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Cellular cholesterol homeostasis is a fundamental and highly regulated process.
Transcription factors known as sterol regulatory element binding proteins
(SREBPs) coordinate the expression of many genes involved in the biosynthesis
and uptake of cholesterol. Dysregulation of SREBP activation and cellular lipid
accumulation has been associated with endoplasmic reticulum (ER) stress and
activation of the unfolded protein response (UPR). This review will provide an
overview of ER stress and the UPR as well as cholesterol homeostasis and
SREBP regulation, with an emphasis on their interaction and biological relevance.

The endoplasmic reticulum (ER) is the principal site
for folding and maturation of transmembrane,
secretory and ER-resident proteins (Ref. 1).
Several post-translational modifications take
place in the ER, including disulfide-bond
formation, cleavage of the ER signal-recognition
peptide, N-linked glycosylation and addition of
glycophosphatidylinositol anchors. These post-
translational modifications are required for the
correct folding of transmembrane and secretory
proteins (Ref. 2). Importantly, ER-resident
molecular chaperones are required for the
successful completion of each folding step.
N-linked glycosylation of newly synthesised

proteins entering the ER lumen is an essential
part of protein maturation and folding in
eukaryotic cells. During this process, the attached
N-linked oligosaccharides become substrates for
ER chaperones, including calnexin and
calreticulin. These chaperones assist in protein
folding by binding to the oligosaccharides, as
well as unfolded regions in the glycoprotein
(Refs 3, 4, 5). As maturation continues,
glucosidase enzymes remove glucose residues
from the N-linked oligosaccharides. If the protein

is properly folded, it is translocated to the Golgi
complex for further processing (Refs 3, 5). If,
however, protein folding is impaired, additional
cycles of glucose addition (catalysed by
glucosyltransferase), removal and chaperone
binding continue until proper folding is achieved.

In addition to calnexin and calreticulin, the
glucose-regulated proteins (GRPs), including
GRP78 and GRP94, assist in proper protein
folding by recognising exposed hydrophobic
domains (Refs 1, 6). GRP78 binding to ATP, and
its subsequent conversion to ADP, causes a
conformational change in GRP78 that enhances
its affinity to unfolded proteins (Ref. 5). The
release of ADP from GRP78 by BiP-associated
protein promotes another conformational
change in GRP78 that releases the unfolded
protein (Refs 5, 7). It is this repeated binding
and release of GRP78 that promotes correct
protein folding (Refs 5, 8).

ER stress and the unfolded protein response
Conditions that impair or change the folding
capacity of the ER might lead to ER stress and
induce the unfolded protein response (UPR), an
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integrated, intracellular signalling pathway that
induces translational inhibition and ER chaperone
upregulation (Refs 9, 10) (Fig. 1). Pharmacological
disruption of ER homeostasis and protein
folding can be achieved through the depletion
of ER calcium (Ca2+) stores with Ca2+ ionophores
or sarcoplasmic/ER Ca2+-ATPase pump inhibitors.
Depletion of ER Ca2+ in vitro causes the
accumulation of unfolded proteins by decreasing
ER chaperone activity and their capacity to fold
proteins. Physiologically, induction of ER stress
can result from changes in the rate of protein
synthesis and folding, ER Ca2+ homeostasis or
glucose deprivation (Refs 9, 10).
Disruption in ER function (termed ER stress)

that interferes with the folding and maturation of
newly synthesised proteins induces the UPR. The
UPR is mediated by three ER sensors: type-I ER
transmembrane protein kinase (IRE1, encoded
by ERN1), activating transcription factor 6
(ATF6) and the proline-rich, extensin-like
receptor (PKR)-like ER kinase (PERK). Under
normal homeostatic conditions, UPR activation is
repressed by GRP78 binding to the ER lumenal
domains of IRE1, ATF6 and PERK. However,
following ER stress, dissociation of GRP78
causes activation of the IRE1, ATF6 and PERK
pathways (Refs 1, 9, 10, 11, 12).
IRE1 is an ER transmembrane protein that binds

to GRP78 under non-ER stress conditions and
becomes active following dimerisation and
autophosphorylation in the presence of unfolded
proteins (Refs 9, 13, 14). Recent evidence suggests
that activation of IRE1 occurs not only following
GRP78 dissociation, but upon the subsequent
binding of unfolded proteins to the IRE1 lumenal
domain (Ref. 14). In this model, GRP78 reduces
UPR sensitivity by inhibiting the binding of
unfolded proteins to IRE1 under conditions of
low stress and returning IRE1 to an inactive state
when ER stress is alleviated (Ref. 14). Following
autophosphorylation, the RNase property of IRE1
splices mRNA from the X-box-binding protein 1
gene (XBP1), removing an intron and enabling
translation into an active transcription factor that
induces ER chaperone gene expression and
components of the ER-associated degradation
(ERAD) pathway (Refs 15, 16, 17).
Similarly to IRE1, ATF6 is a transmembrane

protein that binds GRP78 under non-ER stress
conditions. Golgi localisation signals (GLSs) in the
lumenal domain of ATF6 are exposed following
GRP78 dissociation in the presence of unfolded

proteins. The exposed GLSs promote the
translocation of ATF6 from the ER to the Golgi
(Refs 18, 19). Proteolytic cleavage of ATF6 occurs
in the Golgi by the site-1 and site-2 proteases (S1P
and S2P, encoded by MBTPS1 and MBTPS2)
(Refs 20, 21), which also cleave the sterol
regulatory element binding proteins (SREBPs)
(see below). Following protease cleavage, ATF6
translocates to the nucleus and induces XBP1
gene expression, thereby providing more
substrate for IRE1 (Refs 16, 22).

Corresponding to the upregulation of UPR
response genes, the accumulation of misfolded
proteins leads to a decrease in protein translation
via the PERK pathway. PERK is an ER
transmembrane sensor that binds GRP78, and
upon its dissociation, causes activation of its
cytosolic kinase domain (Ref. 10). ER-stress-
induced activation of PERK leads to the
phosphorylation of eukaryotic translation
initiation factor 2α (eIF2α), causing a general
inhibition of protein translation (Ref. 23).
Although eIF2α phosphorylation inhibits general
protein translation, certain UPR-associated
mRNAs (including ATF4 and GRP78) overcome
translation inhibition through an internal ribosome
entry site (IRS) that allows their translation during
eIF2α phosphorylation (Ref. 10). Recently, studies
have also demonstrated that sterol regulatory
element binding protein-1 (SREBP-1) (discussed in
detail below) can be translated by an IRS (Ref. 24).

Together, IRE1, ATF6 and PERK respond to ER
stress by inhibiting general protein translation
while specifically upregulating the expression of
ER chaperones as well as cellular factors that
comprise the ERAD pathway. Initially, the UPR
provides a protective advantage for the cell, but
prolonged ER stress activates UPR-dependent
pathways inducing apoptosis (Refs 25, 26, 27, 28).

Cellular cholesterol metabolism
Inadditiontobeingaprecursorofsteroidhormones,
cholesterol is essential for the proper functioning of
cellular membranes (Ref. 29). Although its
distribution within membranes is essential for
many biological functions, excess cholesterol can
be toxic (Ref. 30). Therefore, levels of cholesterol
are tightly regulated through cellular uptake,
biosynthesis, trafficking, storage and excretion.

Exogenously derived cholesterol arrives at the
cell membrane in low-density lipoprotein (LDL)
particles that enter cells through an endocytic
pathway regulated by the expression of the LDL
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Figure 1. ER stress and the UPR. (See next page for legend.)
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receptor (LDLR). Through a series of steps, LDL-
derived cholesterol exits the endocytic
compartment and is transported to various
cellular membranes, as required (Ref. 31).
Intracellular cholesterol trafficking involves the
movement of cholesterol to or from various
intracellular compartments such as the late
endocytic compartment, the ER and cytosolic
lipid droplets (Ref. 32). Cholesterol is
transported throughout the cell by incorporation
into transport vesicles or by nonvesicular
transport, including binding to cytosolic carrier
proteins (Refs 29, 32). In addition to obtaining
cholesterol from external sources, cells have the
capacity to endogenously synthesise cholesterol.
The cholesterol biosynthetic pathway is made
up of many enzymes that are regulated by the
SREBPs. HMG-CoA reductase (HMGCR), the
rate-limiting enzyme in the cholesterol
biosynthesis pathway, is localised to the ER
membrane where it converts HMG-CoA to
mevalonate. Mevalonate production is the first
step in a series of enzymatic reactions leading to
cholesterol synthesis (Ref. 33).
Levels of intracellular cholesterol are highly

regulated because excess unesterified cholesterol
disrupts membranes, leading to cell toxicity
(Ref. 30). Increased membrane cholesterol
negatively regulates expression of LDLR and the
enzymes responsible for cholesterol biosynthesis
(described in detail below). In addition, excess
cholesterol is transported to the ER for
esterification by acyl-coenzyme A cholesterol
acyltransferase 1 (ACAT1) (Refs 31, 34). ACAT1
is an ER-membrane-bound protein that is
responsible for the esterification of free
cholesterol and its subsequent storage in
cytoplasmic lipid droplets or use in lipoprotein
assembly for transport and excretion (Ref. 35).

Role of SREBP in cholesterol homeostasis
Maintenance of intracellular cholesterol is
achieved through the coordinated action of

membrane receptors, transporters and enzymes
responsible for cholesterol biosynthesis and
uptake. Experiments conducted over the past
three decades in the laboratory of Michael
Brown and Joseph Goldstein have elegantly
elucidated the molecular pathway that is
responsible for maintaining intracellular
cholesterol homeostasis (Ref. 36).

Following Brown and Goldstein’s description
of the mechanism and regulation of LDLR-
mediated lipoprotein uptake, they identified
SREBPs as the transcription factors responsible
for regulation of the LDLR (Refs 37, 38, 39, 40,
41, 42). Subsequent experimentation helped
determine that the SREBPs also regulate LDLR
degradation by influencing the expression of
proprotein convertase subtilisin/kexin type 9
(PCSK9) (Refs 43, 44). In addition, the SREBPs
have been identified as regulating genes that
are required for lipid biosynthesis (through
several enzymes involved in the conversion of
acetyl-CoA to cholesterol) (Ref. 45), such as
HMG-CoA reductase (Ref. 46). Further studies
uncovered the complex regulation of SREBP
activation, which leads to its transcriptional
control of cholesterol and fatty acid homeostasis
(Refs 47, 48).

Mammalian cells express three SREBP isoforms:
SREBP-1a, SREBP-1c and SREBP-2 (Ref. 49).When
overexpressed in cultured cells, both SREBP-1a
and SREBP-1c activate transcription of
cholesterol and fatty acid biosynthetic genes
(Ref. 42). It was reported that SREBP-1c is
predominantly expressed in the liver, adrenal
gland and adipose tissue of adult mice, whereas
SREBP-1a is more abundant than SREBP-1c in
the spleen and numerous cultured cell lines
(Ref. 50). The mRNA encoding SREBP-2 is
expressed in a wide variety of human fetal and
adult tissues. SREBP-2 was determined to be a
more selective activator of cholesterol
biosynthesis, and SREBP-1a and SREBP-2 are
the predominant isoforms expressed in most

Figure 1. ER stress and the UPR. (See previous page for figure.) The UPR responds to ER stress through
activation of the (a) IRE1, (b) ATF6 and (c) PERK pathways. Activation of these transmembrane proteins
occurs following dissociation of GRP78 in response to ER stress. Once activated, the UPR functions as an
intracellular signalling pathway to attenuate protein translation through eIF2α phosphorylation, increased ER
chaperone expression and enhanced degradation of unfolded proteins by the proteasome. Abbreviations:
ATF4, activating transcription factor 4; eIF2, eukaryotic translation initiation factor 2; ER, endoplasmic
reticulum; ERAD, endoplasmic-reticulum-associated degradation; GRP78, glucose-related protein 78; IRE1,
type-I ER transmembrane protein kinase; PERK, protein kinase receptor-like ER kinase; S1P and S2P, site-1
and site-2 proteases; sXBP1, spliced form of X-box-binding protein 1; UPR, unfolded protein response;
uXBP1, unspliced form of X-box-binding protein 1.
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cultured cell lines, whereas SREBP-1c and SREBP-2
are found in most tissues (Refs 50, 51).

Regulation of SREBP activation
The SREBP regulatory pathway (Fig. 2) was
determined by the characterisation of mutant
Chinese hamster ovary cell lines with defects in
sterol feedback regulation (Ref. 52). The study of
sterol-resistant cells led to the identification of
the SREBP-cleavage-activating protein (SCAP)
(Ref. 52). The N-terminal domain of SCAP,
with its membrane-spanning segments, provides
an ER membrane anchor, whereas the
C-terminal domain projects into the cytosol
(Ref. 53). Co-immunoprecipitation experiments
demonstrated that the C-terminal domains of
SCAP and SREBP form a complex that is
required for SREBP proteolytic cleavage
(Refs 54, 55).
Cholesterol causes the SCAP–SREBP complex to

bind to an ER-retention protein through an
interaction involving the sterol-sensing domain
of SCAP (Ref. 56). Mutations within the sterol-
sensing domain disrupt SCAP’s capacity to
respond to sterols (Refs 57, 58). The identity of
the ER-retention factor was determined to be
insulin-induced gene-1 and -2 (INSIG), which
binds to the sterol-sensing domain of SCAP and
retains the SCAP–SREBP complex in the ER in
the presence of sterols (Refs 59, 60). Following a
decline in membrane cholesterol, the INSIGs
dissociate from SCAP, allowing the
SCAP–SREBP complex to become incorporated
into COPII vesicles for transport to the Golgi
(Refs 56, 57, 61, 62). Using recombinant COPII
proteins, it was shown that in sterol-depleted
cells, the COPII proteins bind to a specific six-
amino-acid sequence (MELADL) on SCAP
(Ref. 61). Together, these findings suggest that
membrane cholesterol blocks the binding of
COPII proteins to the MELADL sequence
through the interaction of INSIG with SCAP.
When membrane cholesterol levels decrease,
dissociation of INSIG from SCAP allows COPII
proteins to bind to MELADL and ultimately
transport SCAP–SREBP to theGolgi for activation.
To upregulate the transcription of numerous

genes responsible for lipid biosynthesis and
uptake, the SREBPs must be proteolytically
cleaved to their mature forms. A two-step
proteolytic process has been described in which
SREBPs are released from the ER membrane
(Refs 63, 64). The first cleavage by S1P separates

SREBP into two halves that remain bound to the
membrane (Ref. 64). Following cleavage of
SREBP within its luminal loop, a second
protease S2P cleaves the N-terminal fragment
within its membrane-spanning domain. It was
determined that SREBP cleavage by S1P and S2P
occurs in the Golgi and not as previously
thought in the ER, and it was concluded that
sterols regulate the cleavage of SREBPs by
modifying the ability of SCAP to transport
SREBPs to the Golgi, where they interact with
S1P or S2P (Refs 58, 65).

In addition to the classicERcholesterol-mediated
regulation of SREBP-2, the predominant form of
SREBP in the liver, SREBP-1c, is expressed and
activated through nuclear liver X receptor and
insulin signalling (Refs 66, 67, 68). Interestingly,
inhibition of endogenous cholesterol synthesis
results in an expected increase in SREBP-2
activation but a paradoxical decrease in liver
SREBP-1c (Refs 47, 69). It was determined that
levels of insulin reciprocally affect levels of INSIG-2,
which induces SREBP-1c activation (Refs 67, 68).
Together, regulation of the SREBPs differs
between isoforms and tissues by changes in lipid
and hormone signalling.

ER stress and SREBP activation
Although the accumulation of ER membrane
cholesterol induces ER stress and apoptosis
(Refs 25, 30), it has been reported that disruption
in ER function, leading to the activation of the
UPR, induces lipid dysregulation (Refs 70, 71, 72,
73, 74, 75). ER-stress-induced lipid dysregulation
was observed in studies with homocysteine (Hcy),
a thiol-containing amino acid reported to be an
independent risk factor for cardiovascular disease
(Refs 76, 77). In these studies, higher Hcy levels
upregulate ER-stress-response genes and SREBP
expression in human umbilical vein endothelial
cells (Refs 77, 78). Subsequently, it was determined
that Hcy-induced ER stress promotes hepatic
steatosis through the activation of SREBPs and
increased expression of genes essential for the
biosynthesis and uptake of cholesterol and
triglycerides (Ref. 73). Consistent with these
findings (Refs 77, 78), cultured human hepatocytes
responded to Hcy by increasing the expression of
UPR-responsive genes GRP78 and GADD153/
CHOP, and overexpression of GRP78 in vitro
inhibited ER-stress-induced SREBP activation
(Ref. 73). To verify the pathological mechanism in
vivo, diet-induced hyperhomocysteinaemia caused
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Figure 2. ER stress and SREBP activation. (See next page for legend.)
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hepaticaccumulationofcholesterolandtriglycerides
in wild-type C57 mice. The observed hepatic
steatosis was associated with ER stress as well as
activation of the UPR and SREBP pathways
(Ref. 73). Subsequent publications have confirmed
that ER stress is associated with activated SREBP
and lipid dysregulation (Refs 70, 71, 75, 79, 80).
Although the mechanism of ER-stress-induced

SREBP activation is yet to be finalised, current
literature suggests three potential mechanisms
by which ER stress induces SREBP activation:
caspase-induced SREBP cleavage, eIF2α-
phosphorylation-dependent downregulation of
INSIG and GRP78 dissociation from the
SCAP–SREBP complex (Fig. 2).
Experiments conducted to identify the cellular

proteases that activate SREBPs originally
demonstrated that caspase-3 (Ref. 81) and
caspase-7 (Ref. 82) can cleave both SREBP-1 and
SREBP-2 at a site different from S1P and that
proteolytic cleavage occurs in the presence of
cholesterol (Refs 81, 82, 83). Using a reporter
plasmid controlled by the sterol response
element (SRE) of the human LDLR, it was
determined that SRE-dependent gene expression
is increased during the initial stages of apoptosis
and can be blocked by caspase inhibitors
(Ref. 84). These findings suggest that caspase-3
or other caspases might function independently
of apoptotic cell death and have a role in
cellular lipid metabolism. Although ER stress
can lead to apoptosis and is associated with
SREBP activation (Refs 70, 71, 72, 73, 74, 75, 78,
80, 81, 82, 83, 84, 85, 86, 87), the effect of ER
stress on SREBP cleavage seems to occur
through the conventional S1P–S2P proteolytic
pathway (Refs 75, 80, 85).
Although ER-stress-induced SREBP-2 activation

occurs in the presence of sterols, it might occur
through the conventional pathway following

intracellular cholesterol depletion. Translational
inhibition following ER-stress-induced eIF2α
phosphorylation causes SREBP-2 activation and is
correlated with INSIG-1 degradation (Ref. 85). In
vivo deletion of PERK in mouse mammary
epithelium reduced the levels of SREBP1 gene
expression and showed a significant reduction in
the free fatty acid content of secreted milk (Ref. 80).
Further experimentation using mouse embryonic
fibroblasts deficient in PERK provided evidence
that SREBP activation and lipid accumulation are
dependent on PERK and eIF2α phosphorylation
and associated with reductions in INSIG-1 protein
expression (Ref. 80). Because INSIG-1 binds and
retains the SCAP–SREBP complex in the ER, it has
been suggested that inhibition of protein synthesis
during ER stress might decrease the levels of
INSIG-1 protein, allowing SCAP–SREBP to exit the
ER (Refs 80, 85). Alternatively, disruption of the
INSIG–SCAP interaction under conditions that
cause ER stress was also proposed as a mechanism
to explain these findings.

Recently, an additional mechanism to eIF2α-
phosphorylation-induced SREBP-2 activation
under ER stress conditions has been described
(Ref. 74). GRP78 was overexpressed in murine
liver to determine its effect on ER stress and
SREBP activation. Consistent with previous
studies showing that in vitro overexpression of
GRP78 could attenuate ER-stress-induced SREBP
activation and lipid accumulation (Ref. 73),
hepatic overexpression of GRP78 resulted in
decreased markers of ER stress, SREBP-1 and
SREBP-2 target gene expression, as well as
hepatic lipid accumulation in ob/ob obese
mutant mice (Ref. 74). In addition to the obvious
role of GRP78 in reducing ER stress, evidence for
a direct effect on SREBP was presented (Fig. 2).
Experiments showed that GRP78 associates with
the SREBP-1 precursor complex and suggested

Figure 2. ER stress and SREBP activation. (See previous page for figure.) ER-stress-induced activation of
SREBP can occur in cells by three potential mechanisms. (a) Phosphorylation of eIF2α can subsequently
decrease INSIG1 protein levels. This allows the SCAP–SREBP complex to move to the Golgi where SREBP
is activated by the S1P and S2P proteases. (b) Following ER stress, GRP78 dissociates from the
SCAP–SREBP complex, which moves to the Golgi, where it is subsequently activated following its
cleavage by S1P and S2P. (c) Activation of specific caspases can lead to direct cleavage of the SREBPs
from the ER membrane. Abbreviations: bHLH-Zip, basic helix–loop–helix–zipper domain; eIF2, eukaryotic
translation initiation factor 2; ER, endoplasmic reticulum; GRP78, glucose-related protein 78; INSIG, insulin-
induced gene; IRE1, type-I ER transmembrane protein kinase; PERK, protein kinase receptor-like ER
kinase; Reg, regulatory domain; S1P and S2P, site-1 and site-2 proteases; SCAP, SREBP-cleavage
activating protein; SRE, sterol regulatory element; SREBP, sterol regulatory element binding protein; WD,
WD-40 repeat domain.
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that GRP78might interact with SCAPand retain it
in the ER under non-ER stress conditions (Ref. 74).
Thismechanism is comparable to the conventional
role of INSIG binding to SCAP and anchoring
SREBP in the ER. Thus, GRP78 might sequester
the SREBPs in the ER through interaction with its
regulatory complex in a manner similar to its
regulation of other ER membrane proteins such
as ATF6 (Ref. 74).
Together, these experiments provide evidence

that ER-stress-induced SREBP activation
probably constitutes several mechanisms. ER
stress causes eIF2α-phosphorylation-induced
translation inhibition, INSIG-1 degradation and
release of the SCAP–SREBP complex from the
ER (Ref. 85). Experiments that overexpressed the
ER chaperone GRP78 observed a decrease in ER-
stress-induced SREBP activation, suggesting a
possible link between GRP78 and the
SCAP–SREBP complex (Refs 73, 74). Future
experiments will be necessary to directly
examine the link between GRP78 and ER-stress-
induced SREBP activation.

SREBP dysregulation and disease
Various pathologies have been associated with
differential regulation of the SREBP pathway.
Although transgenic mice expressing a
constitutive active form of SREBP-1 and SREBP-2
developed hepatic steatosis with hepatocyte
cholesterol and triglyceride accumulation,
peripheral white adipose tissue decreased with
symptoms associated with lipodystrophy
(Refs 51, 88). In contrast to the in vivo
overexpression of SREBP-1a in mouse adipose
tissue associated with adipocyte hypertrophy,
increased fatty acid secretion and hepatic steatosis
(Ref. 89), the overexpression of the SREBP-1c
isoform in mouse adipose tissue inhibits
adipocyte differentiation with a resulting
phenotype that includes lipodystrophy, diabetes
and hepatic steatosis (Ref. 90). As described
above, diet-induced hyperhomocysteinaemia
caused ER-stress-induced SREBP activation and
hepatic steatosis (Ref. 73). Attenuation of ER
stress by overexpression of GRP78 blocked SREBP
activation and decreased the expression of genes
responsible for cholesterol and fatty acid
biosynthesis (Refs 73, 74). Acute pharmacological
renal toxicity is associated with proximal tubule
lipid accumulation and has been extensively
studied in response to ischaemia and cytotoxicity
(Refs 91, 92, 93, 94, 95). Interestingly, common to

these studies is the increase in the expression of
enzymes and receptors responsible for the
biosynthesis and uptake of cholesterol and
triglycerides (Refs 91, 92, 93, 94, 95). Because the
accumulation of lipids following cytotoxic stress
has been suggested to provide an advantage to
cells by protecting them from further injury
(Refs 96, 97, 98), it will be important in future
experiments to determine whether the activation
of SREBP protects renal tubule cells from
subsequent cytotoxic injury. The importance of
the UPR in protecting cells from toxicity-induced
renal cell damage has been reported (Ref. 99).
Mutant GRP78 lacking an ER retention signal was
used to inhibit the usual increase in GRP78
expression following ER stress. Following chronic
protein overload-induced nephrotoxicity, mice
expressing the mutant GRP78 suffered tubular
lesions and cell apoptosis (Ref. 99). This study
demonstrates the importance of the UPR in the
normal physiological maintenance of renal cells
challenged with toxic injury. Pharmacologically
induced ER stress causes injury to renal proximal
tubules resembling acute tubular necrosis induced
in humans by ischaemia, infection or toxins. The
expression of ER chaperones in proximal tubules
was found to be dramatically increased following
treatment (Ref. 100). This model is useful to study
acute renal toxicity and future experiments should
determine whether upregulation of ER
chaperones is linked to SREBP activation and
lipid accumulation. Atherosclerosis is a classic
pathology that is characterised by higher
intracellular lipid accumulation in arterial walls.
Although it is well accepted that macrophages
resident in atherosclerotic lesions express
scavenger receptors that promote the
internalisation of modified lipoproteins (Ref. 101),
it has also been found that scavenger receptor
knockout mouse models continue to develop
atherosclerosis with pronounced foam cell
formation (Ref. 102). It is unknown whether
macrophages undergoing ER stress activate
SREBP and promote lipid accumulation, which
could offer an additional mechanism to explain
macrophage foam cell formation and plaque
progression. The relevant steps in the maturation
of macrophages from circulating monocytes to
lesion-resident foam cells include binding and
migration, differentiation and lipid accumulation.
It has recently been shown that SREBP activation
is important during differentiation of monocytes
to macrophages (Ref. 103). During cell
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differentiation, lipid regulation is required for the
development of cellular membranes and
organelles (Ref. 103) and SREBP has been
implicated in vascular endothelial growth factor-
induced angiogenesis (Ref. 104) and required for
efficient cellular proliferation and migration
(Ref. 104). In addition, increased SREBP
expression has been reported in atherosclerotic
lesions and associated with increased expression
and secretion of the pro-inflammatory cytokine
IL-8 (Ref. 105). Although it is not known whether
these findings are related to ER stress, together
they represent mechanisms of SREBP activation
that could potentially contribute to atherosclerotic
lesion development.

Future directions
Important questions remain to be answered
pertaining to the mechanism of ER-stress-induced
SREBP activation and its role in clinical
pathologies characterised by lipid accumulation.
These questions include: (1) How does ER
chaperone expression influence SREBP activation?
(2) How does general protein translation
inhibition affect the SREBP–SCAP–INSIG
complex? (3) Is ER-stress-induced SREBP
activation a normal physiological prosurvival
cellular pathway or activator of cell death? (4)
Does ER-stress-induced SREBP activation
contribute to human disease?
In vivo overexpression of GRP78 has been

shown to decrease markers of ER stress, SREBP
activation and lipid accumulation (Refs 73, 74).
In addition, coimmunoprecipitation experiments
found that GRP78 binds to the SREBP–
SCAP–INSIG complex but could not identify a
specific binding partner (Ref. 74). A hypothesis
has been presented in which GRP78 regulates
SREBP in a similar manner to ATF6. It was
suggested that under ER stress conditions,
GRP78 dissociates from SREBP or its regulatory
molecules SCAP and INSIG and allows the
SCAP–SREBP complex to transport to the Golgi
for S1P and S2P activation (Ref. 74).
The evidence that ER stress is an activator of the

SREBPs is overwhelming. Future studieswill allow
for a better understanding of the underlying
mechanisms by which ER stress and SREBP
activation could contribute to the development
and progression of cardiovascular disease,
obesity, chronic kidney disease and diabetes.
Based on these important findings, novel
therapeutic strategies that attenuate ER-stress-

induced SREBP activation could prevent or
reduce the risk of these human diseases and their
complications.
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Further reading, resources and contacts

Reviews

There are currently several excellent reviews that address different aspects of ER stress, UPR and lipid
dysregulation:

Lee, A.H. and Glimcher, L.H. (2009) Intersection of the unfolded protein response and hepatic lipid metabolism.
Cellular and Molecular Life Sciences 66, 2835-2850

Ferré, P. and Foufelle, F. (2010) Hepatic steatosis: a role for de novo lipogenesis and the transcription factor
SREBP-1c. Diabetes, Obesity and Metabolism 12(Suppl 2), 83-92

Marciniak, S.J. and Ron, D. (2006) Endoplasmic reticulum stress signaling in disease. Physiological Reviews 86,
1133-1149

Brown, M.S. and Goldstein, J.L. (2009) Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL.
Journal of Lipid Research S15-S27

Books

Michael Conn P. (ed.) (in press) The unfolded protein response and cellular stress. Methods in Enzymology.
Academic Press.

Websites

National InstitutesofHealth:OfficeofRareDiseasesResearchisahighly informativesiteprovidinginformationabout
basic information, researchandclinical trialsandresearchresourceswithafocusonrarehumandiseases:
http://rarediseases.info.nih.gov/

Features associated with this article

Figures
Figure 1. ER stress and the UPR.
Figure 2. ER stress and SREBP activation.
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