Period Lengths for Iterated Functions

ERIC SCHMUTZ

Mathematics Department, Drexel University, 3401 Market Street, Philadelphia, Pa., 19104, USA (e-mail: Eric.Jonathan.Schmutz@drexel.edu)

Received 2 November 2007; revised 6 August 2010; first published online 16 September 2010

Let Ω_n be the n^n -element set consisting of all functions that have $\{1, 2, 3, ..., n\}$ as both domain and codomain. Let $\mathbf{T}(f)$ be the order of f, *i.e.*, the period of the sequence $f, f^{(2)}, f^{(3)}, f^{(4)}$... of compositional iterates. A closely related number, $\mathbf{B}(f)$ = the product of the lengths of the cycles of f, has previously been used as an approximation for \mathbf{T} . This paper proves that the average values of these two quantities are quite different. The expected value of \mathbf{T} is

$$\frac{1}{n^n}\sum_{f\in\Omega_n}\mathbf{T}(f) = \exp\left(k_0\sqrt[3]{\frac{n}{\log^2 n}}(1+o(1))\right),$$

where k_0 is a complicated but explicitly defined constant that is approximately 3.36. The expected value of **B** is much larger:

$$\frac{1}{n^n}\sum_{f\in\Omega_n}\mathbf{B}(f)=\exp\left(\frac{3}{2}\sqrt[3]{n}(1+o(1))\right).$$

1. Introduction

Let Ω_n be the n^n -element set consisting of all functions that have $[n] = \{1, 2, 3, ..., n\}$ as both domain and codomain, and let $f^{(t)}$ denote f composed with itself t times. Since Ω_n is finite, it is clear that, for any $f \in \Omega_n$, the sequence of compositional iterates

$$f, f^{(2)}, f^{(3)}, f^{(4)} \dots$$

must eventually repeat. Define T(f) to be the period of this sequence, *i.e.*, the least T such that, for all $m \ge n$,

$$f^{(m+T)} = f^{(m)}.$$

We say $v \in [n]$ is a *cyclic vertex* if there is a *t* such that $f^{(t)}(v) = v$. The restriction of *f* to its cyclic vertices is a permutation of the cyclic vertices, and the period **T** is just the order of this permutation, *i.e.*, the least common multiple of the cycle lengths.

Harris showed that $\mathbf{T}(f) = e^{\frac{1}{8} \log^2 n(1+o(1))}$ for most functions f. To make this precise, let \mathbb{P}_n denote the uniform probability measure on Ω_n ; $\mathbb{P}_n(\{f\}) = n^{-n}$ for all f. Define

$$h_n = \frac{1}{8} \log^2 n, \quad b_n = \frac{1}{\sqrt{24}} \log^{3/2} n, \text{ and } \phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-t^2/2} dt.$$

Using Erdős and Turán's seminal results [5], Harris proved the following.

Theorem 1.1 (Harris [10]). For any fixed x,

$$\lim_{n\to\infty}\mathbb{P}_n\left(\frac{\log\mathbf{T}-h_n}{b_n}\leqslant x\right)=\phi(x).$$

Remark. Harris actually stated his theorem for a closely related random variable $\mathbf{O}(f)$ = the number of distinct functions in the sequence $f, f^{(2)}, f^{(3)}, \ldots$ However, it is clear from his proof that Theorem 1.1 holds too. In fact, it is straightforward to verify that, for all $f \in \Omega_n$, $|\mathbf{O}(f) - \mathbf{T}(f)| < n$. Related inequalities have been proved by Dénes [4].

Let $\mathbf{B}(f)$ be the product, with multiplicities, of the lengths of the cycles of f. Obviously $\mathbf{T}(f) \leq \mathbf{B}(f)$ for all f, and for some exceptional functions $\mathbf{B}(f)$ is *much* larger than $\mathbf{T}(f)$. For example, if f is a permutation with n/3 cycles of length 3, then $\mathbf{B}(f) = 3^{n/3}$, but $\mathbf{T}(f) = 3$. (See sequence A000792 in [15] for information about the maximum value that \mathbf{B} can have.) On the other hand, the maximum value \mathbf{T} can have is $e^{\sqrt{n \log n}(1+o(1))}$ [11, 12, 17]. However, for most random functions $f \in \Omega_n$, $\mathbf{B}(f)$ is a reasonably good approximation for $\mathbf{T}(f)$. For example, consider the proposition stated below, which will be deduced in Section 3 from earlier work by Arratia and Tavaré [2].

Proposition 1.2. There is a constant c > 0 such that, for any positive integer n and any positive real number ℓ ,

$$\mathbb{P}_n(\log \mathbf{B} - \log \mathbf{T} \ge \ell) \le \frac{c \log n (\log \log n)^2}{\ell}.$$

Although $\log \mathbf{B}(f)$ and $\log \mathbf{T}(f)$ are approximately equal for most functions f, the set of exceptional functions is nevertheless sufficiently large that the expected values of the two random variables **B** and **T** are quite different. The following theorem will be proved in Section 2.

Theorem 1.3.

$$\frac{1}{n^n}\sum_{f\in\Omega_n}\mathbf{B}(f)=\exp\bigg(\frac{3}{2}\sqrt[3]{n}\big(1+o(1)\big)\bigg).$$

To state a corresponding theorem for **T**, we need to define some constants. First define

$$I = \int_0^\infty \log \log \left(\frac{e}{1 - e^{-t}}\right) dt.$$

Then define $k_0 = \frac{3}{2}(3I)^{2/3}$. The following result will be proved in Section 3.

Theorem 1.4.

$$\frac{1}{n^n}\sum_{f\in\Omega_n}\mathbf{T}(f) = \exp\bigg(k_0\sqrt[3]{\frac{n}{\log^2 n}}\big(1+o(1)\big)\bigg).$$

2. Expected value of B

Let $\mathcal{Z}(f)$ be the set of cyclic vertices of f, and let $\mathbf{Z} = |\mathcal{Z}|$ be the number of cyclic vertices. It is well known that the restriction of a uniform random mapping to its set \mathcal{Z} of cyclic vertices is a uniform random permutation of \mathcal{Z} . Let S_m be the set of all bijections from [m] onto [m]. Let $\mu_0 = 1$, and for $m \ge 1$, let

$$\mu_m = \frac{1}{m!} \sum_{\sigma \in S_m} \mathbf{B}(\sigma)$$

be the expected value of the product of the cycle lengths of a uniform random permutation of [m]. Then

$$\mathbb{E}_n(\mathbf{B}) = \sum_{m=1}^n \mathbb{P}_n(\mathbf{Z}=m) \mathbb{E}_n(\mathbf{B}|\mathbf{Z}=m) = \sum_{m=1}^n \mathbb{P}_n(\mathbf{Z}=m)\mu_m.$$
(2.1)

Theorem 1.3 will be proved directly by estimating the sum in (2.1). Two lemmas make this possible. The first of the two lemmas is an explicit formula for $\mathbb{P}_n(\mathbb{Z} = m)$ that appears in [9] and is attributed to Rubin and Sitgreaves.

Lemma 2.1.

$$\mathbb{P}_n(\mathbf{Z}=m) = \frac{n!m}{(n-m)!n^{m+1}} \leqslant \frac{n!}{(n-m)!n^m}.$$

The second of the two lemmas that are needed for the proof of Theorem 1.3 is Lemma 2.2 below. This asymptotic formula for μ_m appeared in the author's doctoral dissertation [14].

Lemma 2.2.

$$\mu_m \sim \frac{e^{2\sqrt{m}}}{2\sqrt{\pi e}m^{3/4}}.$$

Proof. If $\sigma \in S_m$ is factored into disjoint cycles, then there is a unique cycle τ_{σ} that contains the number *n*. Let V_{σ} be the set of numbers in this cycle. Consider the unique factorization

$$\sigma = \tau_{\sigma} \pi_{\sigma}, \tag{2.2}$$

where π_{σ} is the permutation of $V_{\sigma}^{c} = [m] \setminus V_{\sigma}$ that is obtained by restricting σ to V_{σ}^{c} . Since

the length of the cycle τ_{σ} is $|V_{\sigma}|$, we have

$$\mathbf{B}(\sigma) = |V_{\sigma}| \mathbf{B}(\pi_{\sigma}).$$

Given a set $V \subseteq [m]$, there are exactly (|V| - 1)! ways to form a cycle from the elements of V. Hence

$$\mu_m = \frac{1}{m!} \sum_{V \subseteq [m], m \in V} (|V| - 1)! \sum_{\pi} |V| \mathbf{B}(\pi),$$
(2.3)

where, in the inner sum, π is summed over all (m - |V|)! permutations of V^c . Therefore

$$\mu_m = \frac{1}{m!} \sum_{V \subseteq [m], m \in V} |V|! (m - |V|)! \mu_{m - |V|} = \frac{1}{m!} \sum_{\ell=1}^m \binom{m-1}{\ell-1} \ell! (m-\ell)! \mu_{m-\ell}.$$

Thus we have a very simple recurrence formula: for all $m \ge 1$,

$$m\mu_m = \sum_{\ell=1}^m \ell \mu_{m-\ell}.$$
 (2.4)

Now consider the generating function

$$F(x) = e^{\frac{x}{1-x}} = 1 + x + \frac{3}{2}x^2 + \frac{13}{6}x^3 + \cdots$$

Observe that

$$xF'(x) = F(x)\sum_{\ell=1}^{\infty} \ell x^{\ell}.$$

Thus the coefficients of F satisfy the recurrence (2.4), and

$$F(x) = \sum_{m=0}^{\infty} \mu_m x^n = e^{\frac{x}{1-x}}.$$

Flajolet and Sedgewick point out that this is the exponential generating function for the number of 'fragmented permutations'. On p. 562 of [6], they describe how the saddle point method can be used to prove that

$$\mu_m \sim \frac{e^{2\sqrt{m}}}{2\sqrt{\pi e}m^{3/4}}.$$

For the purposes of proving Theorem 1.3, we need only a weak corollary to Lemma 2.2.

Corollary 2.3. For any $\epsilon > 0$, there is an N_{ϵ} such that, for all $m > N_{\epsilon}$,

$$e^{(2-\epsilon)\sqrt{m}} < \mu_m < e^{(2+\epsilon)\sqrt{m}}.$$

We have now assembled everything that is needed to prove Theorem 1.3.

Proof of Theorem 1.3. Let $m_* = \lfloor n^{2/3} \rfloor$. Given $\epsilon > 0$ we can, by Corollary 2.3, choose n sufficiently large that $m_* > N_{\epsilon}$ and $\mu_{m_*} > e^{(2-\epsilon)\sqrt{m_*}}$. Putting this, and Lemma 2.1, into

(2.1), we get

$$\mathbb{E}_{n}(\mathbf{B}) \geq \mathbb{P}_{n}(\mathbf{Z} = m_{*})\mu_{m_{*}} = \frac{n!m_{*}}{(n - m_{*})!n^{m_{*} + 1}}e^{(2 - \epsilon)\sqrt{m_{*}}}.$$
(2.5)

Applying Stirling's formula, we get

$$\log\left(\frac{n!m_*}{(n-m_*)!n^{m_*+1}}e^{(2-\epsilon)\sqrt{m_*}}\right) = -\frac{m_*^2}{2n} + (2-\epsilon)\sqrt{m_*} + O(\log n).$$

Therefore, for all sufficiently large n, we have the lower bound

$$\mathbb{E}_n(\mathbf{B}) \geqslant e^{(1-\epsilon)\frac{3}{2}\sqrt[3]{n}}.$$

For the upper bound, define

$$U_{n,\epsilon}(m) = n \cdot \frac{n!}{(n-m)!n^m} e^{(1+\epsilon)2\sqrt{m}},$$

and $H_{n,\epsilon}(m) = \log U_{n,\epsilon}(m)$. From Lemma 2.1 and Corollary 2.3, we have, for all sufficiently large n,

$$\mathbb{E}_{n}(\mathbf{B}) \leqslant n \max_{m \leqslant n} \mathbb{P}_{n}(\mathbf{Z}=m) \mu_{m} \leqslant \max_{m \leqslant n} U_{n,\epsilon}(m) = \exp\left(\max_{m \leqslant n} H_{n,\epsilon}(m)\right).$$
(2.6)

Therefore our goal is to prove an upper bound for $\max_{m \leq n} H_{n,\epsilon}(m)$.

If we write $(n-m)! = \Gamma(n+1-m)$, then we can extend the domain of $H_{n,\epsilon}(m)$ to include all real numbers in [1,n]. This can only increase the maximum, and with this relaxation, $H_{n,\epsilon}(x)$ is twice differentiable. Let

$$\Psi(y) = \frac{\Gamma'(y)}{\Gamma(y)}$$

be the logarithmic derivative of the Gamma function so that the first two derivatives of $H_{n,\epsilon}$ are

$$H'_{n,\epsilon}(x) = \Psi(n+1-x) - \log n + \frac{1+\epsilon}{\sqrt{x}},$$
 (2.7)

and

$$H_{n,\epsilon}^{''}(x) = -\Psi'(n+1-x) - \frac{1+\epsilon}{2x^{3/2}}.$$
(2.8)

It is well known [1, p. 260, equation 6.4.10] that

$$\Psi'(y) = \sum_{k=0}^{\infty} \frac{1}{(y+k)^2} > 0.$$
(2.9)

Thus both terms of (2.8) are negative, and, for $1 \le x \le n$, we have

$$H_{n,\epsilon}^{''}(x) < 0.$$
 (2.10)

Let x_* be the unique solution to $H'_{n,\epsilon}(x) = 0$ at which $H_{n,\epsilon}$ attains its maximum. We need to estimate x_* , and then use that estimate to approximate $H_{n,\epsilon}(x_*)$.

Define $a = (1 + \epsilon)^{2/3} n^{2/3}$. This first guess for the approximate location of x_* was obtained heuristically from (2.7) by first replacing $\Psi(n + 1 - x)$ with the approximation

 $\log n - \frac{x}{n}$, and then solving the resulting equation

$$\frac{-x}{n} + \frac{1+\epsilon}{\sqrt{x}} = 0$$

for x. (To simplify notation, we write a instead of $a_{n,\epsilon}$, and x_* instead of $x_{n,\epsilon}$; it is implicit that a and x_* depend on both n and ϵ .) Also let $\delta = 1/n^{1/3}$. To prove that $(1 - \delta)a < x_* < (1 + \delta)a$, it suffices to verify that $H'_{n,\epsilon}((1 - \delta)a) > 0$ and that $H'_{n,\epsilon}((1 + \delta)a) < 0$.

It is well known [1] that

$$\Psi(y) = \log y + O\left(\frac{1}{y}\right). \tag{2.11}$$

Put (2.11) into (2.7) with y = n + 1 - x and $x = (1 - \delta)a$. Also observe that

$$\log(n+1-x) - \log n = \log\left(1-\frac{x}{n}\right) + O\left(\frac{1}{n}\right) = -\frac{x}{n} - \frac{x^2}{2n^2} + O\left(\frac{1}{n}\right)$$

Hence

$$\begin{aligned} H_{n,\epsilon}'((1-\delta)a) &= -\frac{(1-\delta)a}{n} + \frac{1+\epsilon}{\sqrt{(1-\delta)a}} - \frac{(1-\delta)^2 a^2}{2n^2} + O\left(\frac{1}{n}\right) \\ &= \frac{(1+\epsilon)^{2/3}}{n^{1/3}} \left(\delta - 1 + \frac{1}{\sqrt{1-\delta}} - \frac{(1-\delta)^2 (1+\epsilon)^{2/3}}{2n^{1/3}}\right) + O\left(\frac{1}{n}\right). \end{aligned}$$

Using

$$\delta - 1 + \frac{1}{\sqrt{1 - \delta}} = \frac{3\delta}{2} + O(\delta^2)$$
 and $\delta = \frac{1}{n^{1/3}}$,

we get

$$H_{n,\epsilon}'((1-\delta)a) = \frac{(1+\epsilon)^{2/3}}{2n^{2/3}} \left\{ 3 - (1+\epsilon)^{2/3} + O\left(\frac{1}{n^{1/3}}\right) \right\} + O\left(\frac{1}{n}\right).$$

If ϵ is a small positive constant, then $3 > (1 + \epsilon)^{2/3}$. Therefore $H'_{n,\epsilon}((1 - \delta)a) > 0$ for all sufficiently large *n*. By a similar argument, $H'_{n,\epsilon}((1 + \delta)a) < 0$. This completes the proof that, for all sufficiently large *n*, $a(1 - \delta) < x_* < a(1 + \delta)$.

At this point, we know that

$$x_* = \left(1 + O\left(\frac{1}{n^{1/3}}\right)\right)(1+\epsilon)^{2/3}n^{2/3}.$$

We also know from (2.6) that, for all sufficiently large *n*,

$$\mathbb{E}_{n}(\mathbf{B}) \leqslant n \frac{n!}{(n-x^{*})! n^{x^{*}}} e^{(2+\epsilon)\sqrt{x^{*}}}.$$
(2.12)

Therefore, by Stirling's formula,

$$\log \mathbb{E}_n(\mathbf{B}) \leq \frac{-x_*^2}{2n} + (2+\epsilon)\sqrt{x_*} + O(\log n) < \frac{3}{2}(1+\epsilon)\sqrt[3]{n}(1+o(1)).$$

Since ϵ can be chosen arbitrarily small, Theorem 1.3 is proved.

It may be possible to strengthen Theorem 1.3 by combining the methods of Hansen [8] with a Tauberian theorem or related methods for estimating the coefficients of generating functions [13]. It is surprisingly difficult to prove that the sequence $\langle \mathbb{E}_n(\mathbf{B}) \rangle_{n=1}^{\infty}$ is increasing, but clearly the partial sums $\langle \sum_{m=1}^{n} \mathbb{E}_m(\mathbf{B}) \rangle_{n=1}^{\infty}$ are.

3. Order

The main goal in this section is the proof of Theorem 1.4, an estimate for the average period $\mathbb{E}_n(\mathbf{T})$. First, however, for comparison and perspective, we prove Proposition 1.2, concerning the typical period, which was stated in the Introduction.

Proof of Proposition 1.2. Let Z(f) denote the number of cyclic vertices of f. Then

$$\mathbb{P}_n(\log \mathbf{B} - \log \mathbf{T} > \ell_n) = \sum_m \mathbb{P}_n(\mathbf{Z} = m) \mathbb{P}_n(\log \mathbf{B} - \log \mathbf{T} > \ell_n | \mathbf{Z} = m).$$
(3.1)

In the proof of Theorem 8 of [2, p. 333], Arratia and Tavaré computed the expected value of $\log \mathbf{B} - \log \mathbf{T}$ given the number of cyclic vertices:

$$\mathbb{E}_n(\log \mathbf{B} - \log \mathbf{T} | \mathbf{Z} = m) = O(\log m (\log \log m)^2).$$

Therefore, by Markov's inequality, there is a constant c > 0 such that, for all $\ell > 0$,

$$\mathbb{P}_{n}(\log \mathbf{B} - \log \mathbf{T} > \ell | \mathbf{Z} = m) \leqslant \frac{c \log m (\log \log m)^{2}}{\ell} \leqslant \frac{c \log n (\log \log n)^{2}}{\ell}.$$
 (3.2)

Putting (3.2) back into the sum (3.1), we get the proposition.

The proof of Theorem 1.4 is similar to that of Theorem 1.3. Instead of estimates for μ_m , we need estimates for the $M_m = \frac{1}{m!} \sum_{f \in S_m} \mathbf{T}(f)$. Define $\beta_0 = \sqrt{8I}$ where, as before,

$$I = \int_0^\infty \log \log \left(\frac{e}{1 - e^{-t}}\right) dt.$$

The constant β_0 first appears in [7], where it is proved that the expected order of a random permutation is $\exp(\beta_0 \sqrt{n/\log n(1+o(1))})$. However, Stong obtained a better error term [16], and this added precision is used in the proof of Theorem 1.4. See [3], and its references, for further information about the asymptotic distribution of **T** for random permutations.

Lemma 3.1 (Stong [16]).

$$\log M_m = \beta_0 \sqrt{m/\log m} + O\left(\frac{\sqrt{m}\log\log m}{\log m}\right).$$

With Lemma 2.1 and Lemma 3.1 available, we can prove Theorem 1.4.

Proof of Theorem 1.4. Define $\alpha_0 = \sqrt[3]{3I}$, and let m_0^* be the closest integer to $\alpha_0 \sqrt[3]{n^2/\log n}$. For the lower bound, we use the trivial inequality

$$\mathbb{E}_n(\mathbf{T}) = \sum_m \mathbb{P}_n(\mathbf{Z} = m) M_m \ge \mathbb{P}_n(\mathbf{Z} = m_0^*) M_{m_0^*}.$$

Then, by Lemma 2.1, Theorem 3.1, and Stirling's formula, $\mathbb{E}_n(\mathbf{T})$ is greater than

$$\exp\left(-\frac{(m_0^*)^2}{2n} + O\left(\frac{(m_0^*)^3}{n^2}\right) + \beta_0 \sqrt{\frac{m_0^*}{\log m_0^*}} + O\left(\frac{\sqrt{m_0^*}\log\log m_0^*}{\log m_0^*}\right)\right)$$
$$= \exp\left(\frac{k_0 n^{1/3}}{\log^{2/3} n} + O\left(\frac{n^{1/3}\log\log n}{\log^{7/6} n}\right)\right).$$

For the upper bound, suppose $\epsilon > 0$ is a fixed but arbitrarily small positive number. Define

$$\beta_{\epsilon} = \beta_0 + \epsilon$$
, and $w_{\epsilon}(m) = \frac{n!}{(n-m)!n^{m-1}} e^{\beta_{\epsilon}} \sqrt{m/\log m}$

By Theorem 3.1, $M_m \leq e^{\beta_{\epsilon}} \sqrt{m/\log m}$ for all sufficiently large *m*. Therefore, for all sufficiently large n,

$$\mathbb{E}_{n}(\mathbf{T}) \leq n \max_{m \leq n} \mathbb{P}_{n}(Z = m) M_{m} \leq \max_{m \leq n} w_{\epsilon}(m).$$
(3.3)

For $6 \leq m \leq n$, let $G_{n,\epsilon}(m) = \log w_{\epsilon}(m)$. As in (2.7), we can extend the domain and differentiate. If $6 \leq x \leq n$, then

$$G_{n,\epsilon}'(x) = \Psi(n+1-x) - \log n + \frac{\beta_{\epsilon}}{2\sqrt{x\log x}} \left(1 - \frac{1}{\log x}\right),\tag{3.4}$$

and

$$G_{n,\epsilon}^{''}(x) = -\Psi'(n+1-x) + \frac{\beta_{\epsilon}}{4} \frac{(3-\log^2 x)}{x^{3/2}\log^{5/2} x}.$$
(3.5)

As in (2.10), we use (2.9) to deduce that both terms of (3.5) are negative and $G''_{n,\epsilon}(x) < 0$ for $6 \leq x \leq n$. Let x^* be the unique solution to $G'_{n,\epsilon}(x) = 0$ at which $G_{n,\epsilon}$ attains its maximum.

As a rough approximation for x^* , define

$$m^* = \beta_{\epsilon}^{2/3} \sqrt[3]{3/8} \frac{n^{2/3}}{(\log n)^{1/3}}.$$

Let

$$\delta_n = \frac{(\log \log n)^2}{\log n}$$

In order to prove that

$$(1 - \delta_n)m^* < x^* < (1 + \delta_n)m^*, \tag{3.6}$$

it suffices to verify that $G'_{n,\epsilon}((1-\delta_n)m^*) > 0$ and $G'_{n,\epsilon}((1+\delta_n)m^*) < 0$. Putting (2.11) into (3.4), we get

$$G_{n,\epsilon}'((1-\delta_n)m^*) = \frac{\sqrt[3]{3\beta_{\epsilon}^2}}{\sqrt[3]{8n\log n}} \bigg\{ \delta_n - 1 + \frac{1}{\sqrt{1-\delta_n}} + O\bigg(\frac{\log\log n}{\log n}\bigg) \bigg\}.$$
 (3.7)

In (3.7), the quantity inside braces is positive for large n because

$$\delta_n = \frac{(\log \log n)^2}{\log n}$$
 and $\delta_n - 1 + \frac{1}{\sqrt{1 - \delta_n}} = \frac{3\delta_n}{2} + O(\delta_n^2)$

Therefore $G'_{n,\epsilon}((1 - \delta_n)m^*) > 0$ for all sufficiently large *n*. By similar reasoning $G'_{n,\epsilon}((1 + \delta_n)m^*) < 0$. Therefore

$$x^* = m^* \left(1 + O\left(\frac{(\log \log n)^2}{\log n}\right) \right)$$

But then, by Stirling's formula,

$$G_{n,\epsilon}(x^*) = \frac{k_{\epsilon} n^{1/3}}{\log^{2/3} n} (1 + o(1)),$$

where

$$k_{\epsilon} = -\frac{(\beta_{\epsilon}^{2/3}\sqrt[3]{3/8})^2}{2} + \beta_{\epsilon}\sqrt{\frac{\beta_{\epsilon}^{2/3}\sqrt[3]{3/8}}{2/3}}.$$

The theorem now follows from the fact that ϵ was an arbitrarily small positive number, and $\lim_{\epsilon \to 0^+} k_{\epsilon} = k_0$.

Acknowledgements

I wish to thank both the editors and an anonymous referee for noticing an error in my proof of Theorem 1.3 and making helpful suggestions. The problem of estimating $\mathbb{E}_n(\mathbf{T})$ was suggested to me by Boris Pittel. Portions of this work were done while the author was a visitor at the University of Delaware.

References

- [1] Abramowitz, M. and Stegun, I. A. (1964) Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover.
- [2] Arratia, R. and Tavaré, S. (1992) Limit theorems for combinatorial structures via discrete process approximations. *Random Struct. Alg.* 3 321–345.
- [3] Barbour, A. D. and Tavaré, S. (1994) A rate for the Erdős–Turán law. Combin. Probab. Comput. 3 167–176.
- [4] Deńes, J. (1970) Some combinatorial properties of transformations and their connections with the theory of graphs. J. Combin. Theory 9 108–116.
- [5] Erdős, P. and Turán, P. (1967) On some problems of a statistical group theory III. Acta Math. Acad. Sci. Hungar. 18 309–320.
- [6] Flajolet, P. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge University Press.
- [7] Goh, W. and Schmutz, E. (1991) The expected order of a random permutation. Bull. London Math. Soc. 23 34–42.

- [8] Hansen, J. C. (1989) A functional central limit theorem for random mappings. Ann. Probab. 17 317–332.
- [9] Harris, B. (1960) Probability distributions related to random mappings. *Ann. Math. Statist.* **31** 1045–1062.
- [10] Harris, B. (1973) The asymptotic distribution of the order of elements in symmetric semigroups. J. Combin. Theory Ser. A 15 66–74.
- [11] Landau, E. (1953) Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 2, Chelsea Publishing, pp. 222–229.
- [12] Massias, J. P., Nicolas, J. L. and Robin, G. (1988) Évaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique. *Acta Arith.* **50** 221–242.
- [13] Odlyzko, A. M. (1992) Explicit Tauberian estimates for functions with positive coefficients. J. Comput. Appl. Math. 41 187–197.
- [14] Schmutz, E. (1988) Statistical group theory. Doctoral Dissertation, Mathematics Department, University of Pennsylvania, Philadelphia, USA.
- [15] Sloane, N. J. A. The On-Line Encyclopedia of Integer Sequences, published electronically at: www.research.att.com/~njas/sequences/, sequence A000792, accessed March 2010.
- [16] Stong, R. (1998) The average order of a permutation. Electron. J. Combin. 5 #41.
- [17] Szalay, M. (1980) On the maximal order in S_n and S_n^* . Acta Arith. 37 321–331.