

X-ray powder diffraction data for methoxetamine hydrochloride, C₁₅H₂₂CINO₂

J. Maixner, 1,a) B. Jurásek, 3,3 M. Himl, 4 M. Kuchař, 2,3 and M. Babor⁵

¹Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic

²Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic

³Forensic Laboratory of Biologically Active Substances, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic

⁴Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech

Example 2 Department of Solid State Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic

(Received 8 March 2017; accepted 4 July 2017)

X-ray powder diffraction data, unit-cell parameters and space group for 2-(ethylamino)-2-(3-methoxyphenyl)cyclohexan-1-one hydrochloride, $C_{15}H_{22}CINO_2$, are reported [a = 8.574(2) Å, b = 9.943(2)Å, c = 8.774(1) Å, $\beta = 100.294(3)^{\circ}$, unit-cell volume V = 736(1) Å³, Z = 2, and space-group $P2_1$]. All measured lines were indexed and are consistent with the $P2_1$ space group. No detectable impurities were observed. © 2017 International Centre for Diffraction Data. [doi:10.1017/S0885715617000860]

Key words: X-ray powder diffraction, methoxetamine, NPS, new psychoactive substances, designer drugs, dissociative anesthetics

I. INTRODUCTION

Methoxetamine, MXE [2-(ethylamino)-2-(3-methoxyphenyl)cyclohexan-1-one] is a structural and pharmacological analog of ketamine (Morris and Wallach, 2014). For the first time it was synthetized in the UK by a synthetic chemist known as "M". Structurally MXE belongs to the group of arylcyclohexylamines and has anesthetic and sedative effects (Zanda et al., 2016). This designer drug emerged on the black market in 2010 and by 2015 was involved in 120 nonfatal and 22 fatal intoxications (EMCDDA, 2014; Zanda et al., 2016). Though important pharmacological data have been published (e.g. metabolism, behavioral tests), there is still the lack of information about this compound (Menzies et al., 2014; Zawilska, 2014; Hajkova et al., 2016; Horsley et al., 2016; Zanda et al., 2016). MXE had been offered as the legal alternative for ketamine, but because of the dozens of severe intoxications it was banned in most EU states (Jurasek and Kuchar, 2016; Zanda et al., 2016). Even though MXE (Figure 1) is banned by law, its analogs are available on the black market and may be still legal (e.g. methoxphenidine and deschloroketamine) (Hofer et al., 2014; Frison et al.,

We have not found this compound in the CSD database or in the PDF4+ database (Allen, 2002; ICDD, 2015). Therefore, we have decided to characterize this compound by X-ray powder diffraction (XRD) technique. In our study, we present powder data for MXE hydrochloride (C₁₅H₂₂ClNO₂).

Powder Diffraction 32 (4), December 2017

II. EXPERIMENTAL

A. Synthesis

The synthesis of MXE hydrochloride was carried out according to Hays et al. (2012) instructions and Stevens and Parke (1966) patent. 1-((Ethylimino)(3-methoxyphenyl) methyl)cyclopentan-1-ol (600 mg, 2.4 mmol) was dissolved in decalin (2 ml) and stirred 15 h at 190 °C in a microwave reactor. The reaction mixture was cooled, diluted with 15% hydrochloric acid, and extracted with dichloromethane. The aqueous layer was separated, and then it was made alkaline and extracted with diethyl ether. The organic layer was dried over MgSO₄ and suction filtered. The filtrate was treated with a solution of hydrogen chloride in diethyl ether and the solvent was evaporated. Further purification was done by recrystallization from isopropyl alcohol. MXE hydrochloride was isolated as a yellowish solid and confirmed by NMR (nuclear magnetic resonance) analysis (130 mg, 19% yield) (Stevens and Parke, 1966; Hays et al., 2012).

Figure 1. Structural formula of 2-(ethylamino)-2-(3-methoxyphenyl) cyclohexan-1-one hydrochloride.

^{a)}Author to whom correspondence should be addressed. Electronic mail: jaroslav.maixner@vscht.cz

TABLE I. Indexed X-ray powder diffraction data for C₁₅H₂₂ClNO₂.

2θ _{obs} (°)	d _{obs} (Å)	I _{obs}	Н	k	l	2θ _{cal} (°)	d _{calc} (Å)	$\Delta 2\theta$
10.270	8.6064	52	0	0	1	10.238	8.6332	-0.032
13.325	6.6392	13	1	0	-1	13.289	6.6574	-0.037
13.600	6.5057	62	0	1	-1	13.573	6.5188	-0.027
13.778	6.4223	24	1	1	0	13.756	6.4324	-0.022
15.955 17.855	5.5503 4.9638	51 3	1	0 2	1	15.935 17.828	5.5574 4.9714	-0.021 -0.028
18.290	4.8467	29	1	1	1	18.273	4.8511	-0.026
20.592	4.3097	69	0	2	1	20.600	4.3081	0.008
21.394	4.1500	14	1	0	-2	21.365	4.1556	-0.029
21.730	4.0866	10	2	0	-1	21.718	4.0888	-0.012
22.410	3.9641	2	0	1	-2	22.436	3.9595	0.026
22.917	3.8775	10	2	1	0	22.885	3.8828	-0.032
23.207	3.8297	100	1	1	-2	23.179	3.8342	-0.028
23.520	3.7795	70	2	1	-1	23.507	3.7815	-0.013
24.013 24.794	3.7030 3.5881	39 3	1 1	2	1 2	23.998	3.7052 3.5912	-0.015 -0.022
26.388	3.3749	54	1	1	2	24.772 26.365	3.3777	-0.022
26.665	3.3404	9	2	1	1	26.656	3.3415	-0.022
27.360	3.2571	19	0	2	2	27.341	3.2594	-0.019
27.726	3.2149	8	2	2	0	27.715	3.2162	-0.012
27.979	3.1864	8	1	2	-2	27.961	3.1884	-0.018
28.268	3.1545	2	2	1	-2	28.250	3.1565	-0.018
28.867	3.0904	14	0	3	1	28.832	3.0941	-0.035
30.109	2.9657	5	1	3	-1	30.096	2.9669	-0.013
30.712	2.9089	5	1	2	2	30.687	2.9111	-0.024
30.977	2.8845	9	1	0	-3	30.964	2.8857	-0.013
32.357 32.908	2.7646 2.7196	16 9	0	1 1	$\frac{3}{-1}$	32.361 32.918	2.7643 2.7188	0.004
33.038	2.7190	8	3	1	0	33.081	2.7166	0.010
33.464	2.6756	7	2	1	2	33.457	2.6762	-0.007
34.090	2.6279	2	0	3	2	34.078	2.6288	-0.011
34.423	2.6032	4	2	0	-3	34.418	2.6036	-0.005
34.710	2.5824	15	1	0	3	34.659	2.5860	-0.051
35.255	2.5437	4	3	0	1	35.263	2.5431	0.008
35.628	2.5179	3	2	1	-3	35.617	2.5187	-0.011
35.978	2.4942	27	3	1	-2	35.987	2.4936	0.009
36.451	2.4630 2.4270	7 1	3 2	1 2	1 2	36.438 37.033	2.4638 2.4255	-0.013 0.023
37.010 37.643	2.3876	3	0	4	-1^{2}	37.626	2.3886	-0.023
38.300	2.3482	1	2	3	-2	38.292	2.3486	-0.017
38.633	2.3287	2	1	4	-1	38.634	2.3287	0.001
39.257	2.2931	4	1	2	3	39.237	2.2942	-0.020
39.759	2.2653	2	3	2	1	39.781	2.2641	0.023
40.641	2.2181	2	3	0	-3	40.622	2.2191	-0.019
40.976	2.2008	13	2	0	3	40.971	2.2011	-0.005
41.541	2.1722	4	0	3	-3	41.526	2.1729	-0.015
41.981	2.1504	10	3	3	-1	41.977	2.1506	-0.004
42.320	2.1340	4	3	1	2	42.331	2.1334	0.011
42.852	2.1087	2	4 2	0	0	42.848	2.1089	-0.004
43.525 43.821	2.0776 2.0643	3 2	4	0	$-4 \\ 0$	43.521 43.850	2.0778 2.0630	-0.005 0.028
44.217	2.0467	4	2	3	-3	44.201	2.0474	-0.026
44.514	2.0337	3	3	3	-2	44.511	2.0339	-0.003
44.840	2.0197	2	3	3	1	44.889	2.0176	0.049
45.295	2.0005	6	3	2	2	45.311	1.9998	0.017
45.791	1.9800	7	0	2	4	45.795	1.9798	0.005
46.118	1.9667	2	1	1	4	46.111	1.9669	-0.007
46.763	1.9410	1	4	2	0	46.753	1.9414	-0.011
46.902	1.9356	1	1	5	0	46.905	1.9355	0.002
48.031	1.8927	2	4	2	-2	48.083	1.8908	0.052
48.254	1.8845	4	1	4	-3	48.285	1.8833	0.032
48.911 49.210	1.8607 1.8501	2 4	1 3	2	4 -4	48.910 49.229	1.8607 1.8494	-0.002
49.210	1.8227	6	3	3	_4 2	49.229 49.967	1.8494	0.019 -0.032
50.791	1.7962	2	2	0	4	50.807	1.8238	0.016
51.324	1.7787	1	4	3	0	51.309	1.7792	-0.016
T	1.7707			,	9	21.207		0.013

Continued

TABLE I. Continued

2 <i>θ</i> _{obs} (°)	d _{obs} (Å)	$I_{ m obs}$	Н	k	l	$2\theta_{\rm cal}$ (°)	d_{calc} (Å)	$\Delta 2\theta$
51.923	1.7596	1	3	2	-4	51.901	1.7603	-0.022
52.100	1.7540	2	1	0	-5	52.093	1.7543	-0.007
52.308	1.7476	4	4	2	-3	52.285	1.7483	-0.023
52.986	1.7268	2	0	0	5	52.991	1.7266	0.005
53.309	1.7171	2	1	3	4	53.328	1.7165	0.019
53.874	1.7004	1	0	1	-5	53.848	1.7012	-0.027
54.373	1.6860	1	5	0	0	54.333	1.6871	-0.040
55.491	1.6546	2	1	2	-5	55.503	1.6543	0.012
56.188	1.6357	2	0	5	3	56.180	1.6360	-0.008
56.501	1.6274	1	0	6	-1	56.501	1.6274	0.000
58.379	1.5795	1	4	4	-2	58.399	1.5790	0.021
59.096	1.5620	1	3	1	4	59.119	1.5614	0.024
59.453	1.5535	1	1	2	5	59.461	1.5533	0.008
60.954	1.5188	1	2	3	-5	60.959	1.5186	0.006
61.517	1.5062	1	2	0	5	61.511	1.5063	-0.006
62.501	1.4848	1	3	4	3	62.476	1.4854	-0.025
62.924	1.4759	1	2	5	3	62.939	1.4755	0.015
63.879	1.4561	1	4	5	-1	63.869	1.4563	-0.011
64.442	1.4447	1	3	3	-5	64.458	1.4444	0.016
65.011	1.4334	1	1	4	-5	65.019	1.4333	0.009

Only the peaks with $I_{\rm rel}$ of 1 or greater are presented [a = 8.574(2) Å, b = 9.943(2) Å, c = 8.774(1) Å, $\beta = 100.294(3)^{\circ}$, unit-cell volume V = 736(1) Å³, Z = 2, and space-group $P2_1$]. All lines were indexed and are consistent with the $P2_1$ space group. The d-values were calculated using $\text{Cu}K\alpha_1$ radiation ($\lambda = 1.5406$ Å).

B. Specimen preparation

The sample was prepared by careful grinding in an agate mortar and was then front-loaded into the specimen holder.

C. Diffraction data collection and reduction

The diffraction pattern for the title compound was collected at room temperature with an X'Pert³ Powder θ – θ powder diffractometer with parafocusing Bragg–Brentano geometry using Cu $K\alpha$ radiation (λ = 1.5418 Å, Ni filter, generator setting: 40 kV, 30 mA). An ultrafast PIXCEL detector was employed to collect XRD data over the angular range from 5 to 70° 2 θ with a step size of 0.013° 2 θ and a counting time of 316.97 s step⁻¹.

The software package HighScore Plus V 3.0e (PANalytical, Almelo, The Netherlands) was used to smooth the data, to fit the background, to eliminate the $K\alpha_2$ component, and the top of the smoothed peaks were used to determine the peak positions and intensities of the diffraction peaks (Table 1). The *d*-values were calculated using $CuK\alpha_1$ radiation ($\lambda = 1.5406 \text{ Å}$).

III. RESULTS AND DISCUSSION

The automatic indexing of results was obtained using TREOR (Werner *et al.*, 1985). The experimental powder diffraction pattern is showed in Figure 2. MXE hydrochloride, $C_{15}H_{22}CINO_2$, is monoclinic with space group $P2_1$ and unit-cell parameters: a=8.574(2) Å, b=9.943(2) Å, c=8.774(1) Å, $\beta=100.294(3)^\circ$, unit-cell volume V=736(1) Å³, and Z=2. The figures of merits are $F_{20}=45(0.0161, 28)$ and $M_{20}=22$ (de Wolff, 1968; Smith and Snyder, 1979). All measured lines (Table 1) were indexed and are consistent with the $P2_1$ space group.

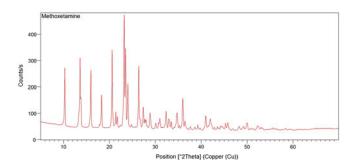


Figure 2. X-ray powder diffraction pattern of title compound using $\text{Cu}K\alpha$ radiation ($\lambda = 1.5418 \text{ Å}$).

The single-crystal experiment was done at the temperature of 190 K and the structure solution was obtained. The title compound is monoclinic with space group $P2_1$ and unit-cell parameters: a = 8.5360(7) Å, b = 9.9155(9) Å, c = 8.7558(8) Å, $\beta = 100.354(2)^{\circ}$, unit-cell volume V = 729.0(7) Å³, and Z = 2. The difference in unit-cell parameters from the single-crystal data and the powder diffraction data is because of the temperature expansion.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at https://doi.org/10.1017/S0885715617000860.

Acknowledgements

Financial support from specific university research (MSMT No 20-SVV/2017) and by the Ministry of Interior of the Czech Republic (MV0/VI20172020056).

- Allen, F. H. (2002). "The Cambridge Structural Database: a quarter of a million crystal structures and rising," Acta Crystallogr. B58, 380–388.
- de Wolff, P. M. (1968). "A simplified criterion for the reliability of a powder pattern," J. Appl. Crystallogr. 1, 108–113.
- EMCDDA (2014). "Methoxetamine report on the risk assessment of 2-(3-methoxyphenyl)-2-(ethylamino)cyclohexanone (methoxetamine) in the framework of the council decision on new psychoactive substances," Risk Assess., 15, 1–26.

- Frison, G., Zamengo, L., Zancanaro, F., Tisato, F., and Traldi, P. (2016). "Characterization of the designer drug deschloroketamine (2-methylamino-2-phenylcyclohexanone) by gas chromatography/mass spectrometry, liquid chromatography/high-resolution mass spectrometry, multistage mass spectrometry, and nuclear magnetic resonance," Rapid Commun. Mass Spectrom. 30, 151–160.
- Hajkova, K., Jurasek, B., Sykora, D., Palenicek, T., Miksatkova, P., and Kuchar, M. (2016). "Salting-out-assisted liquid-liquid extraction as a suitable approach for determination of methoxetamine in large sets of tissue samples," Anal. Bioanal. Chem. 408, 1171–1181.
- Hays, P. A., Casale, J. F., and Berrier, A. L. (2012). "The characterization of 2-(3-methoxyphenyl)-2-(ethylamino)cyclohexanone (methoxetamine)," Microgram J. 9, 3–17.
- Hofer, K. E., Degrandi, C., Müller, D. M., Zürrer-Härdi, U., Wahl, S., Rauber-Lüthy, C., and Ceschi, A. (2014). "Acute toxicity associated with the recreational use of the novel dissociative psychoactive substance methoxphenidine," Clin. Toxicol. 52, 1288–1291.
- Horsley, R. R., Lhotkova, E., Hajkova, K., Jurasek, B., Kuchar, M., and Palenicek, T. (2016). "Detailed pharmacological evaluation of methoxetamine (MXE), a novel psychoactive ketamine analogue—behavioural, pharmacokinetic and metabolic studies in the Wistar rat," Brain Res. Bull. 126, 102–110.
- ICDD (2015). "Powder diffraction file," edited by S. Kabekkodu, International Centre for Diffraction Data, 12 Campus Boulevard, Newton Square, Pennsylvania 19073-3272.
- Jurasek, B. and Kuchar, M. (2016). "Methoxetamine," Drugs Forensics Bull. 1, 27–31.
- Menzies, E. L., Hudson, S. C., Dargan, P. I., Parkin, M. C., Wood, D. M., and Kicman, A. T. (2014). "Characterizing metabolites and potential metabolic pathways for the novel psychoactive substance methoxetamine," Drug Test. Anal. 6, 506–515.
- Morris, H. and Wallach, J. (2014). "From PCP to MXE: a comprehensive review of the non-medical use of dissociative drugs," Drug Test. Anal. 6, 614–632.
- Smith, G. S. and Snyder, R. L. (1979). "F_N: a criterion for rating powder diffraction pattern and evaluating the reliability of powder indexing," J. Appl. Crystallogr. 12, 60–65.
- Stevens, C. L. and Parke, D. (1966). "Aminoketones and methods for their production.," Patent US3254124.
- Werner, P. E., Erikson, L., and Westdahl, M. (1985). "TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries," J. Appl. Crystallogr., 18, 367–370.
- Zanda, M. T., Fadda, P., Chiamulera, C., Fratta, W., and Fattore, L. (2016). "Methoxetamine, a novel psychoactive substance with serious adverse pharmacological effects," Behav. Pharmacol. 27, 489–496.
- Zawilska, J. B. (2014). "Methoxetamine a novel recreational drug with potent hallucinogenic properties," Toxicol. Lett. 230, 402–407.