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Abstract

Background. Bipolar disorder (BD) is a highly heritable mood disorder with complex genetic
architecture and poorly understood etiology. Previous transcriptomic BD studies have had
inconsistent findings due to issues such as small sample sizes and difficulty in adequately
accounting for confounders like medication use.
Methods. We performed a differential expression analysis in a well-characterized BD case-
control sample (Nsubjects = 480) by RNA sequencing of whole blood. We further performed
co-expression network analysis, functional enrichment, and cell type decomposition, and inte-
grated differentially expressed genes with genetic risk.
Results. While we observed widespread differential gene expression patterns between affected
and unaffected individuals, these effects were largely linked to lithium treatment at the time of
blood draw (FDR < 0.05, Ngenes = 976) rather than BD diagnosis itself (FDR < 0.05, Ngenes = 6).
These lithium-associated genes were enriched for cell signaling and immune response func-
tional annotations, among others, and were associated with neutrophil cell-type proportions,
which were elevated in lithium users. Neither genes with altered expression in cases nor in
lithium users were enriched for BD, schizophrenia, and depression genetic risk based on
information from genome-wide association studies, nor was gene expression associated
with polygenic risk scores for BD.
Conclusions. These findings suggest that BD is associated with minimal changes in whole
blood gene expression independent of medication use but emphasize the importance of
accounting for medication use and cell type heterogeneity in psychiatric transcriptomic stud-
ies. The results of this study add to mounting evidence of lithium’s cell signaling and
immune-related mechanisms.

Introduction

Bipolar disorder (BD) is a chronic and recurrent psychiatric disorder affecting ∼1% of the
population worldwide and presenting a major public health burden (Weissman et al., 1996;
Eaton et al., 2008). It is characterized clinically by instability in mood resulting in manic
and depressive episodes interspersed between neutral and euthymic states (Eaton et al.,
2008). Risk for BD is highly genetic, with heritability estimates as high as 85% (McGuffin
et al., 2003) and common genetic variation explaining up to a third of that (Cross-Disorder
Group of the Psychiatric Genomics et al., 2013). Still, however, the pathophysiological charac-
teristics of BD are not well understood. Investigating molecular phenotypes such as gene
expression as intermediate measures between genetic variation and clinical variation is a viable
strategy for uncovering disease mechanisms. Many such studies have been carried out for BD,
and we present a summary that reveals a lack of consistency between findings likely owing to
clinical heterogeneity, differing study designs, and the low numbers of samples investigated
(N 62 BD subjects; online Supplementary Table S1) (Elashoff et al., 2007; Matigian et al.,
2007; Choi et al., 2011; Akula et al., 2014; Beech et al., 2014; Mostafavi et al., 2014; Witt
et al., 2014; Xiao et al., 2014; Cruceanu et al., 2015; Madison et al., 2015; Mertens et al.,
2015; van Eijk et al., 2015; Zhao et al., 2015; Anand et al., 2016; Breen et al., 2016; Fromer
et al., 2016; Hess et al., 2016; Jansen et al., 2016; Peterson et al., 2016; Fries et al., 2017;
Kittel-Schneider et al., 2017; Pacifico and Davis, 2017; Vizlin-Hodzic et al., 2017).
Moreover, there are many potential confounds that impact gene expression, including
medication.
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Therefore, to explore gene expression changes associated with
BD, we generated RNA sequencing data from peripheral whole
blood collected in a large case-control cohort from The
Netherlands. We examined gene expression differences between
groups both at the individual gene level and at the level of gene
co-expression to shed light on disease-relevant molecular profiles.
We also investigated the effects of lithium use, the most widely
used prescription drug in our cohort, and other variables on
gene expression reflect the complex, polygenic nature of bipolar
disorder as measured by genetic risk identified through genome-
wide association studies (GWASs) of psychiatric disorders. The
main findings suggest that there are nominal BD-related gene
expression effects in blood but numerous effects related to lithium
treatment, and that these changes are independent of genetic risk
of psychiatric disorders. This work highlights the importance of
incorporating medication use in psychiatric transcriptomic stud-
ies and provides insight into blood-based gene expression effects
related to BD and the effects of lithium.

Methods

Participant recruitment

Data were generated according to protocols approved by the re-
spective local ethics committees: the Medical Ethical Review
Board at University Medical Center Utrecht and the Institutional
Review Board at University of California Los Angeles. Informed
consent was obtained from all subjects. Participants were included
upon the criteria of having at least three Dutch grandparents and
being older than 18 years of age. Patients were recruited via clin-
icians, the Dutch patients’ association, pharmacies, and advertise-
ments as previously described (Abramovic et al., 2016; Abramovic
et al., 2018). Case inclusion criteria included having a diagnosis of
BD-I or BD-II and a current euthymic state. Diagnosis was con-
firmed via assessment as previously described (Abramovic et al.,
2016) with the Structured Clinical Interview for DSM-IV
(http://www.scid4.org). A portion of the controls (ascertainment
group A) was recruited via advertisements and involvement in
previously studies after having agreed to be re-contacted for
new research as previously described (Abramovic et al., 2016;
Abramovic et al., 2018). Another portion of the controls (ascer-
tainment group B) was recruited at outpatient preoperative
screening services in four hospitals in and around Utrecht,
Netherlands as previously described (Luykx et al., 2014).
Control subjects did not have a diagnosis of BD or any psychotic
or neurological disorder and had no first-degree relative with a
diagnosis of BD or any psychotic disorder. In addition to diagnos-
tic assessments, subjects were assessed for medication and tobacco
use.

Lithium use assessment

Information about patients’ lithium use was gathered as previ-
ously described (Abramovic et al., 2016). In brief, patients lithium
treatment prescribed and monitored by their own physician was
self-reported on in three ways: (1) in an online medical question-
naire that inquired about medication use, (2) during the on-site
assessment where a list of current and lifetime medication use
was discussed, and (3) in an assessment of a lithium satisfaction
questionnaire. The data of these three measures was combined
to accurately determine the current use of lithium in subjects
with BD, which constituted the lithium use phenotype in

subsequent analyses. Although data were missing for seven indi-
viduals, information regarding response to lithium showed that
a majority of subjects being treated with lithium had experienced
less frequent (N = 104, 71.7%) and less severe (N = 113, 77.9%)
mood episodes, and were satisfied or very satisfied with the use
of lithium (N = 113, 77.9%) since starting the medication.
Additionally, although data were missing for 16 individuals, infor-
mation regarding past lithium use indicated that only ten subjects
had never used lithium (4.5%). Information regarding subjects’
blood lithium levels was available for 82 of the 152 lithium
users via self-report based on their most recent medication
check with their doctor (not at the time of blood draw for the cur-
rent study). Levels ranged between 0.34 and 1.2 mmol/l with a
mean of 0.78 mmol/l, and 73 subjects had blood levels within
the therapeutic range (0.6 to 1.2 mmol/l). Of the 152 subjects
using lithium, 59 were using lithium with another mood stabilizer
and 93 were using lithium as their only mood stabilizer, however,
information regarding which other mood stabilizer used was
unavailable. Data about the use of antipsychotics was too sparse
to be used in subsequent analyses.

Gene expression quantification and differential expression
analysis

Peripheral whole blood was drawn and processed for genotyping
and RNA sequencing from 240 controls and 240 cases yielding an
average of 24.9 million paired-end reads per sample, which were
then mapped to human reference genome hg19 using TopHat2
(Kim et al., 2013). Additional details about sample preparation,
RNA sequencing, and read alignment can be found in the online
Supplementary Methods. Known Ensembl gene levels were quan-
tified using HTSeq in the union mode to obtain integral counts of
reads that intersect the union of all transcripts of genes. Principal
component analysis of gene expression quantification was used
for data visualization and additional QC, after which four samples
were removed for apparent mix-up (online Supplementary
Methods). Thirty-two additional samples were excluded due to
incomplete demographic information. Differential expression
and co-expression analyses were therefore limited to a set of
444 subjects (240 cases and 204 controls).

Gene expression counts from HTSeq were filtered for genes
having >10 counts in 90% of samples, yielding 12 344 genes for
subsequent analyses, of which 1796 were non-coding. A standard
differential expression analysis for gene expression counts gener-
ated from RNA sequencing was performed using limma voom
(Law et al., 2014). Details of this analysis can be found in the
online Supplementary Methods. p Values were corrected for mul-
tiple testing using the Benjamini–Hochberg false discovery rate
(FDR) estimation, and a gene was considered to be differentially
expressed if it had an FDR-corrected p value < 0.05. An overview
of covariates can be found in Table 1 and a description of the final
covariate models can be found in the online Supplementary
Methods. Differentially expressed genes (DEGs) were checked
for overlap and concordance with other datasets (online
Supplementary Methods). Fold changes (FCs) reported are in
log 2 FC units. Functional annotation of DEGs was performed
as described in the online Supplementary Methods.

Co-expression network analysis

To prepare the data for co-expression network analysis, the 12 344
filtered and normalized genes were residualized adjusting for
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Table 1. Demographic and technical variables

Case Control Lithium user Non-lithium user

N (%) p N (%) p

Total 240 204 – 152 88 –

Female sex 131 (54.6%) 119 (58.3%) 0.44 90 (59.2%) 41 (46.6%) 0.061

Lithium use 152 (63.3%) 0 (0%) <2.20 × 10−16 152 (100%) 0 (0%) –

Tobacco use 74 (30.8%) 39 (19.1%) 6.14 × 10−3 48 (31.6%) 26 (29.5%) 0.77

Ascertainment group 240 (100%) 111 (53.4%) <2.20 × 10−16 152 (100%) 88 (100%) 1.00

Sequencing plate 1 48 (20.0%) 38 (18.6%) 1.00 28 (18.4%) 20 (22.7%) 0.83

Sequencing plate 2 48 (20.0%) 41 (20.1%) 1.00 29 (19.1%) 19 (21.6%) 0.83

Sequencing plate 3 48 (20.0%) 41 (20.1%) 1.00 30 (19.7%) 18 (20.5%) 0.83

Sequencing plate 4 48 (20.0%) 42 (20.6%) 1.00 33 (21.7%) 15 (17.0%) 0.83

Sequencing plate 5 48 (20.0%) 42 (20.6%) 1.00 32 (21.1%) 16 (18.2%) 0.83

Mean (S.D.) Mean (S.D.)

Age 50.3 (12.4) 43.4 (14.8) 1.95 × 10−7 48.0 (13.1) 54.3 (10.0) 5.00 × 10−5

RIN 7.50 (0.764) 7.70 (0.599) 1.92 × 10−3 7.48 (0.633) 7.54 (0.952) 0.56

Sequencing metric PC1 5.48 × 10−4 (0.0458) 6.21 × 10−4 (0.0462) 0.99 −7.35 × 10−5 (0.0458) 1.62 × 10−3 (0.0462) 0.78

Sequencing metric PC2 4.55 × 10−3 (0.0563) −4.34 × 10−3 (0.0324) 0.039 6.16 × 10−3 (0.0591) 1.78 × 10−3 (0.0514) 0.55

Sequencing metric PC3 6.92 × 10−3 (0.0421) −6.44 × 10−3 (0.0491) 2.44 × 10−3 6.43 × 10−3 (0.0410) 7.77 × 10−3 (0.0441) 0.82

PC, principal component; S.D., standard deviation.
p Values computed by Fisher’s exact test (categorical variable) or t test (continuous variable).
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covariates. To determine networks of genes with correlated
expression, weighted gene co-expression network analysis
(WGCNA) (Langfelder and Horvath, 2008) was performed
using the WGCNA package in R. WGCNA defines a network
of genes as nodes with edges between genes based on pairwise
correlations between genes, and separates the network into mod-
ules of gene clusters with highly coordinated expression. The gene
expression profiles of each module were summarized by calculat-
ing the module eigengene, which is defined as the first principal
component of the expression matrix of that module, and each
gene was then assigned a measure of module membership for
each module. To determine biologically significant modules,
gene significance measures were assigned to each gene for each
of our traits of interest, including BD diagnosis and lithium use,
by calculating the absolute correlation between the trait and the
expression profiles. Then a measure of module-trait significance
was calculated by correlating module membership values with
gene significance values. An association was considered signifi-
cant if its p value surpassed Bonferroni correction for testing mul-
tiple modules ( p < = 0.05/Nmodules). Additional details of this
analysis and functional annotation of modules are described in
the online Supplementary Methods.

Cell-type proportion estimation and enrichment

To estimate cell-type composition in our sample we employed the
CIBERSORT online software (cibersort.stanford.edu) (Newman
et al., 2015). Details of this analysis can be found in the online
Supplementary Methods. The resulting estimated cell-type pro-
portions were regressed on covariates, and the residuals were
used to predict lithium use in a stepwise linear regression using
the stepAIC function in the MASS package in R. The estimated
cell-type proportions were also appended to the table of technical
and biological covariates and then used to re-run the differential
expression analysis while accounting for cell-type heterogeneity
in the sample. The enrichment of LM22 cell types in gene
co-expression modules determined from WGCNA was calculated
in two ways: first via hypergeometric overlap between modules
and cell type signature genes, and second by using binary cell
type signatures to predict module membership values in a linear
model. Details of these analyses are described in online
Supplementary Methods.

Integration of GWAS data with transcriptomic signatures

Prior to gene-set analyses, heritability and genetic correlation of
traits of interest were estimated to confirm significant non-zero
single-nucleotide polymorphism (SNP)-based heritability (online
Supplementary Methods). Analyses were performed across
three psychiatric GWAS traits from publicly available datasets
(bipolar disorder, schizophrenia (SCZ), and self-reported depres-
sion) and two sets of DEGs (BD at FDR < 0.2 and lithium-use at
FDR < 0.05). Differential expression log 2 FCs and FDR-corrected
p values for each of the 12 344 genes expressed at >10 counts in
90% of samples were obtained from limma to integratewhole-blood
gene expression signatures with GWAS data using Multi-marker
Analysis of GenoMic Annotation (MAGMA v1.06) (de Leeuw
et al., 2015).

GWAS summary statistics were obtained for the following
three GWAS traits:

(1) SCZ (Schizophrenia Working Group of the Psychiatric
Genomics, 2014): 36 989 cases and 113 075 controls;

(2) BD (Stahl et al., 2019): 20 352 cases and 31 358 controls;
(3) Depression (Hyde et al., 2016): 75 607 cases and 231 747

controls;

The 1000 Genomes Project Phase 3 release European reference
panel (N = 503) was used to model linkage disequilibrium in all
analyses (Genomes Project et al., 2015). Eight gene lists were
used from two different DEG models along with a positive and
negative control:

(1) Lithium-use DEGs at FDR < 0.05: N = 897 genes;
(2) Up-regulated lithium-use DEGs at FDR < 0.05: N = 680 genes;
(3) Down-regulated lithium-use DEGs at FDR < 0.05: N = 217

genes;
(4) BD DEGs at FDR < 0.2: N = 630 genes;
(5) Up-regulated BD DEGs at FDR < 0.2: N = 389 genes;
(6) Down-regulated BD DEGs at FDR < 0.2: N = 241 genes;
(7) Positive control gene-set: the top 100 most significant genes

from a random draw of N = 1000 using the BD GWAS gene-
level test statistics;

(8) Negative control gene-set: a random draw of N = 1000 genes
using the BD GWAS gene-level test-statistics.

The MAGMA software settings used for this analysis can be
found in online Supplementary Methods. Secondary gene-set
analyses were run on a limited number of DEG gene sets and add-
itional, sleep-related GWAS traits (online Supplementary
Methods).

Results

Minimal changes in bipolar disorder gene expression

To explore the transcriptomic signatures of BD, we first evaluated
whether subjects with BD harbored transcriptional differences on
a per gene level compared with controls. Of the 12 344 genes
tested, only six were differentially expressed in BD after correcting
for multiple testing (FDR < 0.05; Fig. 1a). The differences in
expression were very small, with absolute FC ranging from 0.12
to 0.44. While the number of identified DEGs was too small to
perform functional enrichment analysis, we did find that three
of the six genes (COG4, DOCK3, and BBS9) were expressed in
GTEx frontal cortex tissue (median TPM > 1) and show relatively
stable expression across brain cell types except for DOCK3, which
is enriched in neurons (FC relative to other cell types = 6.82;
online Supplementary Table S4). All six genes were present in
at least one of the three BD cortical gene expression datasets
examined, and one of the genes was significantly up-regulated
in BD cases v. controls, PVT1 (Gandal et al., 2018a, 2018b).
Another gene, COG4, was differentially expressed in the same dir-
ection as the current study in BD individuals in the Stanley
Genomics brain gene expression database, and was reported as
differentially expressed in a schizophrenia mega-analysis of nine
whole blood microarray datasets (Hess et al., 2016). Using poly-
genic risk scores (PRS) for BD as the differential expression
trait of interest rather than the dichotomous case-control pheno-
type did not yield any significant genes, even though PRS did
significantly differ between BD cases and controls (t = −3.42,
p = 6.88 × 10−4; online Supplementary Fig. S1 and Supplementary
Methods).
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Widespread subtle gene expression changes in lithium users

Following the same differential expression pipeline as above, we
found 976 genes with small differences in gene expression
between lithium users and non-lithium users (|FC| mean = 0.20,
max = 0.82, S.D. = 0.10; Fig. 1b, online Supplementary File S1).
These genes were enriched for biological terms related to calcium
signaling and other signaling pathways, and immunity (Fig. 1c).
To distinguish between up- and down-regulated gene pathways,
we stratified genes by their direction of change in expression.
The 754 up-regulated genes were annotated for many of the
same terms as the full set but with greater enrichment scores,
indicating that the up-regulated genes are driving the enrichment
scores in the full set (Fig. 1c). Of the 976 lithium-use DEGs, 804
were expressed in GTEx frontal cortex samples (TPM > 1), and
488, 553, 503, 478, 512, and 403 were expressed in neurons,
fetal astrocytes, mature astrocytes, oligodendrocytes, microglia/
macrophages, and endothelia, respectively (FPKM> 1). However,
none of these gene sets were significantly enriched (hypergeometric
p > 0.05).

To validate our results, the 976 lithium-use DEGs were tested
for overlap with lists of DEGs from similar studies found in the
literature (online Supplementary Table S5). Although none of

these studies has the same design as ours, we did find a significant
overlap between our 976 lithium-use DEGs and the lists from two
studies. In the first study (Anand et al., 2016), 35 DEGs were
detected by comparing peripheral monocyte gene expression in
subjects before and after lithium monotherapy. Of these 35
DEGs, 18 were shared with the current study [hypergeometric
odd ratio (OR) 13.57, p = 4.66 × 10−12], and all 18 were concord-
ant in direction (online Supplementary Fig. S4A). In the second
study (Breen et al., 2016), DEGs were detected by comparing
LCL gene expression before and after lithium treatment in vitro.
Of the 1504 DEGs discovered, 134 were shared with our study
(hypergeometric OR 1.27, p = 9.23 × 10−3), and 84.6% of these
were concordant in direction (online Supplementary Fig. S4B).
There were two genes shared between all three lists, RFX2 and
SLC29A1. We report genes in these overlapping lists as high-
confidence lithium-associated genes (online Supplementary
File S1).

Next, in search of genes with differential co-expression, we
constructed a gene expression network in the entire sample
using WGCNA and assessed the detected modules for association
with traits of interest. This network consisted of 27 modules ran-
ging in size from 48 to 2760 genes (mean Ngenes = 441, online
Supplementary File S2), five of which were significantly associated

Fig. 1. Differentially expressed genes. (a) Six BD DEGs. FC, log 2 FC; q, FDR-adjusted p < 0.05. (b) 976 genes differentially expressed between lithium users and non-
lithium users (shown as blue triangles, FDR-adjusted p < 0.05; all other genes tested shown as light gray circles). (c) DAVID (Da Huang et al., 2009) functional anno-
tation cluster enrichment of all 976 DEGs (upper) and 754 up-regulated DEGs (lower). Enrichment scores increase when the gene list is limited to up-regulated genes
only. Clusters were considered significant if the enrichment score >1 and at least one term in the cluster survived Bonferroni correction for multiple testing.
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with lithium-use. No modules were associated with BD or any
other clinical or technical variable (online Supplementary
Table S6). Of the five modules associated with lithium use, three
shared significant overlap with lithium-use DEGs (Table 2). M26
was most significantly associated with lithium ( p = 2.00 × 10−4;
online Supplementary Fig. S6A) but was not significantly enriched
for lithium DEGs. M1 was also associated with lithium ( p = 9.04 ×
10−4; online Supplementary Fig. S6B) and had the most significant
enrichment of DEGs (431 of 2092 genes in the module were DEGs;
hypergeometric OR 4.62, p = 2.03 × 10−97). Functional annotation
clustering of the genes inM1 showed an enrichment of terms related
to cell signaling, immunity, and glycophosphatidylinositol anchor.
Module preservation analysis was also performed to assess differ-
ences in network density and connectivity between groups, but
showed full preservation indicating that networks constructed in
separate groups maintain their underlying structure (online
Supplementary Methods and Fig. S7).

Estimated neutrophil proportions are increased in lithium
users

We then sought to determine if variation in our sample could be
explained by differences in blood cell-type composition, which
might represent a biologically meaningful effect of lithium.
Because white blood cell counts were unavailable, to deconvolve
cellular heterogeneity, we utilized CIBERSORT, a method that
has been shown to accurately characterize blood cell composition
based on gene expression profiles (Newman et al., 2015). Using
our gene expression quantifications and a reference panel of 22
blood cell-type signatures, we estimated cell-type proportions
(Fig. 2a) and examined their relationship with lithium use in
BD cases only. Each cell type was regressed on demographic
and technical variables then the residuals were used to predict
lithium use in a stepwise linear model. Neutrophils are the one
cell type that significantly predicted lithium use within the BD
cases (β = 0.63, p = 0.024), with elevated proportions in indivi-
duals being treated with lithium (Fig. 2b). Indeed, 16 of 60 signa-
ture neutrophil genes were also lithium-use DEGs
(hypergeometric OR 4.64, p = 4.45 × 10−6).

The number of genes showing differential expression in sub-
jects undergoing lithium treatment decreased from 976 in the
model without cell-type estimates to 233 in the model with cell-
type estimates (FDR < 0.05; online Supplementary Fig. S8A and
File S1), of which 194 (83.2%) were significant in the original
model and concordant in the direction of effect (online
Supplementary Fig. S8B). No functional annotation cluster
terms remained significant after correcting for multiple testing.
The number of genes differentially expressed between BD cases
and controls decreased to zero after accounting for estimated
cell-type proportions.

We then sought to determine if the various lithium-associated
modules of co-expressed genes reflected biologic signatures of
distinct populations of blood cell types. We did this in two
ways. First, a hypergeometric overlap between lithium-associated
module gene lists and cell-type signature gene lists revealed a
significant overlap between module M1 with monocyte and neu-
trophil signature genes and M9 with eosinophil and activated
mast cell signature genes (Fig. 3a, left). Second, the expression
of cell-type signature genes was used to predict module member-
ship values in a linear model for each of the five
lithium-associated modules. Neutrophils, monocytes, and eosino-
phils were again implicated (Fig. 3a, right). In both of these Ta
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analyses, the most significant cell type-module relationship was
M1 with neutrophil estimates (hypergeometric p = 5.68 × 10−21,
linear model p < 2.20 × 10−16). Indeed, neutrophil signature
genes had higher M1 membership values (Fig. 3b).

Genes with altered expression are not enriched for genes with
common psychiatric risk alleles

To evaluate if BD and lithium-use DEG sets were associated with
a higher burden of psychiatric risk alleles, we performed gene-set
analyses using MAGMA (de Leeuw et al., 2015). Analyses were
performed across three psychiatric GWAS traits: BD (Stahl et al.,
2019), SCZ (Schizophrenia Working Group of the Psychiatric
Genomics, 2014), and self-reported depression (Hyde et al.,
2016). SCZ and depression were used because of their high degree
of overlap in SNP-based heritability with BD (Cross-Disorder
Group of the Psychiatric Genomics et al., 2013) (online
Supplementary Table S7). The 23andMe self-reported depression
GWAS was used instead of MDD GWAS because of the large sam-
ple size and successful findings of this study. A lithium-response
GWAS was not used because the SNP-based heritability estimate
for this trait is not different from zero (personal communication
with Drs. Thomas G. Schulze and Francis McMahon). Because
the set of BD DEGs at FDR < 0.05 was too small to test, we used a
more lenient significance threshold of FDR < 0.2 for this analysis

instead. None of the comparisons demonstrated an association
with genetic risk across the genes identified in the current study
(except for the positive control gene set), even after stratifying by
up- and down-regulated genes (online Supplementary Fig. S9 and
Table S8). Because sleep disturbances are a hallmark of BD
(Harvey, 2008), and due to the genetic correlation of sleep-related
phenotypes with BD (Jones et al., 2016), we performed a secondary
gene-set analysis with genes implicated from chronotype, sleep dur-
ation, oversleeping, and undersleepingGWAS,which failed to dem-
onstrate association with genes identified in the current study
(online Supplementary Table S9).

Discussion

In our whole blood BD case-control gene expression study we
observed widespread subtle changes in gene expression in subjects
undergoing lithium treatment but few transcriptomic differences
in euthymic BD cases compared to controls. These effects were
partially driven by variation in leukocyte cell type composition,
and we find no evidence for a link with genetic risk for BD.
Upon validation of our findings with previous in vivo and in
vitro lithium treatment gene expression studies, we present a
high-confidence list of genes that display altered expression asso-
ciated with lithium treatment.

Fig. 2. Estimated neutrophil composition association with lithium use. (a) Leukocyte cell-type proportions per sample as estimated from gene expression, sorted by
neutrophil proportions. Mean proportion across samples shown in parentheses. Lithium users, shown in the bar on the bottom, cluster on the right where neu-
trophil proportions are higher. (b) Lithium users have higher estimated neutrophil proportions (β = 0.63, p = 0.024).
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Lithium is the first-line treatment for BD, not only for the
treatment of acute episodes but also for maintenance and suicide
prevention (Cipriani et al., 2013; Malhi et al., 2017). However,
only about 30% of BD patients fully respond to lithium, it has sev-
eral adverse side effects, and its mechanisms of action are not well
understood (Alda, 2015; Gitlin, 2016; Pickard, 2017). One prob-
able reason for this lack of understanding is the magnitude of
lithium’s physiological interactions (Roux and Dosseto, 2017).
In pharmacological terms, lithium is a small molecule (the third
smallest element in fact) without a defined target (Pickard,
2017). This lack of specificity makes it difficult to discern thera-
peutic mechanisms from off-target effects, which likely lead to
many of lithium’s undesirable side effects and even its toxicity
in serum concentrations that are above therapeutic levels.
Lithium ions (Li+) have a single positive charge and are hypothe-
sized to mimic and disrupt the actions and targets of more ubi-
quitous metal ions such as magnesium (Mg2+) (Pickard, 2017).
Theorized therapeutic mechanisms of lithium include its

inhibition of the protein GS3Kβ, and its effect on intracellular
signaling cascades such as those involving protein kinases and
phosphatidylinositol (Luykx et al., 2010; Brown and Tracy,
2013). It is not clear how these mechanisms relate to higher
order properties thought to be involved in BD etiology like neur-
onal function, chronobiology, and brain structure. Examining
lithium mechanisms at high-biological resolution is therefore
not only crucial for understanding the high rates of non-response
and non-adherence to prophylactic lithium treatment in BD
patients but also for understanding BD etiology itself.

The widespread but subtle gene expression changes observed
in lithium users are in line with lithium’s broad scope of physio-
logical effects (Roux and Dosseto, 2017) and with the complex
genetic architecture of BD (Fromer et al., 2016). These genes
were enriched for functional annotations related to transmem-
brane, cell signaling, protein kinase, and immunity. These path-
ways have been implicated in previous BD transcriptome studies
(Xiao et al., 2014; Cruceanu et al., 2015; Mertens et al., 2015;

Fig. 3. Lithium-associated co-expression module M1 enrichment for neutrophil gene expression signatures. (a) Lithium-associated module enrichment for leukocyte
cell types. Left, Hypergeometric overlap between leukocyte cell type signature genes and genes in each module. Right, Linear regression of leukocyte cell type
signature genes to predict module membership values. (b) Neutrophil signature genes have higher module membership values for M1 than other leukocyte sig-
nature genes (β = 0.60, p < 2.20 × 10−16).
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Kittel-Schneider et al., 2017; Pacifico and Davis, 2017) and are
known targets of lithium (Alda, 2015; Maddu and Raghavendra,
2015). The elevated levels of neutrophil proportions we observed
are in line with lithium-induced neutrophilia, which has been
described since the medication’s early use in psychiatry (Maddu
and Raghavendra, 2015). Lithium is thought to induce neutrophi-
lia through a complex pathway involving GSK3 and
immune-related transcription factors and genes (Kast, 2008).
Increased levels of neutrophils are typically associated with anti-
inflammatory or infection-fighting immune responses (Rosales
et al., 2016). Whether these immunity-related mechanisms play
a role in the mood stabilizing effects of lithium remains to be
determined. Immune components of psychiatric illness including
BD (Rosenblat and McIntyre, 2017) have long been recognized,
but it remains unclear if they represent a causal pathway, a prop-
erty of the disease state, or a consequence of environmental fac-
tors like body mass index or smoking. These results contribute
to the understanding of the genomics of lithium action, which
may be essential for the future of personalized psychiatric medi-
cine for patients with BD. Future studies with larger sample
sizes and independent replication datasets will be needed to con-
firm our findings, and whether these genes and pathways play a
role in the mood-stabilizing mechanisms of lithium remains to
be determined.

The lack of enrichment of the genetic signal from common
alleles associated with BD, schizophrenia, or self-reported
depression suggests that genes transcriptionally associated
with lithium treatment in peripheral blood most likely represent
secondary effects of treatment that are independent from dis-
ease susceptibility. The lack of genetic enrichment could also
indicate that our gene expression study is underpowered for
this purpose, or that the transcriptomic mechanisms of genetic
risk for BD are not present in whole blood. In addition, the cur-
rently available GWAS may still be underpowered thereby
impacting our ability to detect a significant enrichment. With
the expected rapidly increasing sample sizes of these GWAS
studies we will be able to test this hypothesis more fully in
the near future. We did explore the opportunity to examine
enrichment of genetic susceptibility of lithium response, but
because this phenotype has a SNP-based heritability not differ-
ent from zero, this specific analysis is not meaningful. In this
regard, it is important to distinguish between lithium use, the
phenotype we used in our study, and lithium response.
Self-reported answers to a lithium questionnaire by participants
in our study show that the majority of subjects being treated
with lithium had a positive response to the treatment and the
majority of non-users have been treated with lithium in the
past (online Supplementary Methods). We therefore consider
that the lithium use phenotype partially captures lithium
response, but disentangling the complex interplay between
these phenotypes is an avenue for further exploration.

Because lithium use is a trait only present in BD subjects and
therefore confounded with BD diagnosis, it is a confounder by
indication and likely eliminated most of the observable BD effects.
Our results highlight the importance of correcting for cell type
composition as well as medication use in BD transcriptome stud-
ies. A lithium-naive study design is warranted to optimize BD
transcriptomic signal that is independent of lithium use.
Nevertheless, investigating the BD transcriptome in whole blood
remains valuable for the following reasons. It is an accessible tis-
sue, it has the potential for biomarker discovery, and it can be
used in longitudinal study designs, which are appealing due to

the episodic nature of BD. It may also be a choice tissue to observe
the suggested immune component of BD etiology. In addition,
peripheral tissues such as blood partially recapitulate gene expres-
sion signatures of the brain (Cai et al., 2010), and compared to
post-mortem tissues are less subject to poor quality due to
rapid degradation upon death (Popova et al., 2008). However,
studies involving post-mortem tissue or in vitro neuronal cells
will still be needed to determine the therapeutic effect of lithium
on BD-associated brain-related function.

We recognize some limitations of this study. For example,
designed to investigate the gene expression signatures of bipolar
disorder, the setup was not intended to measure the effects of lith-
ium on gene expression. Lithium use was overlapped partially
with BD diagnosis, which we attempted to disentangle, and likely
with the use of other medications and comorbid disorders. We
did not consider comorbid disorders in addition to BD in the cur-
rent analysis, although it is possible that other psychiatric and
somatic comorbidities might influence gene expression in this
sample. Additionally, the lithium use phenotype used was self-
reported and may be biased as such, and did not necessarily
reflect a therapeutic response to the medication. A longitudinal
design in a more homogenous, well-characterized cohort of
lithium-naïve cases may be better suited to capture the gene
expression signatures of lithium.

In summary, our findings suggest that there are minimal bipo-
lar disorder-associated gene expression changes in whole blood
independent of medication use and underline the importance of
accounting for such confounders in psychiatric genomic studies.
While limited in their ability to uncover mechanisms associated
with genetic risk, blood-based transcriptome analyses of BD
may still be informative with larger sample sizes and careful
designs. Lastly, our findings provide molecular insights into the
potential therapeutic actions of lithium, including cell signaling
and immunity-related functions.
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