (t)udt i = 1, . . . , n (3)

where ui is the torque applied to the motor of the i-joint, ki,
pi and qi are constant scalar gains, and hi(t) is defined as

hi (t) = li ei (t) + ėi (t) i=1, . . . , n

Fig. 1. General scheme of a decentralized 2 d.o.f. robot control.
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where li is a constant positive scalar. The asymptotic
stability of tracking error is demonstrated by using the
Lyapunov stability theorem. Moreover, theory and simula-
tion assure that this control system is robust to torque
disturbances and to a class of unmodelled dynamics. The
last control torque component in (3) contains a signum
function that can result in chattering effect. In order to avoid
this effect, the signum can be replaced by a saturation
function of the form:

sat(hi ) = H hi /«
sgn (hi ),

uhiu < «

otherwise

where « is the boundary layer thickness. The asymptotic
stability is preserved.18 This third term produces a steady-
state torque that is needed to hold the arm against gravity,
whilst the first two components contribute to the transient
response, since it is hi = 0 at the steady-state.

Simulation results seems very promising but no experi-
ments have been provided in the literature until now to
verify the real effectiveness of the controller.

2.3 Discontinuous integral control
Variable-structure sliding mode control has been widely
investigated since the 50s because of its effectiveness in
solving the problem of robust stabilization of nonlinear
multivariable systems19 and some versions of it have already
been effectively experimented on industrial robots (see e.g.
reference 8). An interesting approach, which seems partic-
ularly appropriate for application in mechanical systems, is
the recently developed discontinuous integral control, both
in the continuous and discrete version.12–16 The aim of this
kind of control is to reduce the chattering introduced by the
characteristic switching term of the controller, by adding an
integrator with a nonlinear switching input whose purpose is
to track the unknown disturbances. In this way, the
switching term has to compensate only the difference
between the real disturbances and its estimations, so that its
effect can be significantly reduced. If we choose the
following sliding surface:

s (t) = ce(t) + ė(t)

where c > 0, then, for the continuous-time case, the
expression of the torque command can be stated as (i =

1, ..., n):

ui (t) = lis (t) + ki sgn(si (t)) + c̃ i (t)
c̃i (t) = hi et

0 sgn(si (t))dt
(4)

where li, ki and hi are constant parameters and c̃ i (t) is an
estimation of an external disturbance c i (t) which is
assumed to be continuous and to satisfy the following
conditions:

uc i (t)u < D0; uċ i (t)u < D1.

It can be demonstrated that if parameters li, ki and hi are
chosen in such a way that

li > 0; ki > 0; hi > D1; hi li ki > D2
1(12 ln2);

then the controlled system is globally stable and after a
finite time a sliding mode arises on the surface s i, so that the
error asymptotically converges to zero. We will refer to the
simple discretized version of (4) as DIC. However, this
simple discretized version of (4) can be slightly modified in
order to try preventing oscillations, once the estimation of
the disturbance is constant.15,16 It follows that the torque
command for the discretised discontinuous integral control
(DDIC) can be written as:

ui (n) = ki sgn(s i (n))+ c̃ i (n)

c̃ i (n) = c̃ i (n21) + kei F Dsi (n)
Ts

+ ki sgn(s i (n21))G (5)

where Dsi (n) = si (n)2si (n21), Ts is the sampling time, ke

is a new design parameter and

F Dsi (n)
Ts

+ ki sgn(s i (n21))G= gi (n) (5)

can be viewed as a disturbance estimation error.
Denote by c̄ i (n) the mean value of the external

disturbance in the time interval [(n21)Ts , nTs]:

c̄ i (n) =
1
Ts
EnTs

(n21)Ts
ci (t) dt.

If the discrete derivative of the disturbance is bounded, that
is

U c̄ i (n)2c̄ i (n21)
Ts

U< Dc

then the estimation error g i (∞ ) is also bounded:
g i (∞ )=Dc Ts. When the sampling time Ts →0, the estima-
tion error g (n) tends to zero. So, choosing the amplitude of
the switching term ki such that ki > Dc Ts we have ugi (n)u < ki

so that a discrete sliding mode occurs in the system.

Fig. 2. Control scheme of one robot joint with PID, where d is the disturbance due to the dynamic coupling.
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3. EXPERIMENTAL SETUP
Practical experimentations have been performed on a test
bed built on purpose and shown in Figure 3. To better
reproduce the phenomena usually found in industrial robots,
the system has been assembled using components extracted
by an actual manipulator. Two DC motors rotate two
flywheels by means of two Harmonic Drives (reduction
gears) with a reduction ratio of 100. The dynamic coupling
between the two d.o.f. has been simulated, adding a spring
attached to two pins. The torque generated by the spring
depends on the angular positions of the two flywheels and
simulates, to a certain extent, the effect of the gravity
present in many manipulators. Each motor is equipped with
a tachometer and with an incremental encoder to measure,
respectively, the angular velocity and rotation. One encoder
step corresponds to a rotation of p·1025 rad of the flywheel.
The dynamic equation of the system is simply:

F J1

0
0
J2
G F ü1

ü2
G+F f1(u1, u2 )

f2(u1, u2 ) G+F g(u̇1)
g(u̇2) G=F u1

u2
G (6)

where u1 and u2 are the angular position of the flywheels, J1

and J2 are the inertia of the flywheels plus that of the motors
divided by the square of the gear ratio of the reduction
gears, f1 and f2 are the effects of the spring, g is the dynamic
friction function and finally u1 and u2 are the equivalent
motor torques applied to the flywheels (see Figure 4). More
precisely, the torque contribution given by the spring can be
expressed as a function of the two angular positions u1 and
u2:

f1(u1, u2) = M(u1, u2),

f2(u1, u2) = 2M(u2, u21),

where

M(a, b) =S2krd+
kl0rd

l D sina

+S2r 2k +
r 2kl0

l D sin(a2b)

Fig. 3. The experimental setup.

Fig. 4. Plot of the experimental setup.
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assuming that r is the distance of the pins from the centre of
the flywheels, d is the distance between the centres of the
two flywheels, k is the stiffness constant, l0 is the length of
the spring at rest, and finally l = l(a,b) is the length of the
spring during the motion that is

l(a,b) = Ïd2 + 2drcosb22drcosa22r2cos(2a+b)+2r2.

Some experimental activity has been carried out to identify
the parameters of the system. These results permitted the
identification of the relative importance of the different
effects. In our case the friction and the elastic coupling play
a major role. The electronic drives have been configured in
such a way that the motors produce a torque proportional to
their input set point. The motions of the system have been
chosen in order to reproduce actual robot motions; a
SCARA robot has been considered (Figure 5), whose links
length is 0.33m. It has been ideally assumed that the gripper
of the SCARA robot should perform different trajectories
(e.g. straight lines or circles) in a chosen time and the
corresponding joint rotations have been evaluated by means
of the inverse kinematics. These motions have been supplied
as set points to the motors of the experimental system. This
activity has been repeated for all the analyzed control
algorithms to verify their performances.

The controller has been assembled using a standard
industrial PC Pentium 166MHz and two industrial I/O
cards. One card is used to collect data from the incremental
encoders, and to output the torque set point by means of two
DAC. The second card has several digital I/O and analog
inputs which monitor the motor velocity reading the
tachometers and the motor torques reading a test point
located in the electronics drivers. The control software has
been written in ANSI C-language under QNX real-time
operating system, which assures a servo loop frequency of
1kHz.

4. RESULTS
All the controllers have been tested on different trajectories
in order to prove their effectiveness in different operating
conditions. Namely, first of all, a point-to-point motion,
with the aim of verifying the steady state errors, has been
considered; it consists of a rotation of p/2 of the flywheels,
to be accomplished in 2s, with a “bang-bang” acceleration
profile (one second of constant positive acceleration fol-
lowed by one second of constant negative acceleration).

Then, a linear trajectory from point (20.3,0.54) to point
(0.6,0.15) has been performed in 6s. Finally, a single
circular trajectory, centred in (0.33,0.33) and with a
diameter of 0.15m, has been executed in 4s. For all these
trajectories, the acceleration profile of the end-effector is
trapezoidal. In order to better evaluate the executed
trajectories, plots of the position, velocity and acceleration
reference signals of joint 1 and 2 for the linear trajectory are
shown in Figures 6 and 7, respectively, and for the circular
trajectory in Figures 8 and 9. It can be noticed how
velocities and accelerations are much higher in the latter.
Note also that each controller has been tested on the system
twice: with and without the spring, in order to evaluate
performances in rejecting the disturbance due to the
coupling. Discussing the results, the two cases are ferred as
“system coupled” and “system not coupled”, according to
the ISO 9283 standard,20 the tracking error for the linear and
circular trajectories has been calculated as the minimum
difference (with sign) between the real end-effector position

Fig. 5. Kinematic scheme of the SCARA robot.

Fig. 6. Position (rad), velocity (rad/s) and acceleration (rad/s2)
setpoints of joint 1 for the linear trajectory.

Fig. 7. Position (rad), velocity (rad/s) and acceleration (rad/s2)
setpoints of joint 2 for the linear trajectory.
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and the reference trajectory (see Figure 10). To measure the
tracking error synthetically, three parameters have been
utilized: the maximum absolute error during the trajectory,
the RMS error and an error index defined as:

e.i. = ē + 3se

where ē is the average value of the absolute error and se is
the standard deviation of the absolute value of e. The
definition of e.i. is inspired by the concept of accuracy and
repeatability (ISO 9283 standard20).

Each controller has been individually tuned as well as
possible using the following approaches. The two nested
PID controllers has been tuned starting from the Ziegler-
Nichols formula and then refining the parameters values
using different trajectories in order to obtain, in general, a
low tracking error. The velocity loop has been tuned first.
Experience showed that the best choice was a PI controller
for the velocity loop and a PD controller for the position
loop.

The Tarokh’s controller has been tuned with similar
concept starting from its first term, which is actually a PD,
and increasing parameters k and c until an excessive
vibration has been noticed. Then, in order to reduce the
steady-state error, the second term has been added. In our
system, the third term proved to be less significant than the
first two, and has been tuned quite easily, substituting the
signum function with the saturation function.

Regarding the discontinuous integral control, a tuning
procedure can be established, fixing the PD part as well as
in the previous case and then increasing h as much as
possible, until vibrations occur, in order to keep k as small
as possible. Actually, in our system, h is the most significant
parameter and k can be very small to avoid chattering. In the
discrete version, once the value of c has been fixed, it is
necessary to increase ke in order to decrease the tracking
error keeping k small. However, care must be taken not to
increase ke too much, since it is responsible for vibrations
too.

In order to verify the accuracy of the tuning phase and the
performances of the considered controllers, we performed

the same linear motion with different time intervals, from 2s
to 6s with a step of 0.5s (note that the motion of 2s requires
almost the maximum velocity that can be provided by the
motors). Figures 11–14 report the maximum and RMS
tracking errors for the end-effector for the motions with
different duration, where the different controllers have been
adopted for the system both with and without the spring. It
can be seen how performances do not decrease significantly
when the motion time decreases and therefore the con-
trollers parameters are well-tuned. For the sake of clarity, in
the next we refer only to the previously described
trajectories in presenting the experimental results. For the

Fig. 8. Position (rad), velocity (rad/s) and acceleration (rad/s2)
setpoints of joint 1 for the circular trajectory.

Fig. 9. Position (rad), velocity (rad/s) and acceleration (rad/s2)
setpoints of joint 2 for the circular trajectory.

Fig. 10. Tracking error PH for the linear and circular trajectories,
where S is the set-point and P is the actual position.

Fig. 11. End-effector maximum tracking errors for the linear
motion with different duration, using the controllers for the not
coupled system.
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point-to-point motion all the controllers perform quite well
in term of steady state errors, as shown in Figure 15 for the
not coupled system. However, it can be noticed how during
the motion and also at the end of it, the continuous version
of the DIC achieves a lower error and that the PID controller
is worse than the others. In fact, the position error is limited
to a maximum of 25 encoder steps for the PID and 5 steps
for DIC. Furthermore, PID requires more than one second
after the end of the motion to reduce the steady-state error
under one step. The effect of the coupling spring seems to
be well compensated by all the controllers, although
Tarokh’s regulator appears to perform slightly worse. Plots
of the tracking errors for the coupled system are displayed
in Figure 16.

The same conclusions can be drawn with respect to the
linear and circular trajectories, where the lowest tracking
error is achieved by the DIC in its continuous version and
the discrete version is better than PID and Tarokh’s
controllers. Tracking errors of the analyzed controllers
versus the PID one are plotted in Figures 17–28, both for the

Fig. 12. End-effector RMS tracking errors for the linear motion
with different duration, using the controllers for the not coupled
system.

Fig. 13. End-effector maximum tracking errors for the linear
motion with different duration, using the controllers for the
coupled system.

Fig. 14. End-effector RMS tracking errors for the linear motion
with different duration, using the controllers for the coupled
system.

Fig. 15. Tracking errors for point-to-point motion with different
controllers. System not coupled.

Fig. 16. Tracking errors for point-to-point motion with different
controllers. System coupled.
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Fig. 17. Tracking errors for the linear trajectory with PID and
Tarokh’s controllers. System not coupled.

Fig. 18. Tracking errors for the linear trajectory with PID and
Tarokh’s controllers. System coupled.

Fig. 19. Tracking errors for the linear trajectory with PID and
DIC controllers. System not coupled.

Fig. 20. Tracking errors for the linear trajectory with PID and
DIC controllers. System coupled.

Fig. 21. Tracking errors for the linear trajectory with PID and
DDIC controllers. System not coupled.

Fig. 22. Tracking errors for the linear trajectory with PID and
DDIC controllers. System coupled.
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Fig. 23. Tracking errors for the circular trajectory with PID and
Tarokh’s controllers. System not coupled.

Fig. 24. Tracking errors for the circular trajectory with PID and
Tarokh’s controllers. System coupled.

Fig. 25. Tracking errors for the circular trajectory with PID and
DIC controllers. System not coupled.

Fig. 26. Tracking errors for the circular trajectory with PID and
DIC controllers. System coupled.

Fig. 27. Tracking errors for the circular trajectory with PID and
DDIC controllers. System not coupled.

Fig. 28. Tracking errors for the circular trajectory with PID and
DDIC controllers. System coupled.
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coupled and non-coupled system. Note that data have been
slightly filtered for the sake of clarity. Results are then
summarized in Tables I–IV. It is also worth stressing that
torque vibrations generated by the two sliding mode
controllers are much lower than in the other cases. This is
particularly important since it is well known that robot life-
span generally decreases when the system has to cope with
vibrations, and torque vibrations can excite mechanical
vibrations resulting in performance degradation and motor
overheading. As an example, the motor torques measured
during the circular trajectory, in the case of application of
the anlayzed control laws, are plotted in Figures 29–32,
referring to the first joint. Note that in all cases the signal
has been obtained directly from a test point of the driver and
filtered with a low-pass filter at a frequency of 100Hz. The
low frequency components represent the torque required to
move the flywheels, whilst the high frequency term is the
chattering introduced by the controller. In order to measure
the chattering amplitude, the torque signals have been
filtered off-line using a high pass filter and then the mean of
the absolute values has been evaluated, obtaining a

“chattering index” c.i. reported in Table V, which underlines
against the effectiveness of the two sliding mode con-
trollers.

5. FRICTION COMPENSATION
In order to evaluate the effects of the friction on the tracking
capability of the controllers, an identification of the
dynamic fraction of both the motors and the gearboxes has
been accomplished. This has been done simply by measur-
ing the torques generated after imposing different constant
velocities on the two motors and then interpolating the read
torques versus velocity by a polynomial function. Measur-
ing the actual motor velocities, it is then possible to predict
a value of the torque due to the friction, and add it to the
control law. In theory, this should compensate the effects of
the friction and improve the trajectory tracking perform-
ances. Results are summarized in Tables VI–IX; when
compared with Tables I–VI it is evident, however, that the
improvement is generally not very significant. This can be

Fig. 29. Torque signal for PID controller.

Fig. 30. Torque signal for Tarokh’s controller.

Fig. 31. Torque signal for discontinuous integral controller
(DIC).

Fig. 32. Torque signal for discontinuous integral controller,
discretised version (DDIC).
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explained by the fact that the integral terms contained in all
the algorithms supply a good prediction of the requested
torque. Besides, it must be taken into account that the
friction identification procedure is very difficult and time
consuming in a real manipulator, because the motors cannot
be easily disassembled for testing procedures.

6. CONCLUSIONS
In this paper we have presented an experimental comparison
between different kinds of decentralized controllers for
mechanical manipulators. The selected control laws appear
to be particularly suitable for use in an industrial context,
because of their simplicity and their fault tolerance features.
Results show how the conventional PID controller can be
effectively substituted by other controllers. In particular, the
discontinuous integral control (DIC) appears to be a very
good candidate for replacing PID regulators because of the
better performances in trajectory tracking, the easy tuning
of the parameters and the ability to compensate the dynamic
coupling and friction. Moreover, torque vibrations are
limited, thereby preventing motor failures.
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