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We consider an elliptic equation with a nonlinear boundary condition which is
asymptotically linear at infinity and which depends on a parameter. As the
parameter crosses some critical values, there appear certain resonances in the
equation producing solutions that bifurcate from infinity. We study the bifurcation
branches, characterize when they are sub- or supercritical and analyse the stability
type of the solutions. Furthermore, we apply these results and techniques to obtain
Landesman—Lazer-type conditions guaranteeing the existence of solutions in the
resonant case and to obtain an anti-maximum principle.

1. Introduction

Over the last decade a lot of attention has been paid to problems with nonlinear
boundary conditions. Hence, nowadays, the underlying mechanisms for dissipative-
uess or blow-up of solutions is fairly well understood (see, for example, [3,5,7,18,19]).
Therefore, it is natural to analyse the dynamics and bifurcations induced by the
nonlinear boundary conditions, and compare their effects in the case of an interior
reaction term, which has been more widely studied. For example, in [6] the existence
of patterns for such problems, i.e. a stable non-trivial equilibrium, was considered
(see also the references therein for some previous and related results). In this work
we consider the evolutionary equation of parabolic type,

ur — Au+u=0 in 2, t >0,
% =+ g(hz,u) on 82, t>0, (1.1)
n
u(0,z) = up(x) in {2,

in a bounded and sufficiently smooth domain 2 C RV with N > 2 and analyse the
behaviour and stability properties of the equilibrium solutions. These equilibria arc
solutions of the following elliptic problem with nonlinear boundary conditions:

—Au+u=0 in £2,
ou (1.2)
— =Adu+ g\ z,u) on I
on
(© 2007 The Royal Society of Edinburgh
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Our main goal herc is to analyse some possible bifurcations of solutions as the
parameter A is varied, and to study the stability of such solutions. In particular, we
are intcrested in the possibility of producing solutions that arc large in £2 in a given
sense. We are also interested in characterizing the super- or subcritical character of
such bifurcations.

As we will show below, it is in fact possible to generate such large solutions;
these will be obtained from a ‘bifurcation from infinity’ argument, cven in the case
in which the nonlincar boundary condition is sublincar at infinity. Such solutions
will be generated hy a resonant mechanism at the boundary.

We will also show that some stability or instability of such solutions can be
derived.

Since we will also give conditions for either subcritical or supercritical bifurca-
tions, we will obtain, as a by-product, the analogue to the well-known Landesman
Lazer conditions for the existence of equilibria in resonant cases [15]. Also, a form
of the anti-maximum principle will also be derived [8]. A similar analysis for the
case of an intcrior reaction term was first established in [2].

We now present our main results in a more precisc way. The main hypothesis on
the nonlinearity g is the sublinearity with respect to the variable u. Hence, we will
assume a condition that, roughly speaking, will be of the type

lg(A, z,u)| € Clul®  as

u| = oo for some v < 1.

Observe that we do not exclude the case where « is negative. This condition means
that, in the boundary condition, the dominant term for [u| large is the linear term
Au. In this respect we call this boundary condition asymptotically lincar. This
includes the case where g(A, z,u) = g(x) and it is well known that problem (1.2)
will have a (unique) solution if A is not an cigenvalue of the problem

~AP+P=0 in 0,

oo =o® on Jf). ‘ (1#)
an
This eigenvalue problem is known as the Steklow eigenvalue problem and it is well
known that (1.3) has a discrete set of eigenvalues {0} ,. These numbers will play
an essential role in the analysis below. In particular, for A & {0,152, we consider
the operator Ty such that T)\b := v, where v is the unique solution of

—Av+v=0 in 2,

P No=b ond, -y
on ’
for a function b given on 9§2.

The fact that, for compact sets of A far from the Steklov cigenvalucs, the norm of
the operator T), in some appropriate spaces, is uniformly bounded, together with
the sublincarity of the function g will allow us to show, by a fixed-point argument,
the existence of at least one solution of (1.2) for any A not a Steklov eigenvalue.
Moreover, all solutions will be uniformly bounded for A in compact intervals far
from the Stcklov eigenvalues (see theorem 2.7).
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On the other hand, when the paramceter A approaches a Steklov eigenvalue, the
norm of the operator Ty, diverges to oo. This is the first hint of the possibility of
finding unbounded branches of solutions and reveals the resonant mechanism at
the boundary that produces such large solutions. For instance, when ¢ = 0, the
structure of the solutions of the problem (1.2) is well known: if A is not a Steklov
eigenvalue, the only solution is the trivial solution and if A is a Steklov cigenvalue,
the whole space of eigenfunctions associated with that cigenvalue are solutions of the
celliptic problem that can be regarded as unbounded branches of solutions. For the
case in which g is sublinear at infinity, we will apply general techniques of bifurcation
theory (sce [9,16,17]) and prove the existence of unbounded branches of solutions
whenever the parameter A approaches a Steklov eigenvalue of odd multiplicity (see
theorem 3.3). Moreover, since the first Steklov eigenvalue is simple, we will show the
existence of unbounded branches of solutions bifurcating from the first eigenvalue.
The fact that the first Steklov eigenfunction does not change sign will give us extra
information that will permit us to analyse this branch of solutions in detail. In
particular, we will show the existence of two branches of solutions: one consisting
of positive solutions and the other of negative solutions (see theorem 3.4).

Once the existence of these bifurcation branches has been established, we pay
attention to the type of bifurcation (i.e. sub- or supercritical) occurring. It is clear
that a condition on the sublinearity of ¢ is not sufficient to distinguish between
the types of bifurcation, and to accomplish this we will need to specify the precise
asymptotics of the function ¢ at infinity. For instance, if we consider that the
function g behaves like a|u|® as v — +o0, we can casily sce that the sign of a will
determine whether the bifurcation of positive solutions emanating from the first
cigenvalue is sub- or supercritical. To do this, if 0 < u,, — oc is a solution of (1.2)
for A, = o1, multiplying the equation by the first Steklov eigenfunction ¢; > 0
and integrating by parts, we obtain

(Ul - >\n) / u'n@l dg = / g(>\ua €, U'n,)@l d§~
o0 292

But, since u,, > 0 and u,, =& o¢
T n b)

/ U, @1 d¢ > 0, / g\, T, un )P ds = a/ |ty |“P1 dg,

a1 a0 on

and the sign of g1 — A, is the same as that of a. Hence, if ¢ > 0, the bifurcation
ol positive solutions will be subcritical and if a < 0, it will be supercritical (see
theorem 4.3, below, for a more general statement).

Moreover, we will also see that, typically, when a bifurcation from infinity occurs
at the first eigenvalue, the branch of equilibria will be stable when the bifurcation is
subcritical and unstable when the bifurcation is supercritical (sce propositions 7.1
and 7.3, below).

Being able to give conditions which characterize when the bifurcation is sub- or
supereritical will allow us to address two important issues for this problem.

On the one hand we will be able to give Landesman—Lazer-type conditions, guar-
auteeing that the nonlinear resonant problem (that is, when A = o; for some ¢) has
at least a solution (sce [15]). For this, imagine that for a value g; we can determine
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that all possible bifurcations occurring at this value of the parameter are, say, sub-
critical. This implies that, for A € (gy,0; + €), for some £ > 0 small, the solutions
of (1.2) will have to be bounded in certain norms, uniformly for A € (o, 0; + ¢).
Using elliptic regularity results will allow us to pass to the limit in a weak sense
as A — o; and show that the limit is a solution of the resonant problem (see
theorem 5.1).

On the other hand, we will be able to prove anti-maximum principles for the
problem (1.4). That means, in particular, that if b is such that fa(z b®1 > 0, then
the bifurcation of negative solutions occurring at A = o7 is supercritical and this
implies that for A € (o1, 01+¢) the unique solution of (1.4) has to be strictly negative
(see theorem 6.1). These types of result were first proved for elliptic problems of
the form —Au = Am(z)u + h(z) with Dirichlet boundary conditions in [8].

This paper is organized as follows. In § 2 we formulate the problem and show the
existence of solutions for all values of A that are different from the Steklov eigenval-
ues. To accomplish this, we analyse the linear problem (1.4), stating and proving
scveral important regularity results. We then formulate the nonlinear problem (1.2)
as a fixed-point problem in a certain function space on the boundary. Finally, the
compactness results obtained through the regularity results and the Schaefer fixed-
point theorem will show the existence of solutions.

In §3 we apply bifurcation results, mainly from [16,17], to show the existence
of unbounded branches of solutions bifurcating from the Steklov eigenvalues (sec
theorem 3.3). We pay special attention to the bifurcations emanating from simple
eigenvalues (see theorem 3.4).

In §4 we give conditions on the behaviour of the nonlinearity g for |u| large that
allow us to determine when sub- or supercritical bifurcations occur.

In §5 we apply the conditions from the previous section to obtain Landesman—
Lazer-type conditions for the resonant problem.

In §6 we state and prove the anti-maximum principle for (1.4) mentioned above.

In §7 we analyse the stability propertics of the solutions bifurcating from the
first eigenvalue. ‘

Finally, in § 8 we consider several important remarks and extensions. We study
the conditions to be imposed on the nonlinearity ¢ in order to obtain bifurcations
from the trivial solution, instead of bifurcations from infinity. We also consider the
case in which the boundary condition is of the type

ou

on
where m is a potential that may change sign on 0f2. We also consider the one-
dimensional case, that is, where the equation (1.2) is posed in 2 = (0,1) C R.

am(x)u + g(\, z,u),

2. Setting the problem

In this section we rewrite equation (1.2) as a fixed-point problem in appropriate
function spaces and analyse the existence of solutions for all A € R except for a
discrete set. To accomplish this task we will use Schaefer’s fixed-point theoremn
(see [11, p. 502]).

With respect to the nonlinearity g, we assume the following hypothesis.
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(H1) g : Rx32xR — Ris a Carathéodory function (i.e. g = g(A, x, s) is measurable
in z € {2, and continuous with respect to (A, s) € R x R). Moreover, there
exist h € L"(0§2) with 7 > N — 1 and a continuous functions A : R — R*,
U:R — RY, satisfying

lg(A, x,8)| < AN)W(x)U(s) for all (A, z,s) € R x 92 x R. (2.1)
Moreover, we assume also the following condition on the function U:

(H2) lim Us) =0.

|s] 200 S

Observe that the sublinearity of ¢ at infinity is given by condition (H2).

With respect to the linear problem, it is well known (see [1]) that the operator A =
—A + I, with homogeneous Neumann boundary conditions, defines an unbounded
operator in LP(§2) for all p > 1 with domain D(A) = {u € W2?(§2);0u/on =
0 in 962}. Moreover, the operator A has an associated scale of interpolation—ex-
trapolation spaces and, in particular, for each p > 1, we have that A : WHP(£2) —
W=1P(£2) is an isomorphism.

Hence, for any ¢ > 1, since we have the embedding L9(982) < WLP(£2) con-
tinuous for p = ¢N/(N — 1) and compact if p < ¢N/(N — 1), for b € L9(I§2) the
unique solution of

—Av+wv=0 in {2,

9 _y onon, 22

on
is given by v = A7Y(b) € WP(02) and [[vllwinn) € Cllbllpaan). We will set
Ty(b) = v and Sy(b) = vTy(b), where v is the trace operator. The operator Sy is
known as the Neumann-to-Dirichlet operator. Hence, the operator T; takes func-
tions defined on @f2 to functions defined in 2 and S; takes functions defined on
9S2 to functions defined on 992.

Our first task will be to show that any weak solution u € H'(£2) of (1.2) lies in
C*(£2). To accomplish this, we will need several regularity results of the associated
linear problems. As a matter of fact, as a consequence of the above and using
cmbedding and trace theorems we can easily show the following regularity results.

LEMMA 2.1. If N 2 2 and b € L1002 with g > 1, then the solution v = Tob of (2.2)
satisfies v € WHP(Q) for 1 <p < gN/(N — 1) with [|vllwr.r(o) < ClbllLaos0)-
In particular, we have the following conditions.

(i) If1<g< N—1, thenvyv € L"(012) for all 1 <7 < q(N—-1)/(N—-1—gq) and
the map Sy : LYOL2) — L7 (042) is continuous for 1 <r < g(N—1)/(N—1—q)
and compact for 1 <r < g(N—1)/(N —-1—gq).

(ii) If ¢ = N =1, then yv € L"(082) for all v > 1 and the map Sy : LY(0f2) —
L7(012) is continuous and compact for 1 < r < oo.

(i) If ¢ > N =1, then v € C*(£2) with ||v]ce(ay < CllbllLaasy for some a €
(0,1). Moreover, yv € C*(862) and the map Sp : LYHQ) — C*(890) is
continuous and compact.
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As an immediate corollary, we have the following technical result.
COROLLARY 2.2.
(i) For any q =1, if b e LY9R), then Sob € LIt1/N)(502).

(i) If b satisfies |b(z)| < h(x)w(x), where h € L"(082) with r > N — 1, then if we
define
N - ’
6= m -7 > O,

we find that if w € LP(912) with

_g_
N-1 p+

then S()b =YUE L[)+5(8Q) and HS()Z)HLM&(()Q) < CH’wHLI‘((’)Q).

<1

1 1 1
r

Proof. (i) Observe that if ¢ > N -1, then, from the corollary above, yv € L"(9(2) for
all7 2 1. In the case when 1 < ¢ < N—1, 55b € L7(982) for r < q(N-1)/(N—1—q).
A simple computation shows that

WN-1g 1
N—-1—gq N

R
WV

for 1 <qg< N—1.

(ii) Note that hw € L/ P+ (902) and pr/(p +r) > 1 because
1 1
Si-<l
p T

Hence, by lemma 2.1, yv € L*(0f2) with

_pr _ 1
B e T )

-1
pr 1 1
ptr \p r

then 1 <y<N-1,p=ry/(r—y) and

S

If we set

. { PN - 1) 1 }
min —_ -
/(N-1)<(1/p)+(1/m<t L p+r N—1-pr/prr) *

. y(N —1) ry
= min - .
1IysN-1 | N—-1—-y r—y

However, a simple computation shows that this last minimum is attained at y = 1.
This concludes the proof of the corollary. |

These regularity results with a bootstrap argument will allow us to prove the
following proposition.
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PROPOSITION 2.3. Assume ¢ satisfies (H1) and (H2). Then, for any R > 0, if
u € HY($2) is a solution of (1.2) for some |\ < R, we have
lullen 2y < CQ A llull Lo oe) (2.3)
for some positive «, where C = C(R) and p=2(N —1)/(N —2).

Proof. Assume that N > 3 (the proof when N = 2 is simpler). Observe that the
boundary condition satisfied by w is

ou

. — )\ LT

5 u+ g(A, x,u)

and, by hypotheses (H1), (H2) and assuming that |A\| < R, we have |g(A, z,u)| <

Ch(2)(1 + |u(x)|) for some constant C' = C'(R). Hence,
ou
on

Note also that 1+ h € L"(042) for some r > N — 1.

Now, if u € H'(£2), then yu € LP(912) with p = 2(N —1)/(N —2), which satisfies

b(x) with [b(z)] < C(1+ h(2))(1 + |u(z)]).

1
- +-<1 foranyr>N—1.
p T
Hence, b € L*(0£2) with
111
s v p

Thus, if s > N — 1, then lemma 2.1(iii) implics that u € C*(£2) and

ullca(o) < CllbllLs oy < C(1+ [Jullrn))-

On the other hand, if s < /N — 1, applying the regularity result of corollary 2.2(ii),
we find that yu € LPT?(962) and

llull oo a2y < CUL+ [[ufl Loiag))- (2.4)

Repeating this regularity argument k times, we get yu € LPTF(942). Morcover,
we also have

[l prs o0y < CQ A+ lull prro—nson) < < CO+lullroo)

Certainly, since r > N — 1, after a finite number of iterations there exists k such
that

[

1 LS 1 q 1 +1< 1
_—+ -2 —— and ——— + = .
p+k—-18 r~ N-1 p+ké v N-1

In particular, b € L*(0(2) with
1 1 1
s

= — . s>N-—1.
7‘+p+k(5’ 5=

Hence, again applying lemma 2.1(iii), we finish the proof. O
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REMARK 2.4. The regularity result of the above proposiﬁon tells us that looking
for solutions of problem (1.2) in H'(£2) is equivalent to looking for solutions in a
more regular space like C*(f2).

We now analyse the operator Sy (the Neumann-to-Dirichlet operator). We have
the following result.

LEMMA 2.5. The operator So : L?(082) — L?(052) is a linear self-adjoint, positive
and compact operator. If we denote its eigenvalues by {7,152, and by o; = 1/7; we
find that, for any X € R, X & {0:}32,, then the operator Sy : L2(902) — L?*(952)
defined by Sx\(g) = vyv, where v is the unique solution of

—Av4+v=0 1in {2

2.5
v —Av=g ondf2, 25)
on

is self-adjoint, continuous and compact. Moreover, the first eigenvalue oy is simple
and its eigenfunction 1 can be chosen to be strictly positive. Also, if r > N — 1
then, Sy : L"(082) — C°(012) is continuous and compact and, for any compact set
K C R\ {0:}32,, the norm of Sy : L™(02) — C°(02) is uniformly bounded for
A€ K. Also, ||Sall = oo as A — o for some i.

Proof. Observe that if by, by € L?(942) and if vy, v are the solutions of —Awv;+v; =
0in 2, dv;/On = b;, i = 1,2, then by the weak formulation of this problem we have

(S()(bl), bg)LZ(aQ) = /Q V’Ulvvg -+ AUIUZ = (bh So(l)g))Lz(()_(g). (20)
From (2.6) it follows that Sy is sclf-adjoint and positive. The fact that Sp is
compact follows from lemma 2.1, and the fact that the first eigenfunction can be
chosen to be non-negative follows easily from the Rayleigh quotient for the first
eigenvalue. Then, maximum principles imply that the first eigenfunction is actually
strictly positive. In turn, this implies that the first eigenvalue is simple.
The rest of the proof follows merely by realizing that Sy = (I — ASp) 108y and
applying the regularity results of corollary 2.2. O

It is now clear that we can set a fixed-point problem to obtain the solutions
of (1.2). As a matter of fact, u € H'(£2) is a solution of (1.2) if and only if its trace
v = yu is a fixed point of

v = Sx(gh0)) (=T —ASe)" o Se(g(A, -, ). (2.7)

Note also that, once v is obtained, we recover u by solving —Au + v = 0 in {2
with u = » on the boundary.
Concerning the fixed-point problem (2.7), we have the following lemma.

LEMMA 2.6. Under hypotheses (H1) and (H2), the map C°(9£2) > v — g(\,-,v) €
L7(082) is well defined and continuous. Moreover, for each M > 0, € > 0, there
exists a constant C' = C(e, M) such that

lg(A, - v) L0y < €llv]leopn) +C (2.8)
for allv e C°(892), |\ < M
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In particular, the map CY(902) 2 v — Sa(g(A, -, v)) € C°(912) is continuous and
compact for all A € R\ {0}5,.

Proof. It follows from the bounds of ¢ given by (H1) that this map is well defined.
The continuity follows from the continuity of ¢ with respect to the last variable, the
bounds of g given by (H1) and the dominated convergence theorem. Statement (2.8)
follows from the fact that, for each € > 0, we have the inequality |U(s)| < es + C,
for some constant C' = C(e), and the fact that the function A(A) is continuous.
The last part of the lemma follows easily. O

We are now in a position where we can show the existence of solutions of our
original problem (1.2} for all A € R\ {o,}22,. We have the following thcorem.

THEOREM 2.7. If g satisfies (H1) and (HZ2), then, for all X € R\ {0;}2, there
exists at least one solution of problem (1.2). Moreover, for each compact set K C

R\ {o:}2,, we have the existence of a constant C' = C(K) such that any solution
of problem (1.2) is bounded in C°(£2) by C.

Proof. Consider the compact set K C R\ {0;}5°; and observe that by lemma 2.5
we have that there exists a constant C; = C7(K) such that the norm of S :
L7(992) — CY(£2) is bounded by Cy for all A € K.

We will apply Schaefer fixed-point argument to (2.7) (see [11]). For this we con-
sider 6 € [0,1] and let v be a fixed point of

V= GS)\<Q(A7 -7’0)) (29)
for some A € K. Then ||v||cogo) < Crllg(A, - vllLrag0))- But, by (2.8), we get
[vllcooe) < Crlellvlleoan) + Cle K)).

Choosing € to be small enough that 1 — Cre > 1, we get [[v]|coan) < 2C1C(e, K).
Noticing that by lemma 2.6 we have that v — Sx(g(},-,v)) is compact in C°(3£2)
when A € {0;172, and applying the Schaefer fixed-point argument, we prove the
proposition. ]

3. Unbounded branches of equilibria

From the rcsults of the previous section it is clear that, when the value of the
parameter A is bounded away from the Steklov eigenvalues, the solutions of (1.2)
are bounded uniformly in A. On the other hand, since the norm of the operator Sy
blows up to infinity when A approaches a Stcklov eigenvalue (see lemma 2.5), it is
natural to expect the cxistence of branches of solutions that diverge to infinity in
certain norms when the parameter approaches a Stcklov eigenvalue. For instance, if
we consider the case in which g = 0, then, for any A € {0;}52,, the unique solution
is u = 0, while for A = o, we find that the whole finite-dimensional subspace given
by the eigenfunctions associated with o; is a solution. This subspace constitutes an
unbounded branch of solutions.

Let us start by analysing the behaviour of the solutions when we know explicitly
that the solution blows up in a certain norm.
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PRrROPOSITION 3.1. Assume that {1\, }22 is a convergen‘t sequence of real numbers
for which there exist solutions w, of (1.2) with ||un ||~ @o) — 00 asn — oo. Then
necessarily A, — o for certain i € N and, for any subsequence of w,,, there exists
another subsequence, which we denote by u,:, and an eigenfunction ®; associated
with o; with ||Pill L~y = 1 such that
Uy B
— = &; in C()

Hun’ HL“’(&Q)

for some 3> 0.

Proof. Applying the Holder estimate given by (2.3), we find that if

Un,
Up = ———————,
! ||’U/ni|Loc(tm>

we obtain ||vn Co éfQ < C, for some C independent of n. Using the compact embed-

ding C*(£2) ) for 0 < 8 < a, we find that, for any subsequence of v,,, there

exists anothCI subsubsequence7 vy, and a function @ € CH(Q) such that v, — ¢

in CP(£2). Therefore, since ||v,, Lo(an) =

particular, that @ is not identically zero.
The equation satisfied by v, is

w(ag) = 1 and. in

—Avy v =0 in £2,
Ovyyr )\ s Up?
—,vl = A Ups + M on 0f2.
on ||u71,’ ||L°°(0!2)

Passing to the limit in the weak formulation of this equation, taking into account

the facts that

)\ n’ . -
9Ty ) = 0in L7(02) asn' — o0
||un’ HLOQ(QSZ)

and v,,, — &, we find that @ is a solution of

—AP+P=0 in

(’)_gb =oP on 9012,
on

where 0 = limy/ 00 An/. Since || @] 50y = 1, necessarily o is a Steklov cigenvalue
and & is a Stcklov cigenfunction associated with o. This proves the proposition. [

We immediately have the following corollary.
COROLLARY 3.2. With the same hypotheses as in proposition 3.1,
(i) the whole sequence satisfies |[wn| 1r(ag2) — 00 for any 1 < p < oo,

(ii) if un = 0 for all n, then necessarily A,, — o1 and the whole sequence salisfies
Up

U e i CR0)
[ltn || Lo (52)
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Proof. (i) Since IP(8£2) — LY(942), it will be sufficient to show the result for
p = 1. If this is not the case, then there will exist a subsequence u,, bounded in
LY(9£2). We can obtain from proposition 3.1 another subsequence w,, satisfying
' /|| Un || L2y = Pi and, in particular,

lun 100

= @il a0y > 0.
H“n/HLec(OQ) J HL( 2)

This implies that ||w, |11 a0y — 0o, which is a contradiction.
(ii) From proposition 3.1, any possible convergent subsequence of wy, /||un || Lo (90)
has to converge to a Steklov eigenfunction @; with ||®;]| 1« @) = 1. Since in this

case uy, 2 0, we find that @; > 0. But o7 is the unique Steklov cigenvaluc with a
nou-negative cigenfunction @4 (see lemma 2.5). O

We will now show that any Steklov cigenvalue o of odd multiplicity is a bifurcation
point from infinity, that is, there exists a sequence A,, with A,, — ¢ and a scquence
of solutions wu,, of (1.2) for the value X\, such that ||, ||~ o) — co.

Before stating the result, consider the following notation. We will consider the
solutions of (1.2) in R x C(£2), where the first coordinate is the value of A and the
sccond is the function w, which is a solution of (1.2) for this valuc of A. In this
sense, we will denote the set of solutions by S. Recall also that we have denoted
the Steklov eigenvalues (cigenvalues of problem (1.3)) by {o;}5°,.

We have the following result.

THEOREM 3.3. Consider problem (1.2) and assume that the nonlinearity g satisfies
conditions (H1) and (H2). If o is a Steklov eigenvalue of odd multiplicity, then the
set of solutions of (1.2), denoted by S, possesses an unbounded component D which
meets (o,00) € R x C(£2).

Moreover, if [A_,Ay] C R is an interval such that A_, Ay]N{0;}32, = {o} and
M=[_ A x{ueC(2):] o) = 1}, then either

(i) D\ M is bounded in R x C(£2) in which case D\ M meets the set {(),0),:
A € R} at (Ag,0) such that g(Ag,-,0) =0, or
(ii) D\ M is unbounded in R x C(£2).

If D\ M is unbounded, and it has a bounded projection on R, then D\ M meets
(6.00) e R x C(£2), with o0 # 6 € {0,}72,, t.e. D\ M meets another bifurcation
point from infinity.

U

Proof. Observe first that the fixed-point problem (2.7) can be recast as
v = ASgv + So(g(A, -, v)), (3.1)

where Sy is the Neumann-to-Dirichlet operator (sce lemma 2.5).
We apply now the gencral techniques from [17] to the fixed-point problem (3.1)
in the space C'(942). Thus, we have to prove that

(“L) S()(g(/\a B U)) = 0(||U|

(h) the map (\,v) — [|[v][2So(g(}, -, v/||v]|?)) is compact for A in bounded inter-
vals,

) at v = oo uniformly for A in bounded intervals, and

where for simplicity we denote by [Jv]| == [[vf|ca0).-
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(a) For any v € C(912) we see from (H1) that g(\,-,v) € L™(912). Therefore,

oy A*'vl v €
lSo(g(A, -, )i <CHQ( )L ae) <C(€+ |C||>7 (3.2)
v

ledl il
where we have used lemma 2.1 for the first incquality and lemma 2.6 for the second
one. From (3.2) we easily obtain (a).

(b) We must verify that H : R x C(952) — C(012) defined by

H(v) = |u]|2S0 (g<)\,x, #))

is compact. Note first that the image of {(A,v) € [A, \]xC(892) : § < ||v]|c(o0) < p}
under H is relatively compact for any A < A and 0 < § < p < oo. This follows from
the boundedness of g and the compactness of Sy. Thus, we need only to prove that
the image of [A\, A] x Bs under H is relatively compact in C(942) for some § > 0
small enough, where By := {v € C(9£2) : ||v|| < é}. Let us choose v € By, and
define w = v/||v||?, which satisfies ||w|| > 1/8.

From (2.8) with € = 1, we get

A w)|| e
llg( iR (992) <C. (3.3)
[lwl]
with C' = C(A, ||kl Lra50),0). Therefore,
Jo)? g(A., . —~) <l < C5. (14)
loll* /1l 200

Now, the compactness of Sy : L"(02) — C(852) given by lemma 2.1 ends the
proof. O

We now analysc the case where the eigenvalue ¢ is simple, and in particular the
casc of the first eigenvalue. We have the following theorem.

THEOREM 3.4. Let o denote a simple Steklov eigenvalue and @ a corresponding
eigenfunction. Assume g satisfies hypotheses (H1) and (H2). Then the set of solu-
tions of (1.2) possesses two unbounded components D and D~ which meet (0, 0) €
R x C(12), satisfying the following conditions.

(i) There exists a neighbourhood O1 of (o,00) such that (A\,v) € Dt N Oy, and
(A, v) # (o,00) implies that

v=0a®+w where a>0 with [|w|L=@xn = o(|a|) at |a| = oco.

(ii) There exists a neighbourhood Oy of (o,00) such that (\,v) € D™ N Oy, and
(A, v) # (0,00) implies that

v=—a®+w where o >0 with ||w|p~@vo) = o|af) at |a| = cc.
Proof. See [17, corollary 1.8] for the proof. O

Note, in particular, that if ¢ = o1, since the first cigenfunction can be chosen pos-
itive, this result implies the existence of branches of positive and negative solutions
bifurcating from infinity.
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4. Sufficient conditions for subcritical and supercritical bifurcations
from infinity

In this section we give conditions on the nonlinearity g that allows us to characterize
the different bifurcations that occur. Obviously, the type of bifurcation (sub- or
supercritical) occurring at a bifurcation point will be dictated by the behaviour of
the nonlinearity g for large values of s. For instance, assume that we have a sequence
of solutions u, for the value of the parameter A, and assume that A, — o1, the
first Steklov eigenvalue. From proposition 3.1 we find that the functions

p un
UTL

||Un||L<>o(an) ’
possibly after taking a subsequence, converge in L™ (92) to $1 or —P1, where &,
is the unique positive eigenfunction of o with L (9£2)-norm 1.

As an example, let us consider the case where v, — @; and assume, for instance,
that the function g(A, z, s) behaves for s — 400 and A — gy as

g(A, z,8) =~ G(z)s".

Then, considering cquation (1.2) with A = A, multiplying it by &y, integrating
by parts and using the fact that @, is an eigenfunction, we get

(Ul - )\n) U Py = / g(/\m% un)dsl'
J O 082

Hence, since u,, —» 400 uniformly in 942 and using the asymptotic expression
of g, we can casily see that the sign of o1 — A, is dictated, for n large enough, by

the sign of
/ G(x)PiTe.
o0

In particular, if this latter integral is positive, the bifurcation is subcritical and
if it is negative, the bifurcation is supercritical.

With this in mind, we define the following functions, which describe the behaviour
of g for large values of s, at a given . Define, for some «, the following functions:

Az, — A,
Gi(x):= liminf g(’—“—), Gi(z):= limsup w7
— (s)o(otoo) 8 () (ato0) 5 (4.1)
A, T, ¢ A, '
G_(x):= liminf M, G_(z):= limsup M
(A.8)—(0,—0c0) ‘S{(Y (A\,8)—(o,—00) |Sl(y

REMARK 4.1. (i) Observe that in fact G depends on o and «. If we need to stress
this dependence, we will write G} (x), GT(z), G2 (z) and G2 ().

(i) Observe that if ¢ satisfies (H2) and « > 1, then all the functions defined above
are identically zero.

(31i) The way in which the functions defined in (4.1) describe the behaviour of the
function g for large values of s can be expressed in the following way: for any € > 0
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small enough, we have
(Gila) —e)s™ < g(ha,s) < (Gy(x) +e)s*, s +o0, Ax o,
and similarly as s — —o0.

In order to establish conditions for sub- or supercritical bifurcations at the first
eigenvalue, we prove first the following important result.

LEMMA 4.2. Assume that the nonlinearity g satisfies hypotheses (H1) and (H2).
Denote by o1 the first Steklov eigenvalue and by @1 the first positive eigenfunction
with ||@1||p~wno) = 1. Consider o sequence of solutions w, for the walue of the
parameter A such that A, — o1 and |[uy || L0y — 0o. Then

(i) if uy > 0, we have

o G Y o1 — A G

L)L_—Ll_ < liminf a,ln < limsup 1@_1"’ < Joa G+ 5— (4.2)

Joo @1 no oy mee llunllison Joo @3
(ii) if u, < 0, we have

. - 1 A4-cx

_ j(‘)Q G_(p}Jra <l 01— A, l o1 — Ap [()Q G”d}

— S ——s—— < liminf —————— < limsup — < 22
Jog ¥t noree ||“"le(dn) nooo [unlTx o0 Joo 1

(4.3)

Proof. Let us show (i) (proof of the other case follows similarly). Consider a family
of solutions u,, of (1.2) for A = A, with A,, = o7 and 0 < w,, — oco. Multiplying
equation (1.2) by @, and integrating by parts, we get

(o1 4>\,,1)/ Uy, Py :/ I, 70, )Py (4.4)
an a0

However,

g, x,up) Uy, .
9, @, un )P = ||| 7o ¢ / ( )él.
./an " ) ranllZs oy a0 U tn | Loe (902)

But, from Fatou’s lemma,

> A 7() ! , (63
lim inf/ g(An l’u"')( tn > @,
n—ee Jan Uy un =00

" )\na st Unp, .
Z / lirn inf {g( Z, ) < - ) @1}
55 Moo us Nen | £oe (900

> | Gy(z)dte, (4.5)
a0

where we have used the definition of G (x), the facts that ¢, > 0 for all z on 02

and that u
n — @1

[wn ||Loc(am)

uniformly in 0f2 (sec corollary 3.2).
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Dividing by {un| =0y in (4.4) and passing to the limit we obtain the first
inequality of (4.2). The second inequality is trivial and the third is obtained in a
similar manner to the first. U

Now, with respect to bifurcations from the first cigenvaluc we can prove,

THEOREM 4.3 (bifurcation from the first cigenvalue). Assume that the nonlinear-
ity g satisfies hypotheses (H1) and (H2). Denote by o, the first Steklov eigenvalue
and by @y the first positive eigenfunction with || 91| =<0y = 1.

(1) (Subcritical bifurcations.) Assume that there ewists an o <1 such that G =
G € LYOQ) (respectively, G_ = G** € LY (912)). Then, if

G+¢%+u >0 <szspect7lvely,

Gy G o1t < 0), (4.6)
JOR

of2
the bifurcation from infinity of positive (respectively, negative) solutions at

A = oy is subcritical, i.e. X\ < oy for every positive (respectively, negative)
solution (A, v) of (1.2) with (X, ||v])) in @ neighbourhood of (o1, 00).

(it) (Supercritical bifurcations.) Assume there ewists an o < 1 such that G =
GL7 € LY012) (respectively G- = G2 ¢ L'(992)). Then, if

G ot <0 <respectively, / &@ﬁa > 0>, (4.7)
Jon Jon
the bifurcation from infinity of positive (respectively, negative) solutions at

= o1 is supercritical, i.e. A > oy for every positive (respectively, negative)
solution (X, v) of (1.2) with (A, ||v])) in a neighbourhood of (o1, 00).

Proof. The proof of this theorem follows directly from lemma 4.2. Observe that
conditions (4.6) and (4.7) impose a definite sign on o1 — A, in (4.2) and (4.3). O

As an example of this result we have the following corollary.
COROLLARY 4.4.

(i) Assume the nonlinearity satisfies g(A\,x,s) = als|® as s — 400 for some
o < 1. Then, if a > 0, all bifurcations of positive solutions are subcritical,
while if a < 0, all bifurcations of positive solutions are supercritical.

(il) Assume the nonlinearity satisfies g\, z,8) =~ als|* as s — —oo for some
a < 1. Then, if a > 0, all bifurcations of negative solutions are supercritical,
while if a > 0, all bifurcations of negative solutions are subcritical.

We consider now the general case, that is, u,, are solutions of (1.2) for a sequence
A with X, = o and ||un ||, 90y — oc. Then, from proposition 3.1, we find that A
is an cigenvalue and, up to a subsequence, w,, /||ty || L (90) — @ uniformly for some
eigenfunction @ associated with the eigenvalue o and with || @] 1= @q) = 1.

We have the following theorem.
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THEOREM 4.5 (bifurcation from a general eigenvalue). Assume that the nonlinear-
ity g satisfies (H1) and (H2). Let o be a Steklov eigenvalue for which a bifurcation
from infinity of (1.2) occurs at A = o.

(i) (Subecritical bifurcation.) Assume that, for some —1 < a < 1 and for this
value of o, we have G (z), G G_(x) ¢ Ll(&Q) Then, if for any eigenfunction
& associated with the eigenvalue o, we have

Gl > [ G (18)
on

then the bifurcation from infinity of solutions at A = o is subcritical, i.e. A < o
Jor every solution (X, v) of (1.2) with (X, ||v)l) in a neighbourhood of (o, oc).

(ii) (Supercritical bifurcation.) Assume that, for some —1 < a < 1 and for this
value of o, we have G4 (x),G_(x) € Ll(dQ) Then, if for any eigenfunction
& associated with the eigenvalue o we have

Cr@et e < [ a_(@e e (1.9)
a9 Jag2

then the bifurcation from infinity of solutions at A = o is supercritical, t.e. A >
o for every solution (\,v) of (1.2) with (A, l|v]]) in a neighbourhood of (o, )

Proof. We will show the first case. The supercritical case is proved in a similar way.
As in the proof of theorem 4.3, we need to study the sign of

/ g(An, T, uy,)P.
a0

But, if we set 927 = {x € 002 : #(x) > 0} and 902~ = {x € 2 : P(x) < 0}, we

have
/ (A, u)® = / a0z, u) Bt — / oAz, 0o
a0 a0+ 002
o g\ z,u) +< 1 ful )”
= |ju =P — 4+
e /asz+ e Tl F ]
N g\ z,u) < 1 |ul )” ]
— lu A A )] — . 4.10
e /3 At g Wl F Tl (4.10)

Observe that, for any o > —1,
1 ol Y .
i (—-— + Lu_)) — @I in C(002T)  asn — oo (4.11)
funll  funll
Now, passing to the limit in (4.10), using (4.11), hypothesis (4.8) and the Fatou

lemma we conclude the proof. |

5. The resonant case

We are now concerned with the resonant problem, that is,
~Au+u=0 in §2,
Ou (5.1)

— =ou+ g(x,u) on I,
on
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where o is a Steklov eigenvalue of (1.3). We are interested in giving conditions
guaranteeing the existence of solutions in this case. As a matter of fact, we will see
that if all possible bifurcations of the problem

—Au+u=290 in §2,
Ju (5.2)
— = Au+g(z,u) on Jf2,
5 9(x, u)
with A € R, A & ¢ are either subcritical or supercritical, then the resonant problem
necessarily has at least one solution.

THEOREM 5.1. Assume that every possible bifurcation from infinity at X = o of
problem (5.2) is subcritical, that is, condition (4.8) holds, or every possible bifurca-
tion from infinity at A = o of problem (5.2) is supercritical, that is, condition (4.9)
holds. Then the resonant problem (5.1) has at least one solution.

REMARK 5.2. Conditions (4.8) and (4.9) are known as Landesman-Lazer-type con-
ditions.

Proof. Obscrve first that, from theorem 2.7, for £ > 0 sufliciently small, we find that
problem (5.2) has at least one solution for all A € (6 —¢,0+¢2)\{o}. If, for instance,
we assume that all possible bifurcations occurring at A = ¢ are subcritical, then
necessarily there exists a constant M such that for any A € (0,0 + ¢) all possible
solutions of (5.2) satisfy [lu|-n) < M. This allows us to take a sequence of
A, — o and solutions u,, of (5.2) with [|u,|/p~@0) < M. Using the compactness
given by clliptic regularity results applied to (5.2) and passing to the limit, we
obtain a solution of (5.1). O

6. The anti-maximum principle for the Steklov problem

Let us consider the non-homogeneous linear Steklov problem (6.1)

—Au+u=0 in {2,

5 6.1
g%:/\u—i—g(m) on 012, (61

and show an anti-maximum principle for this problem; sec [2,8] for the case where
the nonlincar term is in 2. As usual, we denote by oy the first Steklov eigenvalue
and by @, its positive eigenfunction.

THEOREM 6.1. For every g € L™(002) with r > N — 1, there exists € = €(g) such
that

(1) if [50 991 > 0, then every solution (X, u) of (6.1) satisfies the following:

(a) u>0ifo, —e< A< oy,
(b) u<0ifor <A<op+e,

i) if [,,9P1 = 0, then every solution (A, u) of (6.1) with A\ # o1 changes sign
Jogo
on 952 and consequently in (2.
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Proof. Assume that |, a0 9%1 > 0. The Fredholm alternative states that the linear
problem (6.1) does not have solution if A = ¢1 and has a unique solution if A ¢
(S). Moreover, from theorem 3.3, A = o7 is a bifurcation poiut from infinity, and,
from theorem 4.3, the bifurcation from infinity of positive solutions is subcritical,
i.e. there exists an € = €(g) such that, for all (A, u) solving (6.1) with A — o,
flull & 0o and u > 0, we have 01 — e < A < 07.

Moreover, by theorem 4.3, the bifurcation from infinity of negative solutions is
supercritical, L.e. there exists an € = €(g) such that, for all (X, u) solving (6.1) with
A = o1, ||lu|]| ® oo and u < 0, we have o1 < A < g7 + €.

Assume now that || 50 9%1 = 0. Multiplying equation (6.1) with A # oy, by &,
and integrating by parts, we obtain that ff)sz u®; = 0. Since P > 0, u has to change
sign in 942 and the proof is concluded. O

7. Stability analysis

We analyse in this section the stability propertics of the branches of solutions of (1.2)
found in the previous section. We will regard these solutions as equilibrium points
of the following parabolic evolutionary problem with nonlinear boundary condition:

Uy — Au+u =20 in £2,
o .
‘l =u+g(\ z,u) on 082, (7.1
on
w(0,z) = ugp(x) in 2.

and will analyse their stability in relation to this problem.

We will also assume that the nonlinearity g, in addition to satisfying condi-
tions (H1) and (H2), satisfies a locally Lipschitz condition in the variable u. By
assuming this, we guarantee that for a given initial condition uy € C(§2) therc
exists a unique solution u € C([0, T], C(§2)) of problem (7.1) and that the solutions
depend continuously on the initial data (see, for example, [4]).

From condition (H2) we easily find that
g\, z, u)u < elh(z)|u® + D, |h(z)]|u]

on bounded intervals of A.
Hence, comparison arguments (see, for example, [5]) show that |u(f, z)| < U(t. ),
where u is the solution of (7.1) and U is the solution of the following linear problem:

U, -AU+U=0 in £2,
ou -
5 = A+ el(@))U + De|h(x)|  on HL2, (7.2)
U(0, ) = jug(x)] in £2.

With this comparison we obtain the following information.

(1) Since problem (7.2) is linear and h € L"(0f2) with r > N — 1, we find that the
solutions of (7.2) are in C(§2) and they are globally defined in time. This gives us
estimates on the solution u(¢,z) of (7.1), which in turn imply that the solutions
of (7.1) are global in time. Hence, for cach ug € C(£2) we have a unique solution

u € C([0,00),C(£2)).
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(2) If we consider a fixed A < o1, then, for ¢ sufficiently small, we have the existence
of a unique solution ¢, € C(£?2) of the following elliptic problem:

—Ap+p=0 in {2,

0 7.3)
a—f = (A +elh(x)])¢ + De|h(z)| on 012, (

To sce this, we apply the Lax Milgram theorem to the following bilinear form in

HY($2):
a (U, v) = / (VuVo + uu) — / A+ e|h(x)])uv.
e a0

Observe that since A < oy, the bilinear form above with ¢ = 0 is cocrcive. Now
since, h € L™(982) and r > N — 1, for ¢ sufficiently small we can show, via Sobolev
cmbeddings and trace theorems, that a. is also coercive and we obtain the existence
and uniqueness of a weak solution. Using regularity results we get that the solution
9. € C(£2), since r > N — 1.

{3) Now, the solution U of (7.2) is given by U(t,z) = z(t,2) + ¢.(a), where z(t, x)
is the solution of

z7—Az+2z=0 in 2,
%:(A—}—dh(mﬂ)z on 94, (7.4)
T

2(0,2) = lug(z)] — e in (2.

But the coercitivity of the bilinear form a. and the smoothing propertics of the
solutions of (7.4) imply that

12(t, Moy < M7 fuo| — ell oo
for some M., 7. > 0. Hence, the solution u of (7.1) satisfies

=

Jutt M < 10 ow) < M uol = plogay +leelow — (75)

and also

limsup u(t, 2)| < pe(x) ae x€ 0. (7.6)
f—4o00
Estimate (7.5) implies that for A < o the evolution of any initial condition
for (7.1) is contained in a bounded set. Hence, this problem has an attractor (see
[12]). Moreover, all the globally defined and bounded solutions are contained in the
attractor. In particular, all the equilibria, connections between equilibria, etc., are
contained in the attractor. Estimate (7.6} tells us that any point in the attractor is
bounded pointwise by .. In particular, all equilibria are bounded by ..
With respect to the stability of the equilibria bifurcating from infinity at the first
eigenvalue o1, when we have a subcritical bifurcation, we have the following.

PROPOSITION 7.1. Assume the conditions of theorem 4.3 hold. We then have the
following.
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(i) If the bifurcation of positive solutions (respectively, negative solutions) at the
first eigenvalue A = o1 is subcritical, then there exists a 6 > 0 sufficiently
small that, for o1 — 8 < A < o1, the largest positive (respectively, smallest
negative) solution bifurcating from infinity is globally asymptotically stable
from above (respectively, from below). That is, if uy > 0 (respectively, uy <
0) is this solution then, for every initial condition wy > wuy (respectively,
wo < uy ), the solution u(t,z,wo) of (7.1) with this initial condition satisfies
limyg oo u(t, 7, wo) = uy uniformly in x € 02, for oy — 6 < A < 0.

(i1) If in (4.1) we have G4 = € (respectively, G_ < —¢) for some ¢ > 0, then the
bifurcation of positive (respectively, negative) solutions at A = oy is subcritical.
Moreover, there exists a Bg > 0 large enough such that if uy is the smallest
positive (respectively, largest negative) solution salisfying iy = By (respec-
tively, 4y < —0o), then there exists a 6 > 0 such that the equilibrium ) is
asymptotically stable from below (respectively, above) for oy —d < XA < o).

In particular, if for some A in this range we have a unique positive (respec-
tively, negative) equilibrium, that is, ty = uy, then this equilibrium is asymp-
totically stable.

Proof. In order to prove this result we analyse the solution of (7.1} with ini-
tial condition uy = B, for § € R, where @1 is the positive eigenfunction with
P11y = 1 associated with the first Steklov eigenvalue. Hence, if we denote
this solution by u(f), multiplying the equation (7.1) by a positive test function
x € C*®(RY) and integrating by parts, we obtain

d
% /Qu(t)X = - /”(Vu(t)VX +u(t)x) + /M Au(t)x + g\, - u(t))x.

Evaluating this cxpression at ¢t = 0, we get
d
——/ u(t)xlt=0 = =3 [ (V&1VXx + P1x) +/ ABPIX + g(A, -, BP1)x
dt /o 7} 002
and taking into account the fact that @; is the first Steklov eigenfunction, we get
/ (VO1Vx +P1x) = 01/ P1x,
[y a0
which implies that
d
di ]

u(t)x

_ . g(>‘7 7/8@1)> 7
-/0 ) (A o1+ 2O Y5 (7.7)

This is the basic equality with which we prove the result.

t=0

(i) Consider the case where we have a family of positive solutions, bifurcating from
infinity and the bifurcation is subcritical. For fixed A, denote by w) the largest
positive solution.
We know from proposition 3.1 and corollary 3.2 that
__U)\—__ - @1.
[urll Lo ()
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For a fixed A with —d < A — o1 < 0, let 8y be sufficiently large that 8 @1 > wuy
and
‘Q(A,%/A@(z))
BrP1(x)

This can be accomplished by condition (H2) and using inf,cs0 @1(x) > 0. Hence,
for 3 2 By and x > 0, we get

(< A=l

i

1

u(t)x < 5 ./zm()\ —01)Bd1x < 0. (7.8)

t=0

Since x > 0 is arbitrary, this implics that the solution starting at &, for 3 = By
is initially decreasing, that is, there exists a small ¢4 such that u(t, z, 5&1) < 5P, for
0 <t < tp. Since the flow generated by (7.1) is monotone, then we easily find that
ult,z, B} < uls,x, fP1) < PPy for all 0 < s < t. Moreover, since we have chosen
O\®| > uy and uy is an equilibrium, we get uy < u(t, z, 3&1) < 4P, for all t > 0.
Now, since the solution u(t,z, 3®1) is monotone decreasing in time and bounded
below, and wy is the largest positive equilibrium solution, then, for cach 8 > 5,
necessarily u(t, z, 3®;) — uy as t — oo uniformly in x € £2.

Hence, for any initial condition wy € C(£2) with wg > uy, if we consider 3 > 3
such that uy < wy € fb4, by monotonicity of the flow we get

uy < limsupu(t, -, wo) < lim w(t, -, 8Py} = uy,
t—o00 t—00

which proves the result.

(ii) If G4 > ¢ for some & > 0, then, we know from theorem 4.3 that the bifurcation
of positive solutions is subcritical.
Choose a 8y > 0 sufficiently large and § > 0 sufficiently small that, from (4.1),

we get
g()‘ﬂxﬂ ﬂ()@l (‘T)) 1
D T >, oy —6<A<ay, x€OIN.
(Bo®1(x))> 2 ! !

This implies that, for this Gy fixed, we have

_(]()\,.'177,{))()(15] (.’1/)) S £ S -
Bo®1(x) 7 2(Be®i(x))ime T T

o1 —0<A<o, x€dfl,

where
€

E=inf{ ————
{ 2(Bo@1 ()~
Assuming that § < 3¢ (if this is not the case, we choosc § = 1£) from (7.7) with

initial condition Sy®; we get

4
at /o

:JZG@Q}.

u(t)y

Z %5/ ﬂ()dﬁX > 0, (79)
t=0 o0
which implies, as in (i), that the solution starting at 5@, is non-decreasing. Now,
with similar monotonicity arguments to those in (i) we prove that the solution
of (7.1) with initial condition wy and BoP < wy < uy has to converge to uy.

The case G_ < —¢ is the same. O
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REMARK 7.2. A condition which guarantees that, for a fixed A, there exists a unique
sufficiently large positive (respectively, negative) solution is to assume that the
function s — g(A, x, 8)/s is strictly monotone for s > 0 (respectively, s < 0) large
enough and a.e. x € 2. To sec this, assume that wy and 4y arc two positive
solutions with uy(z), @x(z) = 3 and such that s — g(X, x, 5)/s is strictly monotone
for s = (. Observe that without loss of generality we can assume that @y < wy.
Then, u) is the solution of

—Auy +uy=0 in £2,
% = ()\ + M)U,)\ on 02,
on Uy

that is u) is an eigenfunction associated with the eigenvalue p = 0, of the following
eigenvalue problem:

—A¢+ &= uod in {2,
34 I 7.10)
99 _ (,\ + _Q(A"'/’“A)>¢, on 02, (710
on Uy

and, since uy > 0, 0 is the principal cigenfunction.
Similarly, we could argue that ¢ = 4, > 0 is the principal eigenfunction associ-
ated with the principal eigenvalue 0 of the following problem:

—Ad+ ¢ = po in {2,
€, 1 7.11
%:<A+——g“’f’“”>¢ on 0. (r-11)
on 11y,

But, since @iy < uy, by the monotonicity of s = g(X, x, s)}/s we cannot have g = 0
as the first eigenvalue of both problems (7.10) and (7.11).

When the bifurcation at the first eigenvaluc is supercritical we can make the
following proposition.

PROPOSITION 7.3. Assume that the function g is differentiable with respect to the

last variable and consider the functions G, Gy, G_, G_ as defined in ({.1) for
some o < 1 and for o = o1, the first Steklov eigenvalue. Hence, if we have

WA 2,8 —_— . i w( Ay s
lim inf g(—alél z oGy (respectw(zly, lim sup M < (IG>
(As)=(on,to0) YT (As)=(o1,—0) 57 -
(7.12)
and if condition (4.7) holds, that is,
G ()T <0 (respectively., G_(x)® ™ > 0),
82 002

then the bifurcation of positive (respectively, negative) solutions at the first eigen-
value is supercritical and any positive (respectively, negative) equilibrium solution
bifurcating from infinily is unstable.
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Proof. We consider only the case of bifurcation of positive solutions. The proof for
that of negative solutions is similar.

Condition (4.7) guarantees that there exists a supercritical bifurcation of posi-
tive solutions from infinity at the first eigenvalue o;. Let us denote by wuy a positive
solution bifurcating from infinity. The cigenvalue problem associated with the lin-
carization around wy is given by

—Aw +w = pw in £2,
Ow (7.13)
5 = Aw + gy (A, z,ux)w  on 962
n

We will show that the first cigenvalue gy = pi(A) < 0 for A > oy sufficiently
close to a1. This eigenvalue is given by

Jo IVoI* + 1017 — [16 Mol* + gu(A x, uy)[¢]?

(1 = min
SCH'($2) fn ]2
< JQ V1|2 + |1 — f(m AP+ gu(A z,ua) P12
f(z D1
(o =) S 191 = [y gu(Nsaun)| P
_ [T , (7.14)
. 0 1

where we have used the fact that @ is the first Steklov eigenfunction associated
with the eigenvalue oy.
But observe that, from lemma 4.2, we have

oA _ eTiet

lim sup pro < (7.15)
A—a ”“)\”Lool(ag) f{m é%
On the other hand, from (7.12) and corollary 3.2, we have
(AT, un) —
lim inf/ %‘MMIV > / oG (z)d1He. (7.16)
A=or Jan o uy a0

Plugging expressions (7.15) and (7.16) into (7.14), we obtain

) _ (- a) [, Gl

lim sup — <
Aoy [l H%ool(gm) fQ o]

Now, since, by hypothesis, condition (4.7) holds and « < 1, we find that yu; < 0 for
A sufficiently close to o7 and the equilibrium is unstable. O

8. Remarks and extensions

We consider in this section several important remarks and extensions of the problem
we are dealing with. These comments go in three directions.

First, in § 8.1, we will consider the case where bifurcations from the trivial solution
may occur. For this, we will need to assume that the nonlincarity g is g(A, z,u) =
o{u) as u — 0.
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Second, in §8.2, we will consider the case where the nonlincar boundary condi-
tions incorporate a potential with a possible non-definite sign, that is, the boundary
conditions reads

ou
— = dm(x)u + g\, z,u).
o (@ + g\, z,u)

Finally, in §8.3, we analyse the simpler, but important and instructive case in

which N = 1.

8.1. Bifurcation from the trivial solution

We consider problem (1.2) and assume that the nonlinearity g satisfies condi-
tion (H1) but, instead of specifying the behaviour of g for large values of u, we
consider the behaviour of g for small values of w. That is, we assumc that

We have the following result.

THEOREM 8.1. Consider problem (1.2) and assume that the nonlinearity g satisfies
conditions (H1) and (H3). If o is a Steklov eigenvalue of odd multiplicity, then
the set of solutions of (1.2) possesses a component emanating from the bifurcaiion
point (0,0) € R x C(§2). Moreover, this component, is either bounded in R x C(£2).
wn which case it meets another bifurcation point from zero (that is, another point
(¢’,0) for another Steklov eigenvalue o’ ), or unbounded.

Proof. The proof of this result follows the general results on bifurcations from the
trivial solution given in [16]; see also [2] for similar results when the nonlinearity is
in the interior. O

REMARK 8.2. Obscrve that it is possible to have nonlinearities in which both situ-
ations (that from theorem 8.1 and the one from theorem 3.3) hold. This is the casce,
for instance, where the nonlinearity g(A, z,u) is o(u) at u — 0 and at © — oo, In
this situation, both theorems apply and if o is a Steklov eigenvalue of odd multiplic-
ity (for instance the first one) then both bifurcations, from zero and from infinity
occurs at this value of the paramecter.

8.2. Potential on the boundary

We now study the case in which the nonlinear elliptic problem contaius a potential
m(z) in the boundary condition:

—Au+u=0 in £2,
, (8.1)
g_u = m(z)u+ g(Ax,u) on I
n

For simplicity we may assume that m € L™ (0§2) and we will consider the important
case in which the potential changes sign on 0f2.
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The role played in the whole analysis of the previous sections by the eigenvalues
{oi}3, of problem (1.3} is now played by the eigenvalues of the following problem:

~ADG+P =0 in 0,

P (8.2)
% =om(z)® on I

We will still denote these values as Steklov eigenvalucs. Hence, o is a Steklov
cigenvalue, if problem (8.2) has non-trivial solutions. Moreover, the multiplicity of
o is the number of linearly independent solutions of (8.2). Alternatively, c € R is a
steklov eigenvalue if and only if g = 0 is an eigenvalue of the following eigenvalue
problem

AP+ P = pud in £2,

(8.3)
od =om(z)P on 92,
on

and the multiplicity of o as a Steklov eigenvalue of (8.2) is the same as the multi-
plicity of the eigenvalue p = 0 of (8.3).
In terms of the structure of the Steklov eigenvalues we obtain the following result.

PROPOSITION 8.3. Let the potential m € L>=(082), with 2 C RN, N > 2 and let
o > 0. Then the following conditions hold.

(i) If m =2 o > 0 in a subset 'y C 92 with (N — 1)-dimensional measure
[y|n—1 > 0, then there exists a sequence of Steklov eigenvalues {o7 }32,,
0 <of <of <---, with the property that Jj — 400 as i — +o00 and these
are all the positive Steklov eigenvalues. Moreover, UfL 18 stmple and the eigen-

Jfunction corresponding to the eigenvalue Ufr does not change sign in {2.

(i) If m € — < 0 in I'_ C 002 with |I_|n_1 > 0, then there exists a sequence
of Steklov eigenvalues {o; }>2,, 0 > o[ >0, = ---, with the property that
o, — =00 as i — 400 and these are all the negative Steklov eigenvalues.
Moreover, o[ is simple and the eigenfunction corresponding to the eigenvalue

oy does not change sign in (2.

Proof. We will sketch the proof; the reader may complete the details, since the
arguments arc similar to the case of potentials in 2 (see [10,13]).

It is sufficient to show (i), since (ii) is obtained from (i) by observing that Am(xz) =
(=M){=m(x)).

(1) Consider, for cach fixed o € R, the eigenvalues {p(0)}7° | of problem (8.3)
Note that, for fixed ¢ € R, we find that the sequence {up(0)}3>, corresponds
to the eigenvalues of —A + I with the Robin boundary condition du/dn = amu.
Hencee, pg(o) = +00 as k — oo. In particular, if ¢ = 0, we recover the Neumann
cigenvalues of —A+1TI and we know that 1 = p1(0) < p2(0) < -+ < i (0) = +o00 as
k — oo. For fixed k we can consider the dependence of py with respect to o. These
curves are continuous in o (see [14]). Moreover, using the min—max characterization
of the eigenvalues, we can sce easily that, for o = 0, we have 7,(0) < pxr(0), where
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(0} are the eigenvalues of

—AP+ D = 7D in £,

4
?—@ =omt(x)® on dN. 54

on
Again using the min—max characterization of the cigenvalues and the fact that
m* > 0, we can sce easily that for o > 0 the curves ¢ — 74(0) are non-increasing.
Moreover, from the fact that m > o in I't, it can be seen that both curves
Tk(0), up(o0) = —o0 as 0 — +o00. The structure of these curves as o — oc and
the characterization of the Steklov eigenvalues as the values o > 0 for which some
of these curves pass through zero easily prove the result. il

All the results of the previous sections can be easily adapted to the problem (8.1).
In particular, the operator Sy from lemma 2.5, which appcears in the fixed-point
problem (2.7), is obtained by using the trace of the solution of the following problem:

—Au+u=0 in {2
ou (8.5)

and the fixed-point problem (3.1) should be rewritten now as v = ASy(mv) +
Solg(A, -, v}), where Sy is as in lemma 2.5.

The existence of bifurcations from infinity at a Steklov cigenvalue ofr or 7, , of
odd multiplicity follows the same line of proof.

The characterization of the type of bifurcation (sub- or supercritical) when the
parameter A crosses one of the eigenvalues o*f > 0 for some ¢ = 1,2,... is the same
as in the case m = 1, that is, theorems 4.3 and 4.5 apply directly to this case. For
instance, if

| a0,
a8

then the bifurcation of positive solutions at A = Jf’ > 0 is subcritical. If the
paramcter A crosses o; < 0, then the characterizations arc exactly the opposite.
that is, for instance if

/ G 7 ()T >0,
o

then the bifurcation of positive solutions at A = o < 0 is supercritical. The reversal
of characterizations can easily be seen since analysing the behaviour of (8.1) for

A < 0 is the same as analysing the same problem for 7 = —X > 0 for the potential
n = —m, since Am = (—=A)(—m) = 7n.

In this same spirit, and for the case where the potential changes sign, for which we
have two principal eigenvalues, o; < 0 < afr , with strictly positive eigenfunctions
@ _ and @ ., respectively, the anti-maximum principle with a potential will be as
follows.
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THEOREM 8.4. For cvery g € L"(82) with r > N — 1, there exists € = €(g) such
that

(i) if [y 9P1+ > 0 (respectively, [,,9®1— > 0), then every solution (X, u)
of (8.5) satisfies

(a) u>04if0<o] —e< A<a, (respectively, u < 0 if o] —e <A <oy <
0),
(b) wu<0ifo] <A< o +e (respectively, w >0 if o] <A <oy +e<0),
(i) if [y, 9P1 = 0 then every solution (A, u) of (6.1) with X # oy changes it sign
on 952 and consequently in {2.
8.3. The case N =1

So far we have been treating the case where the equation is N-dimensional with
N = 2. We give now some ideas on how to treat the one-dimensional case. We will
see that the bifurcation problem is a two-parameter nonlinear problem that can be
treated using finite-dimensional techniques.

Observe that, if we consider cquation (1.2) (or, in a similar way, cquation (8.1)),
in the one-dimensional domain 2 = (0,1) we can rewrite it as

gy +u=0 1in (0,1),
—ue(0) = Au + go( N, u{0)), (8.6)
up (1) = A+ g1 (A u(l)).

But in this case, the differential equation can be solved explicitly in terms of two
constants ¢ and b. The general solution is u(x) = ae” + be™™. By plugging this
expression into the boundary conditions, we obtain the following two equations,
which are the cquivalent to equation (2.7):

—a+b=Aa+0b)+go(N\a+b), z=0,
ac—be”! = Mae +be 1) + g1 (N ae +be™h), z=1.

Observe that in this case we only have two Steklov eigenvalues, which are given
by the values o for which the following matrix has zero determinant:

-(1+0) 1—o0)
(1—0c)e —(1+o)et)’

These two values are given by

e—1< 1 e+ 1
01 — Oy == — = .
! e+1 2 o1 c—1

The cigenfunctions ¢ and @, for this problem are given by

et 4+ C] —x e¥ — Oler'
@1(:1)):—1+C , @2(:];):?1_6

Observe that @,(0) = @1(1) =1 and P2(0) = 1 = —Po(1).
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For any A # o1, o2, the function v = ae® 4 be™ is a solution if (a, b) satisfy

(a): —aan 1N N [ gohatb)
b (1-XNe —(1+A)e? g1(A\,ac +be™ 1)

The sublinearity of gg and ¢, as u — oo allows to apply fixed-point arguments
in R? guarantceing the existence of at least one solution for any A # oy, o3. More-
over, the fact that both eigenvalues arc simple, guarantee that under a sublinearity
condition on ¢ as u — 00, we have bifurcation curves from infinity.
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