Bull. Aust. Math. Soc. **101** (2020), 446–452 doi:10.1017/S0004972719001011

SUBGROUPS WITH NO ABELIAN COMPOSITION FACTORS ARE NOT DISTINGUISHED

ROBERT CHAMBERLAIN

(Received 16 July 2019; accepted 2 August 2019; first published online 13 September 2019)

Abstract

Given a finite group *G*, define the minimal degree $\mu(G)$ of *G* to be the least *n* such that *G* embeds into *S_n*. We call *G* exceptional if there is some $N \leq G$ with $\mu(G/N) > \mu(G)$, in which case we call *N* distinguished. We prove here that a subgroup with no abelian composition factors is not distinguished.

2010 *Mathematics subject classification*: primary 20B05; secondary 20B35. *Keywords and phrases*: permutation representation, finite group.

1. Related results

Perhaps counter-intuitively, it is possible to find an integer *n* and a finite group *G* with a normal subgroup $N \leq G$ such that *G* embeds into S_n and G/N does not. Such a group is called exceptional. This is equivalent to $\mu(G) < \mu(G/N)$, where $\mu(G)$ denotes the minimal degree of *G* which is the least *n* such that *G* embeds into S_n .

An early example of this was given by Neumann [11] and described in more generality in [7]. There *G* is the direct product of k > 1 copies of D_8 , the dihedral group of order eight. One can show that $\mu(G) = 4k$ and that there is a central subgroup *N* of *G* of order 2^{k-1} such that $\mu(G/N) = 2^{k+1}$.

It is in this sense that $\mu(G/N)$ can be exponential in $\mu(G)$. It was shown in [7] that $\mu(G/N) \le 4.5^{\mu(G)}$. Further examples of exceptional *p*-groups can be found for example in [2, 5, 10]. These examples have led to the suggestion that exceptionality of a group somehow comes from its abelian composition factors, leading to the main result of this paper. An analogous result, Theorem 1 in [9], states that if G/N has no abelian normal subgroup, then N is not distinguished. A corollary of this result, or of the main theorem in this paper, is that a group with no abelian composition factors is not exceptional. In fact, if N is distinguished in G, then both N and G/N must contain an abelian composition factor.

This also adds to a list of results suggesting a connection between minimal normal subgroups of a group and minimal degree. It was shown for example in [1] that if G

This work was supported by the Engineering and Physical Sciences Research Council.

^{© 2019} Australian Mathematical Publishing Association Inc.

and *H* have central socles, then $\mu(G \times H) = \mu(G) + \mu(H)$. Also, a method was given in [3] to calculate the minimal degree of a group with no abelian minimal normal subgroups.

2. Main result and proof

Throughout we assume that each group G is finite and that $G \leq S_{\mu(G)}$. We call the group G D-minimal if G is of least order such that there exists some distinguished $N \leq G$ with no abelian composition factors.

PROPOSITION 2.1. Let $N_0 \leq G$ be distinguished, $N \leq G$ and $N \leq N_0$; then either N is distinguished or N_0/N is distinguished in G/N.

PROOF. If N_0/N is not distinguished in G/N, then

$$\mu(G) < \mu(G/N_0) = \mu\left(\frac{G/N}{N_0/N}\right) \le \mu(G/N).$$

Hence, N is distinguished.

LEMMA 2.2. Let N, L, K be normal subgroups in G with N minimal and nonabelian. Then $N(K \cap L) = NK \cap NL$.

PROOF. Clearly $N(K \cap L) \subseteq NK \cap NL$.

If $N \le L$ or $N \le K$, then the result is the modular law for groups, so assume that $N \cap K = N \cap L = 1$. We first consider orders:

$$|N(K \cap L)| = |N||K \cap L|$$

= |N||K||L|/|KL|,
|NK \cap NL| = |NK||NL|/|NKL|
= |N||K||L||N \cap KL|/|KL|.

So, if $N(K \cap L) \neq NK \cap NL$, then $|N \cap KL| > 1$ and therefore $N \subseteq KL$. However, as N and K are normal subgroups in G with $N \cap K = 1$, it follows that $N \subseteq C_G(K)$. Similarly $N \subseteq C_G(L)$. So, $N \subseteq C_G(KL) \leq C_G(N)$, contradicting the assumption that N is nonabelian. Hence, $N(K \cap L) = NK \cap NL$.

For the next proposition, we use notation given in [8, Section 1]. Specifically we use the correspondence between permutation representations of a group G and multi-sets of subgroups of G.

PROPOSITION 2.3. If G is D-minimal with nonabelian distinguished minimal normal subgroup N, then G is transitive.

PROOF. Let $\{H_1, \ldots, H_k\}$ define a minimal permutation representation of *G* of degree $\mu(G)$. Denote $K_i = \operatorname{core}_G(H_i)$, so $\bigcap_{i=1}^k K_i = 1$. The action of G/K_i on the right cosets of H_i then defines a minimal representation of G/K_i (if $\{H_{i0}/K_i, \ldots, H_{ik_i}/K_i\}$ defines a representation of smaller degree, then replacing H_i with H_{i0}, \ldots, H_{ik_i} defines a representation of degree less than $\mu(G)$).

R. Chamberlain

Suppose that k > 1, so that $|K_i| > 1$ for each *i*. Since *G* is D-minimal, $\mu(G/NK_i) \le \mu(G/K_i)$, so there is some $\{H_{i0}, \ldots, H_{ik_i}\}$ with $\sum_{j=1}^{k_i} [G : H_{ii_j}] \le [G : H_i]$ and $\operatorname{core}_G(\bigcap_{j=1}^{k_i} (H_{ii_j})) = NK_i$. In particular, $\sum_{i=1}^k \sum_{j=1}^{k_i} [G : H_{ii_j}] \le \sum_{i=1}^k [G : H_i] = d$ and $\operatorname{core}_G(\bigcap_{i=1}^k \bigcap_{j=1}^{k_i} (H_{ii_j})) = \bigcap_{i=1}^k NK_i$. Using Lemma 2.2 inductively then gives $\operatorname{core}_G(\bigcap_{i=1}^k \bigcap_{j=1}^{k_i} (H_{ii_j})) = N \cap_{i=1}^k K_i = N$, so $\{H_{ii_j}\}$ defines a faithful representation of *G/N* of degree at most $\mu(G)$, contradicting the assumption that *N* is distinguished. Hence, k = 1 and *G* is transitive.

PROPOSITION 2.4. If G has a nonabelian distinguished minimal normal subgroup N, then $C_G(N)$ is nontrivial.

PROOF. As *N* is a minimal normal subgroup, $N = S^k$ for some simple group *S*. If $C_G(N) = 1$, then the action of *G* on *N* by conjugation gives an embedding of *G/N* into $Out(N) \cong Out(S) \wr S_k$. Hence, $\mu(G/N) \le \mu(Out(S)) \le k_\mu(Out(S))$. For each simple group *S*, Out(S) and $\mu(S)$ are known (see, for example, [4]) and one can check that $\mu(Out(S)) \le \mu(S)$. It was also shown in [5] that if T_1, \ldots, T_r are simple groups, then $\mu(T_1 \times \cdots \times T_r) = \mu(T_1) + \cdots + \mu(T_r)$. So,

$$\mu(G/N) \le k\mu(\operatorname{Out}(S)) \le k\mu(S) = \mu(N) \le \mu(G),$$

contradicting the assumption that N is distinguished. Hence, $C_G(N)$ is nontrivial. \Box

We will use the following result (see, for example, [12, Proposition 12.1]) without further reference.

PROPOSITION 2.5. Suppose that G is transitive and $B_{\Gamma} = \{\Gamma_1, \ldots, \Gamma_r\}$ forms a block system for G. Then G embeds into $(G_{\Gamma_1})^{\Gamma_1} \wr G^{B_{\Gamma}}$.

PROPOSITION 2.6. If G is D-minimal and has a nonabelian distinguished minimal normal subgroup N, then N is transitive.

PROOF. By Proposition 2.3, *G* is transitive. Suppose that *N* is intransitive. The orbits of *N* form a block system $B_{\Gamma} = \{\Gamma_1, \ldots, \Gamma_r\}$ of *G* in Ω . We may therefore embed $\phi : G \hookrightarrow (G_{\Gamma_1})^{\Gamma_1} \wr G^{B_{\Gamma}}$.

Let $N_1 = N^{\Gamma_1} \leq (G_{\Gamma_1})^{\Gamma_1}$ and $M = N_1^r \leq (G_{\Gamma_1})^{\Gamma_1} \wr G^{B_{\Gamma}}$. Now, N is a direct product of isomorphic simple groups, so $M \cap \phi(G)$ is a direct product of isomorphic simple groups. Also, $\phi(N)$ is normal in $M \cap \phi(G)$ and a subdirect product of $M \cap \phi(G)$. Hence, $\phi(N) = M \cap \phi(G)$. Therefore, $G/N \cong \phi(G)/\phi(N)$ embeds into $(G_{\Gamma_1})^{\Gamma_1} \wr G^{B_{\Gamma}}/M \cong (G_{\Gamma_1})^{\Gamma_1}/N_1 \wr G^{B_{\Gamma}}$. This gives $\mu(G/N) \leq \mu((G_{\Gamma_1})^{\Gamma_1}/N^{\Gamma_1})\mu(G)/|\Gamma_1|$.

If $\mu((G_{\Gamma_1})^{\Gamma_1}) < |\Gamma_1|$, then $\mu(G) \le \mu((G_{\Gamma_1})^{\Gamma_1} \wr G^{B_{\Gamma}}) < |\Gamma_1||B_{\Gamma}| = \mu(G)$, which is absurd. So, $\mu((G_{\Gamma_1})^{\Gamma_1}) = |\Gamma_1|$. If N^{Γ_1} is not distinguished in $(G_{\Gamma_1})^{\Gamma_1}$, then $\mu((G_{\Gamma_1})^{\Gamma_1}/N_1) \le |\Gamma_1|$. Therefore, $\mu(G/N) \le \mu((G_{\Gamma_1})^{\Gamma_1}/N_1 \wr G^{B_{\Gamma}}) \le |\Gamma_1||B_{\Gamma}| = \mu(G)$, so N is not distinguished.

Hence, N^{Γ_1} distinguished in $(G_{\Gamma_1})^{\Gamma_1}$. This contradicts the assumption that G is D-minimal. Hence, N must be transitive.

LEMMA 2.7. If *S* is a nonabelian simple group, then $|Out(S)| \le \mu(S)$.

448

PROOF. This is a systematic check, so we omit the proof. The only challenging cases here are the simple groups of Lie type. A full list of the minimal degrees of these groups can be found in [6]. \Box

We use the following result (see, for example, [13, Proposition 4.3]) without further reference.

PROPOSITION 2.8. Suppose that $N \leq G$ is transitive. Then $C_G(N)$ is semiregular.

PROPOSITION 2.9. Suppose that G is D-minimal with nonabelian distinguished minimal normal subgroup N. Then N is not simple.

PROOF. Suppose that such an *N* is simple. By Propositions 2.3 and 2.6, *G* and *N* are transitive. Let *H* be the stabiliser of some point in Ω , so G = HN. In particular, $G/N \cong H/(H \cap N)$, so $H \cap N$ is distinguished in *H*. Also, $\mu(G) = [G : H] = [N : H \cap N]$.

As $C = C_G(N)$ is semiregular, $H \cap C = 1$. In particular, H embeds into G/C, which in turn embeds into Aut(N) via conjugation. Let $H_{\text{Inn}(N)}$ be the elements of H which act on N via inner automorphisms. This gives $H \cap N \leq H_{\text{Inn}(N)}$.

We note that the image of $H_{\text{Inn}(N)}$ in Aut(*N*) is strictly contained in Inn(*N*). Indeed, by assumption, if $H \cap N$ is trivial, then $\mu(G/N) = \mu(H/(H \cap N)) = \mu(H) \le \mu(G)$, contrary to assumption. And, if $H \cap N$ is nontrivial and the image of $H_{\text{Inn}(N)}$ in Aut(*N*) is Inn(*N*), then simplicity of *N* implies that $H \cap N = N$, contradicting the fact that *H* is core-free. Hence, the image of $H_{\text{Inn}(N)}$ in Aut(*N*) is strictly contained in Inn(*N*).

This means that $H_{\text{Inn}(N)}$ is isomorphic to a core-free subgroup of *N*. Hence, $|H_{\text{Inn}(N)}| \leq |N|/\mu(N)$. We also have, by definition of $H_{\text{Inn}(N)}$, that $H/H_{\text{Inn}(N)}$ embeds into Out(N). By Lemma 2.7, $|\text{Out}(N)| < \mu(N)$. This gives

$$|H/(H \cap N)| = \frac{|H|}{|H_{\text{Inn}(N)}|} \frac{|H_{\text{Inn}(N)}|}{|H \cap N|} \le \frac{|\text{Out}(N)|}{\mu(N)} \frac{|N|}{|H \cap N|} < \mu(G).$$

This means that $\mu(G/N) = \mu(H/(H \cap N)) < \mu(G)$, contrary to assumption. Therefore, N is not simple.

LEMMA 2.10. Suppose that G = HN such that $\{H\}$ defines a minimal representation of $G, N \leq G$ and Z(N) = 1. Denote $C = C_G(N)$ and $H_{\text{Inn}(N)}$ the subgroup of H which acts on N under conjugation by inner automorphisms of N. Then $C \cong H_{\text{Inn}(N)}/(H \cap N)$.

If, in addition, N is a distinguished minimal normal subgroup of G, then $\mu(G) = |C|\mu(G/C)$.

PROOF. Define a group homomorphism $\phi : H_{\text{Inn}(N)} \to C$ as follows. If $h \in H_{\text{Inn}(N)}$, then, as Z(N) = 1, there is a unique $n_h \in N$ such that h acts on N identically under conjugation to n_h . Let $c_h = hn_h^{-1} \in C$ and $\phi(h) = c_h$. To see that ϕ is a homomorphism, notice that

$$c_{h_1}c_{h_2} = h_1 n_1^{-1} h_2 n_2^{-1} = h_1 h_2 (n_1^{-1})^{h_2} n_2^{-1} = c_{h_1 h_2}$$

To see that ϕ is surjective, suppose that $c \in C$. As G = HN, we have c = hn for some $h \in H$, $n \in N$. In particular, h acts on N identically under conjugation to n^{-1} ,

R. Chamberlain

so $h \in H_{\text{Inn}(N)}$ and $c = \phi(h)$. Finally, $h \in \text{ker}(\phi)$ if and only if $hn_h^{-1} = 1$ if and only if $h = n_h$ if and only if $h \in H \cap N$. This gives $C \cong H_{\text{Inn}(N)}/(H \cap N)$.

Now suppose further that N is a distinguished minimal normal subgroup of G.

Let Γ be the orbit of *C* under the representation defined by {*H*}. As *N* is transitive, *C* is semiregular, so $H \cap C = 1$ and $|\Gamma| = |C|$. The orbit Γ forms a block for the action of *G*, so *G* embeds into $(G_{\Gamma})^{\Gamma} \wr G^{\mathcal{B}_{\Gamma}}$. This gives

$$\mu(G) \le \mu((G_{\Gamma})^{\Gamma} \wr G^{\mathcal{B}_{\Gamma}}) \le \mu((G_{\Gamma})^{\Gamma})\mu(G^{\mathcal{B}_{\Gamma}}) \le |\Gamma|\frac{\mu(G)}{|\Gamma|} = \mu(G).$$

Hence, $\mu((G_{\Gamma})^{\Gamma}) = |\Gamma| = |C|$ and $\mu(G^{\mathcal{B}_{\Gamma}}) = \mu(G)/|C|$. It suffices then to show that $G^{\mathcal{B}_{\Gamma}} \cong G/C$. The action $G^{\mathcal{B}_{\Gamma}}$ is defined by $\{HC\}$, so it suffices to show that $\operatorname{core}_G(HC) = C$. Immediately $C \leq \operatorname{core}_G(HC)$. Suppose that $K \leq HC$ with $K \leq G$. If $K \cap N = N$, then K is transitive, so HC and therefore C is transitive. But then N is contained in the centre of a transitive normal subgroup C, so $N \cap H = 1$ and $\mu(G/N) = \mu(H) \leq \mu(G)$, contrary to assumption. Hence, $K \cap N = 1$ and $K \leq C$. This gives $\operatorname{core}_G(HC) = C$ and completes the proof.

THEOREM 2.11. Given a finite group G and distinguished normal subgroup $N \leq G$, N must have an abelian chief factor.

PROOF. We consider a counterexample (G, N) such that G is of least order. In particular, G is D-minimal and N has no abelian composition factors. Let N_0 be a minimal normal subgroup of G contained in N. As G is D-minimal, N/N_0 is not distinguished in G/N_0 , so by Proposition 2.1 N_0 is distinguished in G. Replacing N with N_0 if necessary, we may assume that N is minimal.

By Propositions 2.9, 2.3 and 2.6, N is not simple and G and N are transitive. In particular, we may denote $N = T_1 \times \cdots \times T_k$ with k > 1, where for some simple T we have $T_i \cong T$ for each *i*.

Let *H* be the stabiliser of some point in Ω , so that G = HN. In particular, $\mu(G) = [G : H] = [N : H \cap N]$ and $G/N \cong H/(H \cap N)$, so $H \cap N$ is distinguished in *H*. Also, by Lemma 2.10, $C \cong H_{\text{Inn}(N)}/(H \cap N)$ and $\mu(G) = |C|\mu(G/C)$.

Let $C = C_G(N)$, so $H \cap C = 1$. In particular, H embeds into G/C, which in turn embeds into $\operatorname{Aut}(N) \cong \operatorname{Aut}(T) \wr S_k$ via conjugation. Let $\phi : G \to S_k$ be the natural map on G through $\operatorname{Aut}(N)$. Together this gives

$$|N| = |N \cap H|\mu(G)$$

= $|N \cap H||C|\mu(G/C)$
 $\leq |N \cap H||C|k\mu(\operatorname{Aut}(T))$
= $|H_{\operatorname{Inn}(N)}|k\mu(\operatorname{Aut}(T)).$

Define $\psi : H_{\text{Inn}(N)} \to \text{Aut}(T)$ by the conjugation of T_1 by $H_{\text{Inn}(N)}$. Since N is minimal, $\phi(G)$ and therefore $\phi(H)$ is transitive. This means that the action of $H_{\text{Inn}(N)}$

on each T_i by conjugation has isomorphic image in Aut(*T*). Hence, $|H_{\text{Inn}(N)}| \le |\psi(H_{\text{Inn}(N)})|^k$. This gives

$$\frac{|T|}{|\psi(H_{\text{Inn}(N)})|} \le \left(\frac{|N|}{|H_{\text{Inn}(N)}|}\right)^{1/k} \le k^{1/k} \mu(\text{Aut}(T))^{1/k}.$$

We show here that $|T|/|\psi(H_{\text{Inn}(N)})| < \mu(T)$ and therefore that $\psi(H_{\text{Inn}(N)}) \cong T$. The values for $\mu(\text{Aut}(T))$ and $\mu(T)$ are known for all simple groups T. We use [3, Proposition 2.2], a corollary of which is that $\mu(\text{Aut}(T))/\mu(T) \le 28/9$. We begin with the small cases, $T = A_5, A_6$.

If $T = A_5$, then $k^{1/k} \mu(\operatorname{Aut}(T))^{1/k} = k^{1/k} 5^{1/k} < 5$.

If $T = A_6$, then $k^{1/k} \mu(\operatorname{Aut}(T))^{1/k} = k^{1/k} 10^{1/k} < 6$.

For all other simple groups, $\mu(T) \ge 7$. We use [3, Proposition 2.2], a corollary of which is that $\mu(\operatorname{Aut}(T))/\mu(T) \le 28/9$, so $\mu(\operatorname{Aut}(T)) \le (28/9)\mu(T)$.

Let $f(x) = x^k - (28/9)kx$, so f(x) > 0 if and only if $(28/9)^{1/k}k^{1/k}x^{1/k} < x$. For $x \ge 7$, $f'(x) = kx^{k-1} - (28/9)k > 0$, so if f(7) > 0, then f(x) > 0 for $x \ge 7$. One can check that f(7) > 0. Hence, $|T|/|\psi(H_{\text{Inn}(N)})| \le (28/9)^{1/k}k^{1/k}\mu(T)^{1/k} < \mu(T)$. This completes the proof that $\psi(H_{\text{Inn}(N)}) \cong T$.

This means that $H_{\text{Inn}(N)}$ is a subdirect product of $N \cong T^k$, so it is isomorphic to T^r for some r. Also, $H \cap N \trianglelefteq H_{\text{Inn}(N)}$, so it has no abelian chief factors. But $H \cap N$ is distinguished in H, contradicting the fact that G is D-minimal and completing the proof.

References

- [1] O. Becker, 'The minimal degree of permutation representations of finite groups', Preprint, 2012, arXiv:1204.1668.
- [2] J. R. Britnell, N. Saunders and T. Skyner, 'On exceptional groups of order p⁵', J. Pure Appl. Algebra 221(11) (2017), 2647–2665.
- [3] J. J. Cannon, D. F. Holt and W. R. Unger, 'The use of permutation representations in structural computations in large finite matrix groups', J. Symbolic Comput. 95 (2019), 26–38.
- [4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups (Oxford University Press, Eynsham, 1985), with computational assistance from J. G. Thackray.
- [5] D. Easdown and C. E. Praeger, 'On minimal faithful permutation representations of finite groups', Bull. Aust. Math. Soc. 38(2) (1988), 207–220.
- [6] S. Guest, J. Morris, C. E. Praeger and P. Spiga, 'On the maximum orders of elements of finite almost simple groups and primitive permutation groups', *Trans. Amer. Math. Soc.* 367(11) (2015), 7665–7694.
- [7] D. F. Holt and J. Walton, 'Representing the quotient groups of a finite permutation group', J. Algebra 248(1) (2002), 307–333.
- [8] D. L. Johnson, 'Minimal permutation representations of finite groups', Amer. J. Math. 93 (1971), 857–866.
- [9] L. G. Kovács and C. E. Praeger, 'On minimal faithful permutation representations of finite groups', *Bull. Aust. Math. Soc.* 62(2) (2000), 311–317.
- [10] S. Lemieux, 'Finite exceptional p-groups of small order', Comm. Algebra 35(6) (2007), 1890–1894.

R. Chamberlain

- [11] P. M. Neumann, 'Some algorithms for computing with finite permutation groups', in: *Proc. Groups, St. Andrews, 1985*, London Mathematical Society Lecture Note Series, 121 (Cambridge University Press, Cambridge, 1986), 59–92.
- [12] C. Wells, 'Some applications of the wreath product construction', Amer. Math. Monthly 83(5) (1975), 317–338.
- [13] H. Wielandt, *Finite Permutation Groups* (Academic Press, New York–London, 1964), translated from the German by R. Bercov.

ROBERT CHAMBERLAIN, Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK e-mail: r.m.chamberlain@warwick.ac.uk

452