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Clive W.J. Granger has summarized his personal viewpoint on testing for causality in
numerous articles over the past 30 years and has outlined what he considers to be a useful
operational version of his original definition of Granger causality, which he notes is
partially alluded to in the Ph.D. dissertation of Norbert Wiener. This operational version
of Granger causality is based on a comparison of the one-step-ahead predictive ability of
competing models. However, Granger concludes his discussion by noting that it is
common practice to test for Granger causality using in-sample F-tests. The practice of
using in-sample type Granger causality tests continues to be prevalent. In this paper we
develop simple (nonlinear) out-of-sample predictive ability tests of the Granger
non-causality null hypothesis. In addition, Monte Carlo experiments are used to
investigate the finite sample properites of the test. An empirical illustration shows that the
choice of in-sample versus out-of-sample Granger causality tests can crucially affect the
conclusions about the predictive content of money for output.

Keywords: Granger Causality, Predictive Ability, Nonlinearity Test

1. INTRODUCTION

Granger’s (1969) original definition of non-causality has received so much atten-
tion in economics that it scarcely needs any introduction [see, e.g., the papers
by Sims (1972), Pierce and Haugh (1977), Newbold (1982), Geweke et al. (1983),
Lütkepohl (1991), and Dufour and Renault (1998), for surveys, related results,
and relevant references]. One aspect of Granger’s original definition that has
not received as much attention, however, is the issue of whether or not standard
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OUT-OF-SAMPLE TESTS FOR GRANGER CAUSALITY 599

in-sample implementations of Granger’s definition are wholly in the spirit origi-
nally intended by Granger, and whether out-of-sample implementations might also
be useful. Arguments in favor of using out-of-sample implementations are given
by Granger (1980), and are summarized nicely by Ashley et al. (1980, p. 1149),
who stated that: “a sound and natural approach to such tests [Granger causality
tests] must rely primarily on the out-of-sample forecasting performance of mod-
els relating the original (non-prewhitened) series of interest.” In this paper, we
develop simple (nonlinear) out-of-sample predictive ability tests of the Granger
non-causality null hypothesis. Our approach is to first study the asymptotic be-
havior of the tests, and then to investigate the finite sample behavior via a series
of Monte Carlo experiments. Finally, an empirical illustration is used to show that
the choice of in-sample versus out-of-sample Granger causality tests can crucially
affect conclusions based on an empirical investigation of the marginal predictive
content of money for output.

It is quite standard to say thatxt (Granger) causesyt , if the past ofxt (or
the present in the case of contemporaneous causality) helps to predictyt . Thus,
it is natural to perform causality tests before constructing forecasting models,
and indeed, causality tests can be viewed as tests of predictive ability. However,
although it is true that both in-sample and out-of-sample lack-of-predictive-ability
hypotheses can be formulated in terms of zero restrictions, there is no reason why
in-sample and out-of-sample tests should yield the same answers when moderate
sample sizes are used. Thus, if we are interested in constructing forecasting models,
for example, it is natural to compare out-of-sample predictive ability and hence to
construct out-of-sample causality tests.1

One of the most popular tests for evaluating the predictive ability of two com-
peting forecasting models is the DM test [Diebold and Mariano (1995)] and the
version thereof that accounts for parameter estimation error [West (1996)]. White
(1999) further extends the DM test by allowing for the comparison of several mod-
els against one benchmark model. [For discussion of these and related tests, see
Ashley (1998), Clark (2000), Harvey et al. (1997), Mizrach (1992), and the refer-
ences contained therein.] However, all of these tests are constructed in a nonnested
modeling framework, and in the strictly nested modeling framework associated
with testing for Granger non-causality, we cannot directly implement these tests.
The reason for this is quite intuitive. Consider the DM test. In the context of
strictly nested models, and when parameter estimation error vanishes, the DM test
does not have a normal limiting distribution under the null of non-causality, but
instead approaches zero in probability. In addition, even when West’s (1996) ver-
sion of the test that accounts for parameter estimation error is used, then as long
as the out-of-sample period,P, grows at the same rate as the in-sample periodR
(i.e., 0<π <∞, whereP/R→π), Clark and McCracken (1999) and McCracken
(1998) show that although various Granger-causality-type out-of-sample predic-
tive ability test statistics can be constructed in the usual way (e.g., encompassing
tests, DM tests), they no longer have normal limiting distributions, but instead con-
verge to functionals of Brownian motion. We suggest a number of tests that have
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standard (normal) limiting distributions, which account for parameter estimation
error whenπ >0,and which allow for the case whereπ = 0. In addition, our tests
are very easy to compute.

One feature of our tests is that they are formed using one-step ahead prediction
errors. Note, though, that in-sample implementations of the definition of non-
causality to predictive ability at any period have been introduced by L¨utkepohl
(1993) and Dufour and Renault (1998). Dufour and Renault also provide a set of
testable sufficient conditions for which noncausality one-step-ahead implies non-
causality at any period, and discuss implementing the test. Although it is possible
to extend our out-of-sample tests to the evaluation of non-causality at any period,
this task is left for future research. In addition, model selection, such as the use of
the AIC and SIC for “selecting” between alternative forecasting models offers an
alternative to the tests considered here. Such approaches are discussed elsewhere
[e.g., see Swanson (1998)].

The rest of the paper is organized as follows. Section 2 outlines the asymptotic
properties of a simple linear out-of-sample Granger causality test. In addition, an
extension of the test that allows for the evaluation of the linear and nonlinear-
out-of sample predictive content ofXt for Yt , and which is similar in spirit to the
nonlinearity test of Lee et al. (1993), is discussed. Section 3 reports the findings
of a series of finite-sample Monte Carlo experiments, where it is concluded that
the simple tests perform reasonably well even whenP andR are relatively small.
In Section 4, an example is given in which we analyze the marginal predictive
content of money for output. The example serves to illustrate the potential for
in-sample and out-of-sample Granger causality tests to lead to different conclu-
sions. All proofs are gathered in an Appendix.

2. LINEAR AND NONLINEAR OUT-OF-SAMPLE GRANGER
CAUSALITY TESTS

Consider the restricted model2

yt =
q∑

j=1

β∗j yt− j + εt (1)

and the unrestricted model3

yt =
q∑

j=1

β∗j yt− j +
k∑

j=1

α∗j xt− j + ut . (2)

One implementation of Granger’s definition of non-causality involves forming a
test of the following hypotheses:

H0: α∗j = 0, ∀ j versusHA: α∗j 6= 0 for somej .
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An approach in this context is to construct a Wald-type statistic which has a limiting
χ2

k distribution under the null and diverges under the alternative. For example, in
the case of i.i.d. errors under the null, and given a maintained assumption of
conditional homoskedasticity, one commonly constructs

F = (RRSS− URSS)/k

URSS/(T − k)

where RRSS and URSS are the sum of least-squares residuals from the restricted
and the unrestricted models, respectively, andkF

d→χ2
k underH0, while it diverges

under the alternative. In general, these types of tests are used to evaluate in-sample
predictive ability, although an out-of-sample analog is proposed by Clark and
McCracken (1999).

Our objective is to construct a direct test for out-of-sample predictive ability.
Suppose we estimate (1) and (2) using observationst = 1, 2, . . . R, and compute

ε̂R+1 = yR+1−
q−1∑
j=0

β̂R, j yt− j

and

ûR+1 = yR+1−
q−1∑
j=0

β̂R, j yt− j −
k−1∑
j=0

α̂R, j xt− j .

We then reestimate the model usingR+ 1 observations and constructβ̂R+1, j , α̂R, j ,
ε̂R+2 andûR+2. This procedure is repeated until sequences ofP ex ante forecast
errors [i.e.,(ε̂R+1, ε̂R+2, . . . ε̂R+P) and (ûR+1, ûR+2, . . . ûR+P)] have been con-
structed. Typically, tests for out-of-sample predictive ability (e.g., DM test) are
based on

1√
P

T−1∑
t=R

[ f (ε̂t+1)− f (ût+1)], (3)

where f is some given loss function, and the null hypothesis of equal predictive
ability is formulated as

H ′0: E[ f (εt+1)] − E[ f (ut+1)] = 0.

It follows immediately that ifH0 is true, thenH ′0 should also be true. In fact
if α∗j = 0, ∀ j , thenut = εt , and soE[ f (εt+1)] − E[ f (ut+1)]= 0. In this sense,
if Xt has in-sample predictive power, it should also have out-of-sample predic-
tive power. Thus, asymptotically we should obtain the same answer regardless of
whether the test is performed in-sample or out-of-sample. However, analyses of
finite samples may lead to different answers, depending on whether in-sample or
out-of-sample inference is carried out. This suggests that if we are interested in out-
of-sample predictive ability, a natural approach is to construct an out-of-sample
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predictive ability test. If (3) is expanded around the “true” parameter values,
we obtain

1√
P

T−1∑
t=R

[ f (εt+1)− f (ut+1)] + 1√
P

T−1∑
t=R

∇β f

∣∣∣∣∣
β

(
β̂ t − β∗

)

+ 1√
P

T−1∑
t=R

∇δ f

∣∣∣∣∣
α

(
δ̂t − δ∗

)
, (4)

whereβ̄ ∈ (β̂ t , β
∗), δ̄ ∈ (δ̂t , δ

∗), andβ∗ = (β∗1, . . . β∗q)′, δ∗ = (β∗, α∗)′. If the loss
function is quadratic or ifP/R→ 0, asT→∞, then the two last terms in (4)
areop(1), while the first term is zero under the null (given that the models are
strictly nested.) Thus, we cannot use DM-type predictive ability tests in the case of
strictly nested models. McCracken (1998) proposes a DM-type test for the case of
nested models. In addition, he shows that if, asP/R→π 6= 0, asT→∞, then the
parameter estimation error component does not vanish, even if the loss function
is quadratic, and the limiting distribution of the DM test is nonstandard under the
null hypothesis, and is dependent on the nuisance parameterπ . One feature of the
test that we propose is that it does not requireπ >0. In addition, our statistic has
a standard limiting distribution. Consider the following statistic4:

mP = 1√
P

T−1∑
t=R

ε̂t+1Xt , (5)

where

ε̂t+1 = yt+1−
q−1∑
j=0

β̂ t, j yt− j , Xt = (xt , xt−1, . . . xt−k−1)
′.

We formulate the null and the alternative as

H̃0: E(εt+1xt− j ) = 0, j = 0, 1, . . . k− 1 and

H̃ A: E(εt+1xt− j ) 6= 0 for somej, j = 0, 1, . . . k− 1.

In the sequel, we require the following assumption.

Assumption 1. Assume that(yt , xt ) are strictly stationary, strong mixing pro-
cesses, with size [−4(4+ δ)]/δ, for someδ >0, andE(yt )

8<∞, E(xt )
8<∞,

E(εt yt− j )= 0, j = 1, 2, . . .q.
Note that we requireE(εt yt− j )= 0, j = 1, 2, . . .q. Thus, even if we do not

require correct dynamic specification, we need to chooseq large enough so that
the error is not correlated with the regressors. A natural approach is to estimate
q using the model selection approach. Alternatively, we could require the lag
order,q, to grow at an appropriate rate relative to the sample size. However, such
an extension for the case of recursive parameter estimation is not straightforward.
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THEOREM 1. Let Assumption1hold. As T→∞, P, R→∞, P/R→π, 0≤
π <∞.
(i ) Under H̃0, for 0<π <∞,
mP

d→ N
{

0, S11+ 2[1− π−1 ln(1+ π)]F ′MS22M F

− [1− π−1 ln(1+ π)](F ′MS12+ S′12M F)
}
.

In addition, for π = 0,mP
d→ N(0, S11), where F= E(Yt X′t ), M = plim (1/

t
∑t

j=q Yj Y′j )
−1, Yj = (yj−1, . . . yj−q)

′, so that M is a q×q, F is a q× k, Yj

is a k× 1, S11 is a k× k, S12 is a q× k, and S22 is a q×q matrix, with

S11 =
∞∑

j=−∞
E[(Xtεt+1− µ)(Xt− j εt+1− j − µ)′],

where µ = E(Xtεt+1), S22 =
∑∞

j=−∞ E[ (Yt−1εt )(Yt−1− j εt− j )
′ ] and S′12 =∑∞

j=−∞ E[(εt+1Xt − µ)(Yt−1− j εt− j )
′].

(ii) lim P→∞ Pr(|mp/
√

P|> 0)= 1, under H̃ A.

COROLLARY 1. Let Assumption1 hold. As T→∞, P, R→∞, P/R →
π, 0≤ π <∞, lT →∞, lT/T1/4→ 0,
(i) underH̃0, for 0< π <∞,
m′p
{

Ŝ11+ 2[1− π−1 ln(1+ π)] F̂ ′M̂ Ŝ22M̂ F̂

− [1− π−1 ln(1+ π)](F̂ ′M̂ Ŝ12+ Ŝ′12M̂ F̂)
}−1

mp
d→ χ2

k ,

where

F̂ = 1

P

T∑
t=R

Yt X
′
t , M̂ =

(
1

P

T−1∑
t=R

YtY
′
t

)−1

,

and

Ŝ11 = 1

P

T−1∑
t=R

(ε̂t+1Xt − µ̂1)(ε̂t+1Xt − µ̂1)
′

+ 1

P

lT∑
t=τ

wτ

T−1∑
t=R+τ

(ε̂t+1Xt − µ̂1)(ε̂t+1−τ Xt−τ − µ̂1)
′

+ 1

P

lT∑
t=τ

wτ

T−1∑
t=R+τ

(ε̂t+1−τ Xt−τ − µ̂1)(ε̂t+1Xt − µ̂1)
′,

where

µ̂1= 1

P

T−1∑
t=R

ε̂t+1Xt ,
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Ŝ′12 =
1

P

lT∑
τ=0

wτ

T−1∑
t=R+τ

(ε̂t+1−τ Xt−τ − µ̂1)(Yt−1ε̂t )
′

+ 1

P

lT∑
τ=1

wτ

T−1∑
t=R+τ

(ε̂t+1Xt − µ̂1)(Yt−1−τ ε̂t−τ )′,

and

Ŝ22 = 1

P

T−1∑
t=R

(Yt−1ε̂t )(Yt−1ε̂t )
′ + 1

P

lT∑
τ=1

wτ

T−1∑
t=R+τ

(Yt−1ε̂t )(Yt−1−τ ε̂t−τ )′

+ 1

P

lT∑
τ=1

wτ

T−1∑
t=R+τ

(Yt−1−τ ε̂t−τ )(Yt−1ε̂t )
′,

withwτ = 1− τ/(lT + 1). In addition, for π = 0,m′pŜ11mp
d→ χ2

k , and
(ii) under the alternative(when0<π <∞),

lim
P→∞

Pr
m′p{Ŝ11+ 2[1−π−1 ln(1+π)] F̂ ′ M̂ Ŝ22M̂ F̂ − [1−π−1 ln(1+π)](F̂ ′ M̂ Ŝ12+Ŝ′12M̂ F̂)}−1

mp

P

> 0= 1,

while forπ = 0,

lim
P→∞

Pr

(
1

P
mp′ Ŝ

−1
11 mp > 0

)
= 1.

Thus far, we have focused on a test for the null of linear noncausality. We
can instead use a more general test function, such as the exponential [as in
Bierens (1990)], a neural network with sigmoidal activation function, or a gener-
ically comprehensive function [as defined by Stinchcombe and White (1998)]
and then construct a test for nonlinear out-of-sample predictive ability based on
1/
√

P
∑T

t=R ε̂t+1h(γ ′Xt ), whereγ ∈0 is a nuisance parameter unidentified under
the null hypothesis [for a detailed survey of nonlinearity tests used in economics,
see Granger and Ter¨asvirta (1993)]. Under mild conditions, it is straightforward to
establish that the statistic above converges to a Gaussian process, with covariance
kernel that depends onγ , under the null hypothesis. However, it is not a trivial task
to form bootstrap critical values that take parameter estimation error into account,
particularly as the parameters are estimated recursively. Thus, we confine our at-
tention to a finite grid of values for the nuisance parameterγ. More precisely, we
follow the approach suggested by Lee et al. (1993) in the context of (in-sample)
testing for neglected nonlinearities, and set

h(γ ′Xt ) = γ ′Xt + [1+ exp(c− γ ′Xt )]
−1, c 6= 0,

whereγ is ak× 1 vector.5 In this context, consider the following statistic6:

sP = 1√
P

T−1∑
t=R

ε̂t+1h(γ ′Xt ).
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In the sequel, we specify the null and the alternative as

H∗0 : E[εt+1h(γ ′Xt )] = 0 and H∗A: E[εt+1h(γ ′Xt )] 6= 0.

Corresponding to the above results, we have the proposition that follows.

PROPOSITION 1.Let Assumption1 hold. As T→∞, P, R→∞, P/R→
π, 0≤ π <∞, lT →∞, lT/T1/4→ 0,
(i) under H∗0 , for 0<π <∞, and for any givenτ,

s2
p

/{
Ŝ11+ 2[1− π−1 ln(1+ π)] F̂ ′M̂ Ŝ22M̂ F̂

− [1− π−1 ln(1+ π)](F̂ ′M̂ Ŝ12+ Ŝ′12F̂ M̂)
} d→χ2

1

where

F̂ = 1

P

T∑
t=R

Yth(γ
′Xt ), M̂ =

 1

P

T∑
j=R

Yj Y
′
j

−1

,

and

Ŝ11 = 1

P

T−1∑
t=R

[ε̂t+1h(γ ′Xt )− µ̂1][ ε̂t+1h(γ ′Xt )− µ̂1]′

+ 1

P

lT∑
t=τ

wτ

T−1∑
t=R+τ

[ε̂t+1h(γ ′Xt )− µ̂1][ ε̂t+1−τh(γ ′Xt−τ )− µ̂1]′

+ 1

P

lT∑
t=τ

wτ

T−1∑
t=R+τ

[ε̂t+1−τh(γ ′Xt−τ )− µ̂1][ ε̂t+1h(γ ′Xt )− µ̂1]′,

where

µ̂1 = 1

P

T−1∑
t=R

ε̂t+1h(γ ′Xt ),

Ŝ′12 =
1

P

lT∑
τ=0

wτ

T−1∑
t=R+τ

[ε̂t+1−τh(τ ′Xt−τ )− µ̂1](Yt−1ε̂t )
′

+ 1

P

lT∑
τ=1

wτ

T−1∑
t=R+τ

[ε̂t+1h(τ ′Xt )− µ̂1](Yt−1−τ ε̂t−τ )′,

and

Ŝ22 = 1

P

T−1∑
t=R

(Yt−1ε̂t )(Yt−1ε̂t )
′ + 1

P

lT∑
τ=1

wτ

T−1∑
t=R+τ

(Yt−1ε̂t )(Yt−1−τ ε̂t−τ )′

+ 1

P

lT∑
τ=1

wτ

T−1∑
t=R+τ

(Yt−1−τ ε̂t−τ )(Yt−1ε̂t )
′,

withwτ = 1− τ/(lT + 1). In addition, for π = 0, s2
P/Ŝ11

d→χ2
k , and
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(ii) under the alternative(when0<π <∞),

lim
P→∞

Pr

(
s2

p{Ŝ11+ 2[1−π−1 ln(1+π)] F̂ ′ M̂ Ŝ22M̂ F̂ − [1−π−1 ln(1+π)](F̂ ′ M̂ Ŝ12+Ŝ12
′ M̂ F̂)}−1

P > 0

)
= 1,

while forπ = 0,

lim
P→∞

Pr

(
1

P
mp′ Ŝ

−1
11 mp > 0

)
= 1.

Note that both the finite sample size and power depend on the specificγ that
is used. Following Lee et al. (1993), however, we can randomly drawl different
sets ofγ and computel different statistics, for example. LetPV1, . . . PVl be the
p-values associated with thel different statistics, so thatPV1≤ PV2 · · · ≤ PVl .
Lee et al. suggest rejecting the null at 5% if there is aj = 1, . . . l such thatPVj ≤
0.05/(l − j − 1).

3. MONTE CARLO FINDINGS

In this section, we report results from a series of bivariate Monte Carlo experiments.
Assume that

yt = π1+ π2yt−1+ π3xt−1+ ε1,t ,

xt = a1+ a2xt−1+ ε2,t ,

whereε1,t andε2,t are I N (0, σ 2
i ), i = 1, 2. To change the predictive relevance of

the past ofxt relative to the past ofyt in regression models ofyt , we focus on two
quantities of interest when parameterizing the preceding DGP. In particular, and
assuming thatxt and yt are stationary, in our empirical power experiments, we
consider

A = π2
2 var(yt )

[
π2

3 var(xt )
]−1

and

B = π2
2 var(yt )+ π2

3 var(xt )

π2
2 var(yt )+ π2

3 var(xt )+ var(ε1,t )
.

Notice thatA defines the magnitude of the explained variation in the model ofyt

which is due to the past ofyt relative to that due to the past ofxt . Thus, by changing
Awe can change the relative importance of the past ofxt for predictingyt . Our other
quantity of interest,B, is a measure of the goodness of fit of the model, and thus can
be used as an indicator of how well we might expect to predictyt given the past of
bothxt andyt . To parameterize our model usingA andB, we assume thatπ2=a2.

In addition, and for simplicity, assume that var(ε1,t )= var(ε2,t )= 1, and that
π1=a1= 1. Thus, given|a2|< 1, var(yt )=π2

2 var(yt ) + π2
3 var(xt )+ var(ε1,t ),

and var(xt )=a2
2 var(xt )+ var(ε2,t ), it follows that
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A = π2
2

[
π2

3 +
(
1− π2

2

)3]
π2

3

(
1− π2

2

) , and

B = π2
2

(
1− π2

2

)3+ π2
3

π2
2

(
1− π2

2

)3+ (1− π2
2

)2+ π2
3

,

so that by fixingA andπ2 it is possible to solve forπ3 and hence also forB.
In the Monte Carlo experiments reported in Tables 4–6 (empirical power), we
setA={0.1, 0.5, 1.0, 5.0, 10.0}, andπ2={0.1, 0.3, 0.5, 0.7, 0.9}. In addition,P
is set equal to{0.1T, 0.3T, 0.5T}, and samples of{250, 500, 1000} observations
are generated. When WaldF tests are constructed, the entire sample is used,
whereas when the two versions of the properly scaledmP statistics, which we
shall callv−1/2mP [one constructed on the basis of the assumption thatπ = 0, e.g.,
v−1/2mP(π = 0), and the other constructed on the basis of the assumption that
0<π <∞, e.g.,v−1/2mP(π >0)] are constructed, onlyP observations are used.7

As discussed earlier, forecasts are generated recursively, with model parameters
reestimated before each new one-step-ahead forecast is constructed. However, for
simplicity it is assumed that the correct lag structure is known. All results are
based on 10,000 Monte Carlo iterations, and are rejection frequencies of the null
hypothesis of Granger non-causality. Needless to say, in corresponding empirical
size experiments, we setπ3= 0 (Tables 1–3) so that the only parameter that matters
is π2.

Consider first the empirical size results reported in Tables 1–3. The rejection
frequencies reported in Table 1 correspond to WaldF-tests run under the null of
Granger non-causality, and as expected, empirical size is close to nominal size even
for our smallest sample of 250 observations. Note also that, in Table 2, empirical
size of thev−1/2mP(π = 0) test is slightly higher than nominal whenP= 0.1T ,
for all T , and decreases whenP increases, withT fixed. The results in Table 3 for

TABLE 1. Empirical size of WaldF-testa (in-sample
Wald F-test results based on entire sample)

Sample size (T)

π2 250 500 1,000

0.100 0.118 0.094 0.099
0.300 0.118 0.090 0.095
0.500 0.113 0.098 0.108
0.700 0.107 0.096 0.117
0.900 0.117 0.117 0.109

aAll entries are rejection frequencies of the null hypothesis of Granger non-
causality based on 10% nominal size in-sample WaldF-tests. Data were
generated as discussed in Section 3, withπ3= 0 so thatxt is not Granger
causal foryt . All experiments are repeated for samples of 250, 500, and 1,000
observations, and all entries are based on 10,000 Monte Carlo replications.
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TABLE 2.Empirical size ofv−1/2mP(π = 0) testa (out-of-sample predictive ability
test results based on sample sizeP)

P= 0.1T P= 0.3T P= 0.5T

π2 250 500 1,000 250 500 1,000 250 500 1,000

0.100 0.151 0.131 0.131 0.127 0.118 0.102 0.107 0.107 0.100
0.300 0.143 0.125 0.127 0.124 0.116 0.108 0.101 0.111 0.102
0.500 0.144 0.124 0.124 0.117 0.118 0.106 0.095 0.110 0.093
0.700 0.146 0.117 0.128 0.123 0.120 0.108 0.096 0.114 0.101
0.900 0.165 0.128 0.129 0.127 0.126 0.116 0.126 0.121 0.111

aSee notes to Table 1. All entries are rejection frequencies of the null hypothesis of Granger non-causality based on
10% nominal size out-of-sample predictive ability tests (i.e., properly rescaledmP statistics, e.g.,v−1/2mP). It is
assumed thatπ = 0, so that parameter estimation error is not accounted for.

TABLE 3.Empirical size ofv−1/2mP(π>0) testa (out-of-sample predictive
ability test results based on sample sizeP)

P= 0.1T P= 0.3T P= 0.5T

π2 250 500 1,000 250 500 1,000 250 500 1,000

0.100 0.138 0.128 0.115 0.112 0.100 0.089 0.081 0.088 0.086
0.300 0.128 0.119 0.120 0.092 0.091 0.084 0.077 0.078 0.075
0.500 0.121 0.104 0.112 0.088 0.092 0.084 0.066 0.075 0.074
0.700 0.125 0.105 0.107 0.083 0.082 0.077 0.057 0.070 0.067
0.900 0.134 0.106 0.106 0.084 0.088 0.077 0.068 0.074 0.062

aSee notes to Table 2. All entries are rejection frequencies of the null hypothesis of Granger non-causality
based on 10% nominal size out-of-sample predictive ability tests (mP). It is assumed thatπ >0, so that
parameter estimation error is accounted for.

v−1/2mP(π >0) suggest that empirical size is smaller than for thev−1/2mP(π = 0)
statistic and, analogous to the results of Table 2, the test is more undersized when
P = 0.5T than whenP= 0.3T , so that empirical size appears to decrease when
P is increased andR is decreased for fixedT , underscoring the importance of
parameter estimation error.

Empirical power results reveal much more clearly the trade-offs between out-of-
sample and in-sample tests of Granger non-causality. Note in Table 4 that the Wald
F-test is very powerful for all values ofT , regardless of the magnitudes ofA, B,
andπ . This means that even when the parameter associated withxt−1 is very small,
and the relative importance ofxt−1 in the overall regression model is very small,
the WaldF-test favors a finding of Granger causality. This of course is expected,
and certainly must be the case for large samples. Our evidence suggests that it
also holds for small samples. However, in cases in whichA= 10, for example,
andπ3 is between 0.03 and 0.13 (the last five rows of Table 4), it is clear that the
marginal predictive content ofxt−1 for yt will be very low. In such cases, it is not
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TABLE 4. Empirical power of the WaldF-testa (in-
sample WaldF-test results based on entire sample)

Sample size (T)

A B π2 π3 250 500 1,000

0.100 0.108 0.100 0.330 1.000 1.000 1.000
0.100 0.988 0.300 8.235 1.000 1.000 1.000
0.500 0.029 0.100 0.141 0.715 0.940 0.999
0.500 0.234 0.300 0.431 1.000 1.000 1.000
0.500 0.628 0.500 0.919 1.000 1.000 1.000
1.000 0.020 0.100 0.100 0.461 0.718 0.929
1.000 0.154 0.300 0.288 1.000 1.000 1.000
1.000 0.360 0.500 0.459 1.000 1.000 1.000
1.000 0.927 0.700 1.803 1.000 1.000 1.000
5.000 0.012 0.100 0.044 0.170 0.253 0.406
5.000 0.091 0.300 0.123 0.641 0.901 0.991
5.000 0.194 0.500 0.174 0.924 0.997 1.000
5.000 0.271 0.700 0.178 0.983 1.000 1.000
5.000 0.556 0.900 0.199 1.000 1.000 1.000

10.000 0.011 0.100 0.031 0.138 0.177 0.246
10.000 0.083 0.300 0.087 0.402 0.633 0.883
10.000 0.176 0.500 0.121 0.703 0.929 0.996
10.000 0.233 0.700 0.119 0.819 0.967 1.000
10.000 0.228 0.900 0.071 0.800 0.964 1.000

aSee notes to Table 1. All entries are rejection frequencies of the null hypothesis
of Granger non-causality based on 10% nominal size in-sample WaldF-tests.
Values of the parameterB are constructed as discussed above by fixingA and
π2 and then solving forπ3.

clear whether a finding of Granger causality is desired, particularly if the objective
of the modeler is to select variables for inclusion in a forecasting model foryt .
Note that in Tables 5 and 6, empirical power of themP statistics for these cases
(again, see last five rows) is much lower than that based on the in-sample tests.
Of course, power does increase asP, T increase, as expected. However, even for
P= 0.5T andT = 1,000, power is still below 0.5. This suggests that even though
the data are generated with nonzeroπ3, xt−1 is nevertheless not always useful for
predictingyt , at least based on mean square error prediction loss. However, note
that thev−1/2mP statistics are powerful against alternatives whereA values are 1
or below (equal predictive ability ofxt−1 andyt−1) andB values are higher than
0.5, even whenP andT values are low, again as expected.

4. EMPIRICAL ILLUSTRATION

To illustrate the potential for different empirical approaches to testing for Granger
causality to lead to different conclusions, we consider the problem of assessing
whether fluctuations in the money stock anticipate (or Granger-cause) fluctuations
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in real output. This is a question that has received considerable attention in the
applied macroeconomics literature [see, e.g., Christiano and Ljungqvist (1988),
Stock and Watson (1989), Hafer and Jansen (1991), Thoma (1994), Swanson
(1998), and the references contained therein]. Here we take as given the group
of macroeconomic variables used by all of the above-mentioned authors, and
construct in- and out-of-sample tests of Granger non-causality.

To summarize, we fit VEC(p) models of the form

1Yt = a+ b(L)1Yt−1+ cZt−1+ εt , (6)

whereYt = (IPt ,M2t ,CPIt , Rt )
′. The four elements ofYt are monthly seasonally

adjusted U.S. measures of industrial production (IP), the nominal money stock
(M2), the consumer price index (CPI), and the 3-month Treasury bill return (sec-
ondary market) for the period 1961:1–1997:9. On the basis of results obtained by
forming augmented Dickey–Fuller test statistics, it was assumed that all variables
areI (1). In addition,Zt−1= dYt−1 is ar × 1 vector ofI (0) variables;r is the rank
of the cointegrating space;d is anr × 4 matrix of cointegrating vectors;a is an
4× 1 vector;b(L) is a matrix polynomial in the lag operatorL, with p terms, each
of which is an 4× 4 matrix; p is the order of the VEC model;c is a 4× r matrix;
andεt is a vector error term. To ensure that the real-time forecasting models that
we construct are not affected by data revision problems, as discussed by Ghysels
et al. (1999), we use real-time versions of these variables, where by real-time we
mean that at each point in time an entire vector of observations for each variable
is constructed going back to the beginning of the sample. Each vector of obser-
vations is real-time because revisions and seasonal adjustment modifications that
occurredafter the calendar date to which the real-time vector corresponds are not
incorporated into the data.8

Using real-time data, models of the form given by equation (6) were reesti-
mated 212 times using samples of observations beginning in 1961:1 and ending in
1980:1+ x, for x= 1, . . . ,212, so that the last sample of observations used was
1961:1–1997:8. Each reestimation step involved fitting two different models—a
bigger model (with money) and a smaller model (without money). The parameters
r , p, a, andb, were reestimated at each point in time using least squares and the
SIC for selecting the number of lags.9 Because our forecasting results based on
VEC models were never superior to those based on VAR models, we report only
results for the case in whichr = 0.

Our approach allowed us to compute sequences of 212 in-sample WaldF-tests of
the null of Granger non-causality, for example. Of these, 94.8% resulted in rejection
(at the 5% level), and hence in a finding that money is Granger-causal for real
output. This result is similar to that found by Swanson (1998). Our approach also
allowed us to form sequences of one-step-ahead forecasts of the growth in industrial
production using our smaller model and our bigger model, and to compare these
forecasts with actual figures, thus forming sequences of real-time forecast errors
along the lines discussed in Ashley et al. (1980). Interestingly, the MSFE’s10
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(reported as percentages) based on forecasts constructed using the bigger and
smaller models were found to be 0.4084 and 0.4101, respectively. Thus, if point
estimates are compared, the model with money is preferred to the smaller model
without money, in accord with our in-sample findings. However, note in Figure 1
(see right top panel) that there is a large outlier in the difference series of the
absolute forecast errors from the two models (bigger model forecast error minus
smaller model forecast error). This outlier corresponds to a forecast for which
the smaller model performed substantially worse the bigger model. On the other
hand, note that most of the difference-forecast errors are above 0.0, corresponding
to the observation that, for most periods, the smaller model forecasted better than
the bigger model. For this reason, our point MSFE’s may be misleading. Indeed,
the properly rescaledmP statistic values based on the two models are 0.0526
(π = 0) and 0.0476 (π = 0.5), indicating that money is not causal for industrial
production, at least in a predictive sense. The earliest period for which complete
real-time vectors of data (back to 1961:1) could be constructed is 1978:1. To
check the robustness of our finding that in- and out-of-sample analyses can lead to
different conclusions, we also performed the above empirical investigation for the
out-of-sample period 1978:2–1997:9. Based on this sample, our findings remained
unchanged. Of course, For certain subsamples the in-sample and out-of-sample
results may match up and, in fact, it would be surprising if this were not the case. In
addition, note that there may be structural breaks in the underlying data generating
process, and the degree to which different models are robust to such breaks might
vary (e.g., the large outlier in the forecasts from the smaller model). It could thus
be argued that structural breaks play a role in our finding that in-sample and out-
of-sample tests yield contradictory findings. This and related issues are discussed
in detail by Clements and Hendry (1999). Nevertheless, we can conclude that
there are examples for which the decision between using in-sample versus out-of-
sample inference is crucial. In particular, we have found that although in-sample
tests suggest that there is Granger causality from money to output at least some of
the time, predictive ability tests suggest that nothing is gained by using money in
a forecasting model for output.

5. CONCLUSIONS

We discuss and implement a number of out-of-sample predictive ability tests in
the spirit of Granger’s original 1969 definition of noncausality. It is shown that in
finite-sample contexts our out-of-sample tests can lead to evidence that is more
indicative of the true forecasting ability of one variable for another than when
standard in-sample Wald-typeF-tests are used. In an empirical illustration, we
show that in-sample and out-of-sample tests can lead to different conclusions.

NOTES

1. Meese and Rogoff (1983) is an important example of the application of out-of-sample model
evaluation in the spirit of Granger’s definition of non-causality.
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2. Hereafterβ∗ denotes the best linear predictor ofyt given its past history. Analogously, in the
sequel,δ∗ = (β∗, α∗)′ denotes the best linear predictor ofyt given its past and the past ofxt−1.

3. All of our results generalize straightforwardly to the case where both the restricted and unre-
stricted models contain the past of other explanatory variables. Here, we simplify the exposition of the
test, however, by focusing on the bivariate case.

4. Because we require neither the restricted model (under the null) nor the unrestricted to be
dynamically correctly specified, we need to allow for nonmartingale difference sequence scores. For
the case of conditionally homoskedastic errors under the null, we could have used a regression-based
test (along the lines of West and McCracken (1998, Theorem 7.1)). In particular, we could have
regressed ˆεt+1 on past values ofXt and tested whether the regression coefficients are zero. In addition,
Wooldridge (1990, 1991) proposes a regression-based testing framework that allows for conditionally
heteroskedasticity and/or nonmartingale difference errors. However, the extension of Wooldridge’s
setup to the case of recursively estimated parameters and hence out-of-sample predictive ability tests
is not immediate.

5. Different sets of weights, e.g.,γ1 andγ2, can be chosen for the linear and nonlinear components
of the model.

6. Lee et al. (1993) construct their test statistic using the in-sample correlation of the estimated
residuals from a linear model and a nonlinear (neural network) component.

7. Note that for the cases in which the solutions forπ3 given A andπ2 are both complex, we do not
generate data, and hence no results are reported in Tables 1–6. Largely, these cases involve small values
of A together with small values ofπ2. Also, in-sample tests are performed using the entire sample
period. An alternative would be to use rolling windows of observations that correspond to the periods
used to construct the one-step-ahead forecasts, hence yielding sequences of in-sample tests at each
simulation step. However, empirical researchers often use the entire sample of data when constructing
in-sample tests, and we do likewise here.

8. As an example, consider downloading data onI Pt right now from CITIBASE. The data corre-
spond to observations available right now. However, if the last 50 observations were held back, and
the first 150 observations, for example, were used to form a forecast of the first observation in the
out-of-sample period, then the forecast would not truly be real-time. The problem is that if one were
to go back in time to the date of the last in-sample observation, then one would find that the data from
CITIBASE do not correspond to the data that are actually available because the CITIBASE data have
been revised, etc. This feature of macroeconomic data is well known, and is discussed by Diebold and
Rudebusch (1991), for example.

9. Amato and Swanson (1999), detail a thorough examination of the marginal predictive content of
money for real output. In addition, because the SIC selected just over one lag, on average, across all
samples for which models were estimated, we setp= 1. This allowed us to fix the regressor sets,Xt

andYt , used in the construction of themP statistics.
10. Other loss functions may also be used to construct predictive ability tests, as discussed in

Christoffersen and Diebold (1997), Clements and Hendry (1988a,b), and Weiss (1996), for example.
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APPENDIX

PROOF OF THEOREM 1(i).

mP = 1√
P

T−1∑
t=R

εt+1Xt − 1√
P

T−1∑
t=R

Xt Y
′
t

(
β̂ t − β∗

)
= 1√

P

T−1∑
t=R

εt+1Xt − 1√
P

T−1∑
t=R

Xt Y
′
t M

(
1

t

t∑
j=q

Yj−1ε j

)
+ op(1)

= I + II + op(1)

whereM = plim ( 1
t

∑t
j=q Yj Y′j )

−1. Thus,

II = 1√
P

T−1∑
t=R

F ′M

(
1

t

t∑
j=q

Yj−1ε j

)

+ 1√
P

T−1∑
t=R

(Xt Y
′
t − F ′)M

(
1

t

t∑
j=q

Yj−1ε j

)
+ op(1) (A.1)

where F ′ = E(Xt Y′t ), k×q. We want to show that the second term on the RHS of (7)
is op(1). We follow an argument similar to that used by West (1996). Letvt = (Xt Y′t −
F ′) and h j = (Yj−1ε j ), so that the second term on the RHS of (7) can be written as
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1/
√

P
∑T

t=R vt M(1/t
∑t

j=q h j ). We begin by showing that the expectation of the last ex-
pression isop(1). Letγ j = E(vt Mht− j ), whereγ j is k× 1 and letγi j be thei th component
of γ j . We show that each component iso(1). So,∀i = 1, 2, . . . k,

E

[
1√
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t=R

vt M

(
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t
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)]
i

= 1√
P

∣∣[R−1(γi 0 + γi 1 + · · · γi R)
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≤ 1√
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|[R−1 + (R+ 1)−1 + · · · + (R+ P − 1)−1]|

∞∑
j=0

|γi j |.

We begin by showing that∀i,∑∞
j=0 |γi j |<∞. Because of the covariance inequality for

strong mixing processes [e.g., Yokohama (1980)],

∞∑
j=0

|γi j | ≤ 12E
(|vt Mht− j |3i

)1/3
∞∑
j=0

α3
j <∞,

whereE(|vt Mht− j |3i )1/3<∞, and
∑∞

j=0 α
3
j <∞, given the moment and mixing conditions

in Assumption 1. Also,
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t−3/2

)
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Thus, the mean of the second term on the RHS of (7) iso(1). By Chebyshev inequality,
∀i = 1, . . . k,
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+ 2
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t∑
j=q
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i

. (A.3)

Recalling thatv is k×q, M is q×q, andh is q× 1, vl M(1/t
∑t

j=q h j )i can be written
as (assuming for notational simplicity but without loss of generality thatk=q= 2 and
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i = 1)
∑2

s=1 v1s,l Ms1(1/t
∑t

j=q h1, j )+
∑2

s=1 v1s,l Ms2(1/t
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j=q h2, j ). Note also that as
|l − t |→∞, E[
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j=q h1, j )]→ 0, so we can rewrite (A.3) as
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by the argument used above. Thus, the term on the RHS iso(1) for lT/P→ 0, asT→∞.
Note also that the term on the RHS of (8) iso(1), given the moment and mixing conditions
in Assumption 1, by the same argument used in the proof of Lemma 3.1 in Corradi (1999).
Thus,
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From Lemma A5 in West (1996), we have that
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whereS22 is defined as in the statement of the theorem. Also, from Lemma A6 in West
(1996),
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whereS11 is defined in the statement. Thus, by the central limit theorem for stationary
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.

The result then follows for the case ofP/R→π, 0<π <∞.
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Forπ = 0, it suffices to show that
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t=R(|xt− j yt−i |) converges in probability to a nonrandom vector, while

sup
t≥R

√
P
∣∣β̂ t − β∗

∣∣ ≤ ( 1

R

R∑
j=q

yt−i P̄y yt−i

)−1√
P√
R

∣∣∣∣∣ 1√
R

t∑
j=q

yj−i P̄yε j

∣∣∣∣∣,
whereP̄y= I − Py and Py is the projection ofyt on yt−l , l = 1, . . . i − 1, i + 1, . . .q. As
1/
√

R|∑t
j=q yj−i P̄yε j | satisfies an invariance principle and so isOp(1), the right-hand

side of the inequality above isop(1) for P/R= o(1).
(ii) By the same argument as above,

1√
P

T∑
t=R

Xt Y
′
t M

(
1

t

t∑
j=q

Yj−1ε j

)
= Op(1)

On the other hand,E(εt+1Xt ) 6= 0, and so,|1/√P
∑T

t=R εt+1Xt | diverges at rate
√

P.

Proof of Corollary 1.

M̂, F̂, Ŝi j i, j = 1, 2 are consistent forM, F, Si j . The result follows immediately.

Proof of Proposition 1.

Follows directly by the same arguments used in the proof of Theorem 1 and Corollary 1
whenXt is replaced withh(γ ′Xt ).
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