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We consider an elliptic equation with a nonlinear boundary condition which is 
asymptotically linear at infinity and which depends on a parameter. As the 
parameter crosses some critical values, there appear certain resonances in the 
equation producing solutions that bifurcate from infinity. We study the bifurcation 
branches, characterize when they are sub- or supercritical and analyse the stability 
type of the solutions. Furthermore, we apply these results and techniques to obtain 
Landesman-Lazer-typc conditions guaranteeing the existence of solutions in the 
resonant case and to obtain an anti-maximum principle. 

1. Introduction 

Over the last decade a lot of attention has been paid to problems with nonlinear 
boundary conditions. Hence, nowadays, the underlying mechanisms for dissipativc-
uess or blow-up of solutions is fairly well understood (see, for example, [3,5,7,18,19]). 
Therefore, it is natural to analyse the dynamics and bifurcations induced by the 
nonlinear boundary conditions, and compare their effects in the case of an interior 
reaction term, which has been more widely studied. For example, in [6] the existence 
of patterns for such problems, i.e. a stable non-trivial equilibrium, was considered 
(see also the references therein for some previous and related results). In this work 
we consider the evolutionary equation of parabolic type, 

Ut — Au + u = 0 in Q, t > 0, 

—^ = Xu + g(X,x,u) ondQ,t>0,} (1-1) 
on 

u(0,x) = u0(x) in Q, 

in a bounded and sufficiently smooth domain £1 C R^ with N > 2 and analyse the 
behaviour and stability properties of the equilibrium solutions. These equilibria are 
solutions of the following elliptic problem, with nonlinear boundary conditions: 

—AM + U = 0 in f2, 1 
du ) (1-2) 
— = Xu + g(X, x, u) on d£2. 
on ) 
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Our main goal here is to analyse some possible bifurcations of solutions as the 
parameter A is varied, and to study the stability of such solutions. In particular, we 
are interested in the possibility of producing solutions tha t arc large in Q in a given 
sense. We are also interested in characterizing the super- or subcritical character of 
such bifurcations. 

As we will show below, it is in fact possible to generate such large solutions; 
these will be obtained from a 'bifurcation from infinity' argument, even in the case 
in which the nonlinear boundary condition is sublinear at infinity. Such solutions 
will be generated by a resonant mechanism at the boundary. 

We will also show that some stability or instability of such solutions can be 
derived. 

Since we will also give conditions for either subcritical or supercritical bifurca
tions, we will obtain, as a by-product, the analogue to the well-known Landcsman 
Lazcr conditions for the existence of equilibria in resonant cases [15]. Also, a form 
of the anti-maximum principle will also be derived [8]. A similar analysis for the 
case of an interior reaction term was first established in [2]. 

We now present our main results in a more precise way. The main hypothesis on 
the nonlinearity g is the sublinearity with respect to the variable u. Hence, we will 
assume a condition that , roughly speaking, will be of the type 

\g(\,x,u)\ ^ C|M|™ as |w| —> oo for some a < 1. 

Observe tha t we do not exclude the case where a is negative. This condition means 
that , in the boundary condition, the dominant term for \u\ large is the linear term 
AM. In this respect we call this boundary condition asymptotically linear. This 
includes the case where g(\,x,u) = g(x) and it is well known that problem (1.2) 
will have a (unique) solution if A is not an eigenvalue of the problem 

- A * + <Z> = 0 in f2, 

d<P 
-— = o-<P on dQ. 
on 

This eigenvalue problem is known as the Steklow eigenvalue problem and it is well 
known that (1.3) has a discrete set of eigenvalues {o~i}°^Ll. These numbers will play 
an essential role in the analysis below. In particular, for A ^ {o"?;}°^j, we consider 
the operator T\ such that T\b := v. where v is the unique solution of 

-Av + v = 0 in (2, 

dv 
— At' = b on df2, 
on 

for a function b given on df2. 
The fact that , for compact sets of A far from the Steklov eigenvalues, the norm of 

the operator T\ , in some appropriate spaces, is uniformly bounded, together with 
the sublinearity of the function g will allow us to show, by a fixed-point argument, 
the existence of at least one solution of (1.2) for any A not a Steklov eigenvalue. 
Moreover, all solutions will be uniformly bounded for A in compact intervals far 
from the Steklov eigenvalues (see theorem 2.7). 

( O ) 

(1.4) 
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On the other hand, when the parameter A approaches a Steklov eigenvalue, the 
norm of the operator T\ diverges to oo. This is the first hint of the possibility of 
finding unbounded branches of solutions and reveals the resonant mechanism at 
the boundary that produces such large solutions. For instance, when g = 0, the 
structure of the solutions of the problem (1.2) is well known: if A is not a Steklov 
eigenvalue, the only solution is the trivial solution and if A is a Steklov eigenvalue, 
the whole space of eigenfunctions associated with that eigenvalue are solutions of the 
elliptic problem that can be regarded as unbounded branches of solutions. For the 
ease in which g is sublinear at infinity, we will apply general techniques of bifurcation 
theory (see [9,16,17]) and prove the existence of unbounded branches of solutions 
whenever the parameter A approaches a Steklov eigenvalue of odd multiplicity (see 
theorem 3.3). Moreover, since the first Steklov eigenvalue is simple, we will show the 
existence of unbounded branches of solutions bifurcating from the first eigenvalue. 
The fact tha t the first Steklov eigenfunction docs not change sign will give us extra 
information that will permit us to analyse this branch of solutions in detail. In 
particular, we will show the existence of two branches of solutions: one consisting 
of positive solutions and the other of negative solutions (see theorem 3.4). 

Once the existence of these bifurcation branches has been established, we pay 
at tcntion to the type of bifurcation (i.e. sub- or supercritical) occurring. It is clear 
that a condition on the sublincarity of g is not sufficient to distinguish between 
the types of bifurcation, and to accomplish this we will need to specify the precise 
asymptotics of the function g at infinity. For instance, if we consider tha t the 
function g behaves like a\u\a as u —> +oo, we can easily see that the sign of a, will 
determine whether the bifurcation of positive solutions emanating from the first 
eigenvalue is sub- or supercritical. To do this, if 0 < un —> oc is a solution of (1.2) 
for A„ —¥ <J\, multiplying the equation by the first Steklov eigenfunction <Pi > 0 
and integrating by parts, we obtain 

(<7! - A„) / un<P1d<,= g(Xn,x,un)^id<i. 
Jon Joa 

But, since un > 0 and un —> oc, 

/ M„<Z>! dc > 0, / g{\n,x,un)$1 dc « a / \un\
a$\ dc, 

Jon Jan Jon 

and the sign of o~\ — Xn is the same as tha t of a. Hence, if a > 0, the bifurcation 
of positive solutions will be subcritical and if a < 0, it will be supercritical (see 
theorem 4.3, below, for a more general s tatement) . 

Moreover, we will also see that , typically, when a bifurcation from infinity occurs 
at the first eigenvalue, the branch of equilibria will be stable when the bifurcation is 
subcritical and unstable when the bifurcation is supercritical (sec propositions 7.1 
and 7.3, below). 

Being able to give conditions which characterize when the bifurcation is sub- or 
supercritical will allow us to address two important issues for this problem. 

On the one hand we will be able to give Landesman-Lazer-type conditions, guar
anteeing that the nonlinear resonant problem (that is, when A = o~i for some i) has 
at least a solution (see [15]). For this, imagine that for a value o~i we can determine 
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tha t all possible bifurcations occurring at this value of the parameter are, say, sub-
critical. This implies that , for A e {o~i,<Ji + e), for some e > 0 small, the solutions 
of (1.2) will have to be bounded in certain norms, uniformly for A G (CT,,<7J + e). 
Using elliptic regularity results will allow us to pass to the limit in a weak sense 
as A —> <Tj and show tha t the limit is a solution of the resonant problem (see 
theorem 5.1). 

On the other hand, we will be able to prove anti-maximum principles for the 
problem (1.4). That means, in particular, tha t if b is such that Jdn M>\ > 0, then 
the bifurcation of negative solutions occurring at A = o\ is supercritical and this 
implies that for A E (<r\, ui+e) the unique solution of (1.4) has to be strictly negative 
(see theorem 6.1). These types of result were first proved for elliptic problems of 
the form —AM = Xm(x)u + h(x) with Dirichlet boundary conditions in [8]. 

This paper is organized as follows. In § 2 we formulate the problem and show the 
existence of solutions for all values of A that are different from the Steklov eigenval
ues. To accomplish this, we analyse the linear problem (1.4), stating and proving 
several important regularity results. We then formulate the nonlinear problem (1.2) 
as a fixed-point problem in a certain function space on the boundary. Finally, the 
compactness results obtained through the regularity results and the Schaefer fixed-
point theorem will show the existence of solutions. 

In §3 we apply bifurcation results, mainly from [16,17], to show the existence 
of unbounded branches of solutions bifurcating from the Steklov eigenvalues (see 
theorem 3.3). We pay special attention to the bifurcations emanating from simple 
eigenvalues (see theorem 3.4). 

In § 4 we give conditions on the behaviour of the nonlinearity g for |w| large that 
allow us to determine when sub- or supercritical bifurcations occur. 

In § 5 we apply the conditions from the previous section to obtain Landesman-
Lazer-type conditions for the resonant problem. 

In § 6 we state and prove the anti-maximum principle for (1.4) mentioned above. 
In § 7 we analyse the stability properties of the solutions bifurcating from the 

first eigenvalue. 
Finally, in § 8 we consider several important remarks and extensions. We study 

the conditions to be imposed on the nonlinearity g in order to obtain bifurcations 
from the trivial solution, instead of bifurcations from infinity. We also consider the 
case in which the boundary condition is of the type 

9u . , , ,. . 
— = \m(x)u + g(X,x,u), 

where m is a potential tha t may change sign on dQ. We also consider the one-
dimensional case, tha t is, where the equation (1.2) is posed in J7 = (0,1) C R. 

2. S e t t i n g t h e p r o b l e m 

In this section we rewrite equation (1.2) as a fixed-point problem in appropriate 
function spaces and analyse the existence of solutions for all A £ E except for a 
discrete set. To accomplish this task we will use Schaefer's fixed-point theorem 
(sec [11, p . 502]). 

With respect to the nonlinearity g, we assume the following hypothesis. 
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(HI) g : Rxc*i7xM —> R is a Caratheodory function (i.e. g = g(X, x, s) is measurable 
in x G Q, and continuous with respect to (A, s) G R x R). Moreover, there 
exist h G L'(dQ) with r > N ~ 1 and a continuous functions A : E —» R + , 
[/ : R ^ R + , satisfying 

\g(X,x,s)\ < yl(A)/t(x)?7(s) for all (A, x, s) G R x dQ x R. (2.1) 

Moreover, we assume also the following condition on the function U: 

(H2) lim ^ = 0. 
|s |->oo ,S 

Observe that the sublinearity of g at infinity is given by condition (H2). 
Wi th respect to the linear problem, it is well known (see [1]) tha t the operator A = 

— A + J, with homogeneous Neumann boundary conditions, defines an unbounded 
operator in LP{Q) for all p > 1 with domain D{A) = {u G W2,P{Q); du/dn = 
0 in dQ}. Moreover, the operator A has an associated scale of interpolation-ex
trapolation spaces and, in particular, for each p > 1, we have that A : Wl'p{Q) —» 
W~^'P(Q) is an isomorphism. 

Hence, for any q ^ 1, since we have the embedding Lq(dQ) <—»• W~1,V{Q) con
tinuous for p = qN/{N - 1) and compact if p < qN/(N - 1), for b G Lq(dQ) the 
unique solution of 

- A t ; + v = 0 in 12, 

^ >, A n 

—— = b on o i / , 
on 

is given by v = A~l(b) G W^'^J?) and ||w||wi.p(r2) < C\\b\\Lq{dn). We will set 
Tt)(b) = v and 5o(6) = jTo(b), where 7 is the trace operator. The operator So is 
known as the Neumann-to-Dirichlet operator. Hence, the operator To takes func
tions defined on dQ to functions defined in Q and SQ takes functions defined on 
dQ to functions defined on dQ. 

Our first task will be to show that any weak solution u G Hl(Q) of (1.2) lies in 
Ca(Q). To accomplish this, we will need several regularity results of the associated 
linear problems. As a mat ter of fact, as a consequence of the above and using 
embedding and trace theorems we can easily show the following regularity results. 

L E M M A 2.1. IfN ^ 2 and b G Lq(dQ) with q ^ l , then the solution v = T0b of (2.2) 
satisfies v G W^"{Q) for K p < qN/(N - 1) with \\v\\wi.„{n) < C\\b\\Lq(dn). 

In particular, we have the following conditions. 

(i) Ifl^q<N- 1, then -yv e Lr{dQ) for all 1 < r < q(N - 1)/(N -l-q) and 
the map Sa : Lq(dQ) -> U'(dQ) is continuous for I sC r < q(N-l)/(N-l-q) 
and compact for 1 $J r < q(./V — l ) / (A r — 1 — g). 

(ii) Ifq = N - l , then jv G Z/(d/2) /or all r ^ 1 and the map S0 : £ 9 (9 /2) -> 
Lr(dQ) is continuous and compact for 1 ^ r < 00. 

(iii) If q > N — 1, then v G Ca{Q) with |Mlo<»(r5) ^ C||&llL9(9.r2) / o r sowe a G 
(0,1) . Moreover, yv G C*a(dr2) and the map S0 : Lq(dQ) ->• C"(<9J?) is 
continuous and compact. 

(2.2) 
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As an immediate corollary, we have the following technical result. 

COROLLARY 2.2. 

(i) For any q ^ 1, if b G Lq(dfi), then S0b G Lq+^/N\dQ). 

(ii) Ifb satisfies \b(x)\ ^ h(x)w(x), where h G L'\dQ) with, r > TV — 1, then if wc 
define 

we find that if w G Lp(df2) with 

1 1 1 
TV - 1 p r 

then S0b := yv G U>+8{df2) and \\S0b\\L„+s{df2) sC C\\w\\LHiM2). 

Proof, (i) Observe that iiq ̂  TV—1, then, from the corollary above, yv G Lr(dQ) for 
allr ^ 1. In the case when 1 ̂  q < TV-1, 50& G Z/(9i?) for r < g(TV-l)/(TV-l-r/). 
A simple computation shows that 

iN~1)q
 ? 4 f o r l ^ < T V - l . 

N -1-q " T V 

(ii) Note that hw G L')rI^+'^{8U) and pr/(p + r) ^ 1 because 

1 1 
- + - < 1. 
p r 

Hence, by lemma 2.1, yv G Ls(dQ) with 

-(TV-1)-
p + T TV — 1 — pr/(p + r) 

If we set 

, = - ^ = (1 + 1)". 
p + r \p rj 

then l^y^N — l,p = ry/(r — y) and 

min IJ^-(N-I)-—- l—f r-p\ 
i/(n-iK(i/P)+(i/r)olp + r N~l-pr/{p + r) J 

y(N - 1) rj/ 
= mm i^y^N-i { TV - 1 - y r — y 

However, a simple computation shows that this last minimum is attained at y = 1. 
This concludes the proof of the corollary. • 

These regularity results with a bootstrap argument will allow us to prove the 
following proposition. 

https://doi.org/10.1017/S0308210505000363 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210505000363


Bifurcation and stability of equilibria 231 

P R O P O S I T I O N 2.3. Assume g satisfies (HI) and (H2). Then, for any R > 0, if 
v G Hl(i2) is a solution of (1-2) for some |A| sj R, we have 

\Hc<*{D)^C(l + \\u\\LHdn)) (2.3) 

for some positive a, where C = C(R) and p — 2(7V — 1)/(N — 2). 

Proof. Assume that N ^ 3 (the proof when Â  = 2 is simpler). Observe that the 
boundary condition satisfied by u is 

9'U X ,, s 
•7— = Au + g(A,:r, u) 
on ' ' ' 

and, by hypotheses (HI) , (H2) and assuming that |Aj ^ i?„ we have \g(\,x,u)\ ^ 
C'h(x)(l + \u(x)\) for some constant C = C(R). Hence, 

^ = b(x) with \b(x)\ ^ C(\ + h(x))(l + \u(x)\). 

Note also that 1+he Lr(dQ) for some r > N - l . 
Now, if u G Hl (J?), then yu G Lp(<9f2) with p = 2(N - 1)/(N - 2), which satisfies 

— I — ^ 1 for any r > N — 1. 
p r 

Hence, b G Ls{dQ) with 
1 1 1 
- = - + -. 
s r p 

Thus, if s > N - 1, then lemma 2.1 (iii) implies that u G C"( i?) and 

l!"llc«(fi) ^ c\\h\\L*(dQ) < C ( l + |MIL"(<W))-

On the other hand, if s ^ N — 1, applying the regularity result of corollary 2.2(h), 
we find that yu G Lp+s(dQ) and 

\\u\\L»+Hdn) «-; C ( l + \W\\Lp(dn))- (2.4) 

Repeating this regularity argument k times, we get yu G Lp+ks(d(2). Moreover, 
wo also have 

\\u\\L"+kS(on) ^ C ( l + \\u\\LP+(t.-i)5(dn)) < • • • < C ( l + IMlLf(afi))-

Certainly, since r > N — 1, after a finite number of iterations there exists k such 
that 

1 1 1 1 1 1 
p+{k- 1)5 + r ^ A T - 1 a n p + fc£ + r "̂  AT - 1 ' 

In particular, b G Ls(di7) with 

1 1 1 
- = - + z-=, . s > J V - l . 
s r p + ko 

Hence, again applying lemma 2.1 (iii), we finish the proof. • 
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R E M A R K 2.4. The regularity result of the above proposition tells us that looking 
for solutions of problem (1.2) in Hl{il) is equivalent to looking for solutions in a 
more regular space like Ca(fl). 

We now analyse the operator So (the Neumann-to-Dirichlet operator). We have 
the following result. 

L E M M A 2.5. The operator So : L2(dfl) —> L2(dfl) is a, linear self-adjoint, positive 
and compact operator. If we denote its eigenvalues by {TI]°11 and by o~i = 1/TJ we 
find that, for any A G M, A ^ {ai}^, then the operator S\ : L2(dfl) -> L2(dil) 
defined by S\{g) = jv, where v is the unique solution of 

—Av + v = 0 in il, 1 

dv (2-5) 
77 AV = g on ail, 
on ) 

is self-adjoint, continuous and compact. Moreover, the first eigenvalue o~\ is simple 
and its eigenfunction <fr\ can be chosen to be strictly positive. Also, if r > N — 1 
then, S\ : L'\dil) —» C°(dfl) is continuous and compact and, for any compact set 
K C R \ {o" i}^ 1 ; the norm of S\ : L'\dfl) —> C°(dil) is uniformly bounded for 
A G K. Also, \\S\\\ —> oo as A —> Oi for some i. 

Proof. Observe that if b\, hi G L2(dfl) and if v\, v<2 are the solutions of —Avi + v.,, = 
0 in fl, dvi/dn = bi, i = 1, 2, then by the weak formulation of this problem we have 

{S0(bi),b2)L2(dn) = / VwiV'y 2 + / vxv2 = (h, So{b2))L^(i)n)- (2-6) 

From (2.6) it follows that So is self-adjoint and positive. The fact that 5*o is 
compact follows from lemma 2.1, and the fact tha t the first eigenfunction can be 
chosen to be non-negative follows easily from the Rayleigh quotient for the first 
eigenvalue. Then, maximum principles imply tha t the first eigenfunction is actually 
strictly positive. In turn, this implies tha t the first eigenvalue is simple. 

The rest of the proof follows merely by realizing that S\ = (I — ASo) - 1 ° So and 
applying the regularity results of corollary 2.2. • 

It is now clear tha t we can set a fixed-point problem to obtain the solutions 
of (1.2). As a mat ter of fact, u G H1(fl) is a solution of (1.2) if and only if its trace 
v = 7« is a fixed point of 

v = Sx(g(X,;v)) (=(I-XSo)-'oSo(g(\,;v))). (2.7) 

Note also that , once v is obtained, we recover u by solving —AM + u = 0 in il 
with u = v on the boundary. 

Concerning the fixed-point problem (2.7), we have the following lemma. 

L E M M A 2.6. Under hypotheses (HI) and (H2), the map C°{dfl) 3 v ->• g{X, -,v) G 
Lr(dfl) is well defined and continuous. Moreover, for each M > 0, e > 0, there, 
exists a constant C = C(e, M) such that 

\\g{\-,v)\\Lr(dn) sC e |H|Co( 9 J 7) + C (2.8) 

for alive C°(dil), |A| ^ M. 
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In particular, the map C°(d(2) 3 v —¥ S\(g(X,-,v)) E C°(df2) is continuous and 
compact for all A 6 R \ {o^}?^ . 

Proof, ft follows from the bounds of g given by (Hf) that this map is well defined. 
The continuity follows from the continuity of g with respect to the last variable, the 
bounds of g given by (HI) and the dominated convergence theorem. Statement (2.8) 
follows from the fact that , for each e > 0, wc have the inequality |C/(s)| < es + C, 
for some constant C = C(e), and the fact that the function /1(A) is continuous. 

The last part of the lemma follows easily. • 

We are now in a position where we can show the existence of solutions of our 
original problem (1.2) for all A € R \ {o'i}°Z1. Wc have the following theorem. 

T H E O R E M 2.7. If g satisfies (HI) and (H2), then, for all A e M \ { c r i } ^ 1 there 
exists at least one solution of problem (1-2). Moreover, for each compact set K C 
R \ {ui}°ll, we have the existence of a constant C = C{K) such that any solution 
of problem, (1-2) is bounded in C°(Q) by C. 

Proof. Consider the compact set A ' C l \ {^i}^\ and observe that by lemma 2.5 
we have that there exists a constant C\ = C\(K) such that the norm of S\ : 
L'\dQ) -» C°(J7) is bounded by C\ for all XeK. 

We will apply Schaefer fixed-point argument to (2.7) (see [11]). For this we con
sider 9 £ [0,1] and let v be a fixed point of 

v = 6Sx(g(X,;v)) (2.9) 

for some XeK. Then |M|c<>(afi) < Ci\\g(^r,v\\L'-(dn))- But; bY (2-8), we get 

I M I c o « ) < Ci(e\\v\\CO{an)+C{e,K)). 

Choosing e to be small enough tha t 1 — C\t > | , we get ||w||c°(9J7) ^ 2C-[C(e,K). 
Noticing that by lemma 2.6 we have that v —>• S\(g(X, •,«)) is compact in C°{dfi) 
when A ^ {o'j}°Z] and applying the Schaefer fixed-point argument, we prove the 
proposition. • 

3. U n b o u n d e d branches of equi l ibria 

From the results of the previous section it is clear that , when the value of the 
parameter A is bounded away from the Steklov eigenvalues, the solutions of (1.2) 
are bounded uniformly in A. On the other hand, since the norm of the operator S\ 
blows up to infinity when A approaches a Steklov eigenvalue (see lemma 2.5), it is 
natural to expect the existence of branches of solutions that diverge to infinity in 
certain norms when the parameter approaches a Steklov eigenvalue. For instance, if 
we consider the case in which g = 0, then, for any A 0 {<Tj}^.1, the unique solution 
is u = 0, while for A = a-t we find tha t the whole finite-dimensional subspace given 
by the eigenfunctions associated with Cj is a solution. This subspace constitutes an 
unbounded branch of solutions. 

Let us start by analysing the behaviour of the solutions when we know explicitly 
that the solution blows up in a certain norm. 
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P R O P O S I T I O N 3.1. Assume that {\n)^=i ? s a convergent sequence of real numbers 
for which there exist solutions un of (1.2) with \\un\\^aaidQ\ —>• oo as n —> oo. Then 
necessarily A„ —> cr.; for certain i G N and, for any subsequence of un. there exists 
another subsequence, which we denote by uni, and an cigenfunction <Pi associated 
with Oi with \\&i\\L°°(dn) = 1 such that 

Un' $t inC<\Q) 
\\Un'\\L^(dSi) 

for some B > 0. 

Proof. Applying the Holder estimate given by (2.3), we find that if 

IKII L^(dil) 

we obtain ||vn||c"(j7) ^ C> f° r some C independent of n. Using the compact embed
ding Ca{Q) ^Cfi{D) for 0 < fi < a, we find that , for any subsequence of vn, there 
exists another subsubsequence, vn', and a function <P s C ' ( / } ) such that vn> —*• <P 
in C^{Q). Therefore, since | | t v ||,L°°(aj?) = 1 we find that | |<£ | |L^(3J7) = 1 an<-l- m 

particular, tha t <1> is not identically zero. 
The equation satisfied by vri/ is 

-Avn> + vni = 0 

dn 
— Xni'Uni + 

g(X,x,un>) 

\\un' L°=(af2) 

in Q, 

on df2. 

Passing to the limit in the weak formulation of this equation, taking into account 
the facts that 

g(A, X,Un') . rr/nrt\ I 
> 0 in L (aU) as n —>• oo 

\\'Uri\\L°°(dS2) 

and vni —> <P, we find that <P is a solution of 

-A<P + <£ = 0 in Q, 

d<P 
—- = a<?> on dfl, 
on 

where a = lim„'_>oo Xni. Since H ^ L ^ a i ? ) — 1; necessarily a is a Steklov eigenvalue 
and <P is a Steklov cigenfunction associated with a. This proves the proposition. • • 

We immediately have the following corollary. 

C O R O L L A R Y 3.2. With the same hypotheses as in proposition 3.1, 

(i) the whole sequence satisfi.es \\u„\\ip(dfi) —> oo for any 1 ^ p ^ oo, 

(ii) if un ^ 0 for all n, then necessarily A„ —> a\ and the whole sequence satisfies 

i i - ^ ->*! mCl\Q). 
\\un\\L<~(dn) 
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Proof (i) Since Lp{dfl) ^ Ll{dn), it will be sufficient to show the result for 
p = 1. If this is not the case, then there will exist a subsequence u„ bounded in 
Ll(dfi). We can obtain from proposition 3.1 another subsequence u,,/ satisfying 
u.n'/\\url>\\Loa(j)n) —» <Pj a n d , in p a r t i c u l a r , 

hn'Wmdn) ,, ,, 
\\Un'\\L^{di'l) 

This implies that ll ' ivlU^ai?) ~* °° ; which is a contradiction. 

(ii) From proposition 3.1, any possible convergent subsequence of un / \\un\\ f° (dfi) 
has to converge to a Steklov eigenfunction <Pi with ||^i||L"°(a«) = 1- Since in this 
case «,„ ^ 0, we find that <Pj > 0. But o~\ is the unique Steklov eigenvalue with a 
non-negative eigenfunction <P-j (see lemma 2.5). • 

We will now show that any Steklov eigenvalue a of odd multiplicity is a bifurcation 
point from infinity, tha t is, there exists a sequence A„ with A.„ —> a and a sequence 
of solutions un of (1.2) for the value A„ such that ||Mr(||L°"(j?) ~~*• °°-

Before stating the result, consider the following notation. We will consider the 
solutions of (1.2) in R x C(J7), where the first coordinate is the value of A and the 
second is the function u, which is a solution of (1.2) for this value of A. In this 
sense, we will denote the set of solutions by S. Recall also that we have denoted 
the Steklov eigenvalues (eigenvalues of problem (1.3)) by {<Ji}fZi-

We have the following result. 

T H E O R E M 3.3. Consider problem (1.2) and assume that the nonlinearity g satisfies 
conditions (HI) and (H2). If a is a Steklov eigenvalue of odd multiplicity, then the 
set of solutions of (1.2), denoted by S, possesses an unbounded component T> which 
meets (a, oo) e R x C{Q). 

Moreover, if [A_, A+] C M is an interval such that [A_, A+] fl {cr?}^i1 = {a} and 

M = [A_,A+] x {u 6 C(f2) : |M|o(J7) ^ !}> taen either 

(i) V\M is bounded in M x C(ft) in which case V\M meets the set {(A,0),: 
A £ R} at (A(,,0) such that g(Xa, -,0) = 0, or 

(ii) V\M is unbounded in K x C(Q). 

If V\j\A is unbounded, and it has a bounded projection on R, then V \ M meets 
[a. oo) e l x C(fi), with a ^ a G {o~i}°Z^. i.e. V \ M meets another bifurcation 
point from infinity. 

Proof. Observe first that the fixed-point problem (2.7) can be recast as 

v = XS0v + S0(g(X,;v)), (3.1) 

where So is the Ncumann-to-Dirichlet operator (see lemma 2.5). 
We apply now the general techniques from [17] to the fixed-point problem (3.1) 

in the space C'(dil). Thus, we have to prove that 

(a) So(g(X, •, v)) = o(||v|J) at v = oo uniformly for A in bounded intervals, and 

(b) the map (\,v) —> ||?;||2So(.g(A, •, u / |M | 2 ) ) is compact for A in bounded inter
vals, 

where for simplicity we denote by ||v|| := |H|c(df2)-
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(a) For any v 6 C{dfi) we see from (HI) that g(\, •, v) G 17{dfl). Therefore, 

||So(g(A,-,t;))|l ^c\\9(\,;v)\Ww» <CL , Ce \ ( 3 2 ) 

IMI IMI V ML 
where we have used lemma 2.1 for the first inequality and lemma 2.6 for the second 
one. From (3.2) we easily obtain (a). 

(b) We must verify that H :Rx C{dtt) -> C(df2) defined by 

H(\,v):=\\v\\'S0\g\\,x 

is compact. Note first that the image of {(A, v) G [A, A] x C{dC2) : 5 < ||u||c(9i?) ^ P\ 
under H is relatively compact for any A < A and 0 < 6 ^ p < oo. This follows from 
the boundedness of g and the compactness of So- Thus, we need only to prove that 
the image of [A, A] x B$ under H is relatively compact in C(dQ) for some 5 > 0 
small enough, where B$ := {v G C{dQ) : \\v\\ < 5}. Let us choose v G B$, and 
define w = w/||u[|2, which satisfies ||wj| ^ 1/5. 

From (2.8) with e = 1, we get 

\\g(X,-,w)\\Lr{dn) 

\\w\\ 

with C = C(X, \\h\\Lr{aii),5). Therefore, 

|2 
v A . , ^ ^ C\\v\\ < CS. (3.4) 

L'(dO) 

Now, the compactness of SQ : Lr(dfi) —> C(dQ) given by lemma 2.1 ends the 
proof. • 

We now analyse the case where the eigenvalue a is simple, and in particular the 
case of the first eigenvalue. We have the following theorem. 

THEOREM 3.4. Let a denote a simple Steklov eigenvalue and <P a corresponding 
eigenfunction. Assume g satisfies hypotheses (HI) and (H2). Then the set of solu
tions of (1.2) possesses two unbounded components T>+ and T>~ which meet (a, oo) G 
M x C(Q), satisfying the following conditions. 

(i) There exists a neighbourhood 0\ of (cr, oo) such that (A,i>) G V+ C\(D\, and 
(A, v) ^ (cr, oo) implies that 

v = a<P + w where a > 0 with \\w\\L°°(d{i) = ° (M) °^ VA ~ °°-

(ii) There exists a neighbourhood O2 of (cr, 00) such that (A,?;) G T>~ n 02, and 
(A, v) 7̂  (a, 00) implies that 

v = —a<l> + w where a > 0 with \\w\\L°°(dn) = °(\a\) a* lal = °°-

Proof. See [17, corollary 1.8] for the proof. • 

Note, in particular, that if a = o\, since the first eigenfunction can be chosen pos
itive, this result implies the existence of branches of positive and negative solutions 
bifurcating from infinity. 
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4. Sufficient conditions for subcritical and supercritical bifurcations 
from infinity 

In this section we give conditions on the nonlinearity g that allows us to characterize 
the different bifurcations that occur. Obviously, the type of bifurcation (sub- or 
supercritical) occurring at a bifurcation point will be dictated by the behaviour of 
the nonlinearity g for large values of s. For instance, assume that we have a sequence 
of solutions un for the value of the parameter A„ and assume that An —> o\, the 
first Steklov eigenvalue. From proposition 3.1 we find that the functions 

ll'«n[|i~(afi) 

possibly after taking a subsequence, converge in L°°(df2) to <P\ or —#i, where <Z>i 
is the unique positive eigenfunction of o\ with L°° (c*J?)-norm 1. 

As an example, let us consider the case where vn —> $i and assume, for instance, 
that the function g(X, x, s) behaves for s —» +oo and A —> o\ as 

g(X,x,s)^G(x)sa. 

Then, considering equation (1.2) with A = A„, multiplying it by <E>i, integrating 
by parts and using the fact that <Pi is an eigenfunction, wc get 

(o-i - A„) / un$i = g(\n,x,un)$i. 
Jon Jan 

Hence, since un —> +oo uniformly in dfi and using the asymptotic expression 
of g, we can easily see that the sign of o\ — A„ is dictated, for n large enough, by 
the sign of 

G{x)$\+a. 
on 

In particular, if this latter integral is positive, the bifurcation is subcritical and 
if it is negative, the bifurcation is supercritical. 

With this in mind, we define the following functions, which describe the behaviour 
of g for large values of s, at a given a. Define, for some a, the following functions: 

(j+{x) := hmint , &+{x) := hmsup 
(A..s)->(CT,+oo) Sa ( A , S ) ^ ( , T , + OO) S" 

n ( \ v • ( 9{\x,s) —_ g{\x,s) 
G_(.c) := hmint —r—; , G_(x) := hmsup —r— 

( A , S ) ^ ( a , - o o ) \S\a ( A . S ) - > ( < T , - O O ) | s | " 

(4.1) 

REMARK 4.1. (i) Observe that in fact G depends on a and a. If we need to stress 
this dependence, we will write G°^° (x), G°^'J{x), G'l'a(x) and Ga:'T(x). 

(ii) Observe that if g satisfies (H2) and a ^ 1, then all the functions defined above 
arc identically zero. 

(iii) The way in which the functions defined in (4.1) describe the behaviour of the 
function g for large values of s can be expressed in the following way: for any e > 0 
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small enough, we have 

(G±(x)-e)sa < g(X,x,s) sC (G^(x) + e)s'\ s -> +00, A « a, 

and similarly as s —> — 00. 

In order to establish conditions for sub- or supercritical bifurcations at the first 
eigenvalue, we prove first the following important result. 

L E M M A 4.2. Assume that the nonlinearity g satisfi.es hypotheses (HI) and (H2). 
Denote by o~\ the first Steklov eigenvalue and by <P^ the first positive eigenfunction 
with | |^i ||L~(C*I?) = 1- Consider a sequence of solutions u,„ for the value of the 
parameter Xn such that Xn —> <j\ and, ||Mn|U=°(afi) ~~* 00. Then 

(i) if un > 0, we have 

SanG±*l+a u + « 

Jon ^1 

/ r • r 0~l~Xn Oi-Xn j.)QG+$-[ 

< limmf ^—; ^ l imsup ^—, < - ~ ^ — ^ ; (4.2) 
n->°o u 

ia-1 
ion * i '" '"" irj'niiL"o(ai7) 

(ii) if un < 0, we have 

n —>oc M ™llL^o(0fi) /0«*? 

r <?? 
Jon 1 

™^°° MT; 
i a - 1 
L~(3f2 ) 

^ l imsup 
o-i - Xn „ - J0Q G-<Pt 

>oo \\U 
lev—1 € 

(4.3) 

Proof. Let us show (i) (proof of the other case follows similarly). Consider a family 
of solutions it„ of (1.2) for A = A„ with Xn ~> ay and 0 < un —> CXD. Multiplying 
equation (1.2) by <Pi and integrating by parts, we get 

(a 1 - Xn) I un$i 
Jon 

g(Xn,x,un)$i. (4.4) 
an 

However. 

g{Xn,X, M„)<?1 = \\un\\1°°mn) 

on Jon 

But, from Fatou's lemma, 

/ g{Xn,x,un) 

g(Xn,x,un) 

\Un\\L^(0S2) 
$L-

lim inf 
on 

Ss / lim inf 
Ion n^°° 

I II ' * i 
\Un\\L™(0n) 

g(Xn,x,un) 

r«nlU~(ar2) 
<2>i 

1+a (4.5) 

where we have used the definition of G + ( x ) , the facts that <J?i > 0 for all :r on <9J? 
and that 

— ^ = ^ 
| | U T I | | L ° ° ( 0 J 7 ) 

uniformly in dQ (sec corollary 3.2). 
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Dividing by ||wri||L^(3f2) m (4-4) and passing to the limit wc obtain the first 
inequality of (4.2). The second inequality is trivial and the third is obtained in a 
similar manner to the first. • 

Now, with respect to bifurcations from the first eigenvalue wc can prove, 

T H E O R E M 4.3 (bifurcation from the first eigenvalue). Assume that the nonlinear-
ity g satisfies hypotheses (HI) and (H2). Denote by o~i the first Steklov eigenvalue 
and by <!•} the first positive eigenfunction with H^illx^ar?) = 1-

(i) (Subcritical bifurcations.) Assume that there exists an a < 1 such that G+ = 

G+f f l £ Ll(dQ) (respectively, GZ = G"'ai G Ll{df2)). Then, if 

[ G+$\+a > 0 (respectively, f G~$\+a < 0 ) , (4.6) 
Jon V Jon J 

the bifurcation from, infinity of positive (respectively, negative) solutions at 
A = ai is subcritical, i.e. A < u\ for every positive (respectively, negative) 
solution (\,v) of (1.2) with (A, ||u||) in a neighbourhood of (ai,oo). 

(ii) (Supercritical bifurcations.) Assume there exists an a < 1 such that G+ = 

Gf^ e Ll{dtt) (respectively G_ = G^1 e L1 (8(2)). Then, if 

[ G^$\+a<0 (respectively, [ G-$\+a > 0 ) , (4.7) 
Jon V Jan ) 

the bifurcation from infinity of positive (respectively, negative) solutions at 
A = <7i is supercritical, i.e. A > G\ for every positive (respectively, negative) 
solution (A,?;) of (1.2) with (A, \\v\\) in a, neighbourhood o/(o"i,oo). 

Proof The proof of this theorem follows directly from lemma 4.2. Observe that 
conditions (4.6) and (4.7) impose a definite sign on o\ — \ n in (4.2) and (4.3). • 

As an example of this result we have the following corollary. 

CO ROLLARY 4.4. 

(i) Assume the nonlinearity satisfies g(X,x,s) ~ a\s\a as s —> +oo for some 
a < 1. Then, if a > 0, all bifurcations of positive solutions are subcritical, 
while if a < 0, all bifurcations of positive solutions are supercritical. 

(ii) Assume the nonlinearity satisfies g(X,x,s) ss a|,s|Q as s —> —oo for some 
a < 1. Then, if a, > 0, all bifurcations of negative solutions are supercritical, 
while if a > 0, all bifurcations of negative solutions are subcritical. 

We consider now the general case, tha t is, un are solutions of (1.2) for a sequence 
An with A„ —> a and ||wn||L°°(ai7) ~^ °°- Then, from proposition 3.1, we find that A 
is an eigenvalue and, up to a subsequence, un/\\un\\Loo^QQ^ —>• <P uniformly for some 
eigenfunction <P associated with the eigenvalue a and with ||$||L°°(0ft) = 1. 

We have the following theorem. 
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THEOREM 4.5 (bifurcation from a general eigenvalue). Assume that the nonlinear-
ity g satisfies (HI) and (H2). Let a be a Steklov eigenvalue for whieh a bifurcation 
from infinity of (1.2) occurs at X = a. 

(i) (Subcritical bifurcation.) Assume that, for some - 1 ^ a < 1 and for this 
value of a, we have G+(x),G-(x) £ Ll(dQ). Then, if for any eigenfunction 
<P associated with the eigenvalue a, we have 

G+{x)\$+\l+a > / G~I{x)\$-\1+a, (4.8) 
oo Jon 

then the bifurcation from infinity of solutions at A = a is subcritical, i.e. X < a 
for every solution (X,v) of (1.2) with (A, J|v||) in a neighbourhood of (a\ oo). 

(ii) (Supercritical bifurcation.) Assume that, for some — 1 ^ a < 1 and for this 
value of a, we have G+(x),G-(x) £ L1(dQ). Then, if for any eigenfunction 
<P associated with the eigenvalue a we have 

G^{x)\<P+\1+a < f G^_(x)\<p-\1+a, (4.9) 

then the bifurcation from, infinity of solutions at X = a is supercritical, i.e. X > 
a for every solution (A,t>) of (1.2) with (A, \\v\\) in a neighbourhood of (a, oo) 

Proof. We will show the first case. The supercritical case is proved in a similar way. 
As in the proof of theorem 4.3, we need to study the sign of 

g(Xn,x,u„)<P. 
Of! 

But, if we set 8Q+ = {x £ dQ : $(x) > 0} and dQ~ = {x £ dQ : <P{x) < 0}, wc 
have 

g(X,x,u)<P = / g(X,x,u)<3>+ - / g(X,x,u)\<l>~\ 
an Joa+" Jon-

g(X,x,u) ^+f 1 , \u\ 
\\U\\Q a v " ' ' ' <p+ -^— + 

g(X,x,u) / l W Q) 

/an-(l + H)" VIMI HI 
Observe that, for any a ^ — 1, 

^(TTK + P^) ^ l ^ + l 1 - " in C(dQ+) a a n - > o o . (4.11) 
VIMI \\un\\J 

Now, passing to the limit in (4.10), using (4.11), hypothesis (4.8) and the Fatou 
lemma we conclude the proof. • 

5. The resonant case 

We are now concerned with the resonant problem, that is, 

—AM + u = 0 in Q, 

du } (5-1) 
7— = au + g(x, u) on dQ, 
on 
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where c is a Steklov eigenvalue of (1.3). We are interested in giving conditions 
guaranteeing the existence of solutions in this case. As a mat ter of fact, we will see 
that if all possible bifurcations of the problem 

- A M + M = 0 in J?, "| 

du , / ^ « o \ ( 5 ' 2 ) 

—- = AM + g(x, u) on oil, 
on J 

with A G 1 , A w a are either subcritical or supercritical, then the resonant problem 
necessarily has at least one solution. 

T H E O R E M 5.1. Assume that every possible bifurcation from infinity at A = a of 
problem (5.2) is subcritical, that is, condition (4-8) holds, or every possible bifurca
tion from, infinity at X = a of problem (5.2) is supercritical, that is, condition (4-9) 
holds. Then the resonant problem (5.1) has at least one solution. 

R E M A R K 5.2. Conditions (4.8) and (4.9) are known as Landesman-Lazer-type con
ditions. 

Proof. Observe first that , from theorem 2.7, for e > 0 sufficiently small, we find that 
problem (5.2) has at least one solution for all A £ (er — e,a + e)\{a}. If, for instance, 
we assume that all possible bifurcations occurring at A = a are subcritical, then 
necessarily there exists a constant M such that for any A £ (a, a + e) all possible 
solutions of (5.2) satisfy ||ii||L°°(9ft) ^ M. This allows us to take a sequence of 
A„ —> a and solutions un of (5.2) with ||Mn|jL°°(aj?) ^ M. Using the compactness 
given by elliptic regularity results applied to (5.2) and passing to the limit, we 
obtain a solution of (5.1). • 

6. T h e a n t i - m a x i m u m principle for t h e S tek lov p r o b l e m 

Let us consider the non-homogeneous linear Steklov problem (6.1) 

- A M + M = 0 in fl, ~\ 

— = AM + g(x) on oil, 
on ) 

and show an anti-maximum principle for this problem; see [2,8] for the case where 
the nonlinear term is in fl. As usual, we denote by <TI the first Steklov eigenvalue 
and by <Pi its positive eigenfunction. 

T H E O R E M 6.1. For every g g Lr(dfl) with r > N — 1, there exists e = e(g) such 
that 

(i) if JQQ9'&I > 0, then every solution (A,M) of (6.1) satisfies the following: 

(a) M > 0 if o~\ — e < A < 0\, 

(b) u < 0 if ai < A < a1 + e, 

(ii) if fj)Q9&\ = 0, then every solution (A,M) of (6.1) with A ^ o~\ changes sign 
on dfl and consequently in il. 
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Proof. Assume that fgn g<Pi > 0. The Fredholm alternative states that the linear 
problem (6.1) does not have solution if A = o\ and has a unique solution if A ^ 
o~{S). Moreover, from theorem 3.3, A = <T\ is a bifurcation point from infinity, and, 
from theorem 4.3, the bifurcation from infinity of positive solutions is subcritical, 
i.e. there exists an (. = e(g) such that, for all (X,u) solving (6.1) with A —> <7i, 
J|M|| « oo and u > 0, we have o\ — e < A < o\. 

Moreover, by theorem 4.3, the bifurcation from infinity of negative solutions is 
supercritical, i.e. there exists an e = e(g) such that, for all (X,u) solving (6.1) with 
A —» <J\, \\u\\ « oo and u < 0, we have o\ < A < o\ + e. 

Assume now that J9n 9^i = ^- Multiplying equation (6.1) with A ^ <TI, by <Pi 
and integrating by parts, we obtain that Jdsi u<P\ = 0. Since <Pi > 0, u has to change 
sign in dQ and the proof is concluded. • 

7. Stability analysis 

We analyse in this section the stability properties of the branches of solutions of (1.2) 
found in the previous section. We will regard these solutions as equilibrium points 
of the following parabolic evolutionary problem with nonlinear boundary condition: 

(7.1) 

\u + u 
du 
dn 

M(0, X) 

= 0 

= \u +, 

= u0(x) 

?(A, X u) 

in 

on 

in 

J?, ' 

dQ, 

Q. , 

and will analyse their stability in relation to this problem. 
We will also assume that the nonlinearity g, in addition to satisfying condi

tions (HI) and (H2), satisfies a locally Lipschitz condition in the variable u. By 
assuming this, we guarantee that for a given initial condition u^ G C(Q) there 
exists a unique solution u s C([0, T],C(Q)) of problem (7.1) and that the solutions 
depend continuously on the initial data (see, for example, [4]). 

From condition (H2) we easily find that 

g(X,x,u)u < e\h{x)\u2 + De\h(x)\ \u\ 

on bounded intervals of A. 
Hence, comparison arguments (see, for example, [5]) show that |M(£ , I ) | ^ U(t..x), 

where u is the solution of (7.1) and U is the solution of the following linear problem: 

Ut-AU + U = 0 in Q 

dU 
(X + e\h(x)\)U + D£\h(x)\ on dQ, 

on 
(7.2) 

U(0,x) = \u0(x)\ hiQ. 

With this comparison we obtain the following information. 

(1) Since problem (7.2) is linear and h £ Lr(dQ) with r > N — 1, wc find that the 
solutions of (7.2) are in C(Q) and they are globally defined in time. This gives us 
estimates on the solution u{t,x) of (7.1), which in turn imply that the solutions 
of (7.1) are global in time. Hence, for each UQ £ C(Q) we have a unique solution 
ueC([0,oo) ,C(ft)) . 
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(2) If we consider a fixed A < G\, then, for z sufficiently small, we have the existence 
of a unique solution ipe £ C(D) of the following elliptic problem: 

-Aip + ip = 0 in Q, \ 

dv \ (7-3) 
- ^ = (\ + e\h{x)\)v + DE\h(x)\ o n d n j 

To sec this, we apply the Lax Milgrain theorem to the following bilinear form in 
HX{Q): 

aE(u, v) = / (ViiVu + TO) - / (A + e\h(x)\)uv. 
J a Jan 

Observe that since A < <TI, the bilinear form above with e = 0 is coercive. Now 
since, h £ Lr{dQ) and r > N — 1, for e sufficiently small we can show, via Sobolev 
enibeddings and trace theorems, tha t ae is also coercive and we obtain the existence 
and uniqueness of a weak solution. Using regularity results we get that the solution 
v?£ £ C(f2), since r > N - 1. 

(3) Now, the solution U of (7.2) is given by U(t,x) — z{t,x) + <pe{x), where z(t,x) 
is the solution of 

zt — Az + z = 0 in J?, 

^ = (\ + £\h(x)\)z o n 9 f i , } (7.4) 
on 

z(0,x) = \u0(x)\ ~ip£ in (2. 

But the coercitivity of the bilinear form ae and the smoothing properties of the 
solutions of (7.4) imply tha t 

N i . O l l c w ^ ^ c - ^ H K I - y l l c c n ) 

for some Me,^e > 0. Hence, the solution u of (7.1) satisfies 

M M I I c ( « ) < ll^(t,-)llc(«) < M ^ - ^ ' l H u o l - ¥>||C(«) + l l^ l l c (n) (7-5) 

and also 

l imsup \u(t, x)\ ^ '+>e(x) a»e. x £ Q. (7-6) 

Estimate (7.5) implies that for A < o~\ the evolution of any initial condition 
for (7.1) is contained in a bounded set. Hence, this problem has an at t ractor (see 
[12]). Moreover, all the globally defined and bounded solutions are contained in the 
attractor. In particular, all the equilibria, connections between equilibria, etc., are 
contained in the at tractor. Est imate (7.6) tells us that any point in the at tractor is 
bounded pointwisc by <pe. In particular, all equilibria are bounded by ip£. 

With respect to the stability of the equilibria bifurcating from infinity at the first 
eigenvalue o~\, when we have a subcritical bifurcation, we have the following. 

P R O P O S I T I O N 7.1. Assume the conditions of theorem 4-3 hold. We then have the 
following. 
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(i) If the bifurcation of positive solutions (respectively, negative solutions) at the 
first eigenvalue A = <j\ is subcritical, then there exists a S > 0 sufficiently 
small that, for o\ — 5 < A < o~\, the largest positive (respectively, smallest 
negative) solution bifurcating from infinity is globally asymptotically stable 
from above (respectively, from below). That is, if u\ > 0 (respectively, u\ < 
0) is this solution then, for every initial condition WQ > u\ (respectively, 
wo < u\), the solution u(t,x,wo) of (7.1) with this initial condition satisfies 
Muit^oo u(t, x, Wo) = u\ uniformly in x € fl, for o\ — S < A < o~\. 

(ii) If in (4-1) we have G+ > e (respectively, G_ ^ — e) for some e > 0, then the 
bifurcation of positive (respectively, negative) solutions at A = a\ is subcritical. 
Moreover, there exists a (3Q > 0 large enough such that if u\ is the smallest 
positive (respectively, largest negative) solution satisfying u\ ^ [j0 (respec
tively, u\ ^ —0o), then there exists a S > 0 such that the equilibrium u\ is 
asymptotically stable from below (respectively, above) for 0\ — S < A < o~i. 

In particular, if for some A in this range we have a unique positive (respec
tively, negative) equilibrium, that is, u\ = u\, then this equilibrium is asymp
totically stable. 

Proof. In order to prove this result we analyse the solution of (7.1) with ini
tial condition UQ = /3<PI, for (3 e K, where <P\ is the positive eigeiifunction with 
| | ^ I | |L~(9J7) = 1 associated with the first Steklov eigenvalue. Hence, if we denote 
this solution by u(t), multiplying the equation (7.1) by a positive test function 
X G C°°(M.N) and integrating by parts, we obtain 

^ f u(t)X = - / (Vw(t)Vx + u{t)X) + I \u(t)X + g(\ ; u(t))X. atJn Jo Jan 

Evaluating this expression at t = 0, we get 

4 / u(t)x\t=o = -P f (V*iVx + #ix) + I XfiZiX + ff(A, •, /*£] )x d t Jn Jn Jon 

and taking into account the fact that <I>i is the first Steklov eigeiifunction, we get 

(V<Z>iVx + <2>ix) = (Ti / <Z>ix, 
n Jon 

g{\,-,f3$l)\ A ~°" i + ^ }f3<f>iX- (7-7) 

which implies that 

dtjn
u{t)x

t=0 jony - (3$, 

This is the basic equality with which we prove the result. 

(i) Consider the case where we have a family of positive solutions, bifurcating from 
infinity and the bifurcation is subcritical. For fixed A, denote by u\ the 
positive solution. 

We know from proposition 3.1 and corollary 3.2 that 

> <Pi. 
I I M A I L = O ( ^ ) 
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-S < A — o\ < 0, let fix be sufficiently large that fix@i > u\ 

fix$i(x) 
< | | A •CTi 

This can be accomplished by condition (H2) and using mfX£dn'&i{x) > 0. Hence, 
for fi ^ fix and x > 0, we get 

d 

d~t 
u{t)x < 

t=o on 
( A - f x 1 ) / 3 0 l X < O . (7.8) 

Since x > 0 is arbitrary, this implies that the solution starting at fi<P\ for fi ^ /3A 
is initially decreasing, that is, there exists a small to such that u(t, x, fi^i) ^ /3$i for 
0 < t < to- Since the flow generated by (7.1) is monotone, then we easily find tha t 
u.(t,x,(34>-[) < u(s,x,f3<Pi) ^ fi$\ for all 0 < ,s ^ t. Moreover, since we have chosen 
fix&i > u\ and ux is an equilibrium, we get u\ ^ u(t:x, (3<Pi) < fi<Pi for all t > 0. 
Now, since the solution u(t, x, fi<P\) is monotone decreasing in time and bounded 
below, and u\ is the largest positive equilibrium solution, then, for each fi > fix 
necessarily u{t,x, (}<&{) —> Ux as t —> oo uniformly in x G Q. 

Hence, for any initial condition WQ S C{£2) with WQ > u\, if we consider fi > fix 
such that u\ ^ WQ Sj fi<P\, by monotonicity of the flow we get 

ux ^ l imsupu( t , •, WQ) ^ hm u(t,-,fi<Pi) MA, 

which proves the result. 

(ii) If G+ ^ e for some e > 0, then, we know from theorem 4.3 that the bifurcation 
of positive solutions is subcritical. 

Choose a fio > 0 sufficiently large and S > 0 sufficiently small that , from (4.1), 
we get 

0~\ — S < A < CTi, X £ 3Q. 
g{\,x,Pv$i(x)) i 

(fi0<p!(x))« " **' 

This implies that , for this fio fixed, we have 

g(\,x,fia$,{x)) 

fio@i{x) 
> 

where 

2(A)*i(a;)) 

inf 

1 - c * 

2(p0$i(x))1-

> e, (Ti — J < A < <TI, a; £ 917, 

i e 9 « 

Assuming that <5 ^ \e (if this is not the case, we choose S = \e) from (7.7) with 
initial condition fio<Pi we get 

d 

dt 
u(t)x >¥ fiohx > 0, (7.9) 

on 

which implies, as in (i), that the solution starting at fio^i is non-decreasing. Now, 
with similar monotonicity arguments to those in (i) we prove that the solution 
of (7.1) with initial condition Wo and /3o^i ^ WQ ^ «A has to converge to ii\. 

The case G_ < — e is the same. • 
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R E M A R K 7.2. A condition which guarantees that , for a fixed A, there exists a unique 
sufficiently large positive (respectively, negative) solution is to assume that the 
function s —S- g(X,x,s)/s is strictly monotone for s > 0 (respectively, ,s < 0) large 
enough and a.e. x € dli. To see this, assume that u\ and u\ are two positive1 

solutions with u\(x), u\{x) ^ (5 and such that s —» g(X, x, s)/s is strictly monotone 
for s ̂  3. Observe that without loss of generality we can assume that u,\ < u\. 
Then, u\ is the solution of 

—Au\ + u\ = 0 in fi, 

du>~ A , g{X,x,ux)\ 
-rr~ = [ X-\ u\ on Oil, 
on \ ux J 

tha t is MA is an eigenfunction associated with the eigenvalue (i = 0, of the following 
eigenvalue problem: 

—A</> + 4> = (i(f) in 12, ^ 

^.f^aH^iy „»„, < 7 - 1 0 ' 
On V ux J ' ) 

and, since u\ > 0, 0 is the principal eigenfunction. 
Similarly, wc could argue tha t <fi = u\ > 0 is the principal eigenfunction associ

ated with the principal eigenvalue 0 of the following problem: 

—A(p + 4> = (i(f) 

94> _ fx + g(X.x,ux)\^ _ ; i r ) } (7.11) 

<9n \ MA 

But, since u\ < u\, by the monotonicity of s —> g(X, x, s)/s we cannot have (i = 0 
as the first eigenvalue of both problems (7.10) and (7.11). 

When the bifurcation at the first eigenvalue is supercritical wc can make the 
following proposition. 

P R O P O S I T I O N 7.3. Assume that the function g is differentiable with respect to the 
last variable and consider the functions G + , G+, G_, G_ as defined in (4-1) for 
some a < 1 and for a = o\, the first Steklov eigenvalue. Hence, if we have 

r • r gu(X,x,s) f gu(X,x,s) 
Inn int ; Js a G + respectively, fim sup — ^ «G _ 

(A,s)-K<7, ,+oo) Sa l \ ' (X,s)^(au-oo) S" 

(7-12) 
and if condition (4-7) holds, that is, 

~G^{x)<P\+a <Q (respectively, I G_(x)<P]+" > O j , 
on 

then the bifurcation of positive (respectively, negative) solutions at the first eigen
value is supercritical and any positive (respectively, negative) equilibrium solution 
bifurcating from infinity is unstable. 
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Proof. We consider only the case of bifurcation of positive solutions. The proof for 
that of negative solutions is similar. 

Condition (4.7) guarantees that there exists a supercritical bifurcation of posi
tive solutions from infinity at the first eigenvalue o\. Let us denote by u\ a positive 
solution bifurcating from infinity. The eigenvalue problem associated with the lin
earization around u\ is given by 

—Aw + w = fiw in Q, °\ 

dw ) (7-1 3) 
—— = Xw + gu(X,x,u\)w on dfi. 
on ' ' 

We will show that the first eigenvalue /ii = /ii(A) < 0 for A > o\ sufficiently 
close; to o\. This eigenvalue is given by 

. \Q I V ^ l 2 + l^!2 ~ Ion M4A2 + 5«(A, x, uxM
2 

/ii — nun ~——p3 

< / „ | V ^ | 2 + | ^ | 2 - Jgn A l ^ j 2 + gu(X,x,ux)\<P1f 

/ « l * i ' 2 In l^i 

(^i - A) Ion l^i l 2 ~ Jon9u{\x,ux)\^ 

In\^\2 (7-14) 

where we have used the fact tha t <Pi is the first Steklov eigenfunction associated 
with the eigenvalue o v 

But observe that , from lemma 4.2, we have 

h m s u p — - — i < r — j • (7.15) 
A-xr, l l«A| | L oo ( a f i ) Jon^l 

On the other hand, from (7.12) and corollary 3.2, we have 

liminf/ ^ % ^ W > / aG^(x)0\+a. (7.16) 
A-^CTI Jon ux Jon 

Plugging expressions (7.15) and (7.16) into (7.14), we obtain 

A-><n \\u\\\ix.(dn) Jn®i Now, since, by hypothesis, condition (4.7) holds and a < 1, we find that \i\ < 0 for 
A sufficiently close to <j\ and the equilibrium is unstable. • 

8. R e m a r k s and e x t e n s i o n s 

WTe consider in this section several important remarks and extensions of the problem 
we are dealing with. These comments go in three directions. 

First, in § 8.1, wc will consider the case where bifurcations from the trivial solution 
may occur. For this, we will need to assume that the nonlincarity g is g(X, x, u) = 
o(u) as u —> 0. 
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Second, in § 8.2, we will consider the case where the nonlinear boundary condi
tions incorporate a potential with a possible non-definite sign, that is, the boundary 
conditions reads 

— = \m{x)u-\-g{\,x,u). 
on 

Finally, in § 8.3, we analyse the simpler, but important and instructive case in 
which N = 1. 

8.1. Bifurcation from the trivial solution 

We consider problem (1.2) and assume that the nonlinearity g satisfies condi
tion (HI) but, instead of specifying the behaviour of g for large values of u, we 
consider the behaviour of g for small values of u. That is, we assume that 

(H3) lim V^- = 0. 
|s|->o s 

We have the following result. 

THEOREM 8.1. Consider problem (1.2) and assum,e that the 'nonlinearity g satisfies 
conditions (HI) and (H3). If a is a Steklov eigenvalue of odd multiplicity, then 
the set of solutions of (1.2) possesses a component emanating from the bifurcation 
point (<T,0) G R x C{Q). Moreover, this component, is either bounded inM. x C{Q). 
in which case it meets another bifurcation point from zero (that is, another point 
(a', 0) for another Steklov eigenvalue a'), or unbounded. 

Proof. The proof of this result follows the general results on bifurcations from the 
trivial solution given in [16]; see also [2] for similar results when the nonlinearity is 
in the interior. • 

REMARK 8.2. Observe that it is possible to have nonlinearities in which both situ
ations (that from theorem 8.1 and the one from theorem 3.3) hold. This is the case, 
for instance, where the nonlinearity g(\,x,u) is o(u) at u —> 0 and at u —> oo. In 
this situation, both theorems apply and if a is a Steklov eigenvalue of odd multiplic
ity (for instance the first one) then both bifurcations, from zero and from infinity 
occurs at this value of the parameter. 

8.2. Potential on the boundary 

We now study the case in which the nonlinear elliptic problem contains a potential 
m(x) in the boundary condition: 

-Au + u = 0 in fl ~\ 

8u , \ («•!) 
—— = Xm(x)u + g(X, x, u) on dH. 
on > 

For simplicity we may assume that m S L°°(<9.!?) and we will consider the important 
case in which the potential changes sign on dQ. 

https://doi.org/10.1017/S0308210505000363 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210505000363


Bifurcation and stability of equilibria 249 

The role played in the whole analysis of the previous sections by the eigenvalues 
{<Ti}fei °f problem (1.3) is now played by the eigenvalues of the following problem: 

-A<P + <P = 0 in Q, 

d<P 
—— = <jm(x)4> on df2. 
on 

We will still denote these values as Steklov eigenvalues. Hence, a is a Steklov 
eigenvalue, if problem (8.2) has non-trivial solutions. Moreover, the multiplicity of 
IT is the number of linearly independent solutions of (8.2). Alternatively, a G K is a 
Steklov eigenvalue if and only if n = 0 is an eigenvalue of the following eigenvalue 
problem 

-A<P + <P = u<P in J2, 1 

d$ , ( (8-3) 
—— = ( j m ( i ) $ on d(2. 
on '' 

and the multiplicity of a as a Steklov eigenvalue of (8.2) is the same as the multi
plicity of the eigenvalue /i = 0 of (8.3). 

In terms of the structure of the Steklov eigenvalues we obtain the following result. 

PROF'OSITION 8.3. Let the.potential m € L°°(df]), with Q C l w , N > 2 and let 
<v > 0. Then the. following conditions hold. 

(i) / / m ^ a > 0 in a subset T+ C dfl with (N — 1)-dimensional measure 
I/~4_17v—1 > 0, then there exists a sequence of Steklov eigenvalues {o~J}c*Ll. 
0 < <T̂ ~ < o~2 $J • • •, with the property that o~l —> +00 as i —> +00 and these 
are all the positive Steklov eigenvalues. Moreover, a^ is simple and the eigen-
function corresponding to the eigenvalue a^ does not change sign in Q. 

(ii) If in ^ — a < 0 in n C dQ with |J"_|/v-i > 0, then there exists a sequence 
of Steklov eigenvalues {o~~}°fLl, 0 > cr-j" > a^ > • • •, with the property that 
of —> —00 as i —> +oo and these are all the negative Steklov eigenvalues. 
Moreover, cr^ is simple and the eigenfunction corresponding to the eigenvalue 
oJ does not change sign in fi. 

Proof. We will sketch the proof; the reader may complete the details, since the 
arguments are similar to the case of potentials in Q (see [10,13]). 

It is sufficient to show (i), since (ii) is obtained from (i) by observing that \m,(x) = 

( ~ A ) ( - m ( z ) ) . 

(i) Consider, for each fixed i r e l , the eigenvalues {Hk(o~)}%L1 of problem (8.3) 
Note that , for fixed a G K, we find tha t the sequence {uk{o~)}'f?=i corresponds 

to the eigenvalues of —A + / with the Robin boundary condition du/dn = arnu. 
Hence, fik(o~) —> +00 as k —> 00. In particular, if a = 0, we recover the Neumann 
eigenvalues of — A + I and we know that 1 = /ii(0) < u2(Q) ^ • • • ^ /ifc(0) —» +00 as 
k —> 00. For fixed k we can consider the dependence of /ifc with respect to a. These 
curves are continuous in a (see [14]). Moreover, using the min-max characterization 
of the eigenvalues, we can see easily that , for a ^ 0, we have Tfc(cr) ^ Uk(o~), where 

(8.2) 
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Tk(tj) are the eigenvalues of 

-A<P + <P = T<P in Q, 

d$ , ) (8-4) 
r̂— = am (x)<P on dQ. 
on 

Again using the min-max characterization of the eigenvalues and the fact that 
m + ^ 0, wc can sec easily that for a > 0 the curves a —> 77,, (a) are non-increasing. 
Moreover, from the fact tha t rn ^ a in r+, it can be seen that both curves 
Tk(a),Hkiv) —> —oo as a —» +00. The structure of these curves as a —>• oc and 
the characterization of the Steklov eigenvalues as the values a ^ 0 for which some 
of these curves pass through zero easily prove the result. • 

All the results of the previous sections can be easily adapted to the problem (8.1). 
In particular, the operator S\ from lemma 2.5, which appears in the fixed-point 
problem (2.7), is obtained by using the trace of the solution of the following problem: 

- A M + U = 0 in Q, ) 

du , \ (8-5) 
— Xm(x)u = q on dil. 
dn w ) 

and the fixed-point problem (3.1) should be rewritten now as v = \Sn(rmi) + 
•So^A, •, v)), where SQ is as in lemma 2.5. 

The existence of bifurcations from infinity at a Steklov eigenvalue <jf or aj, of 
odd multiplicity follows the same line of proof. 

The characterization of the type of bifurcation (sub- or supercritical) when the 
parameter A crosses one of the eigenvalues a^ > 0 for some i — 1, 2 , . . . is the same 
as in the case m = 1, tha t is, theorems 4.3 and 4.5 apply directly to this case. For 
instance, if 

/ G+a^(x)$\++
a > 0 , 

JdQ 

then the bifurcation of positive solutions at A = a^ > 0 is subcritical. If the 
parameter A crosses a^ < 0, then the characterizations are exactly the opposite, 
tha t is, for instance if 

/ G+°^ (x)<2>|+_Q > 0, 
Jen 

then the bifurcation of positive solutions at A = a^ < 0 is supercritical. The reversal 
of characterizations can easily be seen since analysing the behaviour of (8.1) for 
A < 0 is the same as analysing the same problem for T = —A > 0 for the potential 
n = —rn, since Am = (—A)(—m) = rn. 

In this same spirit, and for the case where the potential changes sign, for which we 
have two principal eigenvalues, er-f < 0 < cx̂  , with strictly positive eigenfunctions 
$ i . _ and ^1,+ , respectively, the anti-maximum principle with a potential will be as 
follows. 
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T H K O R B M 8.4. For every g E Lr(d(2) with r > N — 1, there exists e = e(g) such 
Unit 

(i) if jdng<Pi,+ > 0 {respectively, Jg^g^i.- > 0), then every solution (X,u) 
of (8.5) satisfies 

(a) u > 0 if Q < cr^ — e < A < a^ (respectively, u < 0 if o^ — e < A < a^ < 

0), 

(b) u < 0 if o^ < A < a'l + e (respectively, u > 0 if o^ < A < crj~ + e < 0), 

(ii) if jt)ug<l>i = 0 tten ever-?/ solution (X,u) O/ (6>. i j wii/i A / a i changes it sign 
on dfi and consequently in Q. 

8.3. T h e case N = 1 

So far we have boon treating the case where the equation is ^-dimensional with 
IV ^ 2. We give now some ideas on how to treat the one-dimensional case. We will 
see that the bifurcation problem is a two-parameter nonlinear problem that can be 
treated using finite-dimensional techniques. 

Observe that , if we consider equation (1.2) (or, in a similar way, equation (8.1)), 
in the one-dimensional domain Q = (0,1) we can rewrite it as 

-uxx+u = 0 in (0,1), |̂ 

-ux(0)=Xu + go(X,u(0)),\ (8.6) 

ux(l) = Xu + gi(X,u(l)).) 

But in this case, the differential equation can be solved explicitly in terms of two 
constants a and b. The general solution is u(x) = aex + be~x. By plugging this 
expression into the boundary conditions, we obtain the following two equations, 
which are the equivalent to equation (2.7): 

-a + b = X(a + b) + c/0(A, a + b), x = 0, 

ae — be~^ = X(ae + fee-1) + <?i(A, ae + be"1), x = 1. 

Observe that in this case we only have two Steklov eigenvalues, which are given 
by the values a for which the following matrix has zero determinant: 

/ ( 1 + a ) ( 1 _ C T ) \ 

V(l-<r)e -(l + a)^1)' 

These two values are given by 

e - 1 1 e + 1 
ox = — — <a2 = — = - . 

e + 1 o\ c — 1 
The eigenfunctions <Pi and <P-2 for this problem are given by 

* / N °x + e l _ x , , , cx - c 1 _ x 

Observe that ^ ( O ) = ^ ( 1 ) = 1 and <2>2(0) = 1 = -<£2(1)-
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For any A 7̂  o~i,<T2, the function u = aex + be x is a solution if (a, 6) satisfy 

a\ = f-(l + \) (1 + A) V 1 / 5o(A,a + 6) \ 

b) l v ( l - A ) e - ( l + A ) ^ 1 ^ ^ ( A . o c + te-1)^" 

The sublinearity of go and gq as u —> 00 allows to apply fixed-point arguments 
in R2 guaranteeing the existence of at least one solution for any A 7̂  a\, a^- More
over, the fact that both eigenvalues arc simple, guarantee that under a sublinearity 
condition on g as u —> 00, we have bifurcation curves from infinity. 
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