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HIERARCHIES OF (VIRTUAL) RESURRECTION AXIOMS

GUNTER FUCHS

Abstract. I analyze the hierarchies of the bounded resurrection axioms and their “virtual” versions, the
virtual bounded resurrection axioms, for several classes of forcings (the emphasis being on the subcomplete
forcings). I analyze these axioms in terms of implications and consistency strengths. For the virtual
hierarchies, I provide level-by-level equiconsistencies with an appropriate hierarchy of virtual partially
super-extendible cardinals. I show that the boldface resurrection axioms for subcomplete or countably
closed forcing imply the failure of Todorčević’s square at the appropriate level. I also establish connections
between these hierarchies and the hierarchies of bounded and weak bounded forcing axioms.

§1. Introduction. In [9], I began a systematic study of hierarchies of forcing
axioms, with a focus on their versions for the class of subcomplete forcings. Here,
I continue this study, moving from the usual forcing axioms to the resurrection
axioms, but still focusing mostly on subcomplete forcings, although not exclusively.
Subcomplete forcing was introduced by Jensen in [19]. It is a class of forcings
iterable with revised countable support that doesn’t add reals, preserves stationary
subsets of�1, butmay change cofinalities to be countable. Examples of subcomplete
forcings include all countably closed forcings,Namba forcing (assumingCH), Přı́krý
forcing (see [20]), generalized Přı́krý forcing (see [22]), and the Magidor forcing to
collapse the cofinality of a measurable cardinal of sufficiently high Mitchell order
to �1 (see [8]). For an excellent overview article on subcomplete forcing, see [20].
The weakest axiom considered in [9] is the bounded forcing axiom for a class Γ of
forcings, which was characterized by Bagaria ([2]) as saying that whenever P ∈ Γ,
then H�2 ≺ HV

P

�2 . There are several natural ways of strengthening this axiom. One
is to consider the hierarchy of bounded or weak bounded forcing axioms, and this
was done in [9]. Another option is to consider the maximality principle for Γ, see
[6, 7, 13, 26], which says that every sentence that can be forced to be true by a
forcing in Γ in such a way that it stays true in every further forcing extension by
a forcing in Γ, is already true—since Σ1 sentences, once true, persist to any outer
model, this generalizes Bagaria’s characterization of the bounded forcing axiom in
a very natural way, and there are natural parametric versions of the maximality
principles. However, the maximality principles are not really axioms, but rather
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axiom schemes, and thus seem somehow remote from the topic of forcing axioms.
An alternative, very similarly motivated strengtheningof the bounded forcing axiom
for Γ is the resurrection axiom. Variants of both the maximality principle and the
bounded resurrection axiom for subcomplete forcings were considered in [22]. The
resurrection axioms were originally introduced in [14], and their boldface versions
originate in [15]. Although the original formulation was different, motivated by
Bagaria’s characterization of the bounded forcing axiom for Γ, the appropriate
version of the “most bounded” version of the resurrection axiom for the forcing
classes I ammostly interested in is that for every P ∈ Γ, there is a Q̇ ∈ ΓVP

such that
H�2 ≺ HV

P∗Q̇
�2 . In this form, the axiom is also interesting for the class of countably

closed forcings (whereas the traditional forcing axioms for countably closed forcing
are outright provable in ZFC). The unbounded resurrection axiom for countably
closed forcing was also considered in [28].
It was observed by Tsaprounis [28] that one may view this resurrection axiom
as a bounded resurrection axiom, where the unbounded resurrection axiom says
that for every cardinal κ ≥ �2 and every P ∈ Γ, there is a Q̇ ∈ ΓVP

such that in
VP∗Q̇, there are a � and an elementary embedding j : Hκ ≺ HVP∗Q̇

� . Tsaprounis
makes some additional requirements regarding the critical point of this embedding
and the size of the image of the critical point under j which make sense for the
classes of forcing notions he had in mind, but these additional properties actually
follow automatically for these classes, and not making these requirements results
in a more general concept. Obviously, there is a hierarchy here, starting at κ = �2,
and growing in strength as κ increases through the cardinals, with the unbounded
resurrection axiom looming above. The consistency strengths grow very quickly
in this hierarchy. Less obvious is maybe the hierarchy of the virtual versions of
these resurrection axioms. I formulate the virtual unbounded resurrection axiom as
before, except that the embedding is virtual, i.e., it is not required to exist in VP∗Q̇,
but in a further forcing extension (by an arbitrary forcing—so this forcing does
not have to be in ΓV

P∗Q̇
). Of course, for each cardinal κ ≥ �2, there is the obvious

virtual bounded resurrection axiom vRAΓ(Hκ). The difference between the usual
and the virtual resurrection axioms occurs beyond κ = �2, and it turns out that
there is a hierarchy of virtual large cardinals (virtually super α-extendible) that pins
down exactly the consistency strengths of the virtual resurrection axioms. I also
explore the relationships between these hierarchies of forcing principles, and their
interactions with the hierarchies of the (weak) bounded forcing axioms, in terms
of implications, their effects on the failure of (weak) square principles, and their
consistency strengths.
The article is organized as follows. First, in Section 2, I introduce the hierarchy
of resurrection axioms for subcomplete, proper, or countably closed forcing, lead-
ing from the resurrection axiom at H�2 up to the unbounded resurrection axiom.
In Section 3, I explore the bottom of this hierarchy, the H�2 level, in terms of con-
sistency strength and consequences with regards to stationary reflection, failure of
square principles, and the continuum. I show that the (boldface) resurrection axiom
for subcomplete forcing for H�2 implies the failure Todorčević’s square principle
�(�2), and even the failure of the weaker square principle �(�2, �). I introduce
these principles in detail in this section. These effects continue up the hierarchy, as is
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shown in Section 4. There, I also explore the relationships between the hierarchy
of resurrection axioms and the hierarchy of bounded forcing axioms. In Section 5,
I then proceed to discuss the virtual versions of the resurrection axioms. I establish
that the exact consistency strengths of the axioms in the virtual resurrection hierar-
chy are measured by the hierarchy of the virtually super α-extendible cardinals, in
Lemmas 5.10 and 5.12, and Corollary 5.13 establishes that the consistency strength
of the unbounded virtual resurrection axiom is given by the existence of a virtually
extendible cardinal. Theorem 5.15 summarizes the connections between the large
cardinals and the virtual resurrection axioms. In Section 6, I analyze how the hier-
archies of the virtual resurrection axioms and of the weak bounded forcing axioms
relate, in terms of implications and consistency strengths. Figure 1 (on page 41)
gives an overview of all of these results: relationships between the hierarchies of
forcing axioms and resurrection axioms, their consequences in terms of the failure
of square principles, and their consistency strengths.
I would like to thank the unknown referee for dedicating much time and effort to
reading a version of this article that contained many imprecisions, ambiguities and
errors. His or her work resulted in a substantially improved article.

§2. A hierarchy of bounded resurrection axioms. The resurrection axioms for
various forcing classes were originally introduced by Hamkins and Johnstone
in [14], and more recently, they added “boldface” variants of these axioms
in [15]. Here is the definition, with notation that deviates from the original, to
allow flexibility for variations to come.

Definition 2.1. Let Γ be a forcing class. Then RAΓ(H2� ) says that whenever
P ∈ Γ and G ⊆ P is P-generic over V, then there is a Q ∈ ΓV[G ] such that if H ⊆ Q
is Q-generic over V[G ], then

〈H2� ,∈〉 ≺ 〈(H2� )V[G ][H ],∈〉.
To avoid a possible confusion, 2� is taken de dicto here, meaning that on the right
hand side of the displayed formula, 2�, as well as the entire termH2� , are interpreted
in V[G ][H ].
In the boldface variant of the axiom, RA˜ Γ(H2� ), one is allowed to add a predicate
to the structureH2� . So this axiom says that whenever R ⊆ H2� , P ∈ Γ and G ⊆ P
is P-generic over V, then there is a Q ∈ ΓV[G ] such that if H ⊆ Q is Q-generic over
V[G ], then there is an R′ ⊆ (H2� )V[G ][H ], R′ ∈ V[G ][H ], such that

〈H2� ,∈, R〉 ≺ 〈(H2� )V[G ][H ],∈, R′〉.
In this definition, as well as in the remainder of this article, when saying that Γ is
a forcing class, I mean that Γ is a class term, that is, it is of the form {x | ϕ(x, c)},
where ϕ(x, y) is a formula in the language of set theory and c is a parameter. Even
though there may be different formulas in a fixed model of set theory which define
the same forcing class, I will always assume that ϕ is chosen canonically for the
particular class at hand. For example, if Γ is supposed to stand for the class of
proper forcing, then ϕ will not use a parameter, and it has to be chosen in such a
way that ZFC proves that {x | ϕ(x)} is the class of all proper forcing notions. Here,
I will focus on the classes of countably closed, subcomplete, proper and semi-proper
forcings. No parameters are needed to define any of these classes.

https://doi.org/10.1017/jsl.2017.65 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.65


286 GUNTER FUCHS

Hamkins and Johnstone showed in the cases where Γ is the class of proper or
semiproper forcings, that the resulting boldface resurrection axiom implies 2� = �2,
and they determined the consistency strengths of the (boldface) resurrection axioms
to be a (strongly) uplifting cardinal. I will recall the definition of these large cardinal
properties in the next section. They also showed that in the case where Γ is the class
of countably closed forcings, their resurrection axiom impliesCH, and that it trivially
becomes equivalent to CH, since countably closed forcing can’t changeH�1 .
Instead ofH2� , I use a formulation of the resurrection axioms that ismore suitable
for countably closed and subcomplete forcings, as statements aboutH�2 , as in [22].
It will turn out that the resulting axioms for these forcing classes still imply CH
but don’t reduce to CH. This formulation is also suitable for the other classes of
proper or semi-proper forcing, and I show in Observation 3.6 that theH�2 andH2�
versions of the boldface principles are equivalent, and the lightface principles are
closely related. So I hope this change does not constitute an abuse of the original
ideas of Hamkins and Johnstone.
I consider these resurrection axioms to be bounded. To motivate how to extend
these resurrection axioms, and make them “less bounded”, let us briefly think
about the simplest case where Γ is the class of countably closed forcing notions.
As explained above, in this case, the most suitable formulation of the lightface
resurrection axiom is the one “at H�2”, saying that whenever G is generic for a
countably closed forcing, there is a further countably closed forcing in V[G ], such
that if H is generic over V[G ] for that forcing, then it follows that 〈H�2 ,∈〉 ≺
〈HV[G ][H ]�2 ,∈〉. This principle is equiconsistent with an uplifting cardinal, as I will
point out later. Notice that we cannot consistently replace�2 with �3 here, to make
the axiom less bounded, since �2 may be collapsed to �1 in V[G ], which means that
the size of�V2 will be�

V[G ][H ]
1 , nomatter howH is chosen. Thus, letting � = �V2 , the

statement “� is a cardinal” is true in 〈H�3 ,∈〉, but it will not be true in 〈HV[G ][H ]�3 ,∈〉,
for any H . The parameter � would have to be replaced with �V[G ][H ]2 ! Thus, one
is naturally led to generalize the concept to �3 by requiring the existence of an
H as above such that in V[G ][H ], there is an elementary embedding j in V[G ][H ]
from 〈H�3 ,∈〉 to 〈HV[G ][H ]�3 ,∈〉, which I will write as j : 〈H�3 ,∈〉 ≺ 〈HV[G ][H ]�3 ,∈〉.
This embedding, in particular, would have to map �V2 to �

V[G ][H ]
2 . This indeed

generalizes theH�2 case: looking back, the elementary embedding in that case was
the identity, and in fact, whenever we’re in the situation that there is an elementary
embedding j : 〈H�2 ,∈〉 ≺ 〈HV[G ][H ]�2 ,∈〉, where �V[G ][H ]1 = �V1 (as will be the case
whenever G and H are generic for one of the classes mentioned before, since they
all preserve �1, meaning that no forcing in any of these classes can collapse �1),
then it follows easily that j is the identity. This is why in the formulation of the
generalized resurrection axioms, where �2 can be replaced with any cardinal κ,
I will always require the existence of elementary embeddings, even though in the
case κ = �2, it will follow that this embedding is the identity, when the forcing class
under consideration preserves �1.
In fact, what is needed in order to conclude that the embedding is the identity on
H�2 is that Γ preserves �1 and that whenever P ∈ Γ and G is generic for P, then
in V[G ], it is still the case that every forcing in ΓV[G ] preserves �V[G ]1 = �V1 . I will
express this by saying that Γ is Γ-necessarily �1-preserving, employing terminology
from modal logic as in [13]. Similarly, I will say that Γ is Γ-necessarily stationary
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set preserving if every forcing in Γ preserves stationary subsets of �1, and this
remains true in any forcing extension by a forcing in Γ. In general, a property holds
Γ-necessarily if it holds in V and its forcing extensions by forcings in Γ.
Tsaprounis considered the unbounded resurrection axioms in [28]. The following
definition introduces a hierarchy of resurrection axioms, starting with the original
lightface/boldface axioms at the bottom, and leading up to these unbounded ones
at the top. I will first give the definition, and then comment on apparent differences
between it and the presentation in [28].

Definition 2.2. Let κ ≥ �2 be a cardinal, and let Γ be a forcing class. The
resurrection axiom for Γ atHκ, RAΓ(Hκ), says that wheneverG is generic over V for
some forcing P ∈ Γ, there is aQ ∈ ΓV[G ] and a � such that wheneverH isQ-generic
over V[G ], then in V[G ][H ], � is a cardinal and there is an elementary embedding

j : 〈HVκ ,∈〉 ≺ 〈HV[G ][H ]� ,∈〉.
The boldface resurrection axiom for Γ atHκ, RA˜ Γ(Hκ), says that for everyA ⊆ κ
and every G as above, there is a Q as above such that for every H as above, in
V[G ][H ], there are a B and a j such that

j : 〈HVκ ,∈, A〉 ≺ 〈HV[G ][H ]� ,∈, B〉,
and such that if κ is regular, then � is regular in V[G ][H ].
The unbounded resurrection axiom for Γ, URΓ, asserts that RAΓ(Hκ) holds for
every cardinal κ ≥ �2.
If Γ is the class of subcomplete forcings, then RASC(Hκ), RA˜ SC(Hκ) and URSC

stands for RAΓ(Hκ), RA˜ Γ(Hκ), and URΓ, and similarly, for these axioms about
the class of countably closed forcings, I write RA�-closed(Hκ), RA˜ �-closed(Hκ) and
UR�-closed.

Let me state part of the discussion preceding this definition as a simple
observation, to avoid a possible confusion about this point.

Observation 2.3. Let Γ be Γ-necessarily �1-preserving. Then RAΓ(H�2 ) is equiv-
alent to the statement that whenever G is generic over V for a forcing P from Γ, then
there is a forcing notion Q ∈ ΓV[G ] such that whenever H is Q-generic over V[G ], we
have that

〈H�2 ,∈〉 ≺ 〈HV[G ][H ]�2 ,∈〉.
A similar equivalence holds for RA˜ Γ(H�2 ): in this case as well, the embedding required
to exist in Definition 2.2 can be equivalently replaced with the identity.

The clause about the cofinalities of κ and � in the definition of RA˜ Γ(Hκ), while
natural, may seem a little ad hoc. But note that RAΓ(Hκ+) implies this form of
RA˜ Γ(Hκ). Note also that in the case that κ is a successor cardinal, it follows that �
is a successor cardinal in V[G ][H ], without imposing any requirements about the
cofinalities of κ and �, so in that case, it wouldn’t be necessary to add this clause.
The purpose of adding this requirement in the general case is the desire to have
principles which generalize the effects that RA˜ Γ(H�2 ) has on the failure of square
principles, and this is where these clauses are used (see the proofs of Lemma 4.4,
Lemma 4.5 and Theorem 4.7). The minimal assumption needed for these proofs to
go through is that if cfV(κ) > �1, then cf

V[G ][H ](�) > �1 as well.

https://doi.org/10.1017/jsl.2017.65 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.65


288 GUNTER FUCHS

I would like to address an apparent difference between Definition 2.2 and the
one given in [28] by Tsaprounis. There, the definition of URΓ posits that what
I call RAΓ(Hκ) hold for all κ > max{�2, 2�}, and additional requirements are
imposed on the elementary embedding j, namely that crit(j) = max{�2, 2�} and
j(crit(j)) > κ. First, for all the forcing classes I am interested in, RAΓ(H�2 ) implies
that 2� ≤ �2. In the case of proper or semi-proper forcing, this follows from
Observation 3.5, which says that RAΓ(H�2 ) implies the bounded forcing axiom
for Γ, which, in turn, implies that 2� = �2, by [24]. In the case of subcomplete or
countably closed forcing, this follows from Fact 3.1, which says that in this case,
RAΓ(H�2 ) implies ♦, and thus CH. Thus, in the cases which are of interest here,
max(�2, 2�) = �2. I cannot make a requirement about the critical point of j, since
I allow the case that j is the identity, which occurs if κ = �2. But notice that all the
classes of forcing I am interested in allow us to collapse any uncountable cardinal
we want to �1, even over any extension of V by a forcing in Γ. As a result, the
additional requirements about j made in Tsaprounis’ definition can be met for free.
Namely, assume that κ > �2 is a cardinal for which RAΓ(Hκ) holds, as defined
above. Let G be generic for some forcing notion P in Γ. We can now pick G ′ to be
generic over V[G ] for the collapse of κ to �1, let’s call this forcing P′ = (Ṗ′)G . In
each of the cases of interest here, it follows that P ∗ Ṗ′ is still in Γ. By RAΓ(Hκ),
applied to P ∗ Ṗ′ and G ∗ G ′, there is an H generic for some forcing in ΓV[G∗G

′],
such that in V[G ∗ G ′][H ], there is an elementary j : 〈Hκ,∈〉 ≺ 〈HV[G∗G′][H ]

� ,∈〉,
for some V[G ∗ G ′][H ]-cardinal �. It follows easily that the critical point of j has
to be �2, since �1 is preserved, so that j(�1) = �1, and since κ is collapsed to �1
in V[G ∗G ′], it follows that j(�2) = �

V[G∗G′][H ]
2 > κ.

Thus, dropping these requirements about the critical point of j and the size of its
image under j resulted in a concept that captures the original resurrection axioms
as well as the intermediate stages on the way to the unbounded one, for the classes
of forcing under consideration here.
I would now like to make a comment on themonotonicity ofRAΓ(Hκ). Certainly,
increasing κ yields a potentially stronger principle, that is, if κ < κ′, then RAΓ(Hκ′)
implies RAΓ(Hκ), since if we have reached an extension V[G ][H ] in which there is
an elementary j′ : 〈Hκ′ ,∈〉 ≺ 〈HV[G ][H ]�′ ,∈〉, then letting j be the restriction of j′
to Hκ and � = j′(κ), it follows that j : 〈Hκ,∈〉 ≺ 〈HV[G ][H ]� ,∈〉, since Hκ is a class
definable inHκ′ from κ, andH

V[G ][H ]
� is definable from � in 〈H�′ ,∈〉 using the same

definition, and since if κ is regular in V, then it is regular in HVκ′ , so that � = j
′(κ)

is regular in HV[G ][H ]�′ , which implies that it is regular in V[G ][H ]. However, we do
not have monotonicity in the parameter Γ. Increasing Γ results in a wider variety
of challenges G (in Definition 2.2), which seems to make the concept stronger, but
on the other hand there is a wider variety of potential answersH to choose from in
order to meet the challenge and resurrect, which seems to make the concept weaker.
As an example, I have already mentioned that RA�-closed(H�2 ) implies CH, but we
shall see in Observation 3.6 that RAproper(H�2 ) implies 2

� = �2, even though the
class of countably closed forcing notions is contained in the class of proper forcing
notions.
Note that in the definition of the boldface principle RA˜ Γ(Hκ), I only allowed
predicates which are subsets of κ, not of Hκ. The reason for this is that I want this
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principle to be intermediate between RAΓ(Hκ) and RAΓ(Hκ+), which is obvious
using this definition of the concept since every subset of κ is a member of Hκ+ .
Moreover, in applications, the predicates I used so far could always be coded as
subsets of κ. Let me now continue with a simple observation on the cofinalities of
κ and � in Definition 2.2.

Observation 2.4. Suppose κ is a singular cardinal and RA˜ Γ(Hκ) holds. Then for
every A ⊆ κ and every G generic for a forcing in Γ, there is a Q ∈ ΓV[G ] such that
if H is generic for Q over V[G ], then in V[G ][H ], there are a B, a cardinal � and an
elementary embedding j such that

j : 〈HVκ ,∈, A〉 ≺ 〈HV[G ][H ]� ,∈, B〉
with j(cfV(κ)) = cfV[G ][H ](�).

Proof. Let κ̄ = cf(κ), and let F : κ̄ −→ κ be monotone and cofinal. Clearly,
F can be easily coded as a subset of κ. Let A and G be as stated. By RA˜ Γ(Hκ), let
Q,H , F ′, B be such that

j : 〈HVκ ,∈, A, F 〉 ≺ 〈HV[G ][H ]� ,∈, B, F ′〉
in V[G ][H ]. Let �̄ = cfV[G ][H ](�). Then F ′ : j(κ̄) −→ � is monotone and cofinal,
so �̄ ≤ j(κ̄). By elementarity, j(κ̄) is regular in HV[G ][H ]� and hence in V[G ][H ].
It follows that �̄ = j(κ̄), because if �̄ < j(κ̄), then a cofinal function g : �̄ −→ �
would induce a cofinal function from �̄ to j(κ̄), contradicting that j(κ̄) is regular
in V[G ][H ]. �
It was shown in [28, Theorems 2.3 and 2.4] that one can force URΓ over a

model with an extendible cardinal, where Γ is the class of ccc, �-closed, proper, or
stationary set preserving forcings. The same argument shows the consistency of the
axiom for the class of subcomplete forcings.

Fact 2.5. If κ is an extendible cardinal, then there is an iteration of subcomplete
forcings, contained in Vκ, satisfying the κ-c.c., such that URSC holds in the generic
extension.

§3. The bottom of the hierarchy. I’ll first focus on the resurrection axioms
for countably closed or subcomplete forcing at H�2 , that is, RA�-closed(H�2 ),
RA˜ �-closed(H�2 ), RASC(H�2 ) and RA˜ SC(H�2 ). It was shown in [22] that RASC(H�2 )
implies Jensen’s combinatorial principle ♦. The same is true of RA�-closed(H�2 )
(by a simpler argument).

Fact 3.1 ([22, Proposition 4.2.15]). RASC(H�2 )/RA�-closed(H�2 ) imply ♦.
Proof. Adding a Cohen subset A of�1 also adds a♦-sequence, see [21, Chapter
VII, Theorem 8.3], and♦ remains true in any further forcing extension by a forcing
that’s subcomplete in V[A] (see [18, Chapter 3, page 7, Lemma 4]). By assumption,
there is an H which is generic over V[A] for a subcomplete forcing, such that
〈H�2 ,∈〉 ≺ 〈HV[A][H ]�2 ,∈〉. The principle ♦ can be expressed over H�2 , and it holds
in the latter model, so it holds in the former as well. �
In general, any statement of the form ϕH�2 that’s implied by the maximality
principle for subcomplete or countably closed forcing is also a consequence of the
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corresponding resurrection axioms, and it was observed in [22] and in [6] that these
maximality principles imply ♦.
So while the forcing axioms for subcomplete forcing considered in [9] were just
compatible with CH, the principles under consideration now actually imply it (and
more). The consistency strength of the resurrection axioms at the bottom of the
hierarchy is precisely determined as follows.

Definition 3.2. An inaccessible cardinal κ is uplifting if there are arbitrarily
large inaccessible cardinals 	 such that 〈Vκ,∈〉 ≺ 〈V	 ,∈〉. It is strongly uplifting if
for every A ⊆ Vκ, there are arbitrarily large (inaccessible) 	 such that there is a
B ⊆ V	 with 〈Vκ,∈, A〉 ≺ 〈V	 ,∈, B〉.
These cardinals were introduced in [14] and [15]. In the definition of strongly
uplifting, the inaccessibility of 	 does not need to be required explicitly, see
[15, Theorem 3].

Fact 3.3 (Minden). RASC(H�2 )/RA�-closed(H�2 ) are equiconsistent with the exis-
tence of an uplifting cardinal, and RA˜ SC(H�2 )/RA˜ �-closed(H�2 ) are equiconsistent with
a strongly uplifting cardinal.

Proof. The claims regarding the lightface resurrection principles and the exis-
tence of an uplifting cardinal can be found in [22, Theorems 4.2.12 and 4.3.13].
Minor modifications of the proofs show the claims regarding the boldface resur-
rection principles and the existence of strongly uplifting cardinals. In more detail,
the proof of [22, Theorem 4.3.6] contains a forcing construction which achieves
slightly more than RA˜ SC(H�2 ), but starts from slightly more than a strongly
uplifting cardinal. One can easily simplify the construction to start from just a
strongly uplifting cardinal and yield only RA˜ SC(H�2 ). For the converse, the proof of
[22, Theorem 4.3.7] contains an argument showing that RA˜ SC(H�2 ) implies that
�2 is strongly uplifting in L. The same arguments show the results concerning
RA˜ �-closed(H�2 ). �
I will now explore a connection to the bounded forcing axiom, BFA(Γ). This
axiomwas originally introduced in [12] in a combinatorial way that was then shown
by Bagaria to be equivalent to the following property, which I will take as its
definition, since it is more useful in the present context.

Theorem 3.4 ([2, Theorem 5]). The bounded forcing axiom BFA(Γ) for a forcing
class Γ is equivalent to Σ1(H�2 )-absoluteness for forcing notions P in Γ. The latter
means that whenever ϕ(x) is a Σ1-formula and a ∈ H�2 , then V |= ϕ(a) iff for every
P-generic g, V[g] |= ϕ(a).
If a forcing class Γ has the very natural property that for every forcing P ∈ Γ and
every condition p ∈ P, the restriction P≤p of P to conditions below p is also in Γ,
then this characterization of BFA(Γ) can be equivalently expressed by saying that
whenever G is generic for some P ∈ Γ, then

〈H�2 ,∈〉 ≺Σ1 〈HV[G ]�2 ,∈〉.
In general, this characterization implies BFA(Γ), and it is obvious that RAΓ(H�2 )
implies this generic absoluteness property. This is recorded in the following
observation, and I will later give a proof of the more general Lemma 4.3.
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Observation 3.5. RAΓ(H�2 ) implies BFA(Γ).
This observation allows us to compare the current version of the resurrection
axioms at the levelH�2 to the original ones from [14], which useH2� , in the case of
proper or semi-proper forcing. In the proof, and in the rest of the article, when κ
is a regular cardinal and X is a set, I will write Col(κ,X ) for the forcing notion to
collapse X to κ, that is the poset consisting of functions of the form f : α −→ X ,
where α < κ, ordered by reverse inclusion. Also, I say that a forcing is <κ-closed
if every decreasing sequence of length less than κ has a lower bound in P. Thus,
Col(κ,X ) is <κ-closed.

Observation 3.6. Let Γ be either the class of proper or of semi-proper forcings.
Then
1. RAΓ(H�2 ) is equivalent to RAΓ(H2� ) + ¬CH.
2. RA˜ Γ(H�2 ) is equivalent to RA˜ Γ(H2� ).
Proof. Let’s prove 1 first. For the direction from left to right, by Observation 3.5,

RAΓ(H�2 ) implies that BFA(Γ) holds, and this implies by [24] that 2
� = �2. Let G

be generic for P ∈ Γ. By RAΓ(H�2 ), let H be generic for a Q ∈ ΓV[G ], such that
〈H2� ,∈〉 = 〈H�2 ,∈〉 ≺ 〈HV[G ][H ]�2

,∈〉.
We’re done if V[G ][H ] |= 2� = �2. Note that it cannot be thatV[G ][H ] |= 2� = �1,
because this could be expressed inHV[G ][H ]�2 , so it would have to be true in V, which
it is not. The only other option is that V[G ][H ] |= 2� ≥ �3. But then, if I is generic
over V[G ][H ] for R = Col(�2, 2�)V[G ][H ], a forcing in ΓV[G ][H ] that’s <�2-closed
there, it follows that HV[G ][H ]�2 = HV[G ][H ][I ]�2 , and V[G ][H ][I ] |= 2� = �2. Thus,
letting R = ṘH , it follows that H ∗ I is generic over V[G ] for the forcing Q ∗ Ṙ,
which is in ΓV[G ], and we have that 〈H2� ,∈〉 ≺ 〈HV[G ][H∗I ]

2� ,∈〉.
For the direction from right to left, first observe that RAΓ(H2� ) + ¬CH implies
that 2� = �2, because otherwise if 2� ≥ �3, then one could let G be generic for
Col(�1, �2), which is in Γ, since it is countably closed. But then, letting � = �V2 , the
statement “� is a cardinal” is true in 〈HV2� ,∈〉, but not in 〈HV[G ][H ]2� ,∈〉 for any further
forcing extension V[G ][H ]. Now, ifG is generic for some P ∈ Γ, then by RAΓ(H2� ),
we can let H be generic over V[G ] for some Q ∈ ΓV[G ], such that 〈H�2 ,∈〉 =
〈H2� ,∈〉 ≺ 〈HV[G ][H ]2� ,∈〉. Since 2� = �2, it follows that 〈H2� ,∈〉 believes that there
is exactly one uncountable cardinal, and so the same is true in 〈HV[G ][H ]2� ,∈〉, which
means that V[G ][H ] believes that 2� = �2. Thus, 〈H�2 ,∈〉 ≺ 〈HV[G ][H ]�2 ,∈〉, as
desired.
Now, let’s turn to 2. For the direction from left to right, let’s assume RA˜ Γ(H�2 ).
To show that RA˜ Γ(H2� ) holds, let A ⊆ H2� . Let P ∈ Γ, and let G be P-generic
over V.We have seen that already the lightface principle RAΓ(H�2 ) implies BFA(Γ).
By [24], BFA(Γ) implies 2� = 2�1 = �2. In particular, H�2 has cardinality �2.
Recall that RA˜ Γ(H�2 ) only allows the use of predicates which are subsets of �2, so
we have to code A as a subset of �2. So let F : �2 −→ H�2 be a bijection, and let
E = {〈α, 
〉 | F (α) ∈ F (
)} (using Gödel pairs, E can easily be coded as a subset
of�2). Let Ā = F−1“A. By RA˜ Γ(H�2 ), letQ ∈ ΓV[G ], letH beQ-generic over V[G ],
and let E ′, Ā′ be such that

〈H�2 ,∈, E, Ā〉 ≺ 〈HV[G ][H ]�2
,∈, E ′, Ā′〉.
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Since the cofinality of �2 is greater than �, it can be expressed in 〈H�2 ,∈, E, Ā〉
that E is extensional and well-founded, so that the corresponding statement is true
in 〈HV[G ][H ]�2 ,∈, E ′, Ā′〉. It can moreover be expressed that the transitive collapse of
〈�2, E〉 is equal to H�2 . Hence, the same is true in 〈HV[G ][H ]�2 ,∈, E ′, Ā′〉. So, letting
F ′ be the Mostowski collapse, which is in V[G ][H ], it follows that

F ′ : 〈�V[G ][H ]2 , E ′, Ā′〉 → 〈HV[G ][H ]�2 ,∈, A′〉
is an isomorphism, where A′ = (F ′)“Ā′. A simple computation now shows that

F ′ ◦ F−1 : 〈H�2 ,∈, A〉 ≺ 〈HV[G ][H ]�2 ,∈, A′〉.
Since �V1 = �

V[G ][H ]
1 , it follows that F ′ ◦ F−1 = id, so that

〈H�2 ,∈, A〉 ≺ 〈HV[G ][H ]�2
,∈, A′〉.

Again, �2 = 2� in V, and in V[G ][H ], we clearly have that 2� ≥ �2. In the case
that 2� ≥ �3 in V[G ][H ], we can let I be Col(�2, 2�)V[G ][H ]-generic over V[G ][H ]
to get

〈H2� ,∈, A〉 ≺ 〈HV[G ][H∗I ]
2� ,∈, A′〉.

For the converse, assume RA˜ Γ(H2� ). To prove RA˜ Γ(H�2 ), let A ⊆ �2, let P ∈ Γ,
and let G be P-generic over V. It was shown in [15, Theorem 17] that RA˜ Γ(H2� )
implies 2� = �2. So we can apply RA˜ Γ(H2� ) to get a Q ∈ ΓV[G ] be such that if H is
Q-generic over V[G ], then there is an A′ ∈ V[G ][H ] such that

〈H�2 ,∈, A〉 = 〈H2� ,∈, A〉 ≺ 〈HV[G ][H ]2� ,∈, A′〉.
As before, it follows that 2� = �2 in V[G ][H ], so we are done. �
I will need some facts on the preservation of stationary sets by forcing.

Fact 3.7. Suppose Γ is a forcing class such that the bounded forcing axiom for Γ,
BFA(Γ), holds, in the sense that for every P in Γ, if G is generic for P over V, then
〈H�2 ,∈〉 ≺Σ1 〈HV[G ]�2 ,∈〉. Then every P ∈ Γ preserves stationary subsets of �1.
Proof. Let κ = �1. If S ⊆ κ were stationary in V but not in V[G ], then the
statement “there is a club subset of κ that’s disjoint from S” would be a Σ1 statement
about κ and S true in 〈H�2 ,∈〉V[G ] but false in 〈H�2 ,∈〉. �
Fact 3.8. If a forcing P preserves stationary subsets of �1, then it preserves
stationary subsets of any � with cf(�) = �1.

Proof. Suppose S ⊆ � is stationary. Let f : �1 −→ � be normal and cofinal.
Then S̄ = f−1“S is stationary in �1. Now, ifG is P-generic andD ∈ V[G ] is closed
and unbounded in �, then D̄ = f−1“D is closed and unbounded in �1, so since
P preserves stationary subsets of �1, there is α ∈ S̄ ∩ D̄, so that f(α) ∈ S ∩ D,
showing that P preserves the stationarity of S. �
Fact 3.9. Suppose cf(κ) ≥ �1. Then countably closed forcing preserves the

stationarity of any stationary subset of κ consisting of ordinals of cofinality �.

Proof. I think this is due to Baumgartner, but lacking a reference, I will sketch
the proof. By an argument similar to the one given in the proof of Fact 3.8, we
may assume that κ is regular. Suppose P is countably closed, S ⊆ κ is stationary,
and assume, towards a contradiction, that some P-name Ċ is forced by a condition
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p ∈ P to be a club subset of κ disjoint from S. Let M = 〈H�,∈,P, p, Ċ , S,<〉,
where � is sufficiently large and regular, and < is a well-ordering of H� . Since S is
stationary, there is an X ≺ M such that X ∩ κ = κ̄ ∈ S. Letting 〈κn | n < �〉 be
increasing and cofinal in κ̄, we can construct a decreasing sequence 〈pn | n < �〉 in
P ∩ X below p such that for every n < �, there is a �n such that pn forces that �n is
the least member of Ċ above κn . It follows that �n ∈ X , and hence thatκn ≤ �n < κ̄,
for n < �, so that supn<� �n = κ̄. Now any lower bound for 〈pn | n < �〉 forces
that κ̄ is in S ∩ Ċ , a contradiction. �
I will now turn to effects of resurrection axioms atH�2 on stationary reflection.

Definition 3.10. Let κ be an ordinal of uncountable cofinality. An ordinal 	 < κ
of uncountable cofinality is a reflection point of a stationary set S ⊆ κ if S ∩ 	 is
stationary in 	. It is a simultaneous reflection point of a sequence �S = 〈Sα | α < �〉
of stationary subsets of κ if it is a reflection point of each Sα , for α < �.

Lemma 3.11. Assume RA˜ SC(H�2 ) or RA˜ �-closed(H�2 ). Then every sequence �S =
〈Si | i < �1〉 of stationary subsets of �2 each of which consist of ordinals of count-
able cofinality has a simultaneous reflection point. Actually, this is a consequence of
RA˜ Γ(H�2 ) whenever Γ contains a forcing of the form Col(�1, �), for some � ≥ �2,
and if Γ-necessarily, Γ is stationary set preserving.

Proof. Let �S be given, and let M = 〈H�2 ,∈, S̃〉, where S̃ =
⋃
i<�1

{i} × Si ,
coded as a subset of �2. Let G be V-generic for Col(�1, �2). By Fact 3.9, each Si
is still stationary in V[G ]. Let Q be subcomplete (�-closed) in V[G ] and let H be
Q-generic over V[G ] such that in V[G ][H ], there is a model N = 〈HV[G ][H ]�2 ,∈, T̃ 〉
such that M ≺ N , by RA˜ SC(H�2 )/RA˜ �-closed(H�2 ). Let κ = �

V
2 . Clearly, letting

Ti = { | 〈i, 〉 ∈ T̃} for i < �1, it follows that Si = Ti ∩ κ, and N believes that
each Si is stationary in κ, since Si is stationary in V[G ], where the cofinality of κ
is�1, soQ preserves the stationarity ofSi over V[G ] by Fact 3.8.N also believes that
the cofinality of κ is �1. By elementarity,M believes that there is a κ̄ of cofinality
�1 such that for every i < �1, Si ∩ κ̄ is stationary in κ̄. Since H�2 contains every
subset of κ̄,M is right about that. �
Note that if every sequence �S as in the previous lemma has a simultaneous
reflection point, then the set of such reflection points is actually stationary, because
given any club set C , one can consider the sequence �S′, where S′i = Si ∩ C .
Definition 3.12 ([9]). Let � be a cardinal greater than�1. Then SFP� (the strong
Friedman property at �) is the following reflection principle: whenever 〈Ai | i < �1〉
is a sequence of stationary subsets of � such that each Ai consists of ordinals of
countable cofinality, and 〈Di | i < �1〉 is a partition of �1 into stationary sets, then
there is a normal (that is, increasing and continuous) function f : �1 −→ � such
that for every i < �1, we have that f“Di ⊆ Ai .
It is easy to see that SFP� implies the simultaneous reflection described in Lemma
3.11, namely that every �1-sequence of stationary subsets of �, each consisting of
ordinals of countable cofinality, has a simultaneous reflection point. Jensen showed
that the forcing axiom for the class of subcomplete forcing, denoted SCFA, implies
that SFP� holds, for every regular � > �1, see [20, p. 154, Lemma 7.1]. I will show
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that SFP�2 follows from the weak version of the boldface resurrection axiom, going
back to [14], adapted to the present context.

Definition 3.13. Let Γ be a forcing class. The weak resurrection axiom for Γ
at H�2 , wRAΓ(H�2 ), says that whenever G is generic for a forcing in Γ, there is a
further forcingQ ∈ V[G ] (not necessarily in ΓV[G ]) such that ifH is generic for that
forcing over V[G ], then 〈H�2 ,∈〉 ≺ 〈HV[G ][H ]�2 ,∈〉. wRA˜ Γ(H�2 ) is defined similarly,

allowing a predicate A ⊆ �2, and guaranteeing the existence of a B ⊆ �V[G ][H ]2 in
V[G ][H ] such that 〈H�2 ,∈, A〉 ≺ 〈HV[G ][H ]�2 ,∈, B〉.
It is easy to see that the weak resurrection axiom at H�2 can only hold for a
forcing class Γ that consists of stationary set preserving forcing notions; it actually
implies BFA(Γ) (see Fact 3.7 in this context). Note also that the forcing Q in the
definition necessarily preserves �1.

Lemma 3.14. wRA˜ SC(H�2 ) implies SFP�2 .

Proof. Let 〈Ai | i < �1〉 be a sequence of stationary subsets of �2 consisting of
ordinals of countable cofinality. Let 〈Di | i < �1〉 be a partition of�1 into stationary
subsets. In [20, p. 154, Lemma 7.1], Jensen points out that the forcing P to add a
normal cofinal function f : �1 −→ �V2 such that for every i < �1, f“Di ⊆ Ai is
subcomplete. It consists of countable initial segments of such a function, of successor
length, ordered by reverse inclusion. LetM = 〈H�2 ,∈, 〈Ai | i < �1〉, 〈Di | i < �1〉〉
(coding �A as a subset of�2 in a straightforwardway). BywRA˜ SC(H�2 ), letQ ∈ V[G ]
be a poset such that, letting H be V[G ]-generic for Q, there is a structure N =
〈HV[G ][H ]�2 ,∈, 〈Bi | i < �1〉, 〈D̃i | i < �1〉〉 in V[G ][H ] such thatM ≺ N . Note that
since M ≺ N , it follows that �V1 = �M1 = �N1 = �V[G ][H ]1 . Clearly, Di = D̃i and
Ai = Bi ∩�V2 , for all i < �1. Since f is inHV[G ][H ]�2 the statement that there exists an
ordinal � and a normal function h : �1 −→ � such that for every i < �1, h“Di ⊆ Bi
is true in N , and hence, the corresponding statement is true inM , with Bi replaced
by Ai . �
I want to make a connection to Jensen’s weak square principles now, so I will
briefly recall their definitions. These principles go back to [17, Section 5].

Definition 3.15. Let κ be a cardinal. A �κ-sequence is a sequence 〈Cα |
κ < α < κ+, α limit〉 of setsCα club in α with otp(Cα) ≤ κ such that for each limit
point 
 of Cα , C
 = Cα ∩ 
 . �κ is the principle saying that there is a �κ-sequence.
If � is another cardinal, then a �κ,�-sequence is a sequence 〈Cα |
κ < α < κ+, α limit〉 such that each Cα has size at most �, and such that each
C ∈ Cα is club in α, has order-type at most κ and satisfies the coherency condition
that for every limit point 
 of C , C ∩ 
 ∈ C
 . Again, �κ,� is the assertion that
there is a �κ,�-sequence. �κ,κ is known as weak square and denoted by �∗

κ. �κ,<� is
defined like �κ,�, except that each Cα is required to have size less than �.
Corollary 3.16. RA˜ SC(H�2 ), RA˜ �-closed(H�2 ) or wRA˜ SC(H�2 ) imply the failure of

��1,� . But RA˜ SC(H�2 )/RA˜ �-closed(H�2 ) imply that �∗
�1
holds.

Proof. It was shown in Lemma 3.11 RA˜ SC(H�2 )/RA˜ �-closed(H�2 ) implies that
every �1-sequence of stationary subsets of �2, each consisting of ordinals of count-
able cofinality, has a simultaneous reflection point. This formof stationary reflection
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implies the failure of ��1,� , by [4, Lemma 2.2]. The principle wRA˜ SC(H�2 ) implies
SFP�2 , which, in turn, also implies this simultaneous stationary reflection principle,
and hence the failure of ��1,� . Finally, RA˜ SC(H�2 )/RA˜ �-closed(H�2 ) imply ♦, by
Fact 3.1, and hence CH, which implies �∗

�1
; this latter implication is probably due

to Jensen, but see [23, Theorems 3.1 and 3.2] for details. �
Observation 3.17. RA˜ SC(H�2 )/RA˜ �-closed(H�2 ) are consistent with ∀� ≥ �2 ��.
Proof. This is because onemay forceRA˜ SC(H�2 )/RA˜ �-closed(H�2 ) overL, ifL has
a strongly uplifting cardinal κ, see the references made in the proof of Fact 3.3. The
forcing is κ-c.c., and if g is generic for it, then �L[g]2 = κ. Hence, the ��-sequences
from L survive, for � ≥ κ = �L[g]2 . �
So, we have precisely determined the extent of � principles under RA˜ SC(H�2 )/

RA˜ �-closed(H�2 ). It is known that the proper forcing axiom implies failures of
Todorčević’s square principles ([25,30]), and the next goal is to show that the bold-
face resurrection axioms for subcomplete or �-closed forcing allow us to make that
conclusion as well. The motivation for deriving failures of square principles is that
these can be used to establish consistency strength lower bounds on the principles
that imply them, and failures of Todorčević’s forms of square principles in combi-
nation with simultaneous failures of the regular square principle are much higher in
consistency strength ([25]). The following definition introduces even weaker forms
of Todorčević’s variant of square that were also considered in [16,31].

Definition 3.18. Let � be a limit of limit ordinals. A sequence �C = 〈Cα |
α < �, α limit〉 is coherent if for every limit α < �, Cα �= ∅ and for every C ∈ Cα , we
have thatC is club in α and for every limit point 
 ofC , it follows thatC ∩
 ∈ C
 . A
thread through �C is a club setT ⊆ � such that for every limit point 
 ofT less than �,
we have that T ∩ 
 ∈ C
 . If κ is a cardinal, then the principle �(�,<κ) says that
there is a�(�,<κ)-sequence, that is, a coherent sequence �C = 〈Cα | α < �, α limit〉
such that each Cα has size less than κ, and such that �C has no thread. I may write
�(�, κ) for the principle �(�,<κ+). The principle �(�, 1) is denoted �(�).
In the case where κ = 1, a �(�, κ)-sequence is of course taken to be a sequence
of club sets, rather than a sequence of singletons of club sets. This case has been
studied extensively by Todorčević, see [27] for an overview. It is easy to see that if
� is a cardinal, then a ��,κ sequence is also a �(�+, κ) sequence. Namely, let �C be
a ��,κ sequence. Then one can easily construct a coherent sequence �C′ from �C by
letting C′

α = {α} (that is, α is viewed as a subset of α here) for limit ordinals α ≤ �,
and setting C′

α = {C \ (�+1) | C ∈ Cα} for limit ordinals α with � < α < �+. This
sequence still has the property that whenever C ∈ C′

α, then otp(C ) ≤ �. It follows
that �C′ is a �(�+, κ)-sequence, because if T were a thread, then T would have to
be closed unbounded in �+, but if we let 	 be the (� + 1)-st limit point of T , then
T ∩ 	 ∈ C′

	 has order type �+ �. As with the square principles introduced earlier,
increasing κ makes it easier to satisfy them.
A version of the following lemma for the more familiar weak square principle

��,<� was shown in [23, Lemma 4.5].
Lemma 3.19. Suppose� is a regular uncountable cardinal. Then a<�-closed forcing
cannot add a new thread (i.e., a thread that didn’t exist in V) to a coherent sequence
of length �+ all of whose elements have size less than �.
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Proof. Magidor’s proof of [23, Lemma 4.5] goes through verbatim. �
In the following, I will need to use the definition of subcompleteness, due to
Jensen. While there are several versions in the literature, I use the one given in
[18, Section 3, p. 3]. I will frequently use models of the theory ZFC−, which consists
of the ZFC axioms, with Power Set and Replacement removed, and the Collec-
tion Scheme added. The Collection Scheme consists of all formulas of the form
∀�z(∀x∃yϕ(x, y, �z) −→ ∀u∃v∀x ∈ u∃y ∈ vϕ(x, y, �z)), where ϕ(x, y, �z) is any for-
mula in the language of set theory with all free variables shown, see [20, p. 85]. If κ
is regular, thenHκ is a model of ZFC

−.

Definition 3.20. A transitive set N (usually a model of ZFC−) is full if there is
an ordinal 	 > 0 such that L	(N) |= ZFC− and N is regular in L	(N), meaning
that if x ∈ N , f ∈ L	(N) and f : x −→ N , then ran(f) ∈ N .
The idea is that N can be put inside a transitive model of ZFC− which thinks
that the domain of N is equal to H� , where � is the ordinal height of N . Following
Jensen, if A is a set and � is an ordinal, I will in the following write LA� for the
structure 〈L�[A],∈, A ∩ L�[A]〉. When I say that a structure N of the form LA�
satisfies ZFC−, then I mean ZFC− in the language with a unary predicate symbol
Ȧ that is interpreted by Ā = A ∩ L�[A] in N . Inside such a structure, the Lα[Ā]
hierarchy can be defined (for α < �), with its canonical well-order. For X ⊆ N ,
I will writeHullN (X ) for the Skolemhull ofX , using the canonical Skolem functions
associated to this canonical well-ordering of the universe of N .

Definition 3.21. Let P be a poset and let �(P) theminimal cardinality of a dense
subset ofP. ThenP is subcomplete if for all sufficiently large cardinals � withP ∈ H� ,
any ZFC− model N = LA� with � < � and H� ⊆ N , any � : N̄ ≺ N such that N̄ is
countable, transitive and full and such that P, � ∈ ran(�), any Ḡ ⊆ P̄ which is P̄-
generic over N̄ , and any s ∈ ran(�), the following holds: letting �(s̄ , �̄ , P̄) = s, �,P,
there is a condition p ∈ P such that whenever G ⊆ P is P-generic over V with
p ∈ G , there is in V[G ] a � ′ such that
1. � ′ : N̄ ≺ N is an elementary embedding,
2. � ′(s̄ , �̄ , P̄) = s, �,P,
3. (� ′)“Ḡ ⊆ G ,
4. HullN (�(P) ∪ ran(� ′)) = HullN (�(P) ∪ ran(�)).
I will not use property 4. of the previous definition in what follows. That property
is crucial for proving iteration theorems for subcomplete forcing, though, see [20].
I will frequently consider forcing extensions of transitive set-sized models of ZFC−.
In this context, the forcing theorem remains valid, see [20, pp. 88–89].

Lemma 3.22. Let � be an ordinalwith cf(�) = �1. Then subcomplete forcing cannot
add a new thread to a coherent sequence of length � all of whose elements have size
less than 2�.

Proof. Before beginning the proof, let me emphasize that the given coherent
sequence is not assumed to be a �(�,<2�)-sequence. It may have threads, but the
point is that no new threads can be added, that is, no new club subsets of � that
cohere with the sequence can be adjoined by subcomplete forcing.
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Let P be subcomplete, and let �C = 〈Cα | α < �, α limit〉 be a coherent sequence
all of whose elements have size less than 2�. Let f : �1 −→ � be a normal, cofinal
function, and let g : P(�) −→ 2� be a bijection. Suppose ḃ is a P-name such that
P forces that ḃ is a new thread through �C (that is, a thread that did not exist in V).
Fix enumerations

Cα = {Cα� | � < κα}
with κα < 2�, for every limit ordinal α < �. LetN = L�[A], for some set A, so that
H� ⊆ N , where � is sufficiently large, � < �, and let� : N̄ ≺ N , where N̄ is countable
and full, such that �,f, g,P, ḃ, �C ∈ ran(�). Let �(�̄, f̄, ḡ, P̄, ˙̄b, �̄C) = �,f, g,P, ḃ, �C,
and let Ḡ be generic for P̄ over N̄ .
Let Ω = �N̄1 = crit(�). By subcompleteness, let p ∈ P be such that ifG is generic

for P over V with p ∈ G , then in V[G ], there is a � ′ with � ′(�̄ , f̄, ḡ, P̄, ˙̄b, �̄C) =
�,f, g,P, ḃ, �C and (� ′)“Ḡ ⊆ G . Let us temporarily fix such a genericG with p ∈ G .
Let D = ran(f) and D̄ = ran(f̄).

(1) (a) ��D̄ = � ′�D̄,
(b) ��(2�)N̄ = � ′�(2�)N̄ .

Proof of (1). Clearly, ��Ω = � ′�Ω = id�Ω. So, for  < Ω, �(f̄()) =
�(f̄)(�()) = � ′(f̄)(� ′()) = � ′(f̄()), showing (a). Similarly, ��P(�)N̄ =
� ′�P(�)N̄ = id�P(�)N̄ . So, for x ∈ P(�)N̄ , �(ḡ(x)) = �(ḡ)(�(x)) =
� ′(ḡ)(� ′(x)) = � ′(ḡ(x)), showing (b). �(1)
Let �̄ = sup D̄, so that � ′(�̄) = �, and set �̃ = sup �“�̄.
(2) ḃG ∩ �̃ ∈ C�̃.
Proof of (2). Note that cf(�̃) = �, so �̃ < �. To prove the claim, it suffices to
show that �̃ is a limit point of ḃG , because ḃG is a thread through �C. To see that �̃ is a
limit point of ḃG , note that ˙̄bḠ is club in �̄, as is D̄. Note that Ω = �N̄1 = �

N̄ [Ḡ ]
1 . This

is because � ′ : N̄ ≺ N is elementary, so � ′(�N̄1 ) = �N1 , and � ′ lifts to an elementary
embedding � ′ : N̄ [Ḡ ] ≺ N [G ], as � ′“Ḡ ⊆ G . Since G preserves �1, it follows
that �N [G ]1 = �N1 , which implies that �

N̄ [Ḡ ]
1 = �N̄1 . It follows that �̄ has cofinality

Ω in N̄ [Ḡ ], since otherwise, �N̄1 would be collapsed in N̄ [Ḡ ]. Hence, D̄ ∩ ˙̄bḠ is
club in �̄. But then, �“(D̄ ∩ ˙̄bḠ) = (� ′)“(D̄ ∩ ˙̄bḠ) (by (1)(a)) is unbounded in �̃,
and (� ′)“(D̄ ∩ ˙̄bḠ) ⊆ ḃG . This shows that �̃ is a limit point of ḃG , and thus the
claim. �(2)
So, for every Ḡ ′ that’s P̄-generic over N̄ (in place of the filter Ḡ we worked with
above), we can fix a condition pḠ′ ∈ P (in place of p) and a P-name �̇Ḡ′ (in place
of a name for � ′ above—anticipating a possible confusion here, note that �̇Ḡ′ is a
P-name, not an interpretation of a P-name by Ḡ ′, which wouldn’t make sense,
because Ḡ ′ is a filter in P̄, not in P; I use superscripts for interpretations of names
by generic filters) such that pḠ′ forces that �̇Ḡ′ : ˇ̄N ≺ Ň , �̇Ḡ′(�̄ , f̄, ḡ, P̄, ˙̄b, �̄C) =
�,f, g,P, ḃ, �C and (�̇Ḡ′)“ ˇ̄G ′ ⊆ Γ (where Γ is the canonical P-name for the generic
filter). Let us also fix a CḠ′ ∈ C�̃ such that pḠ′ forces that ḃ ∩ ˇ̃� = ČḠ′ (by (2)).
Since P forces that ḃ is not in V, it is straightforward to construct a system of
filters 〈Ḡs | s : � −→ 2〉 generic for P̄ over N̄ such that if s �= t, then ˙̄bḠs �= ˙̄bḠt .
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Namely, fixing an enumeration 〈Dn | n < �〉 of all the dense subsets of P̄ that
exist in N̄ , one can construct, by recursion on the length of u ∈ <�2, a sequence
〈qu | u ∈ <�2〉 of conditions in P̄ such that qu ∈ D|u|, u ⊆ v =⇒ qv ≤P̄ qu, such

that qu�〈0〉 �P̄ α̌ ∈ ˙̄b and qu�〈1〉 �P̄ α̌ /∈ ˙̄b or vice versa. Then, for every s : � −→ 2,
the set {qs�n | n < �} generates a P̄-generic filter Ḡs over N̄ , and the sequence 〈Ḡs |
s : � −→ 2〉 is as wished.
Since the cardinality of C�̃ is less than 2�, we can find s �= t such that CḠs = CḠt .
Set Ḡ0 = Ḡs and Ḡ1 = Ḡt . Let pḠi ∈ Gi , Gi P-generic over V, � ′i = (�̇Ḡi )Gi , for
i < 2. To summarize, we have:

(3) ḃG0 ∩ �̃ = ḃG1 ∩ �̃, ˙̄bḠ0 �= ˙̄bḠ1 and � ′0�D̄ = ��D̄ = � ′1�D̄.
But on the other hand, it follows that ˙̄bḠ0 = ˙̄bḠ1 , a contradiction. Namely, let 	̄ be
a limit point of ˙̄bḠ0 ∩ D̄. Then ˙̄bḠ0 ∩ 	̄ ∈ C̄	̄ , i.e., for some �̄ < (2�)N̄ , ˙̄bḠ0 ∩ 	̄ = C̄ 	̄�̄ .
Since � ′0 : N̄ [Ḡ0] ≺ N [G0] is elementary, it follows that ḃG0 ∩ � ′0(	̄) = C�

′
0(	̄)
�′0(�̄)
. By

(1)(b), � := � ′0(�̄) = �(�̄) = �
′
1(�̄). Moreover, by (1)(a), since 	̄ ∈ D̄, 	 := � ′0(	̄) =

�(	̄) = � ′1(	̄). So, since ḃ
G0 ∩ �̃ = ḃG1 ∩ �̃, it follows that

ḃG1 ∩ 	 = ḃG0 ∩ 	 = C�′0(	̄)� = C�
′
1(	̄)
� = C	� .

But ḃG1 ∩ � ′1(	̄) = C�
′
1(	̄)
� means, by elementarity of � ′1, that

˙̄bḠ1 ∩ 	̄ = C̄ 	̄�̄ . So
˙̄bḠ0 ∩ 	̄ = ˙̄bḠ1 ∩ 	̄. This is true for every limit point 	̄ of ˙̄bḠ0 ∩ D̄, and these are
unbounded in �̄, so it follows that ˙̄bḠ0 = ˙̄bḠ1 , the desired contradiction. �
Note that the assumption that cf(�) = �1 in the previous lemma is necessary,
because if cf(�) ≥ �2, then one can change the cofinality of � to be equal to �2,
by forcing with Col(�2, �), then force CH by adding a Cohen subset of �1, and
then, subsequently, one can change the cofinality of � to be�, using Namba forcing
(which is subcomplete, by CH, see [20, p. 132, Lemma 6.2]). Changing the cofinality
of � to � of course adds threads, because any cofinal subset of � of order type
�, having no limit points less than �, will then vacuously be a thread. The case of
interest is that the coherent sequence in the lemma is a �(�,<2�)-sequence, which
for this reason can only happen if cf(�) > �. Finally, it is not hard to see that if
cf(�) = �1, then �(�) holds—see, for example, [30, p. 48].
Theorem 3.23. RA˜ �-closed(H�2 )/RA˜ SC(H�2 ) imply the failure of �(�2, �).

Proof. Suppose �C = 〈Cα | α < �2, α limit〉 were a �(�2, �)-sequence. Let
κ = �2. Let G be generic for Col(�1, �2) over V. In V[G ], the cofinality of κ
is �1, and by Lemma 3.19 (with � = �1), �C is still a �(κ,�)-sequence in V[G ].
Let M = 〈H�2 ,∈, �C〉, where �C is coded as a subset of �2 in some canonical way.
By RA˜ �-closed(H�2 )/ RA˜ SC(H�2 ), there is a forcing Q ∈ V[G ] that is countably
closed/subcomplete inV[G ], such that ifH isQ-generic overV[G ], then inV[G ][H ],
there is a structure N = 〈H�2 ,∈, �D〉 such that M ≺ N . But then, �D�κ = �C, and
so, every T ∈ Dκ is a thread through �C. However, by Lemma 3.22, there can be no
such thread in V[G ][H ], since cfV[G ](κ) = �1 and Q is subcomplete in V[G ] (recall
that every �-closed forcing is subcomplete). �
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Recall that by Corollary 3.16, RA˜ �-closed(H�2 )/RA˜ SC(H�2 ) implies �∗
�1 , which, in

turn, implies that �(�2, �1) holds, by the remarks after Definition 3.18. Thus, the
previous theorem is optimal.

§4. Climbing up the hierarchy. I will start by describing the relationship between
higher resurrection axioms and the bounded forcing axioms.

Definition 4.1. Let Γ be a forcing class, and let κ be a cardinal. Then the
bounded forcing axiom for Γ at κ, BFA(Γ,≤κ), says that wheneverM = 〈|M |,∈, �R〉
is a transitive model of size at most κ, | �R| ≤ �1, ϕ(x) is a Σ1-formula and P is a
forcing in Γ that forces that ϕ(M ) holds, then there are in V a transitive model M̄
with ϕ(M̄ ) and an elementary embedding j : M̄ ≺M .
For more on the motivation for this way of defining the bounded forcing axioms,
I refer the reader to [9]. I will use the following weak resurrection axioms from time
to time.

Definition 4.2. Let κ ≥ �2 be a cardinal, and let Γ be a forcing class. The weak
resurrection axiom for Γ at Hκ, wRAΓ(Hκ), says that whenever G is generic over V
for some forcing P ∈ Γ, then there is a forcing notion Q in V[G ] and a � such that
whenever H is Q-generic over V[G ], then in V[G ][H ], � is a cardinal and there is
an elementary embedding

j : 〈HVκ ,∈〉 ≺ 〈HV[G ][H ]� ,∈〉
with j��2 = id.
The principle wRA˜ Γ(Hκ) says that for every A ⊆ κ and every G as above, there
is a Q as above such that for every H as above, in V[G ][H ], there are a B and a j
such that

j : 〈HVκ ,∈, A〉 ≺ 〈HV[G ][H ]� ,∈, B〉,
with j��2 = id and such that if κ is regular, then � is regular in V[G ][H ].
If Γ is the class of subcomplete forcings, then wRASC(Hκ), wRA˜ SC(Hκ) stands
for wRAΓ(Hκ), wRA˜ Γ(Hκ), respectively.

The reader will notice the requirement that j��2 = id in the previous definition.
In the regular principles RAΓ(Hκ)/RA˜ Γ(Hκ), such a requirement is not necessary,
because �1 cannot be collapsed by any forcing in Γ, since the forcings notions in
Γ will always be assumed to preserve stationary subsets of �1, see Fact 3.7. As a
result, the critical point of an elementary embedding given by an application of
RAΓ(Hκ) or RA˜ Γ(Hκ) will always be greater than�1. However, in the weak form of
the principle, the second forcing applied might conceivably collapse �1, since there
is no requirement thatQ belongs to ΓV[G ]. Allowing for this to happen would result
in a principle that does not generalize wRA˜ Γ(H�2 ), as introduced in Definition 3.13,
and it would be different in spirit to the principles considered in [14]. Thus, since
it doesn’t follow automatically in the context of weak resurrection axioms, I have
to require explicitly that j��2 = id. I could have equivalently required that Q be
�1-preserving in V[G ]. Note that these equivalent requirements are implicit in the
definition of the principle in the case κ = �2 (Definition 3.13), where it is asked that
j = id. Note also that requiring j��2 is equivalent to the requiring j�H�2 = id.
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The following lemma was also observed in [14, Theorem 4] by Hamkins and
Johnstone for their version of the resurrection axioms, not involving elementary
embeddings.

Lemma 4.3. Let Γ be a forcing class and κ > �1 a cardinal. Then

wRAΓ(Hκ) =⇒ BFA(Γ, <κ).

Proof. Let M = 〈|M |,∈, R0, R1, . . . , Ri , . . .〉i<�1 be a transitive model of size
less than κ, let P ∈ Γ be a forcing, let G be generic for P over V, let ϕ(x) be a
Σ1-formula, and suppose that V[G ] |= ϕ(M ). Let Q ∈ ΓV[G ] and H be Q-generic
over V[G ] such that there is in V[G ][H ] an elementary embedding j : 〈Hκ,∈〉 ≺
〈HV[G ][H ]� ,∈〉, where � is a cardinal. Note that, since V[G ] |= ϕ(M ) and ϕ is Σ1,
it follows that V[G ][H ] |= ϕ(M ). Further, M ∈ Hκ ⊆ HV[G ][H ]� , so that since
HV[G ][H ]� ≺Σ1 V[G ][H ], it follows that

〈HV[G ][H ]� ,∈〉 |= ϕ(M ).
Moreover, j′ := j�M ∈ HV[G ][H ]� , since j′ ⊆ M × j(M ) ∈ HV[G ][H ]� . Since
j��2 = id, we have that j(M ) = 〈j(M ),∈, j(R0), j(R1), . . . , j(Ri ), . . .〉i<�1 , and
so, j(M ) is a model of the same language asM and j′ :M ≺ j(M ) is elementary.
Hence, the statement “there is a transitive M̄ such that ϕ(M̄ ) holds and there is
an elementary embedding k : M̄ ≺ j(M )” is true in HV[G ][H ]� , as witnessed by
M and j′. This is a statement about j(M ). So, by elementarity of j, the same
statement is true inHVκ aboutM . Let M̄ and k witness this. Then ϕ(M̄ ) holds and
k : M̄ ≺M , as wished. �
As a result, it follows that URΓ implies FA(Γ). Tsaprounis observed in
[28, Corollary 2.6] that if Γ is a forcing class that is (Γ-necessarily) stationary
set preserving, then URΓ implies the stronger forcing axiom FA++(Γ), which says
that given a poset P ∈ Γ, a collection A of �1 many maximal antichains in P and
�1 many names for stationary subsets of �1, there is an A-generic filter in P which
interprets each of these names as a stationary set. The main goal of the remainder
of this section is now to show that the results from the previous section on the
effects of RA˜ SC(H�2 )/ RA˜ �-closed(H�2 ) on stationary reflection and the failure of
(Todorčević’s) square carry over to higher cardinalities.

Lemma 4.4. Assume RA˜ �-closed(Hκ), where κ > �1 is a regular cardinal. Then
any sequence �S = 〈Si | i < �1〉 of stationary subsets of κ consisting of ordinals of
countable cofinality reflects.
Proof. Let �S be given. Let M = 〈Hκ, S̃〉, where S̃ =

⋃
i<�1

{i} × Si . Let G be
V-generic for Col(�1, κ). LetQ be �-closed andH beQ-generic over V[G ] such that
in V[G ][H ], there is a modelN = 〈HV[G ][H ]� , T̃ 〉with cf(�) > �1 and an elementary
embedding j : M ≺ N , by RA˜ �-closed(Hκ). As pointed after Observation 2.3, the
minimum requirement needed for arguments such as the present one seems to be
that cf(κ) > �1 =⇒ cfV[G ][H ](�) > �1. Definition 2.2 actually gives us that � is
regular in V[G ][H ]. Clearly, j(�1) = �1, since �M1 = �

N
1 .

In V[G ][H ], each Si is stationary in κ, by Fact 3.9. Let � = sup j“κ. Since
cfV[G ][H ](�) > �1, yet cf

V[G ][H ](κ) = �1, it follows that � < �. Fixing i < �1,
I claim that Ti reflects to � in N (and, equivalently, in V[G ][H ]). To see this,
argue in V[G ][H ]. Let E ⊆ � be club. j“κ is stationary in �, because j“κ is closed
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under limits of cofinality� (note that V and V[G ][H ] have the same�-sequences of
ordinals). So, j“κ∩E is stationary in �, and also closed under limits of cofinality�.
So Ē = j−1“E is unbounded in κ and closed under limits of cofinality �. So, if we
let Ē ′ be the union of Ē and its limit points below κ, Ē ′ is club in κ, and the limit
points missing in Ē had uncountable cofinality. Let  ∈ Si ∩ Ē ′. Since Si consists
of ordinals of cofinality �, it follows that  ∈ Ē, so j() ∈ Ti ∩E. This shows that
Ti reflects to �.
So in N , the statement “there is a 	 of cofinality �1 such that each Ti reflects
to 	” is true, as witnessed by �. Hence, by elementarity,M believes that there is a κ̄
of cofinality �1 such that for every i < �1, Si reflects to κ̄. SinceHκ contains every
subset of κ̄,M is right about that. �
Note that the assumption of the previous lemma could be weakened to
cf(κ) > �1, but this is not interesting, because in that case, alreadyRA˜ �-closed(Hcf(κ))
implies the claimed stationary reflection principle. Namely,RA˜ �-closed(Hcf(κ)) implies
by Lemma 4.4 that any �1-sequence of stationary subsets of cf(κ), each consist-
ing of ordinals of countable cofinality, reflects. But given an �1-sequence of such
stationary subsets of κ, fixing a normal function f : cf(κ) −→ κ and letting
C = {f(	) | 	 < cf(κ) is a limit ordinal}, one can reflect an �1-sequence 〈Tα |
α < �1〉where eachTα is a stationary subset ofκ consisting of ordinals of countable
cofinality to a sequence 〈Sα | α < �1〉, where Sα = f−1“(Tα ∩C ). Each Sα is then
a stationary subset of cf(κ), consisting of ordinals of countable cofinality, and hence
�S has a reflection point. The image of this point under f is then a simultaneous
reflection point for �T .
In the next lemma, I show that the principle SFPκ, which implies the simultaneous
reflection of Lemma 4.4 (as pointed out after Definition 3.12), already follows from
the assumption wRA˜ SC(Hκ).

Lemma 4.5. Suppose that κ > �1 is regular and wRA˜ SC(Hκ) holds. Then SFPκ
holds.
Proof. Even though the proof works for the case κ = �2 as well, the reader
may think of the case κ > �2 here, since the case κ = �2 has been dealt with in
Lemma 3.14. Let 〈Ai | i < �1〉 be a sequence of stationary subsets of κ consisting of
points of cofinality �. Let 〈Di | i < �1〉 be a partition of�1 into stationary subsets.
As in the proof of Lemma 3.14, let G be V-generic for the subcomplete forcing P to
add a normal, cofinal functionf : �1 −→ κ such that for every i < �1,f“Di ⊆ Ai ,
followed by the collapse of κ to �1. LetM = 〈Hκ,∈, 〈Ai | i < �1〉, 〈Di | i < �1〉〉.
By wRA˜ SC(Hκ), let Q ∈ V[G ] be a poset, let H be V[G ]-generic for Q, and let

j :M ≺ N = 〈HV[G ][H ]� ,∈, 〈Bi | i < �1〉, 〈D̃i | i < �1〉〉
be an elementary embedding in V[G ][H ] such that j(�1) = �1. Clearly, Di = D̃i ,
for i < �1. Let f′ = j ◦ f. Since f is continuous, and since j is continuous
at ordinals of cofinality � (in Hκ), it follows that f′ is continuous. Moreover, if
 ∈ Di , then f() ∈ Ai , and so, f′() ∈ Bi , by elementarity of j. Since � is regular
in V[G ][H ] (and it would be enough to know that cf(�) > �1 in V[G ][H ]), f′ is in
HV[G ][H ]� , and so, the statement that there exists an ordinal �′ and a normal function
h : �1 −→ �′ such that for every i < �1, h“Di ⊆ Bi is true in N , and hence, the
corresponding statement is true inM , with Bi replaced by Ai . �
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Finally, I will replicate the results on the failure of square principles at higher
cardinalities.
Lemma 4.6. Countably closed forcing cannot add a thread to a coherent sequence
of length � all of whose elements have size less than 2�, if � is an ordinal of uncountable
cofinality.
Proof. Let �C = 〈Cα | α < �, α limit〉 be a coherent sequence with |Cα| < 2�
for all limit α < �, and suppose P is �-closed, yet P adds a thread to �C. Let p ∈ P
force that Ḋ is a new thread. By recursion on the length of s ∈ <�2, one can define
ps ∈ P, αs, �s < �, such that
1. p∅ ≤ p,
2. ps�0 � �̌s ∈ Ḋ,
3. ps�1 � �̌s /∈ Ḋ,
4. ps�0, ps�1 ≤ ps ,
5. ps � α̌s ∈ Ḋ,
6. if |s | < |t|, then αs < αt , and if |s |+ 1 < |t|, then �s < αt .
The recursive construction proceeds as follows. At stage n, I assume that ps and
αs have been defined for all s with |s | < n, and �s has been defined for all s with
|s | + 1 < n. I will then define ps and αs for all s with |s | = n and �s for all s with
|s | = n − 1 (if n > 0).
Thus, at stage 0, I have to define p∅ and α∅. To do this, let p∅ and α∅ be such that
p∅ ≤ p and p∅ � α̌∅ ∈ Ḋ.
At stage n > 0 of the construction, making the assumptions listed above, let

|t| = n, and let s = t�(n − 1). Let 	n−1 = max{sup|u|<n αu, sup|u|+1<n �u}. First,
it is clear that there is a � such that for some extensions p′s�0 and p

′
s�1 of ps , we

have that p′s�0 � �̌ ∈ Ḋ and p′s�1 � �̌ /∈ Ḋ, since we are working below a condition
which forces that Ḋ /∈ V̌ . Let �s be such a �. Since we are working below a condition
that forces that Ḋ is unbounded in �, it is now clear that there are ordinals αs�0
and αs�1, both greater than 	n−1, such that for appropriate strengthenings ps�0 and
ps�1 of p′s�0 and p

′
s�1, respectively, we have that ps�i � α̌s�i ∈ Ḋ, for i = 0, 1. This

concludes the construction at stage n.
For each f : � −→ 2, let pf ∈ P be a lower bound for the decreasing sequence

〈pf�n | n < �〉. Let α� = sups∈<�2 αs . Then α� < �, since cf(�) ≥ �1. Moreover,
pf forces that α� is a limit point of Ḋ, because by 6., α� = supn<� αf�n and by 5.,
each αf�n is forced by pf to be in Ḋ. Thus, pf forces that Ḋ ∩ α̌� ∈ Čα� . Hence,
since there are 2� many functions from � to 2, there must be f �= g such that pf
and pg both force that Ḋ ∩ α̌� = Č , for some C ∈ Cα� . But, letting n be maximal
such that s := f�n = g�n, it follows that pf�n+1 and pg�n+1 disagree about whether
�s is in Ḋ, while �s < α� , by 6. This is a contradiction. �
Theorem 4.7. Let Γ be the class of countably closed forcings or the class of sub-
complete forcings, let κ be a cardinal of cofinality greater than �1, and assume that
RA˜ Γ(Hκ) holds. Then �(κ,�) fails.
Proof. Assume, towards a contradiction, that there is a �(κ,�)-sequence, let’s
call it �C. Let g be Col(�1, κ)-generic. Now, apply RA˜ Γ(Hκ) to the structure
〈HVκ ,∈, �C〉, where we can easily view �C as a subset of κ, let’s say for concrete-
ness, we identify it with the set of Gödel triples ≺α, , n� such that  ∈ Cnα , where
for every α < κ, we fix an enumeration Cα = {Cnα | n < �}. So the principle gives
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us a forcing Q that’s subcomplete/countably closed in V[g], such that, letting h be
generic for Q over V[g], in V[g][h], there is a �D, a cardinal � and an elementary
embedding

j : 〈Hκ,∈, �C〉 ≺ 〈HV[g][h]� ,∈, �D〉
with cfV[g][h](�) > �1. Recall that if κ is regular, we are guaranteed that � is regular
in V[g][h], by Definition 2.2, and if κ is singular, then by Observation 2.4, we can
assume that j(cf(κ)) = cfV[g][h](�). Note also that �1 is the same in V, V[g][h],
M andN , so that, as usual, j(�1) = �1.

(1) �C is a �(κ,�)-sequence in V[g][h].
Proof. By Lemma 4.6, �C is still a �(κ,�)-sequence in V[g]. But since
cfV[g](κ) = �1, Lemma 3.22 applies, so since Q is subcomplete in V[g], �C is still a
�(κ,�)-sequence in V[g][h]. �(1)
Let � = sup j“κ. So cfV[g][h](�) = �1. Since cf

V[g][h](�) > �1, it follows that
� < �.

(2) j“κ is stationary in � (in V[g][h]).
Proof. Arguing in V[g][h], let C be a club subset of �. By recursion on n,
define an increasing sequence �α = 〈αn | n < �〉 in �κ such that, for every n < �,
[j(αn), j(αn+1)) ∩ C �= ∅. Since cf(κ) = �1, this sequence is bounded in κ. So
α� := supn<� αn < κ. Now in V[g], there is a bijection f : �1 −→ κ. The pullback
〈f−1(αn) | n < �〉 is then a sequence in (��1)V[g][h], and hence is bounded in �1,
say by 
 . But then, it can be coded by a real via a surjection c : � −→ 
 with
c ∈ V[g]. That real is in V[g][h], and since subcomplete forcing doesn’t add reals, it
and the pullback it coded are in V[g]. Since f is in V[g], it follows that �α ∈ V[g].
But since g is generic for a countably closed forcing, it follows that �α ∈ V, and
hence that �α ∈ HVκ . It follows thatHκ sees that α� has cofinality �, and as a result,
j(α�) = supn<� j(αn), and this is a limit point of C , by construction. �(2)
Working in V[g][h], let D ∈ D� , and let D′ be the set of limit points of D
below �. So by (2), S = j“κ ∩ D′ is unbounded (stationary) in �. So, letting
S̄ = j−1“S, it follows that S̄ = {α < κ | j(α) ∈ D′} is unbounded in κ. Now, for
every α ∈ S̄, D ∩ j(α) ∈ Dj(α) = j(Cα). For such α, let n(α) be such that

D ∩ j(α) = j(Cn(α)α )

and define
D̄ =

⋃
α∈S̄
C n(α)α .

(3) D̄ threads �C.
Proof. First, note that if α < 
 with α, 
 ∈ S̄, then Cn(α)α = Cn(
)
 ∩ α, because
D∩j(α) = j(Cn(α)α ) andD∩j(
) = j(Cn(
)
 ), so that j(Cn(α)α ) = j(Cn(
)
 )∩j(α).
Applying j−1 yields that Cn(α)α = Cn(
)
 ∩ α.
This implies that if α ∈ S̄, then Cn(α)α = D̄ ∩ α. So, D̄ is club in κ, and if 

is a limit point of D̄ below κ, then 
 is a limit point of Cn(α)α , for some α ∈ S̄.
Since �C is coherent, it follows that D̄ ∩ 
 = Cn(α)α ∩ 
 ∈ C
 , which means that D̄
threads �C. �(3)
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This is a contradiction, since �C is a �(κ,�)-sequence in V[g][h]. �
Observation 4.8. RA˜ SC(H�3 )/RA˜ �-closed(H�3 ) implies AD

L(R).

Proof. This follows by assembling some consequences of these principles
that were shown up to now. Recall that RA˜ SC(H�3 )/RA˜ �-closed(H�3 ) imply
RA˜ SC(H�2 )/RA˜ �-closed(H�2 ), by the discussion after Observation 2.3. By Fact 3.1,
RA˜ SC(H�2 )/RA˜ �-closed(H�2 ) imply CH (even their lightface variants imply♦).More-
over, RA˜ SC(H�2 )/RA˜ �-closed(H�2 ) imply the failure of �(�2, �) by Theorem 3.23,
which certainly implies the failure of �(�2). Finally, RA˜ SC(H�3 )/RA˜ �-closed(H�3 )
imply the failure of�(�3, �) (by Theorem 4.7), and in particular, the failure of��2
(see the discussion following Definition 3.18). The claim now follows from Steel’s
observation that the methods of proof of [25], combined with Woodin’s core model
induction, show the following fact: if 2� ≤ �2,�(�2) fails and��2 fails, then L(R)
determinacy holds (see [25, p. 90]). �

§5. Virtual resurrection. In analogy to the hierarchies of theweak forcing axioms,
introduced in [9], I now want to analyze a similar weakening of the resurrection
axioms for higher cardinals. The resulting axiomswill bemuchweaker, in particular,
theywill not have the striking effects on stationary reflection and the failure of square
discussed in the previous section. On the upside, it will be possible to determine
their consistency strengths precisely. The idea is to ask only that the elementary
resurrection embeddings are generic embeddings, or virtual embeddings, meaning
that they are only required to exist in a further forcing extension.

Definition 5.1. Let κ ≥ �2 be a cardinal, and let Γ be a forcing class. The
virtual resurrection axiom for Γ at Hκ, vRAΓ(Hκ), says that whenever G is generic
over V for some forcing P ∈ Γ, then there are a Q ∈ ΓV[G ] and a � such that
whenever H is Q-generic over V[G ], then � is a cardinal in V[G ][H ], and there is
some further forcing R ∈ V[G ][H ] such that if I is generic for R over V[G ][H ],
then in V[G ][H ][I ], there is an elementary embedding

j : 〈HVκ ,∈〉 ≺ 〈HV[G ][H ]� ,∈〉.
I will call such an embedding virtual.
The boldface virtual resurrection axiom forΓ atHκ, vRA˜ Γ(Hκ), says that for every
A ⊆ κ and everyG as above, there are aQ and a � as above such that for everyH as
above, there are a B ∈ V[G ][H ] and an R as above such that for every I as above,
there is a j in V[G ][H ][I ] such that

j : 〈HVκ ,∈, A〉 ≺ 〈HV[G ][H ]� ,∈, B〉
and such that, if κ is regular in V, then � is regular in V[G ][H ].
Finally, the virtual unbounded resurrection axiom vURΓ says that vRAΓ(Hκ) holds
for every cardinal κ ≥ �2.

I will frequently say that in some transitive model N of ZFC−, containing struc-
turesM andM ′, there is a virtual embedding j :M ≺M ′. This is just a shorthand
for saying that N thinks that there is a poset P such that P forces the existence of
such an elementary embedding.
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Note that there is no requirement on the forcing notion R adding the embedding
j—any forcing can be used. A little more can be said about it, though. First, if
we are in the situation thatM and N are models of the same first order language,
and the universe of M is countable, then fixing an enumeration f : � −→ M ,
there is a canonical “tree searching for an elementary embedding fromM toN”. It
is the tree consisting of functions g : {f(0), f(1), . . . , f(n − 1)} −→ N such that
n < � and for any formulaϕ(�x) and any list of parameters �a fromf“n, we have that
M |= ϕ(�a) iffN |= ϕ(g(�a)). So these are the functions thatmight be extended to an
elementary embedding fromM toN . The tree ordering is inclusion. It is now clear
thatT is ill-founded iff there is an elementary embedding fromM toN . Now, let us
drop the assumption thatM is countable for a moment, let’s say thatM has size �,
and let’s assume that there is some forcing P that adds an elementary embedding
from M to N . Let G be generic over V for P. If we let H be Col(�, �)-generic
over V[G ], then we can form the tree searching for an elementary embedding from
M to N (with respect to some enumeration of M by natural numbers) in V[H ].
Since there is such an embedding in V[H ][G ] = V[G ][H ] (by the product lemma),
it follows that this tree is ill-founded in V[H ][G ], and hence in V[H ]. A branch
through this tree in V[H ] gives rise to such an embedding in V[H ]. So, by the weak
homogeneity of Col(�, �), it is forced by the weakest condition 1Col(�,�) that there
is an elementary embedding fromM to N , since this is a statement about elements
of the ground model. Let’s make a note of this, for future reference.

Observation 5.2. LetM andN be models of the same first order language. If there
is a forcing notion that adds an elementary embedding fromM to N , then Col(�, �)
adds such an elementary embedding, where � is the cardinality of the universe ofM .

As before, the classes Γ I am interested in Γ-necessarily preserve �1, in which
case it follows that j�H�2 is the identity, where j is as in the previous definition. In
particular, if κ = �2, then j is the identity, and hence, no forcing is required to add
the embedding. Let’s also note this as an observation.

Observation 5.3. Suppose that Γ is Γ-necessarily �1-preserving. Then RAΓ(H�2 )
is equivalent to vRAΓ(H�2 ), and RA˜ Γ(H�2 ) is equivalent to vRA˜ Γ(H�2 ).

As before, the requirement in Definition 5.1 that � be regular if κ is, is a technical
detail. The proof of Observation 2.4 goes through in the present context verbatim.

Observation 5.4. Suppose κ is a singular cardinal and vRA˜ Γ(Hκ) holds. Then for
every A ⊆ κ and every G generic for a forcing in Γ, there is a Q ∈ ΓV[G ] such that
if H is generic for Q over V[G ], then in V[G ][H ], there are a B, a cardinal � and a
virtual elementary embedding j such that

j : 〈HVκ ,∈, A〉 ≺ 〈HV[G ][H ]� ,∈, B〉,
with j(cfV(κ)) = cfV[G ][H ](�).

The corresponding large cardinals are “virtual” strengthenings of the concept
of (strongly) uplifting cardinals. Once they are strengthened, though, it becomes
apparent that the correct terminology has to be phrased in terms of extendibility.
The embeddings witnessing extendibility, however, are not required to exist in V
but in a forcing extension. Hence the following definition. I use the notation κ+α

for the α-th cardinal successor of κ.
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Definition 5.5. Let κ be an inaccessible cardinal and α an ordinal. Then κ is
virtually super α-extendible if there are arbitrarily large inaccessible cardinals 	 such
that for some 
 , there is an elementary embedding j in VCol(�,Hκ+α ) such that

j : 〈HVκ+α ,∈, κ〉 ≺ 〈HV	+
 ,∈, 	〉
where j�κ = id (equivalently, j�Hκ = id). Here, κ and 	 are used as predicates in
these structures, and it follows that κ = crit(j) and j(κ) = 	 if α > 0.
κ is strongly virtually super α-extendible if for everyA ⊆ κ+α , there are arbitrarily
large inaccessible cardinals 	 such that for some 
 and some B ⊆ 	+
 (in V), there
is an elementary embedding j in VCol(�,Hκ+α ) such that

j : 〈HVκ+α ,∈, A, κ〉 ≺ 〈HV	+
 ,∈, B, 	〉
with j�κ = id, and such that, if κ+α is regular, then 	+
 is regular.
κ is virtually super <α-extendible if it is virtually super ᾱ-extendible for every
ᾱ < α.

Note that κ is (strongly) uplifting iff κ is (strongly) virtually super 0-extendible.
Note also that if α < α′ and κ is (strongly) virtually super α′-extendible, then κ is
(strongly) virtually super α-extendible. In the future, I will omit the superscript V
on Hκ+α , in the situation of the previous definition. The structures are understood
to be in V, and only the elementary embedding j is added by forcing.
The concept of virtual extendibility was introduced in [3], as follows.

Definition 5.6. An inaccessible cardinal κ is virtually extendible iff for every
α > κ, in some forcing extension of V, there is an elementary embedding j : VVα ≺
VV
 such that crit(j) = κ and j(κ) > α.

Observation 5.7. An inaccessible cardinal κ is virtually extendible iff it is virtually
super α-extendible, for every ordinal α.

Proof. From left to right, note first that if κ is virtually extendible, then there are
arbitrarily large inaccessible cardinals, since if j : Vα ≺ V
 is a virtual extendibility
embedding, then j(κ) > α is inaccessible in V. So let α be given. To see that κ is
virtually super α-extendible, let 	̄ be some ordinal. We have to find an inaccessible
	 > 	̄ as in Definition 5.5. Let � be an inaccessible cardinal greater than κ+α and 	̄,
and let j : V� ≺ V�′ be a virtual extendibility embedding. So j exists in some forcing
extension of V, κ = crit(j), and j(κ) > �. Clearly then, Hκ+α ∈ V� . So if we let
j′ = j�Hκ+α , 
 = j(α) and 	 = j(κ), then we get j′ : 〈Hκ+α ,∈, κ〉 ≺ 〈H	+
 ,∈, 	〉,
j′�κ = id and j′(κ) = 	 > 	̄, and 	 is inaccessible.
For the converse, let α > κ be given. Let α′ > α be inaccessible, 	 > α′

be inaccessible, and let j : 〈Hκ+α′ ,∈, κ〉 ≺ 〈H	+
′ ,∈, 	〉 be a virtual super α′-
extendibility embedding with j�κ = id, existing in some forcing extension. Then
j(κ) = 	 > α and Hκ+α′ = Vα′ . We have that Vα ∈ Vα′ and letting 
 = j(α), it
follows that j(Vα) = V
 . Thus, if we let j′ = j�Vα, it follows that j′ : Vα ≺ V
 ,
κ = crit(j′) and j′(κ) = 	 > α, that is, j′ is a virtual extendibility embedding, as
desired. �
For the following lemma, note that for a cardinal �, we have thatH� ∈ H�+ iff the
cardinality ofH�, which is 2<�, is equal to �. I will also frequently use the fact, which
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is not hard to see, that if κ is a regular uncountable cardinal, P is a forcing notion
in Hκ and G is P-generic over V (equivalently, overHκ), thenHVκ [G ] = H

V[G ]
κ .

Lemma 5.8. Suppose that κ is virtually super α + 1-extendible, where α < κ.
Suppose that Hκ+α ∈ Hκ+α+1 or that κ+α is regular. Then the set of κ̄ < κ that are
strongly virtually super α-extendible is stationary in κ.

Proof. Let C ⊆ κ be club. Let j : 〈Hκ+α+1 ,∈, κ〉 ≺ 〈H	+α+1 ,∈, 	〉, for some
arbitrary inaccessible 	 > κ+α+1, where j�κ = id and j exists in a set-forcing
extension V[G ] of V obtained by forcing with Col(�, �), where � is the cardinality
of Hκ+α+1 in V, by Observation 5.2. In V[G ], j has cardinality �, since the domain
of j is countable there. Thus, j ∈ HV[G ]

	+α+1
= HV	+α+1 [G ]. There is a name Ȟ forH	+α+1 ,

definable in H	+α+1 , which is class-sized from the point of view of H	+α+1 , namely
Ȟ = {〈x̌, 1〉 | x ∈ HV	+α+1}. Since H	+α+1 is a ZFC−-model, the forcing theorem
holds over it, for the language which allows the usage of Ȟ as a predicate. Since
H	+α is definable inH	+α+1 , one can refer toH	+α in the forcing language overH	+α+1 ,
by relativizing the definition ofH	+α to Ȟ .
Let k = j�Hκ+α . Now in V[G ], for every subset A ⊆ κ+αV in V, we have
that A ∈ HV

κ+α+1
, and there is a B ∈ HV

j(κ)+α+1 such that k : 〈Hκ+α ,∈, A, κ〉 ≺
〈Hj(κ+α),∈, B, 	〉 is elementary, because this is true for B = j(A). Moreover, k ∈
H	+α+1 [G ], since the forcing is in H	+α+1 . Furthermore, if κ+α is regular, then so is
j(κ+α). I want to check that these facts can be expressed in the forcing language
over H	+α+1 . This is clear if Hκ+α ∈ Hκ+α+1 , because this implies by elementarity
of j that H	+α ∈ H	+α+1 . If not, then by assumption, we have that κ+α is regular
in V, so that 〈Hκ+α ,∈, A, κ〉 is a ZFC− model (in the language with a two extra
predicate symbols that are interpreted by A and κ), and the corresponding fact is
true of 〈Hj(κ)+α ,∈, B, 	〉, which is definable in H	+α+1 , by elementarity of j. It is
well-known that in this situation it is sufficient to say that k is Σ1-elementary, since
this then implies that it is fully elementary. Thus, in both cases, the elementarity
of k can be expressed in the forcing language of H	+α+1 . So, there is a condition
in Col(�, �) that forces that there is a k as described that works for A and B. By
homogeneity, the trivial condition of Col(�, �) will already force this, sinceA andB
and the two models between which k is an elementary embedding are in the ground
model.
So in H	+α+1 , the following statement holds: “There is a κ̄ ∈ j(C ) such that for

every A ⊆ κ̄+α , there is a B ⊆ j(κ+α) such that Col(�,Hκ̄+α+1 ) forces that there is
a j′ : 〈Hκ̄+α ,∈, A, κ̄〉 ≺ 〈Hj(κ)+α ,∈, B, j(κ)〉 with j′�κ̄ = id and such that if κ̄+α is
regular, then so is j′(κ+α)”.
This is witnessed by κ̄ = κ and j′ = k (and in fact, such a j′ will already be added
by Col(�,Hκ̄+α )). By elementarity of j, the pulled back version of this statement is
true from the point of view ofHκ+α+1 : there is a κ̄ ∈ C such that for every A ⊆ κ̄+α ,
there is a B ⊆ κ+α such that Col(�,Hκ̄+α+1 ) forces the existence of an elementary
embedding j′ : 〈Hκ̄+α ,∈, A, κ̄〉 ≺ 〈Hκ+α ,∈, B, κ〉 such that j′�κ̄ = id and such that
if κ̄+α is regular, then so is κ+α .
But since κ also is strongly virtually super α-extendible (as follows from an
argument given above), there are arbitrarily large inaccessible 	 ′ for which there
is a B ′ ⊆ 	 ′+α , such that if κ+α is regular, then so is 	 ′+α and such that there is

https://doi.org/10.1017/jsl.2017.65 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.65


308 GUNTER FUCHS

a virtual embedding j′′ : 〈Hκ+α ,∈, B, κ〉 ≺ 〈H	′+α ,∈, B ′, 	 ′〉 with j′′�κ = id. The
composition j′′ ◦ j′, which exists in a forcing extension of V by the product of
the forcing to add j′ with the forcing to add j′′, then witnesses that κ̄ is strongly
virtually super α-extendible. �
Here are the weak versions of the virtual resurrection axioms.

Definition 5.9. Let κ ≥ �2 be a cardinal, and let Γ be a forcing class. The virtual
weak resurrection axiom for Γ at Hκ, vwRAΓ(Hκ), says that whenever G is generic
over V for some forcing P ∈ Γ, then there are a poset Q ∈ V[G ] and a � such that
whenever H is Q-generic over V[G ], then � is a cardinal in V[G ][H ], and there is
some further forcing R ∈ V[G ][H ] such that if I is generic for R over V[G ][H ],
then in V[G ][H ][I ], there is an elementary embedding

j : 〈HVκ ,∈〉 ≺ 〈HV[G ][H ]� ,∈〉
with j��2 = id.
The boldface virtual weak resurrection axiom for Γ at Hκ, vwRA

˜
Γ(Hκ), says that

for every A ⊆ κ and every G as above, there are a Q and a � as above such that for
everyH as above, there are a B ∈ V[G ][H ] and an R as above such that for every I
as above, there is a j in V[G ][H ][I ] such that

j : 〈HVκ ,∈, A〉 ≺ 〈HV[G ][H ]� ,∈, B〉
with j��2 = id, and such that if κ is regular in V, then � is regular in V[G ][H ].
Finally, the virtual weak unbounded resurrection axiom vwURΓ says that

vwRAΓ(Hκ) holds for every cardinal κ ≥ �2.
Concerning the requirement that j��2 = id, a remark similar to the one made
afterDefinition 4.2 applies here. As a result of making this requirement,wRAΓ(H�2 )
and vwRAΓ(H�2 ) are equivalent, and so are their boldface counterparts, because the
embedding j will have to be the identity, and thus, no forcing is required to add it.
Note that bothP andQ in the definition have topreserve�1, since otherwise, it would
follow that j(�1) > �1. So if vwRAΓ(Hκ) holds, then Γ must be�1-preserving, and
the resurrecting forcing Qmust be as well.

Lemma 5.10. Let Γ be a forcing class that contains Col(�1, �), for arbitrarily
large �. Then

1. vwRAΓ(H�2+α ) implies that �2 is virtually super α-extendible in L.
2. If cf(�2+α) > �, then vwRA

˜
Γ(H�2+α ) implies that �2 is strongly virtually super

α-extendible in L.1

Proof. For 1, let 	̄ be an arbitrary ordinal, and letG be generic forCol(�1, 	̄ ′), for
some 	̄ ′ ≥ 	̄ such that Col(�1, 	̄ ′) ∈ Γ. This will ensure that the virtual embedding
we get from our assumption will shoot �2 above 	̄, as will be explained below.
By vwRAΓ(H�2+α ), let H be generic for some Q ∈ V[G ], so that for some filter I
in a further forcing notion R ∈ V[G ][H ], generic over V[G ][H ], there are a 
 and
a j ∈ V[G ][H ][I ] such that

j : 〈HV�2+α ,∈〉 ≺ 〈HV[G ][H ]�2+

,∈〉.

1I do not know whether the assumption that cf(�2+α) > � is necessary here.
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Since j��2 is the identity, and since �2 is definable (as a subclass if α = 0) inH�2+α ,
and by the same definition,�V[G ][H ]2 is definable (as a subclass if 
 = 0) inHV[G ][H ]�2+
 ,
we get that, setting κ = �2 and 	 = �

V[G ][H ]
2 ,

j : 〈HVκ+α ,∈, κ〉 ≺ 〈HV[G ][H ]
	+


,∈, 	〉
and j�κ = id. Note that 	 > 	̄, since 	̄ was collapsed to �1 by G .
I claim that there are an ordinal 
 ′ and a j̃ in V[G ][H ][I ] such that

j̃ : 〈(Hκ+α )L,∈, κ〉 ≺ 〈(H	+
′ )L,∈, 	〉 with j̃�κ = id.
To see this, consider two cases. The first case is that (κ+α)L < (κ+α)V. In this
case, it follows that j((Hκ+α )L) = (H	+j(α) )

L, and so, we can let 
 ′ = j(α) and
j̃ = j�(Hκ+α )L. The second case is that (κ+α)L = (κ+α)V. In that case, noting
that L(Hκ+α )

V
= (Hκ+α )L = L(κ+α)L , it follows that if we let j̃ = j�L(Hκ+α )

V
, then

j̃ : 〈L(Hκ+α )V ,∈, κ〉 ≺ 〈LH
V[G ][H ]

	+
 ,∈, 	〉. But of course, (	+
 )V[G ][H ] = (	+
′)L, for
some 
 ′, and then L

HV[G ][H ]
	+
 = L(	+
′ )L = (H	+
′ )

L, as desired.
Let J be generic for Col(�, (κ+α)L) over V[G ][H ][I ]. Then in L[J ], there is a tree
T searching for such an elementary embedding (with respect to some enumeration
of HLκ+α by natural numbers, see the discussion after Definition 5.1—here, the tree
can easily bemodified to search only for embeddings which are the identity belowκ).
This tree T is ill-founded in V[G ][H ][I ][J ], hence in L[J ], which shows that such
an embedding exists in L[J ].
To see that κ satisfies the requirements of Definition 5.5 in L, it still has to be
checked that κ and 	 are are inaccessible cardinals in L. Clearly, κ = �V2 is regular
in L, so to see that κ is inaccessible in L, it suffices to show that it is a limit cardinal
in L, since GCH holds in L. But if � < κ were the largest cardinal ofL below κ, then
it would follow by elementarity that � is the largest cardinal below 	 in L, but κ is
a cardinal in L and hence in HL	 = L	 , a contradiction. So κ is inaccessible in L.

Similarly, 	 = �V[G ][H ]2 is regular in L, and since HLκ = Lκ believes that there are
arbitrarily large cardinals, the same is true in HL	 = L	 , by elementarity, and so, 	
is a regular limit cardinal in L, hence inaccessible in L, again since GCH holds in L.
Let’s now turn to 2. Let κ = �2, and let κ′ = (κ+α)L. Let A ⊆ κ′ be in L. As
before, given 	̄, let 	̄ ′ ≥ 	̄ be such that Col(�1, 	̄ ′) ∈ Γ, and let G be generic over V
for this forcing notion. If κ′ < �2+α , then A ∈ H�2+α , and one can argue as in 1.,
the point being that the virtual embedding given by vwRA

˜
Γ(H�2+α ) can be applied

to A, and it will move κ′, if it is regular in L, to a regular L-cardinal.
So let us assume that κ′ = �2+α . Then A ∈ L� , for some � < (κ′+)L, where we
may assume that L� |= ZFC−. There is a set E ⊆ κ′ × κ′ in L that codes L� , in the
sense that 〈κ′, E〉 is isomorphic to 〈L�,∈〉. Namely, working in L, we may choose a
bijection f : κ′ −→ L� and set �E� iff f(�) ∈ f(�). Then f : 〈κ′, E〉 −→ 〈L�,∈〉
is theMostowski collapse of 〈κ′, E〉. In this sense,E codes bothL� andf. If α > 0,
then f may be chosen so that f�(κ + 1) = id.
Let Q ∈ V[G ] be a poset, H generic for Q over V[G ], F ∈ V[G ][H ], R a poset
in V[G ][H ], I generic for R, 
 an ordinal and j ∈ V[G ][H ][I ] an elementary
embedding

j : 〈H�2+α ,∈, E〉 ≺ 〈HV[G ][H ]�2+

,∈, F 〉
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such that j��2 = id and such that if �2+α is regular in V, then �V[G ][H ]2+
 is regular in
V[G ][H ]. Thus, if α = 0, then j = id, and if α > 0, then clearly, j(�2) = j(κ) =
�V[G ][H ]2 > 	̄, and if we let 	 = �V[G ][H ]2 and 	 ′ = (	+
 )V[G ][H ], then it follows that

j : 〈Hκ′ ,∈, E, κ〉 ≺ 〈H	′ ,∈, F, 	〉
with j�κ = id, and we have that if κ′ is regular, then 	 ′ is regular in V[G ][H ].
By Observation 5.4, (�2+
 )V[G ][H ] can be assumed to have uncountable cofinality
in V[G ][H ], since we assumed that cf(�2+α) > �, and hence, H

V[G ][H ]
�2+
 is closed

under countable sequences in V[G ][H ]. By elementarity of j, it follows that F is
extensional and well-founded inHV[G ][H ]�2+
 , and hence it is well-founded in V[G ][H ].
Let X be the transitive set coded by F , and let g : 〈�V[G ][H ]2+
 , F 〉 −→ 〈X,∈〉 be the
Mostowski isomorphism. Since 〈�V[G ][H ]2+
 , F 〉 is a ZFC− model that believes that
V = L, the same is true of 〈X,∈〉, and it follows that X = L�′ , for some ordinal
�′. Clearly, the embedding j (which in the case α = 0 is the identity) induces an
elementary embedding

j′ : 〈L�,∈〉 ≺ 〈L�′ ,∈〉
which is defined by j′ = g ◦ j ◦ f−1.
Since A ∈ L� , one may now restrict j′ to Lκ′ , and this will yield an elementary
embedding

i : 〈Lκ′ ,∈, A〉 ≺ 〈Lj′(κ′),∈, j′(A)〉.
The point of this construction is that the targetmodel of this embedding is inL, that
is, that j′(A) ∈ L. It follows that i�κ is the identity. Namely, for any given � < κ,
saying that  = f−1(�) is equivalent to saying that 〈�,<〉 is isomorphic to 〈u,E�u〉,
where u, the set of E-predecessors of , is closed under E (namely, u = f−1“�).
I used here thatκ is regular, to conclude that u ∈ Hκ. So if  = f−1(�), then this u is
definable from � in 〈H�2 ,∈, E〉. By elementarity, u satisfies the same definition from
� in 〈HV[G ][H ]�2 ,∈, F 〉, and it follows that 〈u,E�u〉 = 〈u, F �u〉, and so,  = g−1(�).
Thus, j′(�) = g(f−1(�)) = g() = �.
If α > 0, then a similar argument shows that i(κ) = j(κ) = 	. Here, I use
that f�(κ + 1) = id, which guarantees that the collection of E-predecessors of
κ = f−1(κ) is κ, and is hence an element ofHκ′ .
This type of reasoning can be carried further if κ′ is regular. Namely, it follows in
this case that i�κ′ = j�κ′. To see this, let � < κ′. Then i(�) = g(j(f−1(�))), and
f−1(�) is the unique  < κ′ such that 〈�,<〉 is isomorphic to 〈u,E�u〉, where u,
the set of all E-predecessors of , is closed under E-predecessors. We know that
u ∈ Hκ′ because κ′ is regular. It follows that j(f−1(�)) is the unique ′ such that
〈j(�),∈〉 is isomorphic to 〈v, F �v〉, where v, which is the set of all F -predecessors
of ′, is closed under F -predecessors. But that object is g−1(j(�)). Thus, i(�) =
g(j(f−1(�))) = j(�).
One can see similarly that if κ′ is regular, then j′(κ′) = 	 ′. Namely, let
f−1(κ′) = . Then, letting U be the class of all E-predecessors of , it follows
that 〈U,E�U 〉 is isomorphic to κ′. In 〈Hκ′ ,∈, E〉,U is a proper class definable from
, and it satisfies that it is linearly ordered by E, every element � of U has only
set-manyE-predecessors (since κ′ is regular), and it is closed underE-predecessors.
Hence, if U ′ is the class of F -predecessors of j(), as defined in 〈HV[G ][H ]	′ ,∈, F 〉,
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thenU ′ has the corresponding properties there. It follows that g(j()) = 	 ′, so that
j′(κ′) = g(j(f−1(κ′))) = g(j()) = 	 ′.
To see that this embedding i satisfies the requirements of Definition 5.5 in L, the
only nonobvious point is now that if κ′ is regular in L, then so is j′(κ′). If κ′ is also
regular in V, then we know that 	 ′ is regular in V[G ][H ] as well, and the argument
of the previous paragraph shows that j′(κ′) = 	 ′, so we are done in this case. But if
κ′ is regular in L yet singular in V, then it follows that 0# exists, or else, by Jensen’s
Covering Lemma, one could cover a cofinal subset of κ′ that has order type less
than κ′ by a subset of κ′ in L that has size less than κ′. Thus, L would see that κ′ is
singular. But if 0# exists, then it is easy to see that each Silver-indiscernible, and in
particular �2, is even virtually extendible in L (and much more, see [3, Theorems
3.5 and 3.8]).
Now the argument can be finished as in the proof of part 1. A tree searching for an
embedding j̃ from 〈Lκ′ ,∈, A, κ〉 to 〈L	′ ,∈, j′(A), 	〉 with j̃�κ = id exists in L[J ],
where J is Col(�, κ′)-generic over V[G ][H ][I ], since Lκ′ is countable there, and
since j′(A) ∈ L. This tree is ill-founded in V[G ][H ][I ][J ], and hence in L[J ]. Thus
such an embedding exists in L[J ]. By the homogeneity of the collapse, it follows
that such an embedding exists in LCol(�,κ

′). �
Going in the other direction, I will want to force the resurrection axioms over
a model with a sufficiently virtually super-extendible cardinal, and the existence
of an appropriate Menas function will help carry this out. It was shown in
[14, Theorem 13] that such functions suitable for uplifting cardinals exist, and
the following lemma generalizes this to the present context.

Lemma 5.11. Let κ be a cardinal. There is a virtually super-extendible Menas
function, i.e., a function m : κ −→ κ such that for any α ≥ 1 such that κ is virtually
super α-extendible, and for every ordinal �, there are a cardinal 	, an ordinal 
 and a
virtual embedding

j : 〈Hκ+α ,∈, κ〉 ≺ 〈H	+
 ,∈, 	〉
with j�κ = id and

j(m)(κ) > �.

Proof. For a cardinal  and an ordinal α, define T (, α) to be the class of cardi-
nals 	 such that there are an ordinal 
 and a virtual embedding j : 〈H+α ,∈, 〉 ≺
〈H	+
 ,∈, 	〉 with j� = id. For  < κ, define

a() = min{α < κ | T (, α) ∩ κ is bounded in κ}
if this exists, and let a() be undefined otherwise. Define

m() =
{
sup(T (, a()) ∩ κ) if a() is defined,
0 otherwise.

Let α ≥ 1, assume that κ is virtually super α-extendible, and let � be given. In
particular, κ is uplifting, and as a result, it follows that for κ̄, ᾱ < κ, T (κ̄, ᾱ)∩ κ =
(T (κ̄, ᾱ))Hκ . The inclusion from right to left is obvious here, and for the converse,
the point is that if 	̄ ∈ T (κ̄, ᾱ) ∩ κ, and this is witnessed by a virtual embedding
j : 〈Hκ̄+ᾱ ,∈, κ̄〉 ≺ 〈H	̄+
 ,∈, 	̄〉, for some 
 , then it could be that 	̄+
 > κ. But using
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an inaccessible 	 > 	̄+
 withHκ ≺ H	 , the existence of such a 
 and such a virtual
embedding j reflects down to Hκ, with the consequence that 	̄ ∈ (T (κ̄, ᾱ))Hκ . The
point is that the existence of such a virtual embedding is first order expressible, by
saying that there is a forcing notion that adds it. We have seen that actually, if there
is such a forcing notion, then already Col(�,Hκ̄+ᾱ ) will do. But independently of
this, one could choose 	 large enough to have the forcing notion needed to add the
virtual embedding available inH	 , making the existential statement in question true
in H	 and hence in Hκ.
This means that the functions a, m can be alternatively defined by

a() = min{� | Hκ |= T (, �) is bounded}
if this exists (and otherwise, a() is undefined), and

m() =
{
supT (, a())Hκ if a() is defined,
0 otherwise.

Of course, from the point of view ofHκ, a and m are proper class functions.
To see that m is as wished, assume that κ is virtually super �-extendible, � > 0,
and let an ordinal � be given.
For every ᾱ < �, fix a 	ᾱ ∈ T (κ, ᾱ) with 	ᾱ > �, and fix a 
ᾱ such that there is a
virtual elementary embedding

jᾱ : 〈Hκ+ᾱ ,∈, κ〉 ≺ 〈H	ᾱ+
ᾱ ,∈, 	ᾱ〉

witnessing that 	ᾱ ∈ T (κ, ᾱ). Let 	̃ = supᾱ<� 	+
ᾱᾱ .
Let �0 ∈ T (κ, �), �0 > max{�, κ+� , 	̃}. Let k0 : 〈Hκ+� ,∈, κ〉 ≺ 〈H

�
+ε0
0
,∈, �0〉 be a

virtual embedding, for some ε0, witnessing that �0 ∈ T (κ, �). Let
�1 = min(T (κ, �) \ (�+ε00 + 1)

and let

k1 : 〈Hκ+� ,∈, κ〉 ≺ 〈H
�
+ε1
1
,∈, �1〉

witness that �1 ∈ T (κ, �), for some ε1. Note that since κ is inaccessible, so is �1, and
that �1 > �.
Note that k1(m) = mH�1 is the function defined in H�1 by the same formula by

which m is defined in Hκ . Since k0 ∈ HCol(�,Hκ+� )�1
(and Hκ+� ∈ H�1 ), it follows

that �0 ∈ T (κ, �)H�1 . Moreover, (T (κ, �))H�1 ⊆ (�+ε00 + 1), because if there were a
	 ′ ∈ (T (κ, �))H�1 \ (�+ε00 + 1), then it would follow that 	 ′ ∈ (T (κ, �)) ∩ (�+ε00 , �1),
but there is no such 	 ′, by definition of �1. Thus, T (κ, �)H�1 is bounded in �1, and
hence,

aH�1 (κ) ≤ �.
Thus, mH�1 (κ) is defined by the first case. If aH�1 (κ) = �, then it follows that

k1(m)(κ) = mH�1 (κ) = supT (κ, �)H�1 ≥ �0 > �
so that k1 is as wished. If ᾱ := aH�1 (κ) < �, then it follows similarly that
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k1(m)(κ) = mH�1 (κ) = supT (κ, ᾱ)H�1 ≥ 	ᾱ > �

since 	ᾱ ∈ T (κ, ᾱ)H�1 , as jᾱ ∈ HCol(�,Hκ+ᾱ )�1
(and Hκ+ᾱ ∈ H�1 ), completing the

proof. �
Lemma 5.12. Let Γ be either the class of semiproper, proper, countably closed or
subcomplete forcings, and suppose that κ is a virtually super �-extendible cardinal.
Then there is a κ-c.c. poset in Γ which forces that vRAΓ(H�2+� ) holds.

Proof. To stratify the argument, let’s assume that � > 0, for in the case � = 0,
vRAΓ(H�2+� ) is vRAΓ(H�2 ), which is equivalent to RAΓ(H�2 ) by Observation 5.3,
and κ is virtually super 0-extendible iff it is uplifting (see the remark after
Definition 5.5), so the claim follows from Fact 3.3 for the case that Γ is
the collection of all countably closed or all subcomplete forcing notions, and
it was shown in [14, Theorems 18 and 19] for the case that Γ is the class
of proper or semi-proper (among others) forcing notions that there is a κ-
c.c. poset that forces RAΓ(H2� ) + ¬CH, which, by Observation 3.6, is equivalent
to RAΓ(H�2 ).
I will use the Menas function m from Lemma 5.11 in combination with lot-
tery sums in place of a Laver function, building on an idea of Hamkins, see
also [1]. The forcing will be an iteration of length κ. As usual, it suffices to
specify the iterands 〈Q̇α | α ≤ κ〉, setting Pα+1 = Pα ∗ Q̇α , and the limit pro-
cess used to form Pα if α is a limit ordinal. Of course, the limit process
depends on the forcing class in question. For semiproper or subcomplete forc-
ings, revised countable support will be employed, and in the other cases, it will
be countable support. Such constructions have been carried out, for example, in
[14, Theorems 18 and 19].
Suppose Pα has been defined. Inductively, we will have that Pα ∈ Vκ. Let Q̇α ∈
Vκ be a Pα-name such that 1lPα forces that Q̇α is the lottery sum of all forcings
in Γ of rank at most m(α), followed by the collapse of the size of this lottery
sum to �1. The lottery sum of a set of forcing notions is the result of taking
the union of pairwise disjoint isomorphic copies of the forcing notions in the set,
with a new condition that’s weaker than all the conditions in the disjoint union.
A generic for this lottery sum will be generic for one of these forcings—each one
is possible. One can think of the generic as “picking” one of the forcings in the
collection.
At limit stages, take the appropriate limit. The forcing classes in question are
closed under lottery sums, as can easily be seen for countably closed forcing, and
it is well known for the classes of proper or semi-proper forcing notions, see
[14, Theorems 18 and 19]. It has also been checked for the class of subcom-
plete forcings, see [22, Lemma 2.2.8]. Each of the classes of forcing under con-
sideration is closed under two step iterations, and each of them contains all
countably closed forcings. Thus, composing the lottery sum described with the
collapse to �1 does not take us out of the class. It is necessary to carry out
the collapse in the case of iterating semi-proper forcing or subcomplete forcing;
this is what the revised countable support iteration theorems for these classes
require (see [5, p. 13], [20, p. 142, Theorem 3]). It follows that Pκ is κ-c.c., see
[29, Lemma 3.12 and Theorem 3.13].
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Let g be generic for Pκ over V. I claim that vRAΓ(H�2+� ) holds in V[g]. To see
this, in V[g], let P = Ṗg be in ΓV[g], and let h be P-generic over V[g].
Let 	 > κ+� be an inaccessible cardinal large enough that P ∈ H	 [g] and P ∈
ΓH	 [g], 
 an ordinal, and j a virtual embedding j : 〈Hκ+� ,∈, κ〉 ≺ 〈H	+
 ,∈, 	〉
with j�κ = id and j(m)(κ) > rnk(Ṗ). So j ∈ V[J ], where J may be chosen to be
Col(�,Hκ+� )-generic over V[g][h].
InH	+
 , Pκ is an initial segment of j(Pκ), and g is generic for that initial segment.
Moreover, P has rank less than j(m)(κ), and P ∈ ΓH	+
 [g]. That’s why we may let h
be generic for the stage κ forcing of j(Pκ), opting for P. Forcing with the part of the
lottery sum that opts for P is like forcing with P. So we may view h as being generic
for P over V [g][J ], and let gtail be generic for the rest of the j(Pκ) iteration, let’s
call it Ptail, over V[g][h][J ]. Then, arguing in V[g][h][J ][gtail] = V[g][h][gtail][J ],
clearly, j lifts to an embedding

j′ : 〈Hκ+� [g],∈〉 ≺ 〈H	+
 [g][h][gtail],∈〉
since j�κ = id and the models in question satisfy ZFC− and contain the forcing
notions used as elements (I focused on the case � > 0 here; in the case � = 0, Pκ is a
proper class iteration in Hκ, but the argument goes through in this case as well, see
[14, Theorems 18 and 19] for details). Observe that κ = �V[g]2 and 	 = �V[g][h][gtail]2 .
Thus,

j′ : 〈HV[g]�2+�
,∈〉 ≺ 〈HV [g][h][gtail]�2+


,∈〉,
where gtail is Ptail-generic over V[g][h]. Since Ptail is the tail of the iteration j(Pκ)
inH	+� [g], it follows from standard iteration facts on the classes in question that in
V[g][h], Ptail belongs to Γ (for the case of subcomplete forcing, which is maybe less
familiar, see [20, p. 115, Lemma 2.1, 2.4] and [20, p. 142, Theorem 3, in particular
the claim on p. 143] for the relevant facts). Hence Ptail can serve as our resurrecting
poset. Recall that j′ ∈ V[g][h][gtail][J ], so this embedding can be added by forcing
over V[g][h][gtail], as desired. �
Thus, Lemmas 5.10 and 5.12 provide level-by-level equiconsistencies between
virtual bounded resurrection axioms and partially virtually super-extendible
cardinals.

Corollary 5.13. Ifκ is virtually extendible, andΓ is the class of semiproper, proper,
countably closed or subcomplete forcings, then there is a κ-c.c. forcing extension in
which vURΓ holds.
Proof. The proof of Lemma 5.12 shows that there is a forcing Pκ such that for
every � > 0, if κ is virtually super �-extendible, then in VPκ , vRAΓ(H�2+� ) holds.
This is because the Menas function from Lemma 5.11 works for every � > 0, so
the forcing is the same for every �. Hence, if κ is virtually extendible, then it is
virtually super �-extendible for every �, by Observation 5.7, so that vURΓ holds in
VPκ . �
Lemma 5.14. If κ is strongly virtually super �-extendible and Γ is the class of
semiproper, proper, countably closed or subcomplete forcings, then there is a poset in
Γ that forces vRA˜ Γ(H�2+� ).
Proof. We may assume that � > 0, because the case � = 0 is already covered
by Fact 3.3 for the case of countably closed or subcomplete forcing, and letting Γ
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be either the class of proper or of semi-proper forcing notions, it was shown in [15,
Theorem 19] thatRA˜ Γ(H2� ) can be forced, using a forcing in Γ, assuming a strongly
uplifting cardinal, which is the same as a strongly virtually super 0-extendible
cardinal. By Observation 3.6, RA˜ Γ(H2� ) is equivalent to RA˜ Γ(H�2 ), and this is
equivalent to vRA˜ Γ(H�2 ), by Observation 5.3.
Basically, the proof of Lemma 5.12 works here as well, but a slightly improved
Menas function is needed. Namely, there is a function m : κ −→ κ such that for
every set A ⊆ κ+� and every ordinal �, there are a cardinal 	, an ordinal 
 , a set B
(in V) and a virtual embedding j : 〈Hκ+� ,∈, A, κ〉 ≺ 〈H	+
 ,∈, B, 	〉 with j�κ = id,
j(m)(κ) > � (that is, j exists in some forcing extension of V, and equivalently, it
exists in any forcing extension of V by Col(�,Hκ+� )), and such that if κ+� is regular,
then so is 	+
 . The construction of such a function works much as the proof of
Lemma 5.11. For a cardinal , an ordinal α and a set A ⊆ , define T (, α,A) to be
the set of cardinals 	 such that there are an ordinal 
 , a set B ⊆ 	+
 and a virtual
embedding j : 〈H+α ,∈, A, 〉 ≺ 〈H	+
 ,∈, B, 	〉 with j� = id, such that if +α is
regular, then so is 	+
 . For  < κ, set

a() = min{α < κ | ∃A ⊆ +α T (, α,A) ∩ κ is bounded in κ}
if this exists, and leave a() undefined otherwise. Then, define

m(,A) =

⎧⎨
⎩
sup(T (, α,A) ∩ κ) if α = a() is defined,

and T (, α,A) ∩ κ is bounded in κ,
0 otherwise.

Finally, let

m() =
{
sup{m(,A) | A ⊆ +α} if α = a() is defined,
0 otherwise.

Note that for  < κ, a() is less than κ if it is defined, and it follows from the
inaccessibility of κ thatm() < κ.
To see thatm is as wished, assume that κ is strongly virtually super �-extendible,
and let a set A ⊆ κ+� and an ordinal � be given. Since κ is uplifting, it follows as
before that for κ̄, ᾱ < κ and Ā ⊆ κ̄+ᾱ , T (κ̄, ᾱ, Ā) ∩ κ = (T (κ̄, ᾱ, Ā))Hκ . Thus, the
function m can be defined in Hκ in the obvious way.
For every ᾱ < � and every Ā ⊆ κ+ᾱ , fix a 	ᾱ,Ā ∈ T (κ, ᾱ, Ā) with 	ᾱ,Ā > �, a 
ᾱ,Ā
and a B̄ᾱ,Ā ⊆ 	+
ᾱ,Ā

ᾱ,Ā
such that there is a virtual elementary embedding

jᾱ,Ā : 〈Hκ+ᾱ ,∈, Ā〉 ≺ 〈H
	
+

ᾱ,Ā

ᾱ,Ā

,∈, B̄ᾱ,Ā〉,

witnessing that 	ᾱ,Ā ∈ T (κ, ᾱ, Ā). Let 	̃ = sup{	+
ᾱ,Ā
ᾱ,Ā

| ᾱ < � and Ā ⊆ κ+ᾱ}.
Let �0 ∈ T (κ, �,A), �0 > max{�, κ+� , 	̃}. Let k0 : 〈Hκ+� ,∈, A, κ〉 ≺

〈H
�
+ε0
0
,∈, B0, �0〉 be a virtual embedding witnessing that �0 ∈ T (κ, �,A), and let

�1 and ε1 be such that

�1 = min(T (κ, �,A) \ (�+ε00 + 1), k1 : 〈Hκ+� ,∈, A, κ〉 ≺ 〈H
�
+ε1
1
,∈, B1, �1〉

with k1 being a virtual elementary embedding, k1�κ = id. Then �0 ∈ T (κ, �,A)H�1
and (T (κ, �,A))H�1 ⊆ (�+ε00 + 1) as before. So T (κ, �,A)H�1 is bounded in �1, and
hence, aH�1 (κ) ≤ �. If aH�1 (κ) = �, then it follows that
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k1(m)(κ) = mH�1 (κ) ≥ supT (κ, �,A)H�1 ≥ �0 > �

so that k1 is as wished. If ᾱ := aH�1 (κ) < �, then there is some Ā ⊆ κ+ᾱ such that
T (κ, ᾱ, Ā)H�1 is bounded in �1, and it follows that

k1(m)(κ) = mH�1 (κ) ≥ supT (κ, ᾱ, Ā)H�1 ≥ 	ᾱ,Ā > �

since � < 	ᾱ,Ā ∈ T (κ, ᾱ, Ā)H�1 , because jᾱ,Ā ∈ HCol(�,Hκ+ᾱ )�1
. So k1 is as wished in

this case as well.
Now the forcing Pκ can be defined as in the proof of Lemma 5.12, but with
respect to this improved, strongly virtually super �-extendible Menas function. If
g is generic for that forcing Pκ, then in V[g], suppose P = Ṗg ∈ Γ, h is generic
for P, and A ⊆ �2+� . Since Pκ is κ-c.c. and every cardinal below κ is explicitly
collapsed to �1, it follows as before that �

V[g]
2 = κ and �V[g]2+� = (κ

+� )V. More-
over, again since Pκ is κ-c.c., there is a Pκ-name Ȧ ⊆ Hκ+� such that Ȧg = A.
Clearly, Ȧ can be chosen to have size at most κ+� , so that it can be coded by a
subset of κ+� , and hence, we can choose a Ḃ and a 	 such that there is a virtual
embedding

j : 〈Hκ+� ,∈, Ȧ, κ〉 ≺ 〈H	+
 ,∈, Ḃ , 	〉

with j�κ = id and rnk(Ṗ) < j(m)(κ), and such that if κ+� is regular, then so
is 	+
 . For definiteness, such an embedding j exists in V[J ], for any J that is
Col(�,Hκ+� )-generic over V. In particular, we can let J be Col(�,Hκ+� )-generic
over V[g][h].
As before, in V[g][h][J ][gtail], j lifts to

j′ : 〈Hκ+� [g],∈, A〉 ≺ 〈H	+
 [g][h][gtail],∈, B〉,

where gtail is generic for the rest of the iteration Ptail = j(Pκ)/g ∗ h after stage κ,
over V[g ∗ h][J ], A = Ȧg and B = Ḃg∗h∗gtail . Thus, Ptail can serve as our res-
urrecting forcing notion in V[g][h]. It follows by the usual iteration theorems for
Γ that Ptail is in ΓV[g][h]. The embedding j′ is added by J , which is generic over
V[g][h][gtail], so it is virtual inV[g][h]. Since j(Pκ) is small forcing, 	+
 remains reg-
ular in V[g][h][gtail] (if it was regular in V), andwe are done, sinceHκ+� [g] = H

V[g]
�2+�

(since Pκ ∈ Hκ+� and Pκ is κ-c.c., it follows that Hκ+� [g] = H
V[g]
κ+�
, and we have

already seen that (κ+�)V[g] = (�2+� )V[g]) and H	+
 [g][h][gtail] = H
V [g][h][gtail]
�2+
 ,

because j(Pκ) is j(κ) = 	-c.c. inH	+
 , by elementarity of j, and hence it is 	-c.c. in
V, and it also explicitly collapses every cardinal below 	 to �1. �
Here is a summary of the equiconsistencies.

Theorem 5.15. Let Γ be the class of semiproper, proper, countably closed or
subcomplete forcings.

1. If κ is virtually super �-extendible, then in a κ-c.c. forcing extension by a forcing
in Γ, vRAΓ(H�2+� ) holds.
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2. If κ is virtually super <�-extendible, then in a κ-c.c. forcing extension by a
forcing in Γ, vRAΓ(H�2+�̄ ) holds, for every �̄ < �.

3. If κ is strongly virtually super �-extendible, then in a κ-c.c. forcing extension by
a forcing in Γ, vRA˜ Γ(H�2+� ) holds.

4. If κ is virtually extendible, then vURΓ holds in a κ-c.c. forcing extension by a
forcing in Γ.

5. If vRAΓ(H�2+� ) holds, then �2 is virtually super �-extendible in L.
6. If vRA˜ Γ(H�2+� ) holds, where cf(�2+�) > �, then �2 is strongly virtually super
�-extendible in L.

7. The consistency strength of vURΓ is a virtually extendible cardinal.

Proof. 1. is Lemma 5.12, 2. follows from the proof of that lemma (using the
argument given in Corollary 5.13), 3. is Lemma 5.14, 4. is Corollary 5.13, 5. is part
one of Lemma 5.10, 6. is part two of that lemma, and 7. results from putting 4. and
5. together. �

§6. How the hierarchies fit together. I would now like to establish the connec-
tions between the higher virtual resurrection axioms and the weak bounded forcing
axioms, defined in [9, Definition 4.6] as follows.

Definition 6.1. Let Γ be a forcing class and let � be an uncountable cardinal.
The weak bounded forcing axiom for Γ at �, wBFA(Γ,≤�), says that whenever
M = 〈|M |,∈, R0, R1, . . . , Ri , . . .〉i<�1 is a transitive model of size at most � for a
language L with �1 many predicates 〈Ṙi | i < �1〉 and the binary relation symbol
∈̇, and if ϕ(x) is a Σ1-formula and P is a forcing in Γ such that P forces that ϕ(M̌ )
holds, then there is (in V) a transitive model M̄ = 〈|M̄ |,∈, . . . , R̄i , . . .〉i<�1 for L
such that ϕ(M̄ ) holds (in V), and such that in VCol(�,|M̄ |), there is an elementary
embedding j : M̄ ≺M .
I just write wBFA(Γ) for wBFA(Γ,≤�1), and the weak forcing axiom for Γ,

wFA(Γ), is the statement that wBFA(Γ,≤�) holds for all uncountable cardinals �.
Similarly, wBFA(Γ, <�) says that wBFA(Γ,≤�̄) holds for all uncountable cardinals
�̄ < �.
If Γ is the class of subcomplete forcings, then I write wSCFA, wBSCFA,

wBSCFA(≤�) and wBSCFA(<�) for wFA(Γ), wBFA(Γ), wBFA(Γ,≤�) and
wBFA(Γ, <�), respectively. Similarly, the corresponding axioms for the class of
proper forcings are denoted wPFA, wBPFA, etc.

Thus, one obtains wBFA(Γ, <�) by weakening the requirement of the existence
of an elementary embedding in the definition of BFA(Γ, <�) (see Definition 4.1) to
the existence of just a virtual elementary embedding. So the relationship between
wBFA(Γ, <�) and BFA(Γ, <�) is similar to that between vRAΓ(H�) and RAΓ(H�).
Thus, it would have made sense to refer to the weak bounded forcing axioms as
virtual bounded forcing axioms, but the “virtual” forcing axiom for proper forcing
has already been named theweak proper forcing axiom in [3]. Alternatively, it would
have made sense to refer to the virtual resurrection axioms as the weak resurrection
axioms, but again, the notion ofweak resurrection axiomwas already used in [14], as
in Definitions 3.13 and 4.2. As a result, the modifier “weak” has different meanings
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in the case of resurrection axioms and bounded forcing axioms, which I hope will
not cause too much confusion.
The large cardinal relevant for the weak forcing axioms is Schindler’s concept
of remarkability. Remarkable cardinals can be defined in the following way, as
in [3].

Definition 6.2. A regular cardinal κ is remarkable if for every regular � > κ,
there is a regular cardinal �̄ < κ such that in VCol(�,H�̄), there is an elementary
embedding j : HV

�̄
≺ HV� with j(crit(j)) = κ.

It was shown in [3, Theorems 6.3 and 6.4] that wPFA is equiconsistent with a
remarkable cardinal, and in [9, Theorem 4.5] that wSCFA is equiconsistent with
a remarkable cardinal. In order to measure the consistency strengths of the weak
bounded forcing axioms, I introduced the following large cardinals in [9].

Definition 6.3. Let κ be an inaccessible cardinal and let � ≥ κ be a cardinal.
κ is remarkably ≤�-reflecting if the following holds: for any X ⊆ H� and any
formula ϕ(x), if there is a regular cardinal � > � such that 〈H�,∈〉 |= ϕ(X ), then
there are cardinals �̄ < �̄ < κ, such that �̄ is regular, and there is a set X̄ ⊆ H�̄
in V and an ordinal κ̄ ≤ �̄ such that 〈H�̄,∈〉 |= ϕ(X̄ ), and a virtual embedding
j : 〈H�̄,∈, X̄ , κ̄〉 ≺ 〈H�,∈, X, κ〉 (meaning that j exists in VCol(�,H�̄)) such that
j�κ̄ = id.
κ is remarkably <�-reflecting iff it is remarkably ≤�̄-reflecting, for every cardinal
�̄ < � with κ ≤ �̄.
The connection between the weak bounded forcing axioms and the remarkably
reflecting cardinals is as follows, see [9, Lemma 4.13, Theorem 4.14, Lemma 4.15
and the following remark].

Theorem 6.4. Let � be a cardinal, and let Γ be the class of subcomplete, of proper
or of semiproper forcings.

1. If � ≥ �2 and wBFA(Γ,≤�) holds, then �2 is remarkably ≤�-reflecting
in L.

2. If �>�2 and wBFA(Γ, <�) holds, then �2 is remarkably <�-reflecting in L.
3. If κ is remarkably ≤�-reflecting, where κ ≤ �, then there is a κ-c.c. forcing
notion in Γ which forces that wBFA(Γ,≤�) holds.

4. If κ is remarkably <�-reflecting, where � > κ, then there is a κ-c.c. forcing
notion in Γ which forces that wBFA(Γ, <�) holds.

For the bounded forcing axiom, that is wBFA(Γ,≤�1), the relevant large cardinal
concept is that of a reflecting cardinal.

Definition 6.5 ([12,Definition 2.2]). A regular cardinalκ is reflecting if for every
a ∈ Hκ, and every formula ϕ(x), the following holds: if there is a regular cardinal
� ≥ κ such thatH� |= ϕ(a), then there is a cardinal �̄ < κ such thatH�̄ |= ϕ(a).
The following was shown in [9, Theorem 3.6].

Theorem 6.6. BSCFA is equiconsistent with the existence of a reflecting cardinal.

The corresponding result for proper forcing is also true, as was shown in [12].
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Lemma 6.7. Let Γ be a forcing class and κ > �1 be a cardinal. Then

vwRAΓ(Hκ) =⇒ wBFA(Γ, <κ).

Proof. Let M = 〈|M |,∈, R0, R1, . . . , Ri , . . .〉i<�1 be a transitive model of size
less than κ, let P ∈ Γ be a forcing notion, let G be generic for P over V, let ϕ(x) be
a Σ1-formula, and suppose that V[G ] |= ϕ(M ). Let Q ∈ V[G ] be a poset, and let
H be Q-generic over V[G ] such that in some further forcing extension V[G ][H ][I ],
there is a cardinal � and an elementary embedding j : 〈Hκ,∈〉 ≺ 〈HV[G ][H ]� ,∈〉 with
j��2 = id.
If κ is a limit cardinal, then let κ′ = (|M | + �1)+, otherwise let κ′ = κ. Thus,
κ′ is a successor cardinal, so thatHκ′ is a model of ZFC−, andM ∈ Hκ′ . Similarly,
if κ′ = κ, then let �′ = �, and if κ′ < κ, then let �′ = j(κ′). It follows that
�′ is a successor cardinal in V[G ][H ], and hence, HV[G ][H ]�′ is also a ZFC− model.
Moreover, the restriction j̄ of j to Hκ′ is an elementary embedding from 〈Hκ′ ,∈〉
to 〈HV[G ][H ]�′ ,∈〉.
Since V[G ] |= ϕ(M ) and ϕ is Σ1, it follows that V[G ][H ] |= ϕ(M ). Further,
M ∈ Hκ′ ⊆ HV[G ][H ]�′ , so that by reflection,

〈HV[G ][H ]�′ ,∈〉 |= ϕ(M )

since �′ is an uncountable cardinal in V[G ][H ], so thatHV[G ][H ]�′ ≺Σ1 V[G ][H ]. Let
j′ := j�M . Then j′ is added by Col(�,M ), which is an element of HV[G ][H ]�′ , so
j′ ∈ HV[G ][H ][I ]�′ = HV[G ][H ]�′ [I ]. Let N = j(M ). Then in HV[G ][H ]�′ , the statement
“there is a transitive model M̄ with ϕ(M̄ ) such that Col(�, M̄ ) adds an elementary
embedding from M̄ to N” holds, as witnessed byM (and the embedding j′—it is
important here again that j��2 = id, so thatM and j(M ) are models of the same
language; recall thatM has up to �1 many predicates). So, pulling this back via j̄,
keeping in mind thatN = j(M ) = j̄(M ), it follows thatHVκ′ believes that there is a
transitivemodel M̄ withϕ(M̄ ) such that Col(�, M̄ ) adds an elementary embedding
from M̄ toM , as wished. SinceHκ′ is a ZFC

− model, forcing with Col(�, M̄ ) over
V will add such an elementary embedding, and since ϕ(M̄ ) is Σ1, it will hold in V
as well. �
As a result, vwURΓ implies wFA(Γ).

Observation 6.8. Let Γ be either the class of proper, semiproper or subcomplete
forcings.

1. vRAΓ(H�2 ) is equivalent to RAΓ(H�2 ), and similarly, vRA˜ Γ(H�2 ) is equivalent
to RA˜ Γ(H�2 ).

2. RA˜ SC(H�3 ) has strictly higher consistency strength than vURSC.
3. vRASC(Hκ) implies wBSCFA(<κ), but, assuming the consistency of Martin’s
MaximumMM, not vice versa ( for κ ≥ �2).

Proof. 1. holds byObservation 5.3. 2. follows fromObservation 4.8, which shows
that RA˜ SC(H�3 ) implies that AD

L(R) holds. The consistency strength of this state-
ment is at least as high as the existence of infinitely manyWoodin cardinals, while the
consistency strength of vURSC is the existence of a virtually extendible cardinal, by
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Theorem 5.15.8, and these virtual large cardinals are consistent with V = L, in fact,
ifκ is virtually extendible, thenκ is virtually extendible inL. To see that 3. holds, note
that the implication follows from Lemma 6.7. Assuming the consistency ofMartin’s
Maximum, any model of MM shows that the reverse implication does not hold.
Namely, MM implies 2� = �2 (since this already follows from the bounded proper
forcing axiom, by [24]), and hence MM implies the failure of vRASC(Hκ), because
vRASC(Hκ) implies vRASC(H�2 ), which is equivalent to RASC(H�2 ), which implies
CH, by Fact 3.1. Moreover,MM implies SCFA, since every subcomplete forcing pre-
serves stationary subsets of�1 (by [22, Proposition 2.2.4 and Theorem 2.1.4]), and,
of course, SCFA implies wBSCFA(<κ). BMM(<κ) would have sufficed here, instead
ofMM. �
In order to compare the consistency strengths of the virtual resurrection axioms
and the weak bounded forcing axioms, we have to compare the remarkably ≤�-
reflecting cardinals and the virtually superα-extendible cardinals.Observe that these
large cardinal properties go down toL, and that the assumption thatHκ+α ∈ Hκ+α+1
is always satisfied in L.

Lemma 6.9. Let α be an ordinal. Suppose that κ is virtually super α+1-extendible,
and that Hκ+α ∈ Hκ+α+1 . Then κ is remarkably ≤κ+α-reflecting. Moreover, if α < κ,
then the set {κ̄ < κ | κ̄ is remarkably ≤κ̄+α − reflecting in Hκ} is stationary in κ.
Proof. Let � = κ+α . To show that κ is remarkably ≤�-reflecting, let X ⊆ H�,
� > κ+α be regular, ϕ(x) a formula and 〈H�,∈〉 |= ϕ(X ). Let j : 〈H�+ ,∈, κ〉 ≺
〈H�,∈, 	〉 be a virtual embedding with j�κ = id, 	 > � inaccessible and large
enough thatH�,H� ∈ H	 . Note that � = 	+
+1, for some 
 , κ = crit(j), j(κ) = 	,
and that j ∈ V[J ], for some J which is generic for Col(�,H�+). Thus, since this
forcing is also in H� , 〈H�,∈〉 sees that there are a cardinals κ̄ ≤ �̄ < �̄ < j(κ),
where �̄ is regular, a set X̄ ⊆ H�̄ and a virtual embedding j′ : 〈H�̄,∈, X̄ , κ̄〉 ≺
j(〈H�,∈, X, κ〉), with j′�κ̄ = id such that 〈H�̄,∈〉 |= ϕ(X̄ ). This is witnessed by
�̄ = �, X̄ = X , j′ = j�H� and �̄ = �. The assumption that H� ∈ H�+ was used
here, since it allowed us to apply j to 〈H�,∈, X 〉. By elementarity, 〈H�+ ,∈〉 sees
that there are cardinals κ̄ ≤ �̄ < �̄ < κ, where �̄ is regular, a set X̄ ⊆ H�̄ and
a virtual embedding j′ : 〈H�̄,∈, X̄ , κ̄〉 ≺ 〈H�,∈, X, κ〉 with j′�κ̄ = id, such that
〈H�̄,∈〉 |= ϕ(X̄ ).
Hence, κ is remarkably ≤κ+α-reflecting.
A simple reflection argument shows that {κ̄ < κ | κ̄ is remarkably ≤κ+α −
reflecting in Hκ} is stationary in κ if α < κ. For this argument, I only use that κ is
strongly uplifting and remarkably≤κ+α-reflecting. Namely, given a club setC ⊆ κ,
let 	 > κ be inaccessible andD ⊆ 	 such that 〈Hκ,∈, C 〉 ≺ 〈H	,∈, D〉. Then κ ∈ D
and so, 〈H	,∈, D〉 thinks that there is a κ̄ ∈ D that’s remarkably≤κ̄+α-reflecting—
it can easily be checked that 〈H	,∈〉 believes that κ is remarkably ≤κ+α-reflecting,
since 	 is an inaccessible cardinal greater than κ and α. Hence, 〈Hκ,∈, C 〉 thinks
that there is a κ̄ ∈ C that’s remarkably ≤κ̄+α-reflecting. �
I will clarify the meaning of the statement of the following lemma below.

Lemma 6.10. The transitive model consistency strength of “wBSCFA(≤�2+α) +
α < �2” is strictly lower than that of “vRASC(H�2+α+1 ) + α < �2.”

https://doi.org/10.1017/jsl.2017.65 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.65


HIERARCHIES OF (VIRTUAL) RESURRECTION AXIOMS 321

Note that it wouldn’t make sense to say that the consistency strength of
wBSCFA(≤�2+α) is strictly lower than that of vRASC(H�2+α+1 ), becauseαmay not be
absolutely definable, and then these forcing principles cannot be formulatedwithout
using the parameter α. But intuitively, the consistency strength ofwBSCFA(≤�2+α)
is a cardinal κ that’s remarkably≤κ+α-reflecting (by Theorem 6.4), which is strictly
lower than a cardinal κ that’s virtually super α + 1-extendible (in the sense of
Lemma 6.9), which is the strength of vRASC(H�2+α+1 ), by Theorem 5.15. The present
lemma tries to make this intuitive difference in consistency strength precise. What I
meanby the statement in the lemma is that firstly, the following is provable inZFC: for
anyα, if there is a countable transitivemodelM of ZFC+vRASC(H�2+α+1 )+α < �2,
then there is a countable transitive model N with On ∩ N ≤ On ∩M such that
wBSCFA(≤�2+α) + α < �2 holds in N . Secondly, the converse is not provably
true.

Proof. ByObservation 6.8.3, vRASC(H�2+α+1) outright implieswBSCFA(≤�2+α),
so clearly, the transitive model consistency strength of the former is at least that of
the latter.
To see that the converse is not true, assume that there is a countable transitive
model M of ZFC + wBSCFA(≤�2+α) + α < �2. We know that then, in LM , �M2
is remarkably ≤α-reflecting, by Theorem 6.4.6.4. Let � be least such that in L� ,
there is a cardinal κ > α such that κ is remarkably ≤α-reflecting—such a � exists,
as witnessed by � = On ∩M and κ = �M2 . Let us fix a κ witnessing that � is as
described.
Now let g be generic over L� for the forcing in L� to force wBSCFA(≤�2+α),
as given by Theorem 6.4.6.4. Such a g exists in V, since L� is countable. Hence
M ′ = L�[g] is a model of ZFC + wBSCFA(≤�2+α), but there can be no countable
transitive ZFC-model N with �̄ = On ∩ N ≤ On ∩ M ′ = � such that ZFC +
vRASC(H�2+α+1 ) + α < �2 holds in N , because otherwise, letting κ̄ = �

N
2 , it would

follow that κ̄ is virtually superα+1-extendible inLN , by Lemma 5.10,which implies
by Lemma 6.9 that the set of κ̄′ < κ̄ such that in Lκ̄, κ̄′ is≤α-remarkably reflecting,
is stationary in κ̄ (from the point of view of LN ). In particular, there would be such
a κ̄′ with α < κ̄′ < κ̄. But since κ̄ < �, this contradicts the minimality of �. �
The previous lemma holds also for the classes of proper or semi-proper forcing
notions, because the large cardinal strengths of both the virtual resurrection axioms
and the weak bounded forcing axioms for any of these classes are measured by the
remarkably reflecting or partially virtually super extendible cardinals, respectively.
One canuseLemma5.8 in a similarway to show that forα < �2, the transitivemodel
consistency strength of vRAΓ(H�2+α+1 ) is strictly higher than that of vRAΓ(H�2+α ),
where Γ is any of these standard classes of forcing, or even the class of countably
closed forcing notions, because the large cardinal strengths of the principles for all
of these classes correspond to the hierarchy of the partially virtually super extendible
cardinals.Note that theweakbounded forcing axioms aremeaningless for countably
closed forcings, in the sense that they are provable from ZFC.
Finally, for any of these classes of forcing (excluding the class of count-
ably closed forcing notions), let’s compare the consistency strength of wFAΓ,
which is a remarkable cardinal (by [9, Theorems 4.5 and 4.14 and the following
remark], see also [3, Theorems 6.3 and 6.4]) with that of RA˜ Γ(H�2 ), which is a
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strongly uplifting cardinal, by Theorem 5.15, noting that κ is uplifting iff it is
strongly virtually super 0-extendible, as I pointed out after Definition 5.5. Since
these large cardinals are known, fortunately, consulting the literature is all that’s
needed here.
It was shown in [11, Theorems 4.8 and 4.11] that the consistency strength of
a remarkable cardinal lies strictly between a 1-iterable and a 2-iterable cardinal.
1-iterable cardinals are precisely the weakly Ramsey cardinals (see [10, p. 539]),
and in that article, it was also shown that weakly Ramsey cardinals are limits of
completely ineffable cardinals ([10, Theorem 1.7(6)]). Completely ineffable cardi-
nals are clearly ineffable and hence subtle. In [15, Theorem 7], it was shown that if
κ is subtle, then the set of cardinals less than κ that are strongly uplifting in Vκ is
stationary in κ. So, putting this together, one sees that the consistency strength of a
remarkable cardinal is higher than that of a strongly uplifting cardinal, which gives
us the following observation.

Observation 6.11. If Γ is the class of proper, semi-proper or subcomplete forcings,
then wFAΓ has strictly higher consistency strength than RA˜ Γ(H�2 ).

The following diagram gives an overview of the relationships between the
(virtual, bounded) resurrection axioms and the (weak, bounded) forcing axioms
for subcomplete forcing. Solid arrows stand for implications, dotted arrows indi-
cate that some intermediate principles (between which implications hold) are
skipped in the diagram, and solid back-and-forth arrows stand for equivalences.
Directly underneath some principles, I noted some of their combinatorial conse-
quences. Large cardinal properties in square brackets give what’s known about
the consistency strength of the principle. Note that it is not the case that
principles that are displayed at the same height have comparable consistency
strengths.
The equivalences between wBSCFA(≤κ) and BSCFA(≤κ) for κ = �1, �2 are
a special case of [9, Observation 4.7]. The equivalences between the resurrection
axioms at H�2 and their virtual counterparts have been shown in Observation 5.3.
The implications going from the resurrection axioms to the bounded forcing axioms
follow from Lemma 4.3. The implications going from virtual resurrection axioms
to weak bounded forcing axioms follow from Lemma 6.7. The implications of ♦
are given in Fact 3.1. The implication arrows from resurrection axioms to failures
of weak Todorčević square principles are shown in Theorem 4.7. The implication
arrows from bounded forcing axioms to failures of Todorčević square principles
follow from the proof of [9, Lemma 4.17]. The consistency strength information
for the resurrection axioms can be found in Fact 3.3 and Observation 4.8, and
the consistency strength calculation for the virtual resurrection axioms is given
by Theorem 5.15. The consistency strength lower bound for the bounded forc-
ing axiom at �3 follows from the proof of [9, Lemma 4.17], and the consistency
strength facts about the weak bounded forcing axioms are given by Theorems 6.6
and 6.4, where a cardinal κ is +1-reflecting iff it is remarkably ≤κ-reflecting, see
[9, Lemma 4.9].
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BSCFA

[reflecting]

RASC(H�2 )−→ ♦
[uplifting]

RA˜ SC(H�2 )−→ ¬�(�2, �)
[str. uplifting]

wBSCFA

[reflecting]

vRASC(H�2 )−→ ♦
[uplifting]

vRA˜ SC(H�2 )−→ ¬�(�2, �)
[str. uplifting]

BSCFA(≤�2)−→ ¬�(�2)
[+1-reflecting]

wBSCFA(≤�2)−→ ¬�(�2)
[+1-reflecting]

RASC(H�3 )

RA˜ SC(H�3 )−→ ¬�(�3, �)
[≥ inf. many Woodin cardinals ]

vRASC(H�3 )

[virt. super 1-ext.]

vRA˜ SC(H�3 )

[str. virt. super 1-ext.]

BSCFA(≤�3)−→ ¬�(�3)
[≥ inf. many Woodin cardinals]

wBSCFA(≤�3)
[remarkably≤�3-reflecting]

RASC(H�4 ) vRASC(H�4 )

[virt. super 2-ext.]

RA˜ SC(H�4 ) vRA˜ SC(H�4 )

[str. virt. super 2-ext.]

BSCFA(≤�2+α)) wBSCFA(≤�2+α)
[remarkably≤�2+α-reflecting]

RASC(H�2+α+1) vRASC(H�2+α+1)

[virt. super α + 1-ext.]

RA˜ SC(H�2+α+1) vRA˜ SC(H�2+α+1)

[str. virt. super α + 1-ext.]

SCFA−→ ∀κ¬�κ wSCFA

[remarkable]

URSC vURSC

[virtually extendible]

Figure 1. Overview of implications and consistency strengths.
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