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Backward-facing step (BFS) constitutes a canonical configuration to study wall-
bounded flows subject to massive expansions produced by abrupt changes in geometry.
Recirculation flow regions are common in this type of flow, driving the separated
flow to its downstream reattachment. Consequently, strong adverse pressure gradients
arise through this process, feeding flow instabilities. Therefore, both phenomena
are strongly correlated as the recirculation bubble shape defines how the flow is
expanded, and how the pressure rises. In an incompressible flow, this shape depends
on the Reynolds value and the expansion ratio. The influence of these two variables
on the bubble length is widely studied, presenting an asymptotic behaviour when
both parameters are beyond a certain threshold. This is the usual operating point of
many practical applications, such as in aeronautical and environmental engineering.
Several numerical and experimental studies have been carried out regarding this topic.
The existing simulations considering cases beyond the above-mentioned threshold
have only been achieved through turbulence modelling, whereas direct numerical
simulations (DNS) have been performed only at low Reynolds numbers. Hence,
despite the great importance of achieving this threshold, there is a lack of reliable
numerical data to assess the accuracy of turbulence models. In this context, a DNS of
an incompressible flow over a BFS is presented in this paper, considering a friction
Reynolds number (Reτ ) of 395 at the inflow and an expansion ratio 2. Finally, the
elongation of the Kelvin–Helmholtz instabilities along the shear layer is also studied.

Key words: shear layer turbulence, turbulence simulation, turbulent convection

1. Introduction

Sudden massive expansions are common in many engineering applications: from
internal flows in heat exchangers and combustors to external flows, such as vehicle
aerodynamics. Usually, the separation and reattachment processes yield to dramatic
drag increases, as well as reductions of the pressure growth and heat transfer rate.
Even so, the shear layer can also be beneficial in some industrial applications,
triggering turbulence transition and enhancing the mixing rate of chemical species.

† Email address for correspondence: arnau@cttc.upc.edu
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In this regard, the backward-facing step (BFS) represents a canonical configuration
to study this kind of wall-bounded fluid (see figure 1). This case consists of two
channel flows connected by a sharp step of height h. Both channels have the same
aspect ratio (AR=Lz/h), whereas the difference between the channel heights is defined
by the expansion ratio, ER=H/(H− h). Where Lz and H represent the BFS spanwise
length and the outlet channel height, respectively. The flow in a BFS is massively
separated due to the sudden expansion, but reattached downstream of the channel. The
abrupt separation leads to a shear layer which feeds a recirculation bubble attached to
the step. This bubble governs the flow progressive expansion downstream of the step
edge, as well as the way the pressure grows along the channel (reattachment process).
At low Reynolds numbers, the shear layer and the recirculation bubble represents a
stable system, as the kinetic energy transferred by the shear layer into the recirculation
zone is well dissipated because of the friction forces. However, when the Reynolds
is high enough, the viscous forces cannot dissipate all the kinetic energy provided
by the shear layer. Thus, the system becomes unstable. Therefore, the inertial forces
tend to flap the shear layer, becoming a source of the well-known Kelvin–Helmholtz
instabilities (KH). Finally, these instabilities are fed, paired and elongated along the
shear layer, until they impinge at the lower wall, contributing to the recirculation
bubble detachment. Needless to say, the inflow and wall effects also play important
roles in all this process.

In addition to its engineering interest, the simplicity of the BFS geometry makes
it a suitable case to study the above explained complex phenomena by means of
both experimental and numerical analyses. The vast majority of the experimental
studies such as Eaton & Johnston (1980), Armaly et al. (1983), Driver & Seegmiller
(1985), Jovic & Driver (1995) and Kasagi & Matsunaga (1995) were focused on the
measurement of the reattachment length (Xr) depending on a single configuration of
Reynolds number and ER. By contrast, there were only a few researchers such as
Kuehn (1980), Durst & Tropea (1981) and Ötügen (1991) who studied the ER effects
on Xr, using late transitional or turbulent boundary layers at separation. Recently,
Nadge & Govardhan (2014) carried out a complete set of parametric studies analysing
the influence of the Reynolds number and the ER on the Xr. Besides reducing the
huge scatter in the data observed in previous studies, the authors also provided
results showing the asymptotic behaviour of Xr beyond a certain threshold. It should
be noticed here that almost all the experimental works mentioned above followed
the De Brederode & Bradshaw (1972) recommendation to avoid the side wall effects
(AR> 10).

Apart from the large amount of experimental research dedicated during the last
decades, numerical simulations are also quite numerous. The first studies, i.e. Speziale
& Ngo (1988), Lasher & Taulbee (1992) and Thangam & Speziale (1992), were
focused on Reynolds-averaged Navier–Stokes (RANS) models in order to test and
improve the existing ones. Once computational resources became more available
to the scientific community, less case-dependent methodologies, such as large eddy
simulation (LES) and hybrid RANS–LES models, were studied. In particular, the
detached eddy simulation (DES) family of models proposed by Spalart et al. (1997)
in the late 1990s were designed to simulate massively separated flows such as BFS,
airfoils at stall and jets. Since then, several authors such as Spalart et al. (2006),
Shur et al. (2008) and Gritskevich et al. (2012) focused their efforts on addressing
the main two DES shortcomings, which are: the shielding of the RANS boundary
layers against any unwanted incursion of the LES formulation and the delay of the
KH instabilities produced during the RANS to LES transition (Mockett, Haase &
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Schwamborn 2018). In this context, the selected BFS configuration (ER= 2) presents
a challenging configuration where both problematic areas coexist in the same case
(DES simulation). In particular, the flow structures (KH instabilities) created at the
shear layer (LES area) invade the upper wall, damaging the flow behaviour at the
boundary layer (RANS area). It is worthwhile pointing out that this phenomenon is
negligible if the distance between the LES and RANS area is large enough (low ER
value).

In spite of the numerous numerical studies using turbulence models, there has
been very little research in the BFS area using DNS so far. This fact is mainly due
to the computational resources that this sort of simulation requires. First DNS of a
fully turbulent BFS was not carried out until the late 1990s, when Le, Moin & Kim
(1997) simulated a BFS at Reb ∼ 4250 and ER = 1.2. Where Reb is defined using
the step height, h, and the inlet bulk velocity, Ub. The authors performed a complete
analysis and demonstrated that the log profile downstream of the channel flow was
not fully recovered even 19h after the reattachment. Their results presented a good
agreement with the experiments carried out by Jovic & Driver (1995). Afterwards,
other researchers, such as Biswas, Breuer & Durst (2004) and Schäfer, Breuer
& Durst (2009), performed DNS to study the BFS flow transition from laminar
to turbulent. Both sets of authors used low Reynolds number values and laminar
velocity profiles at the inflow. The first author studied a range of small Reynolds
numbers, Reb ∈ [5× 10−5, 400], and expansion ratios, ER ∈ [1.9423, 3], to detect the
transition value at which the turbulence emerges. The second study was focused on
the structures created at the step edge of a BFS in a single flow configuration at a
higher Reynolds number (Reb = 3000) and ER = 1.9423. These authors also studied
how those structures were related to the Xr oscillations. However, few authors carried
out research at higher Reynolds numbers and using turbulent inflows, such as Meri
& Wengle (2002) and Barri et al. (2010). The former studied the effect of second-
and fourth-order spatial discretization schemes at Reb= 3300 and ER= 1.5. The latter
used Reb = 5600 and ER= 2, studying their inflow approach in a configuration with
a non-homogeneous streamwise direction. This turbulent inflow was previously tested
in a channel flow by Barri et al. (2009), showing a good performance. Although
these authors considered different parameters in their simulations, both used the same
channel flow configuration at the entrance, Reτ = 180 (based on the wall skin friction
velocity, uτ , and the half-height of the plane). This is a well-known and widely
studied turbulent channel flow, but the low Reynolds number effects are still present.
Currently, there is still a lack of numerical data reporting BFS flow behaviour at
higher Reynolds numbers, where the low Reynolds number effects are diminished.
Moreover, all DNSs carried out so far are significantly far from reaching the Xr
asymptotic behaviour.

In this paper, a DNS of an incompressible fluid flow over a BFS with an ER= 2
has been performed using a turbulent channel flow at Reτ = 395 as an inlet condition.
Besides being close to reaching an Xr asymptotic behaviour, the studied case is
also interesting for understanding how a classical turbulent channel flow is expanded
under certain conditions. Regarding the inflow boundary condition, there are two
main approaches in order to address this issue. Inflow data can either be generated by
previously running a channel flow simulation (as Meri & Wengle 2002 investigated),
and saving the velocity field in a streamwise plane or using turbulent synthetic
algorithms. The former is used in this paper as it is suitable for performing a
DNS. Finally, it is worth noting here that besides giving insights into the physics of
turbulent flows after massive separations, the aim of this work consists of providing
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FIGURE 1. Schematic figure of the backward-facing step problem, ER= H/(H − h)= 2,
and details about its geometry and grid spacing (size of zones and concentration factors;
arrows indicate the grid refinement direction). Not to scale.

reference data (Pont-Vílchez et al. 2018) for this canonical configuration, and not to
reproduce any particular experimental set-up.

The rest of the paper is arranged as follows. In the next section, the governing
equations and the problem definition are described together with an overview of
the numerical methods. The methodology to verify the simulation is presented in
§ 3. The core of the results is in § 4. Firstly, the main features of the time-averaged
flow are discussed on the basis of a direct comparison with previous experimental
results. Reynolds stress transport terms are also presented and commented on in this
section. The discussion focuses on the flow dynamics, observing the KH instabilities
and presenting the kinetic energy spectrum cascade at different flow locations: in
the shear layer, recirculation bubble, reattachment and recovery regions. The rate
of growth of the KH instabilities along the shear layer and their elongation due to
the vortex pairing phenomenon are also studied and compared with experimental
observations (Winant & Browand 1974; Kostas, Soria & Chong 2002). Finally, the
most significant results are summarized and conclusions are given in the last section.

2. Governing equations and numerical methods
The incompressible Navier–Stokes (NS) equations in primitive variables are

considered

∂tui + uj∂jui =−∂ip+ ν∂2
j ui; ∂iui = 0, (2.1)

where ui is the velocity field, p represents the kinematic pressure and ν is the
kinematic viscosity. A schema of the problem under consideration is shown in
figure 1.

The dimensions of the computational domain are 38h× 2h× 2πh in the streamwise,
normal and spanwise directions, respectively. The sudden expansion is located at Lu=

6h from the inflow, whereas the domain length downstream of the step is divided into
two parts (Ld1 = 1h, Ld2 = 31h) for refinement reasons. The origin of coordinates is
placed at the expansion sharp edge. A detailed discussion about the determination of
the domain size and grid spacing is given in the next section.

Regarding the boundary conditions, a turbulent channel flow is imposed at the
inflow following the same strategy used by Meri & Wengle (2002), whereas a
convective boundary condition is used at the outflow, ∂tui + 0.5Ub∂1ui = 0. Global
mass conservation may be not exactly preserved after imposing such boundary
conditions. It is forced by means of a minor correction (a constant many orders
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of magnitude lower than Ub) at the outflow conditions. Finally, periodic boundary
conditions are imposed in the spanwise direction, and no-slip boundary conditions
are imposed at the walls.

The incompressible NS equations (2.1) are discretized on a non-uniform structured
staggered mesh, and a fourth-order symmetry-preserving discretization (Verstappen
& Veldman 2003) scheme is used. Briefly, the temporal evolution of the spatially
discrete staggered velocity vector, us, is governed by the following operator-based
finite-volume discretization of (2.1),

Ω
dus

dt
+C (us) us +Dus −Mtpc = 0s, (2.2)

where the subscripts s, c refer to discrete staggered and collocated vectors, respectively.
The discrete incompressibility constraint is given by Mus= 0h, where M indicates the
divergence matrix. The diffusive matrix, D, is symmetric and positive semi-definite,
representing the integral of the diffusive flux, −ν∂juinj, through the faces (where
nj refers to a normal surface direction). The diagonal matrix, Ω , describes the
sizes of the control volumes and the approximate, convective flux is discretized
as in Verstappen & Veldman (2003). The resulting convective matrix, C (us), is
skew–symmetric, i.e.

C (us)=−Ct (us). (2.3)

In a discrete setting, the skew–symmetry of C (us) implies that

C (us) vs ·ws = vs ·Ct (us)ws =−vs ·C (us)ws, (2.4)

for any discrete velocity vector us (if Mus = 0s), vs and ws. The evolution of the
discrete energy, ‖us‖

2
= us ·Ωus, is governed by

d
dt
‖us‖

2
=−2us ·Dus < 0, (2.5)

where the convective and pressure gradient contributions cancel because of (2.3)
and the incompressibility constraint, Mus = 0c, respectively. Therefore, even for
coarse grids, the energy of the resolved scales of motion is convected in a stable
manner, i.e. the discrete convective operator transports energy from a resolved scale
of motion to other resolved scales without dissipating any energy, as it should be
from a physical point of view. For a detailed explanation, the reader is referred to
Verstappen & Veldman (2003).

The governing equations are integrated in time using a classical fractional step
projection method (Chorin 1968). Namely, the solution of the unsteady Navier–Stokes
equations is obtained by first time advancing the velocity field, un

s , without regard
for its solenoidality constraint, then recovering the proper solenoidal velocity field,
un+1

s (Mus = 0c). For the temporal discretization, a second-order fully explicit one-leg
scheme is used for both the convective and diffusive terms (Trias & Lehmkuhl 2011).
Thus, the resulting fully discretized problem reads

(κ + 1/2)up
s − 2κun

s + (κ − 1/2)un−1
s

1t
=R((1+ κ)un

s − κun−1
s ), (2.6)

where R(us) = −C (us) us − Dus and up
s is a predictor velocity that can be directly

evaluated from the previous expression. The time-integration parameter, κ , is
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computed to adapt the linear stability domain of the time-integration scheme to
the instantaneous flow conditions in order to use the maximum time step possible.
For further details about the time-integration method the reader is referred to Trias &
Lehmkuhl (2011). Finally, up

s must be projected onto a divergence-free space,

un+1
s = up

s +Ω−1Mtp̃n+1
c , (2.7)

by adding the gradient of the pseudo-pressure, p̃c = 1t/(κ + 1/2)pc, satisfying the
following Poisson equation

Lp̃n+1
c =Mup

s with L=−MΩ−1Mt, (2.8)

where the discrete Laplacian operator, L, is represented by a symmetric negative
semi-definite matrix. For details about the numerical algorithms and the parallel
Poisson solver, the reader is referred to Gorobets, Trias & Oliva (2013). Notice
that the pressure is not considered in the prediction step (2.6). On staggered grids
with prescribed velocity boundary conditions, as in this case, the incompressibility
condition occurs naturally and no specific boundary condition for the discrete pressure
field, pc, needs to be specified, as pointed out in Kim & Moin (1985). Nevertheless,
Neumann boundary conditions are prescribed for pc. Regarding the verification of
the code, the reader is referred, for example, to Trias et al. (2007). The verification
process of the DNS simulation carried out in this work is addressed in the next
section.

3. Verification of the simulation
Averages over the two statistically invariant transformations (time and x3-direction)

are carried out for all the fields. The standard notation 〈·〉 is used to denote this
averaging procedure.

During this section, the DNS results are verified using well-known tests in the
literature. They are mainly focused on BFS, but the inflow quality is firstly discussed.
As was mentioned before, the inflow data are obtained from a previous channel flow
simulation at Reτ = 395. The signal is preprocessed before being used by the BFS.
A linear spatial interpolation is applied as a slightly coarser mesh is used in the
BFS case because of computational cost reasons. The quality of the preprocessed
inflow is assessed in figure 2, where the average streamwise velocity (a) and the
root mean square (r.m.s.) (b) profiles at a certain cross-section (−5h) over the step
are presented. They show a good agreement with the benchmark case (Moser, Kim
& Mansour 1999). A short distance from the inflow is selected (6h − 5h = h) to
demonstrate that there is no need for a recovery region when this method is applied.

Once the behaviour of turbulence at the entrance is assessed, the minimum time
integration period is determined. This has been achieved evaluating the normalized
infinite norm of the first-, second- and third-order tensor turbulent statistic values at
each time step (3.1).

‖A‖o,∞(ts)=
N

max
n

∣∣∣∣1− 1
〈ao,n〉

∫ ts

0
ao,n dt

∣∣∣∣ , (3.1)

where [ao] denotes a list of N elements, which depends on the order (o), and n
refers to a specific list element, ao,n. The symbology [·] converts any tensor in a list
of elements. Elements presenting average values, 〈ao,n〉, close to zero are excluded
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FIGURE 2. Average streamwise velocity (a) and root-mean-square (b) profiles at −5h over
the step (1h downstream of the inflow). Moser et al. (1999) results are used as benchmark
data.

in order to avoid 0/0 indeterminate forms. The maximum absolute value in a list
of N elements is selected at each ts, and denoted as ‖A‖o,∞(ts). For instance, the
first-order list (N = 3) is filled by all velocity components ([a1] = [ui]), whereas the
second-order list (N = 9) includes all second-order tensor elements ([a2] = [uiuj]). The
same explanation is valid for the third-order list. A set of probes has been distributed
along the domain, but only the most important ones are shown in figures 1 and 3.
The largest integration period is required at P04, where large structures dragged from
the recirculation region are present. Similar behaviour is observed in the shear layer
region, P01, where high velocity fluctuations also appear. The rest of the probes
are located between the two recirculation bubbles, P02, and in the reattachment
region, P03. A schematic view of the probes location can be observed in figure 1.
In contrast to the 280 average integration time units (h/uτ ) suggested by Barri et al.
(2010), figure 3 shows that 180h/uτ provides satisfactory results. This simulation
time reduction can be attributed to the fact that different time integration techniques
are applied. A set of individual quasi-independent flow fields separated by 0.25h/uτ
were taken into account by Barri et al. (2010), whereas a continuous integration with
time is used in the present paper. Apart from that, other factors, such as the Reτ ,
could also affect the integration time period. From here on, all time-average results
presented in this paper have been obtained using 180h/uτ , around 55 flow units
(tf = (Lu + LdER)/Ub).

The BFS geometry in the spanwise and streamwise directions is also studied
because of its influence in the fluid behaviour. The capability of the spanwise
length to reproduce the larger scales is assessed through two-point correlations,
Bnorm

i (x3 = 0, x̂3)= Bnorm
i (x̂3), at the locations shown in figure 1:

Bnorm
i (xj, x̂j)=

〈u′i(xj)u′i(xj + x̂j)〉

〈u′i(xj)〉〈u′i(xj + x̂j)〉
. (3.2)

All velocity components present correlations no longer than the periodic half-length
(see figure 4). Thus, the periodic direction requirement is satisfied. The largest
structures appear in the recirculation bubble (P02), where the fluid becomes
quasi-laminar, and the recovery region (P04). Furthermore, the streamwise length
is also examined as some experimental works, such as Nadge & Govardhan (2014),
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FIGURE 3. Normalized infinite norm (‖A‖o,∞) (defined in (3.1)) of the first, second and
third order of the non-zero velocity turbulent statistic at P01 (a), P02 (b), P03 (c) and
P04 (d). Probe locations are defined in figure 1.

reported a systematic increase of the Xr and the recovery region under the step when
the Re was increased. In particular, Nadge demonstrated that this trend exists up to
Reb ≈ 16300. Beyond this threshold, the Xr only depends on the ER. In the present
paper, and despite the recirculation length increase with respect to the case studied by
Barri et al. (2010), the recirculation zone remains far enough to be affected by the
outflow effects. More information regarding the streamwise length can be obtained in
§ 4.

Once the physical parameters are controlled, the grid resolution and the time
step need to be determined. A Cartesian staggered mesh with 1510 × 302 × 360
grid points has been used to cover the computational domain. The grid spacing in
the periodic x3-direction is uniform, whereas the rest of the directions use piecewise
hyperbolic–tangent functions. For example, the distribution of points in the x2-direction
corresponding to the step region, i.e. −h 6 x2 6 0, is given by

x2,k = xa
2,0 +

h
2

(
1+

tanh{γ a
2 (2(k− 1)/N2 − 1)}

tanh γ a
2

)
, k= 1, . . . ,N2 + 1, (3.3)

where the starting point, the number of grid points and the refinement factor are xa
2,0=

−h, N2= 302/2 and γ a
2 = 1.16855. The same is true above the step region, but using

xa
2,0 = 0. In these regions, the mesh is refined in both directions. The grid refinement

formula needs to be properly adapted for those areas where the mesh is refined only
in one direction (see figure 1 for details). For example, the grid points in the region
upstream of the step, i.e. −Lu 6 x1 6 0, are distributed as follows

x1,k = xl
1,0 +

Ll
1

2

(
1+

tanh{γ l
1((k− 1)/N l

1 − 1)}
tanh γ l

1

)
, k= 1, . . . ,N l

1 + 1, (3.4)
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FIGURE 4. Two-point correlation in the spanwise direction of three velocity components
at P01, P02, P03 and P04 locations (see figure 1). The integral scale value (L) of each
cross-correlation is presented at the legend. Streamwise (a), normal (b) and spanwise (c)
components.

where l refers to the zone which is being studied (a, b, c). In this case l= a, while
the starting point, the region length and the refinement factor are xa

1,0 = −Lu, La
1 =

Lu and γ a
1 = 1.1, respectively. The same technique is applied in the outflow region

(l = c), where xc
1,0 = Ld1 and γ c

1 = 1.5. There are no arrows in region l = b, as a
uniform distribution is imposed in order to increase the mesh resolution in this area
and to capture the shear layer phenomena. Finally, the number of grid points follows
straightforwardly by imposing that Na

1 + Nb
1 + Nc

1 = N1 = 1510, and that the sizes of
two consecutive control volumes corresponding to different areas are equal. The grid
points in the x2-direction are distributed following the same restrictions.

Mesh quality has been assessed using the present DNS results, analysing the control
volume size next to the wall and at the core. The former is evaluated using wall units,
whereas a comparison with the estimated Kolmogorov length scales is performed with
the latter. Figure 5 presents the mesh dimensions in wall units at the upper and lower
walls along the streamwise direction. It can be noticed that the mesh refinement at
the lower wall upstream of the step (x1 6 0) has not been provided as it exhibits a
similar behaviour to the upper wall (difference less than 1.5 %). Hence, figure 5 shows
how the selected mesh is fine enough in all directions to perform a channel flow
DNS upstream and downstream of the step edge. In particular, the mesh dimension
in the normal direction is 1x+2 . 1.3. A mesh decrease in wall units is observed in
all directions just under the step (lower wall) due to the fact that the recirculation
bubbles smooth the velocity gradients close to the wall. Although this decrease also
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FIGURE 5. Mesh dimensions next to the upper (UW) and lower (LW) walls expressed in
wall units (δ+ = ν/uτ ).

affects 1x+1 , its reduction is mainly caused by the mesh refinement in order to capture
the well-known massive expansion phenomenon. It is worth noting here that both
walls lead to the same channel flow behaviour far away from the step edge (recovery
region).

Regarding the mesh quality at the core of the BFS, the ratio of different spatial
length scales versus the estimated Kolmogorov length scale, η = (ν3/〈ε〉)1/4, have
been evaluated in the sudden expansion zone. Where 〈ε〉 refers to the turbulent
kinetic energy dissipation term. The spatial length scale would define the smallest
scales that can be created in a given mesh, which not only depends on the mesh
itself but also on the flow behaviour. In this context, two common approaches for
assessing the spatial length scales are considered: the ratio of the maximum local
control volume dimension, ∆max =max(1x1, 1x2, 1x3), and the cube root of the cell
volume, ∆∀ = (1x11x21x3)

1/3. The former is preferable in zones with isotropic-like
turbulence, while the latter performs better in zones where important anisotropies
are present (Shur et al. 2015). The effects of the spatial length scale in the sudden
expansion zone can be observed in figure 6, where the ratio values using both scales
are displayed. First, the highest values in both (a) and (b) are located downstream
of the step edge and at the reattachment zone. The former is caused by the shear
layer effects, while the latter is attributed to the mesh coarsening in the streamwise
direction. In addition, the ratio ∆max/η (a) generally presents higher values than ∆∀/η
(b).

It is worth noting here that, even though ∆max/η (a) is considerably larger at
the shear layer, it is not a suitable criterion due to the high flow anisotropies
(two-dimensional-like). Therefore, in this case the ∆∀ (b) ratio would be more
representative. The contrary is true downstream of the shear layer, at the core of the
channel, where the flow starts the recovery process. In any case, values higher than
10 are not observed, which is similar to the resolution requirements discussed by
Trias, Gorobets & Oliva (2015). In this regard, a recent work carried out by Vreman
& Kuerten (2014) has shown that most of the dissipation in a turbulent channel flow
occurs at scales greater than 30η. Finally, a good agreement with the results provided
by Meri & Wengle (2002) has also been observed, although these authors provided
only shorthand information regarding this verification part.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1000


DNS of backward-facing step flow at Reτ = 395 and ER= 2 351

1.0

0.5

0

x 2
/h

-0.5

-1.0

x1/h
0 2 4 6 8

x1/h
0 2 4 6 8

5 4

44
4

4

4
2

2

3

3

3
4

8

87

7

5 5

9

6

6

6

6

43

5

7

FIGURE 6. Mesh quality assessment, comparing different local spatial scales with the
Kolmogorov length scale, η. Those are: the maximum local control volume dimension (a),
∆max, and the cell volume cube root (b), ∆∀.

4. Results and discussion
The average flow fields and the time-dependent signals collected during the

simulation are discussed in this section. For the sake of clarity, this work only
contains the most significant results according to the authors’ criterion. All data
obtained in this research are publicly available on the internet (Pont-Vílchez et al.
2018).

4.1. Time-averaged flow

The pressure coefficient distribution, 〈Cp〉 = (〈p〉 − po)/(1/2)U2
c , the velocity compo-

nents and the streamlines of the average flow in the recirculation region are shown
in figure 7. Here, po refers to the kinematic pressure at the step edge. The sudden
expansion leads to a massive flow separation (c), and its respective adverse pressure
gradient (a). The velocity field distribution (b) is consistent with the pressure rise and
the streamlines. Velocity components are depicted in a different manner in order to
improve visualization and provide a dynamic perception. The 〈Cp〉 rise at the lower
wall across the streamwise direction is detailed in figure 8(b). DNS data show a good
agreement in comparison to the experimental work carried out by Ötügen (1991),
although higher adverse pressure gradients were detected by this author. The skin
friction, 〈Cf 〉 = 〈τw〉/(1/2)ρU2

c , is also presented in the same figure at the upper and
lower walls (a), and compared to the numerical DNS results obtained by Barri et al.
(2010) (Reτ = 180, ER= 2). Regarding the Jovic & Driver (1995) study, a significant
reduction of the 〈Cf 〉 negative peak located at the lower wall (LW) is perceived
when the Reb increases. This points out a depletion of the diffused momentum in
the recirculation region with respect to the amount of momentum that is entering
through the inflow. According to the literature, the Xr elongation phenomenon is also
observed, exhibiting an Xr equal to 8.8h at Reτ = 395 and 7.1h at Reτ = 180. This
trend is detailed in figure 9, where the DNS results of different authors are compared
with the experimental results obtained by Nadge & Govardhan (2014). The present
DNS is not only close to the asymptotic region, but also exhibits a good agreement
with the experimental data (relative difference 63.5 %). It is worth noting that the Xr
value reported by Ötügen (1991) is not presented in this figure as the author evaluated
this coefficient considering other methodologies. Even so, not all results provided by
Ötügen (1991) have been disregarded, such as the streamwise velocity and r.m.s.
profiles, which have been compared with the present DNS at different locations in
figure 10. Although some differences can be observed, an acceptable agreement is
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FIGURE 7. (a) Pressure coefficient distribution, 〈Cp〉, (b) the average velocity field, 〈ui〉,
and (c) flow streamlines in the recirculation region. For the sake of clarity, the streamwise
velocity, 〈u1〉, is indicated using solid lines, whereas the normal velocity component, 〈u2〉,
is depicted using isolines (where dashed lines denote positive values and dot-dashed lines
denote negative ones). The 〈u1〉 values have been normalized using the maximum velocity
of each profile, following the Ötügen (1991) criterion.

present in both variables. The discrepancies observed between the experimental and
numerical data could be related to the important scattering registered by Nadge &
Govardhan (2014). The author reflected his concerns about this topic, concluding
that other elements in addition to the Reynolds number and the ER could affect
the massive expansion behaviour. In particular, the flow performance just before
the sudden expansion is considered an influential factor, although it has not been
commonly reported in the literature. In this paper a Reτ = 400.5 and a turbulence
intensity in the streamwise direction equal to urms/Uc ≈ 3.8 % are observed. Hence,
the lack of agreement observed in figure 10 could be attributed to the fluid behaviour
misalignments at the step edge.

The strong turbulence behaviour presented in this BFS configuration is quantified
through the Reynolds stresses, as well as the production and dissipation terms derived
from their respective transport equations.

∂t〈u′iu
′

j〉︸ ︷︷ ︸
'0

+ 〈uk〉∂k〈u′iu
′

j〉︸ ︷︷ ︸
Convection

= 〈Pij〉︸︷︷︸
Production

+ 〈Πij〉︸︷︷︸
Pressure−Strain

+ 〈Dij〉︸︷︷︸
Diffusion Terms

− 〈εij〉︸︷︷︸
Dissipation

, (4.1)

where:

〈Pij〉 = −〈u′iu
′

k〉∂k〈uj〉 − 〈u′ju
′

k〉∂k〈ui〉, (4.2a)
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FIGURE 8. Comparison of the skin friction (a), 〈Cf 〉, at Reτ = 395 (present DNS) with
the results obtained by Barri et al. (2010) at Reτ = 180 using an ER = 2. The 〈Cf 〉

is assessed at the lower (LW) and upper (UW) walls. Pressure coefficient (b), 〈Cp〉, at
the LW obtained in the present DNS compared to the results provided by Barri et al.
(2010), Reτ = 180, and Ötügen (1991), Reτ = 395.
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FIGURE 9. Recirculation length (Xr) using different Reynolds numbers (Reb) and
expansion ratios (ER). Experimental results depicted by lines were obtained by Nadge &
Govardhan (2014).

〈Πij〉 = 〈p′(∂ju′i + ∂iu′j)〉, (4.2b)

〈Dij〉 = −∂k[〈u′iu
′

ju
′

k〉 + (〈p
′u′j〉δik + 〈p′u′i〉δjk)− ν∂k〈u′iu

′

j〉], (4.2c)

〈εij〉 = 2ν〈∂ku′i∂ku′j〉. (4.2d)

In order to simplify the analysis process, only the non-zero components are depicted
and nearly the same layout as used by Barri et al. (2010) is considered. A general
increase of the Reynolds stresses is well observed in all directions in comparison to
the Barri et al. (2010) results. A downstream shifting of the Reynolds stress zero-
gradient area can also be appreciated.

The highest momentum oscillations are in the streamwise direction, 〈u′1u′1〉, as can
be noticed in figure 11(a). This turbulence, which is triggered by the huge source term
(b), is balanced by the isotropization behaviour of the pressure–strain (c). In fact, the
energy from the most energetic component (streamwise) is distributed to the weakest
ones (normal and spanwise directions) because of the pressure–strain phenomenon. In
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FIGURE 10. Streamwise velocity (a) and r.m.s. (b) profiles of the present DNS (——)
compared to the experimental results (�) obtained by Ötügen (1991). Velocity (u1) and
r.m.s. values are normalized using the maximum value at each profile, Uc.

contrast to the channel flow behaviour, some positive values appear in the impinging
regions. They are located at the end of the recirculation length and at the lower part
of the shear layer. In both cases, the velocity in the streamwise direction is accelerated
∂1u1, whereas a pressure positive peak arises from the impinging interactions. As was
expected, the dissipation term, 〈ε11〉, is positive and achieves its maximum values in
the shear layer and close to the walls. At the lower wall, the opposite is true due to
the oscillations and gradient reduction at the recirculation bubble zone.

Fluctuations in the normal direction, 〈u′2u′2〉, are shown in figure 12(a). Although
in this case they are less energetic in comparison to 〈u′1u′1〉, they remain significant.
The production term (b) is non-zero, in contrast to a channel flow, and significantly
lower than the pressure–strain (c). The dissipation term (d) is also positive and, as
was expected, stronger in the shear layer and close to the walls.

The periodic nature of the spanwise direction, 〈u′3u′3〉, leads to an absence of the
production term. However, the oscillations in this direction (see figure 13a) are nearly
as vivid as the streamwise ones. This phenomenon occurs because of the isotropization
effect of the pressure–strain tensor, which converts the 〈u′1u′1〉 fluctuations into 〈u′3u′3〉
ones. The dissipation (c) term presents the same trend the above-mentioned Reynolds
stresses.

In order to complete the Reynolds stress assessment, the Reynolds stress non-zero
cross-term (−〈u′1u′2〉) is depicted in figure 14(a). The classic axisymmetry presented
in a channel flow is lost downstream of the step, but slowly recovered after the
reattachment. Although this term does exhibit rather weak values (a) in comparison
to the other stresses, the production (b) and pressure–strain (c) terms are quite
energetic. Both terms almost present a complementary behaviour in the shear layer,
explaining why the dissipation term in this zone is nearly zero.
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FIGURE 11. Reynolds stresses 〈u′1u′1〉/u
2
τ (a) and their associated transport source–sink

terms scaled using u3
τ/h: production 〈P11〉 (b), pressure–strain 〈Π11〉 (c) and dissipation

〈ε11〉 (d). Dashed lines depict negative values.

4.2. Flow dynamics
Once the average time properties have been analysed, the time-dependent variables
are assessed. An idea of the flow dynamics is given in figure 15, where the pressure
gradient magnitude in the recirculation zone is shown. First, KH structures are
visualized just after the sharp edge (b), leading to the highest Reynolds stress
values in the BFS domain (see figures 11–14). In contrast, a particular lack of
pressure gradient is observed in the secondary recirculation bubble region due to its
non-turbulent behaviour. Additional information is provided in the film (Pont-Vílchez
et al. 2018), i.e. the slow motion of the recirculation bubble flow and the progressive
expansion of the mainstream flow downstream of the step. The sudden expansion
effects on the flow topology can also be noticed in the normal view at x+2 = 1 in
figure 16. For instance, the turbulence triggering produced by the step edge are
visualized with the Q-invariant (a), showing how the highest intensity is located just
downstream of the expansion. Furthermore, the channel flow streaks are also well
observed in figure 16(b,c) until the sudden expansion. Downstream of the step edge,
nearly ‘two-dimensional’ coherent structures are shown from 0 up to ∼0.5h in u′2 (b).
Beyond this threshold, the ‘two-dimensional’ coherence is lost, but the structures still
grow. A similar behaviour can be observed in u′1 (c).
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FIGURE 12. Reynolds stresses 〈u′2u′2〉/u
2
τ (a) and their associated transport source–sink

terms scaled using u3
τ/h: production 〈P22〉 (b), pressure–strain 〈Π22〉 (c) and dissipation

〈ε22〉 (d). Dashed lines depict negative values.

Besides the turbulence triggered at the step edge and its respective spreading,
figures 15 and 16 also display a significant flow heterogeneity. In order to assess such
diversity of flow regimes, the turbulent kinetic energy cascade at different locations
has been considered (see figure 17). A schematic view of the probe locations can
be observed in figure 1. Unfortunately, KH instabilities are not well captured in
figure 17(a), as their low energy structure effects can be easily hidden by turbulent
scales coming from the channel flow boundary layer. Even so, a good trend is
observed in the inertial zone (f̄−5/3). It is worth noting here that the P02 frequency
cascade has not been included in this figure, as the probe is located in a quasi-laminar
region. Regarding the rest of f̄ kmg shown in figure 17, they diminish in the downstream
direction because of the sudden expansion (P03, P04). Due to the fact that the spatial
scale is ER times higher at the outflow, the flow moves ER times slower in order to
ensure the mass conservation. Consequently, the time scale is decreased by a factor of
ER2, bringing out the f̄ kmg trend observed (these relations can be easily demonstrated
through dimensional analysis).

Even though the ejection frequency of the KH instabilities has not been well
captured in P01, other interesting shear layer properties have been discerned, such as
the KH rates of growth along the streamwise direction. A schematic view of a shear

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1000


DNS of backward-facing step flow at Reτ = 395 and ER= 2 357

x1/h
0 2 4 6 8

x1/h
0 2 4 6 8

x1/h
-2 0 2 4 6 8 10 12 14 16 18

1.0

0.5

0x 2
/h

-0.5

-1.0

1.0

0.5

0x 2
/h

-0.5

-1.0

1

1 2

3

9
4

2
3

7 6 5

8

8 9
6

54
32

10
10

10

10

10

105140175 30
20

20

4070

35

35

35

35

60 50

10

(a)

(b) (c)

FIGURE 13. Reynolds stresses 〈u′3u′3〉/u
2
τ (a) and their associated transport source–sink

terms scaled using u3
τ/h: pressure–strain 〈Π33〉 (b) and dissipation 〈ε33〉 (c). Dashed lines

depict negative values.

layer is presented in figure 18, showing different structures’ size in the streamwise
(1δ1) and normal (1δ2) directions.

This vortex elongation was mainly attributed to the advection velocity and the vortex
pairing phenomenon, which was studied by Winant & Browand (1974). In particular,
an elliptic-like shape was experimentally detected, observing a major-to-minor axis
ratio of 1δ1/1δ2 ∼ 2. This behaviour has been analysed with the present DNS data
through the two-point correlation technique in the streamwise and normal directions.
In the 1δ1 case, the distance from peak to peak (upstream) has been used to
represent the distance between vortices (figure 19a) and also to form an estimation
of the average vortex size in a given position, Bnorm

2 (x1, x̂1). In contrast, 1δ2 has been
measured as the distance between zero values of the two-point correlation values,
Bnorm

1 (x2= 0, x̂2). In addition, 1δ2 has also been assessed following the equation given
in Winant & Browand (1974),

1δ2 =1U1/(∂〈u1〉/∂x2)max, (4.3)

where 1U1 refers to the flow velocity difference in the shear layer.
Two linear distributions for 1δ1 and 1δ2 have been obtained through the two-point

correlation technique, showing circular structures (1δ1∼1δ2) just downstream of the
step edge (∼0.4h). This is in good agreement with the ‘two-dimensional’ coherent
structures observed in figure 16. Above this threshold, the circular structures are
distorted, acquiring an elliptic shape (1δ1 > 1δ2), which can be attributed to the
above mentioned phenomena. This elliptical shape trend seems to be maintained along
the studied domain, showing a major-to-minor axis ratio limit close to 2 (1δ1/1δ2),
strengthening the experimental visualizations carried out by Winant & Browand (1974)
and supporting their theory regarding the vortex pairing (Pont-Vílchez et al. 2018).
It is worth noting that Kostas et al. (2002) observed a similar phenomenon in their
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FIGURE 14. Reynolds stresses −〈u′1u′2〉/u
2
τ (a) and their associated transport source–sink

terms scaled using u3
τ/h: production 〈P12〉 (b), pressure–strain 〈Π12〉 (c) and dissipation

〈ε12〉 (d). Dashed lines depict negative values.

BFS experimental study. Finally, the offset observed between both 1δ2 approaches
does not seem to be critical, as both linear distributions present a similar slope. This
indicates that in both cases the elongation ratio, 1δ1/1δ2, has a similar growing trend
(∼2). However, this correlation is lost downstream of the studied region (x1 > 1.6h),
where the free shear layer is no longer present.

5. Conclusions
A DNS of a BFS with a ER = 2 has been carried out at Reτ = 395, defining

a case close to the Xr asymptotic behaviour. A turbulent channel flow has been
used as an inflow, which has been obtained from a previous simulation. The flow
performance 1h downstream of the inflow has shown a good agreement with the
well-known benchmark results provided by Moser et al. (1999), indicating no need
for a recovery region. During the verification part other parameters have also been
discussed: the time integration period, domain dimensions and mesh resolution.
All tests have provided reasonable results, demonstrating that the parameter values
satisfy the challenging DNS requirements. Once verified, the DNS results have
been compared with the experimental and numerical studies present in the literature.
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FIGURE 15. Instantaneous magnitude of the dimensionless pressure gradient in a large
part of the BFS domain (a), and a detailed view (A) of the sudden expansion (b). The
intensity of the fluctuation is denoted by the grey scale bar. See the film attached in the
paper data base (Pont-Vílchez et al. 2018).
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FIGURE 16. A slice parallel to the lower wall at x+2 = 1 showing instantaneous views
of the Q-invariant (a), u′2 (b) and u′1 (c). Black zones denote the highest values of the
Q-invariant at the top figure and positive values at the bottom ones.

Besides presenting good agreement with the experimental results, agreement in the Xr

asymptotic behaviour zone has also been observed. In addition, numerical benchmark
results have also been considered, i.e. Barri et al. (2010). The author provided
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FIGURE 17. Normalized turbulent kinetic energy (E1) versus normalized temporal
frequency (f̄ = fh/Ub) at P01 (a), P03 (b) and P04 (c). The dashed lines represent the
expected turbulence decay behaviour at the inertial region (f̄−5/3), whereas f̄ kmg

P0N denotes
the local Kolmogorov temporal frequency at probe N.

DNS results of a BFS with ER = 2, considering a turbulent inflow at Reτ = 180.
In particular, the present DNS exhibited a significant reduction of the 〈Cf 〉 peak
in the recirculation region. This phenomenon was previously reported by Jovic &
Driver (1994) in experimental work. Regarding the complexity of the flow dynamics,
instantaneous views in the spanwise and normal direction have shown the evolution
of the flow structures in the streamwise direction. The Kelvin–Helmholtz instabilities
can be distinguished in those planes, but they have not been detected in the kinetic
energy spectra. However, their rates of growth have been identified through two-point
correlations in the streamwise and normal directions. A switching from circular to
elliptical structures has been detected close to the step edge (up to ∼0.4h) produced
by the advection velocity and the vortex pairing phenomenon. Finally, the elliptical
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FIGURE 18. Schematic view of the Kelvin–Helmholtz vortices in a shear layer, where 1δ1
and 1δ2 represent a estimation of the vortex size in the streamwise and normal directions,
respectively.
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FIGURE 19. An example showing how 1δ1 have been assessed using the two-point
correlation at the shear layer (a). Estimation of the KH rate of growth (1δ1, 1δ2) along
the streamwise direction (b), which is schematically depicted in figure 18.

shape trend agrees with the experimental observations carried out by Winant &
Browand (1974), showing a major-to-minor axis ratio limit close to 2.
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