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Let Ωn be the nn-element set consisting of all functions that have {1, 2, 3, . . . , n} as both

domain and codomain. Let T(f) be the order of f, i.e., the period of the sequence

f, f(2), f(3), f(4) . . . of compositional iterates. A closely related number, B(f) = the product

of the lengths of the cycles of f, has previously been used as an approximation for T.

This paper proves that the average values of these two quantities are quite different. The

expected value of T is

1

nn

∑
f∈Ωn

T(f) = exp

(
k0

3

√
n

log2 n

(
1 + o(1)

))
,

where k0 is a complicated but explicitly defined constant that is approximately 3.36. The

expected value of B is much larger:

1

nn

∑
f∈Ωn

B(f) = exp

(
3

2
3
√
n
(
1 + o(1)

))
.

1. Introduction

Let Ωn be the nn-element set consisting of all functions that have [n] = {1, 2, 3, . . . , n} as

both domain and codomain, and let f(t) denote f composed with itself t times. Since Ωn

is finite, it is clear that, for any f ∈ Ωn, the sequence of compositional iterates

f, f(2), f(3), f(4) . . .

must eventually repeat. Define T(f) to be the period of this sequence, i.e., the least T such

that, for all m � n,

f(m+T ) = f(m).

We say v ∈ [n] is a cyclic vertex if there is a t such that f(t)(v) = v. The restriction of f

to its cyclic vertices is a permutation of the cyclic vertices, and the period T is just the

order of this permutation, i.e., the least common multiple of the cycle lengths.
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Harris showed that T(f) = e
1
8 log2 n(1+o(1)) for most functions f. To make this precise, let

Pn denote the uniform probability measure on Ωn; Pn({f}) = n−n for all f. Define

hn =
1

8
log2 n, bn =

1√
24

log3/2 n, and φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt.

Using Erdős and Turán’s seminal results [5], Harris proved the following.

Theorem 1.1 (Harris [10]). For any fixed x,

lim
n→∞

Pn

(
log T − hn

bn
� x

)
= φ(x).

Remark. Harris actually stated his theorem for a closely related random variable O(f) =

the number of distinct functions in the sequence f, f(2), f(3), . . . . However, it is clear from

his proof that Theorem 1.1 holds too. In fact, it is straightforward to verify that, for all

f ∈ Ωn, |O(f) − T(f)| < n. Related inequalities have been proved by Dénes [4].

Let B(f) be the product, with multiplicities, of the lengths of the cycles of f. Obviously

T(f) � B(f) for all f, and for some exceptional functions B(f) is much larger than T(f).

For example, if f is a permutation with n/3 cycles of length 3, then B(f) = 3n/3, but

T(f) = 3. (See sequence A000792 in [15] for information about the maximum value that B

can have.) On the other hand, the maximum value T can have is e
√
n log n(1+o(1)) [11, 12, 17].

However, for most random functions f ∈ Ωn, B(f) is a reasonably good approximation

for T(f). For example, consider the proposition stated below, which will be deduced in

Section 3 from earlier work by Arratia and Tavaré [2].

Proposition 1.2. There is a constant c > 0 such that, for any positive integer n and any

positive real number �,

Pn(log B − log T � �) � c log n(log log n)2

�
.

Although log B(f) and log T(f) are approximately equal for most functions f, the set

of exceptional functions is nevertheless sufficiently large that the expected values of the

two random variables B and T are quite different. The following theorem will be proved

in Section 2.

Theorem 1.3.

1

nn

∑
f∈Ωn

B(f) = exp

(
3

2
3

√
n
(
1 + o(1)

))
.

To state a corresponding theorem for T, we need to define some constants. First define

I =

∫ ∞

0

log log

(
e

1 − e−t

)
dt.

Then define k0 = 3
2
(3I)2/3. The following result will be proved in Section 3.
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Theorem 1.4.

1

nn

∑
f∈Ωn

T(f) = exp

(
k0

3

√
n

log2 n

(
1 + o(1)

))
.

2. Expected value of B

Let Z(f) be the set of cyclic vertices of f, and let Z = |Z | be the number of cyclic vertices.

It is well known that the restriction of a uniform random mapping to its set Z of cyclic

vertices is a uniform random permutation of Z . Let Sm be the set of all bijections from

[m] onto [m]. Let μ0 = 1, and for m � 1, let

μm =
1

m!

∑
σ∈Sm

B(σ)

be the expected value of the product of the cycle lengths of a uniform random permutation

of [m]. Then

En(B) =

n∑
m=1

Pn(Z = m)En(B|Z = m) =

n∑
m=1

Pn(Z = m)μm. (2.1)

Theorem 1.3 will be proved directly by estimating the sum in (2.1). Two lemmas make this

possible. The first of the two lemmas is an explicit formula for Pn(Z = m) that appears in

[9] and is attributed to Rubin and Sitgreaves.

Lemma 2.1.

Pn(Z = m) =
n!m

(n − m)!nm+1
� n!

(n − m)!nm
.

The second of the two lemmas that are needed for the proof of Theorem 1.3 is

Lemma 2.2 below. This asymptotic formula for μm appeared in the author’s doctoral

dissertation [14].

Lemma 2.2.

μm ∼ e2
√
m

2
√
πem3/4

.

Proof. If σ ∈ Sm is factored into disjoint cycles, then there is a unique cycle τσ that

contains the number n. Let Vσ be the set of numbers in this cycle. Consider the unique

factorization

σ = τσπσ, (2.2)

where πσ is the permutation of Vc
σ = [m]\Vσ that is obtained by restricting σ to Vc

σ . Since
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the length of the cycle τσ is |Vσ|, we have

B(σ) = |Vσ|B(πσ).

Given a set V ⊆ [m], there are exactly (|V | − 1)! ways to form a cycle from the elements

of V . Hence

μm =
1

m!

∑
V⊆[m],m∈V

(|V | − 1)!
∑
π

|V |B(π), (2.3)

where, in the inner sum, π is summed over all (m − |V |)! permutations of Vc. Therefore

μm =
1

m!

∑
V⊆[m],m∈V

|V |!(m − |V |)!μm−|V | =
1

m!

m∑
�=1

(
m − 1

� − 1

)
�!(m − �)!μm−�.

Thus we have a very simple recurrence formula: for all m � 1,

mμm =

m∑
�=1

�μm−�. (2.4)

Now consider the generating function

F(x) = e
x

1−x = 1 + x +
3

2
x2 +

13

6
x3 + · · · .

Observe that

xF
′
(x) = F(x)

∞∑
�=1

�x�.

Thus the coefficients of F satisfy the recurrence (2.4), and

F(x) =

∞∑
m=0

μmx
n = e

x
1−x .

Flajolet and Sedgewick point out that this is the exponential generating function for the

number of ‘fragmented permutations’. On p. 562 of [6], they describe how the saddle

point method can be used to prove that

μm ∼ e2
√
m

2
√
πem3/4

.

For the purposes of proving Theorem 1.3, we need only a weak corollary to Lemma 2.2.

Corollary 2.3. For any ε > 0, there is an Nε such that, for all m > Nε,

e(2−ε)
√
m < μm < e(2+ε)

√
m.

We have now assembled everything that is needed to prove Theorem 1.3.

Proof of Theorem 1.3. Let m∗ = �n2/3�. Given ε > 0 we can, by Corollary 2.3, choose

n sufficiently large that m∗ > Nε and μm∗ > e(2−ε)
√
m∗ . Putting this, and Lemma 2.1, into
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(2.1), we get

En(B) � Pn(Z = m∗)μm∗ =
n!m∗

(n − m∗)!nm∗+1
e(2−ε)

√
m∗ . (2.5)

Applying Stirling’s formula, we get

log

(
n!m∗

(n − m∗)!nm∗+1
e(2−ε)

√
m∗

)
= −m2

∗
2n

+ (2 − ε)
√
m∗ + O(log n).

Therefore, for all sufficiently large n, we have the lower bound

En(B) � e(1−ε) 3
2

3
√
n.

For the upper bound, define

Un,ε(m) = n · n!

(n − m)!nm
e(1+ε)2

√
m,

and Hn,ε(m) = logUn,ε(m). From Lemma 2.1 and Corollary 2.3, we have, for all sufficiently

large n,

En(B) � nmax
m�n

Pn(Z = m)μm � max
m�n

Un,ε(m) = exp
(
max
m�n

Hn,ε(m)
)
. (2.6)

Therefore our goal is to prove an upper bound for maxm�n Hn,ε(m).

If we write (n − m)! = Γ(n + 1 − m), then we can extend the domain of Hn,ε(m) to

include all real numbers in [1, n]. This can only increase the maximum, and with this

relaxation, Hn,ε(x) is twice differentiable. Let

Ψ(y) =
Γ

′
(y)

Γ(y)

be the logarithmic derivative of the Gamma function so that the first two derivatives of

Hn,ε are

H
′

n,ε(x) = Ψ(n + 1 − x) − log n +
1 + ε√

x
, (2.7)

and

H
′′

n,ε(x) = −Ψ
′
(n + 1 − x) − 1 + ε

2x3/2
. (2.8)

It is well known [1, p. 260, equation 6.4.10] that

Ψ
′
(y) =

∞∑
k=0

1

(y + k)2
> 0. (2.9)

Thus both terms of (2.8) are negative, and, for 1 � x � n, we have

H
′′

n,ε(x) < 0. (2.10)

Let x∗ be the unique solution to H
′
n,ε(x) = 0 at which Hn,ε attains its maximum. We need

to estimate x∗, and then use that estimate to approximate Hn,ε(x∗).

Define a = (1 + ε)2/3n2/3. This first guess for the approximate location of x∗ was

obtained heuristically from (2.7) by first replacing Ψ(n + 1 − x) with the approximation
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log n − x
n
, and then solving the resulting equation

−x

n
+

1 + ε√
x

= 0

for x. (To simplify notation, we write a instead of an,ε, and x∗ instead of xn,ε; it is implicit

that a and x∗ depend on both n and ε.) Also let δ = 1/n1/3. To prove that (1 − δ)a <

x∗ < (1 + δ)a, it suffices to verify that H
′
n,ε((1 − δ)a) > 0 and that H

′
n,ε((1 + δ)a) < 0.

It is well known [1] that

Ψ(y) = log y + O

(
1

y

)
. (2.11)

Put (2.11) into (2.7) with y = n + 1 − x and x = (1 − δ)a. Also observe that

log(n + 1 − x) − log n = log

(
1 − x

n

)
+ O

(
1

n

)
= −x

n
− x2

2n2
+ O

(
1

n

)
.

Hence

H
′

n,ε((1 − δ)a) = − (1 − δ)a

n
+

1 + ε√
(1 − δ)a

− (1 − δ)2a2

2n2
+ O

(
1

n

)

=
(1 + ε)2/3

n1/3

(
δ − 1 +

1√
1 − δ

− (1 − δ)2(1 + ε)2/3

2n1/3

)
+ O

(
1

n

)
.

Using

δ − 1 +
1√

1 − δ
=

3δ

2
+ O(δ2) and δ =

1

n1/3
,

we get

H
′

n,ε((1 − δ)a) =
(1 + ε)2/3

2n2/3

{
3 − (1 + ε)2/3 + O

(
1

n1/3

)}
+ O

(
1

n

)
.

If ε is a small positive constant, then 3 > (1 + ε)2/3. Therefore H
′
n,ε((1 − δ)a) > 0 for all

sufficiently large n. By a similar argument, H
′
n,ε((1 + δ)a) < 0. This completes the proof

that, for all sufficiently large n, a(1 − δ) < x∗ < a(1 + δ).

At this point, we know that

x∗ =

(
1 + O

(
1

n1/3

))
(1 + ε)2/3n2/3.

We also know from (2.6) that, for all sufficiently large n,

En(B) � n
n!

(n − x∗)!nx∗ e
(2+ε)

√
x∗
. (2.12)

Therefore, by Stirling’s formula,

log En(B) � −x2
∗

2n
+ (2 + ε)

√
x∗ + O(log n) <

3

2
(1 + ε) 3

√
n
(
1 + o(1)

)
.

Since ε can be chosen arbitrarily small, Theorem 1.3 is proved.
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It may be possible to strengthen Theorem 1.3 by combining the methods of Hansen [8]

with a Tauberian theorem or related methods for estimating the coefficients of generating

functions [13]. It is surprisingly difficult to prove that the sequence 〈En(B)〉∞
n=1 is increasing,

but clearly the partial sums 〈
∑n

m=1 Em(B)〉∞
n=1 are.

3. Order

The main goal in this section is the proof of Theorem 1.4, an estimate for the average

period En(T). First, however, for comparison and perspective, we prove Proposition 1.2,

concerning the typical period, which was stated in the Introduction.

Proof of Proposition 1.2. Let Z(f) denote the number of cyclic vertices of f. Then

Pn(log B − log T > �n) =
∑
m

Pn(Z = m)Pn(log B − log T > �n|Z = m). (3.1)

In the proof of Theorem 8 of [2, p. 333], Arratia and Tavaré computed the expected value

of log B − log T given the number of cyclic vertices:

En(log B − log T|Z = m) = O(logm(log logm)2).

Therefore, by Markov’s inequality, there is a constant c > 0 such that, for all � > 0,

Pn(log B − log T > �|Z = m) � c logm(log logm)2

�
� c log n(log log n)2

�
. (3.2)

Putting (3.2) back into the sum (3.1), we get the proposition.

The proof of Theorem 1.4 is similar to that of Theorem 1.3. Instead of estimates for

μm, we need estimates for the Mm = 1
m!

∑
f∈Sm T(f). Define β0 =

√
8I where, as before,

I =

∫ ∞

0

log log

(
e

1 − e−t

)
dt.

The constant β0 first appears in [7], where it is proved that the expected order of a random

permutation is exp(β0

√
n/ log n(1 + o(1))). However, Stong obtained a better error term

[16], and this added precision is used in the proof of Theorem 1.4. See [3], and its

references, for further information about the asymptotic distribution of T for random

permutations.

Lemma 3.1 (Stong [16]).

logMm = β0

√
m/ logm + O

(√
m log logm

logm

)
.

With Lemma 2.1 and Lemma 3.1 available, we can prove Theorem 1.4.
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Proof of Theorem 1.4. Define α0 =
3

√
3I, and let m∗

0 be the closest integer to α0
3
√

n2/log n.

For the lower bound, we use the trivial inequality

En(T) =
∑
m

Pn(Z = m)Mm � Pn(Z = m∗
0)Mm∗

0
.

Then, by Lemma 2.1, Theorem 3.1, and Stirling’s formula, En(T) is greater than

exp

(
− (m∗

0)
2

2n
+ O

(
(m∗

0)
3

n2

)
+ β0

√
m∗

0

logm∗
0

+ O

(√
m∗

0 log logm∗
0

logm∗
0

))

= exp

(
k0n

1/3

log2/3 n
+ O

(
n1/3 log log n

log7/6 n

))
.

For the upper bound, suppose ε > 0 is a fixed but arbitrarily small positive number.

Define

βε = β0 + ε, and wε(m) =
n!

(n − m)!nm−1
eβε

√
m/ logm.

By Theorem 3.1, Mm � eβε
√

m/ logm for all sufficiently large m. Therefore, for all sufficiently

large n,

En(T) � nmax
m�n

Pn(Z = m)Mm � max
m�n

wε(m). (3.3)

For 6 � m � n, let Gn,ε(m) = logwε(m). As in (2.7), we can extend the domain and

differentiate. If 6 � x � n, then

G
′

n,ε(x) = Ψ(n + 1 − x) − log n +
βε

2
√
x log x

(
1 − 1

log x

)
, (3.4)

and

G
′′

n,ε(x) = −Ψ
′
(n + 1 − x) +

βε

4

(3 − log2 x)

x3/2 log5/2 x
. (3.5)

As in (2.10), we use (2.9) to deduce that both terms of (3.5) are negative and G
′′
n,ε(x) < 0 for

6 � x � n. Let x∗ be the unique solution to G
′
n,ε(x) = 0 at which Gn,ε attains its maximum.

As a rough approximation for x∗, define

m∗ = β2/3
ε

3
√

3/8
n2/3

(log n)1/3
.

Let

δn =
(log log n)2

log n
.

In order to prove that

(1 − δn)m
∗ < x∗ < (1 + δn)m

∗, (3.6)
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it suffices to verify that G
′
n,ε((1 − δn)m

∗) > 0 and G
′
n,ε((1 + δn)m

∗) < 0. Putting (2.11) into

(3.4), we get

G
′

n,ε((1 − δn)m
∗) =

3
√

3β2
ε

3
√

8n log n

{
δn − 1 +

1√
1 − δn

+ O

(
log log n

log n

)}
. (3.7)

In (3.7), the quantity inside braces is positive for large n because

δn =
(log log n)2

log n
and δn − 1 +

1√
1 − δn

=
3δn
2

+ O(δ2
n).

Therefore G
′
n,ε((1 − δn)m

∗) > 0 for all sufficiently large n. By similar reasoning G
′
n,ε((1 +

δn)m
∗) < 0. Therefore

x∗ = m∗
(

1 + O

(
(log log n)2

log n

))
.

But then, by Stirling’s formula,

Gn,ε(x
∗) =

kεn
1/3

log2/3 n

(
1 + o(1)

)
,

where

kε = − (β
2/3
ε

3
√

3/8)2

2
+ βε

√
β

2/3
ε

3
√

3/8

2/3
.

The theorem now follows from the fact that ε was an arbitrarily small positive number,

and limε→0+ kε = k0.
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