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Vorticity filaments in two-dimensional
turbulence: creation, stability and effect

By N. K.-R. K E V L A H A N AND M. F A R G E
LMD-CNRS, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France

(Received 6 February 1997)

Vorticity filaments† are characteristic structures of two-dimensional turbulence. The
formation, persistence and effect of vorticity filaments are examined using a high-
resolution direct numerical simulation (DNS) of the merging of two positive Gaussian
vortices pushed together by a weaker negative vortex. Many intense spiral vorticity
filaments are created during this interaction and it is shown using a wavelet packet
decomposition that, as has been suggested, the coherent vortex stabilizes the filaments.
This result is confirmed by a linear stability analysis at the edge of the vortex and
by a calculation of the straining induced by the spiral structure of the filament in the
vortex core. The time-averaged energy spectra for simulations using hyper-viscosity
and Newtonian viscosity have slopes of −3 and −4 respectively. Apart from a
much higher effective Reynolds number (which accounts for the difference in energy
spectra), the hyper-viscous simulation has the same dynamics as the Newtonian
viscosity simulation. A wavelet packet decomposition of the hyper-viscous simulation
reveals that after the merger the energy spectra of the filamentary and coherent parts
of the vorticity field have slopes of −2 and −6 respectively. An asymptotic analysis
and DNS for weak external strain shows that a circular filament at a distance R from
the vortex centre always reduces the deformation of a Lamb’s (Gaussian) vortex in
the region r > R. In the region r < R the deformation is also reduced provided
the filament is intense and is in the vortex core, otherwise the filament may slightly
increase the deformation. The results presented here should be useful for modelling
the coherent and incoherent parts of two-dimensional turbulent flows.

1. Introduction
High-resolution direct numerical simulations (DNS) have shown that two-

dimensional turbulent flows always produce coherent vortices from an initially unor-
ganized vorticity field (e.g. Fornberg 1977; Basdevant et al. 1981; McWilliams 1984).
However, once a sufficient number of vortices have formed the main interactions
are vortex mergers and pairings (i.e. the formation of a dipolar structure made up
of opposite-signed vortices). The strong shearing associated with the vortex mergers
produces intense filaments of vorticity; however these filaments, unlike the initial
unorganized vorticity field, are usually stable and do not roll up to create new vor-
tices via the Kelvin–Helmholtz instability. Vorticity filaments are thus a characteristic
feature of fully developed two-dimensional turbulent flows.

† We use the term ‘filament’ to refer exclusively to the thread-like structures observed in
two-dimensional turbulence; they should not be confused with the vortex tubes of three-dimensional
turbulence. This terminology is discussed in Appendix A.
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50 N. K.-R. Kevlahan and M. Farge

In fact, the filaments created during vortex mergers must be stabilized in order
to be consistent with the observed dynamics of two-dimensional turbulence. If the
filaments were unstable they would roll up and create large numbers of new smaller
vortices. The process of merger would then continue at the smaller scale of the new
vortices, and with the same result: more, even smaller, vortices would be created
at each generation ‘and so on to viscosity’. However, we know that energy is not
(on average) transferred to smaller scales in two-dimensional turbulence, and that
the size of vortices increases and their number decreases with time. Therefore the
filaments must be externally stabilized so they do not create new vortices. The fact
that filaments are always associated with coherent vortices (since they are created
during the merger or tearing of such vortices) suggests that it is the coherent vortices
which stabilize the filaments.

In order to understand two-dimensional turbulence it is therefore important to
know precisely how the coherent vortices stabilize the filaments. Dritschel (1989)
has shown that a sufficiently strong adverse shear can stabilize a two-dimensional
vortex strip, and Dritschel et al. (1991) showed that straining can also stabilize a two-
dimensional vortex strip. These results suggest possible mechanisms for stabilizing the
filaments, but it is not clear which mechanisms are actually effective in real flows, nor
where and how they are effective. Finally, although it is reasonable to suppose that the
coherent vortices are the source of the stabilization this has not been demonstrated
conclusively.

Even if the filaments are stable, they may still have an effect on the dynamics or
spectral properties of the flow. For example, Gilbert (1988) showed that a spiral
vorticity filament can produce a power-law energy spectrum with non-integer slopes.
A spiral vorticity filament may even produce an energy spectrum very similar to that
measured in two-dimensional turbulent flows (Gilbert 1988; Vassilicos & Hunt 1991).
Perhaps it is the vorticity filaments that determine the slope of the turbulence energy
spectrum. At larger times the filaments formed during a vortex merger tend to
be distributed as a sequence of approximately circular rings around the coherent
vortex. Does this intense shear layer at the edge of the coherent vortex shield it
from the strain field of the neighbouring vortices, or does it enhance this strain? If
such shielding (or amplification) could occur it would increase (decrease) the critical
distance for vortex merger (Dritschel & Waugh 1992) and significantly affect the
dynamics.

In order to successfully model a two-dimensional turbulent flow it is essential to
understand the role of vorticity filaments. If the filaments remain passive (apart from
viscous decay) they could be modelled quite simply. Should the model retain the
filamentary geometry at all, or merely replace it by a Gaussian noise with the same
energy spectrum? If the filaments have no effect on the flow dynamics this may be a
good model, but if the filaments change the effect of external strain on the coherent
vortices a more sophisticated model may be required.

The questions raised here are investigated by analysing a high-resolution DNS of
the merger of two identical positive Gaussian vortices pushed together by a smaller
negative vortex. This is a very strong interaction that produces many intense vorticity
filaments. Such mergers are the main interactions of fully developed two-dimensional
turbulence and should contain its basic dynamics and kinematics. The results of
the simulation are presented in §2, and quantities such as the geometry of the flow
and evolution of the Fourier energy spectrum are analysed. In addition, simulations
are done using both hyper-viscosity and Newtonian viscosity, and the results are
compared in order to determine whether hyper-viscosity introduces any spurious
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effects (as has been suggested by Farge, Holschneider & Colonna 1990; Jiménez 1994
and Yao, Zabusky & Dritschel 1995).

The stabilizing effect of the coherent vortices on the filaments is then demonstrated
in section §3 using a wavelet packet decomposition of the vorticity field introduced by
Farge et al. (1992) and further DNS. The stabilizing effect of the coherent vortices is
explained analytically using both a linear stability analysis based on that of Dritschel
(1989), and a calculation of spiral straining in the vortex core.

Finally, in §4 the effect of vorticity filaments on the dynamics of a coherent vortex
in the weak strain field produced by other distant vortices is examined. We use the
asymptotic approach introduced by Ting & Tung (1965) and developed by Jiménez,
Moffatt & Vasco (1996) to calculate the deformation of a Gaussian vortex surrounded
by a circular vorticity filament, and compare it to the deformation of the vortex alone.
This calculation shows that in certain cases the deformation can be reduced by the
presence of the vorticity filament, and in others the deformation may be increased
slightly.

The results are summarized in §5 and the implications for modelling two-dimensional
turbulence are noted. In particular, the possible contribution of vorticity filaments
to the overall properties of a two-dimensional turbulent flow are discussed. These
investigations should give a fairly complete picture of the creation, stability and effect
of vorticity filaments in two-dimensional turbulence.

2. Simulation of vortex merger
2.1. Initial conditions

Vorticity filaments form in two-dimensional turbulence during the merger of coherent
vortices due to the strong shear forces that develop during the interaction. These
forces pull some of the vorticity out into long, narrow strips of intense vorticity which
are usually spiral in shape. It is these narrow strips of intense vorticity that we mean
when referring to ‘vorticity filaments’. In order to study the formation and subsequent
evolution of vorticity filaments we will simplify the turbulent flow to a particular
system of three vortices in a strong interaction that leads to a fast vortex merging.
This is a good approximation to the situation in fully developed two-dimensional
turbulence when the coherent vortices have emerged.

The particular initial condition we choose is a triangular arrangement of two
positive vortices, π units apart, and one negative vortex, π/(2

√
2) above the right-

hand vortex, as shown in figure 1. The vortices all have Gaussian profiles ω(r, 0) =
Γ/(πr2

0) exp(−r2/r2
0), with the circulation Γ = 1 for the positive vortices and Γ =

−1/2 for the negative vortex, and the vortex radius r0 = 1/π. Inviscid point vortices

in this arrangement collapse to the same point in a finite time 3/8π3
√

2 (Novikov
& Sedov 1979; Aref 1979; Marchioro & Pulvirenti 1994, pp. 139–140) and thus this
arrangement ensures a rapid merger.

These initial conditions are quite specific, but the general dynamics of the interaction
should not depend critically on the precise arrangement of the vortices. In fully
developed two-dimensional turbulent flows the chance of vortex merging increases
with the density of vortices; here with only three vortices we need this specific
configuration to ensure a rapid merger. The negative vortex effectively replaces
the mean field which pushes vortices together and induces merging. In fact the
configuration we have chosen should be fairly realistic since in practice mergers are
often caused by a fast-moving dipole running into another vortex – this is modelled
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Figure 1. Vortex merger in physical space: —, 10 contours of vorticity equally spaced between
(π/100, π); – – –, 10 equally spaced contours between (−π/100,−π). Time is measured in terms of
the initial turn-over time of one of the positive vortices. (a) Newtonian viscosity simulation, (b)
hyper-viscous p = 8 simulation.

by the three-vortex initial condition. Recent work by Dritschel & Zabusky (1996)
has also shown that the three-vortex interaction (where one vortex is of the opposite
sign) is the only significant interaction of a dilute distribution of vortices on a sphere.
Indeed, figure 2(a) of Dritschel & Zabusky (1996) shows an interaction very similar
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Resolution Viscosity ReΓ ∆t Maximum time

2562 ν = 1× 10−4 104 1.25× 10−3 20
2562 ν16 = 5.9× 10−30 — 1.25× 10−3 75
10242 ν = 5× 10−5 2× 104 6.25× 10−4 60
10242 ν16 = 1.2× 10−39 — 6.25× 10−4 60

Table 1. Parameters for the DNS performed. The Reynolds number ReΓ = Γ/ν where Γ is the
initial circulation of a positive vortex, and the times have been normalized by the initial turn-over
time T of a positive vortex based on the initial maximum vorticity ω0 (T = 4π/ω0 = 4). ∆t is
the time step. Note that Reynolds numbers cannot be accurately defined for the hyper-viscous
simulations.

to the one considered here. For all the above reasons, the three-vortex interaction is
a good choice. Rapid collapse interactions of this type have been studied recently by
Vosbeek et al. (1997).

The vorticity

ω = −∇2ψ, (2.1)

where ψ is the stream function, is found by numerically solving the two-dimensional
vorticity equation

∂ω

∂t
− J(ψ,ω) = ν∇2ω, (2.2)

where ν is the kinematic (Newtonian) viscosity and the Jacobian J(ψ,ω) is defined as

J(ψ,ω) =
∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x
. (2.3)

The equations are solved using a pseudo-spectral code with an Adams–Bashforth time
step developed by Basdevant (Basdevant et al. 1981). In addition to the usual vorticity
equation (2.2) we also made simulations using hyper-viscosity where the dissipation
term ν∇2ω is replaced by a hyper-dissipation term −ν2p∇2pω (first proposed by
Basdevant et al. 1981). Hyper-dissipation compresses the dissipation range into a
smaller range of scales and thus increases the inertial range thereby approximating a
higher-Reynolds-number flow. By doing simulations using hyper-viscous dissipation
we can simulate some aspects of very high-Reynolds-number flows, but we will
compare this simulation with the Newtonian viscosity simulations to ensure that no
important spurious effects are introduced. The simulations performed are summarized
in table 1. The results presented in the following sections are all obtained from the
high-resolution 10242 simulations.

2.2. Results

2.2.1. Physical space representation

The two positive vortices merge quickly, creating tightly wrapped spirals of intense
vorticity (the filaments). The negative vortex is deformed, but remains relatively
passive and does not merge with the two positive vortices (in contrast to the case
of inviscid point vortices discussed by Marchioro & Pulvirenti 1994 where all three
vortices reach the same point after a finite time). However, a small amount of negative
vorticity is pulled out and wrapped around the two positive vortices while they are
merging. This leads to a very large vorticity gradient in the direction perpendicular to
the filaments. In fact, the filaments are very smooth along their axes of elongation and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

97
00

61
13

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112097006113


54 N. K.-R. Kevlahan and M. Farge

quasi-singular in the perpendicular direction. The portion of the spiral in the vortex
core rapidly blends into the Gaussian vorticity profile, but well-defined filaments
persist at the edge of the new coherent vortex. The ‘long time’ configuration is an
approximately Gaussian coherent vortex to which vorticity bumps or ‘kinks’ have
been added, surrounded by a ring of approximately circular filaments at the edge of
the vortex core. Note that some vorticity is ejected as a filament far from the vortex
core, but most filaments are tightly wrapped around the core. This is due to the fact
that in this configuration there are no external vortices present which could pull the
vorticity filaments away from the region where they formed. The merger is shown for
Newtonian viscosity in figure 1(a) and for hyper-viscosity in figure 1(b).

The new vortex contains roughly half the enstrophy of the initial positive vortices,
the rest having been lost to filaments and dissipation. This loss is much higher than
the range observed by Waugh (1992) in contour surgery simulations of symmetric
vortex merger in the absence of external forcing. It appears that the presence of the
negative vortex reduces the efficiency of the merger (the proportion of enstrophy in
the new vortex compared to the total enstrophy of the initial vortices) and slows the
increase in the length scale of the new vortex (in this case there is virtually no increase
in the length scale of the coherent vortex). In fully turbulent flows the interactions
generally involve several vortices, and thus the efficiency is likely to be closer to that
observed here than to that observed by Waugh (1992).

A cut through the vortices (figure 2) shows that the filaments in the core decay
quickly due to dissipation, but leave ‘kinks’ in the vorticity profile. After the merger
is complete and the core filaments have decayed the equilibrium profile is the same
Gaussian as the initial positive vortices, with the kinks superimposed, and surrounded
by a ring of weak vorticity filaments. The negative vortex, on the other hand, has had
the weaker vorticity at its edge stripped away, which has steepened its vorticity profile
(vorticity stripping has been investigated by Mariotti, Legras & Dritschel 1994). The
vorticity filaments never show any signs of developing instabilities.

A comparison of the Newtonian viscosity and hyper-viscous vorticity contours
(figures 1a and b) and cuts (figures 2a and b) shows that, although the hyper-viscous
simulations produce stronger gradients that decay more slowly, the shape of the
vortices and the position of vorticity filaments are identical in both simulations. The
only unphysical feature of the hyper-viscous simulations is that the maximum vorticity
of the filaments slightly surpasses the initial maximum (by about 2%) for a short
period of time; this is a well-known problem (Jiménez 1994). From this comparison
it is seems likely that the hyper-viscous simulation is a good approximation to the
true high-Reynolds-number flow (e.g. stronger gradients and slower decay). Thus we
should be able to use the hyper-viscous simulations as a guide to the behaviour of the
equivalent very high-Reynolds-number flow. This is important because many features
of two-dimensional turbulence (such as scaling in the energy spectrum) only become
clear at higher Reynolds numbers.

Our results contrast with those of Yao et al. (1995) who investigated the effect
of hyper-dissipation on the simulation of the interaction of two positive vortices of
unequal sizes. Yao et al. found that hyper-dissipation caused a large overshoot of
the maximum vorticity of up to 30%, although the agreement between Newtonian
viscosity, hyper-viscosity and contour surgery simulations was good until dissipation
became important. The hyper-dissipation simulation was also more smoothing than
the contour surgery simulation, but in this case it is not clear which simulation
is actually closest to true high-Reynolds-number dynamics. There are a number
of differences that could explain why we find that hyper-dissipation produces no
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Structure Singularity 2p

Point vortex ω 1
Circular ring (zero width) ω 2
Circular ring (rectangular cross-section) dω/dr 4
Circular ring (triangular cross-section) d2ω/dr2 6

Table 2. Energy spectra E(k) ∝ k−2p at small scales associated with various types of singular
vortical structures (E(k) ∝ ω̂(k)2/k).

important spurious effects. The first, and most important, difference is that we
consider vortices with a smooth Gaussian profile, while Yao et al. consider vortex
patches with a completely flat centre and high-gradient sides. The Gaussian vortex
is a solution of the Navier–Stokes equations, while the vortex patch is clearly not.
The initial condition chosen by Yao et al. is thus not well-suited to a simulation
of the Navier–Stokes equations, but is appropriate for the contour surgery method.
Secondly, we consider the interactions of vortices of the same size. Thirdly, we use
a ∇16 hyper-dissipation operator, while Yao et al. use a ∇4 operator. Finally, our
high-resolution simulation completely resolves the fine-scale structure of the flow,
which may not be the case for the 5122 simulation of Yao et al.

2.2.2. Fourier space representation

High-resolution DNS of quasi-equilibrium two-dimensional turbulence usually has
an energy spectrum† of about E(k) ∝ k−3.5 in the inertial range (Legras, Santangelo
& Benzi 1988), but depending on the forcing the slope may be anywhere in the range
(−3,−6). The slope −3.5 is mid-way between the theoretical value of −4 proposed
by Saffman (1971) assuming that the spectrum is dominated by discontinuities of
vorticity, and the value of −3 proposed by Kraichnan (1967) and Batchelor (1969)
for statistically homogeneous and isotropic two-dimensional turbulence based on the
notion of a local cascade of enstrophy from the forcing scale to the dissipation scale.
By examining the energy spectrum of the vortex merger and comparing it to the
physical space structure we will try to understand the reasons for this discrepancy,
although we are aware that we are not actually dealing with quasi-equilibrium
turbulence.

Since vorticity filaments are a characteristic feature of the interaction it is useful to
recall the energy spectra associated with various simple filamentary structures. The
energy spectrum slopes as the scale goes to zero of various types of simple singular
vortex structures are shown in table 2. At coarser scales the Fourier transform will
‘see’ a more singular structure, e.g. the energy spectrum of a ring of finite width has
slopes of −4, −2 and −1 at successively larger scales. As Vassilicos & Hunt (1991)
pointed out, a non-trivial geometry (e.g. an accumulating spiral with a Kolmogorov
capacity D′K > 1) can make a structure effectively more singular and thus decrease
the slope of the energy spectrum.

Gilbert (1988) showed that the energy spectrum of the spiral created when a weak
patch of vorticity winds around a strong vortex has a non-integer slope given by

E(k) ∝ k−4+(s−1)/(s+1), (2.4)

† One should be very cautious when making a statistical interpretation of energy spectra obtained
from numerical experiments on turbulent flows (see Appendix B).
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Figure 2. Cut through the vorticity field, – – – is the original Gaussian vorticity profile.
(a) Newtonian viscosity, (b) hyper-viscosity.

where πΓ/r−s is the angular velocity of the vortex of strength Γ . For a point vortex,
or the far field of a Gaussian vortex, s = 2 and thus E(k) ∝ k−3.67, similar to values
measured in DNS. Thus Gilbert proposed that spiral vorticity filaments may provide
a bridge between the theories of Saffman and Batchelor–Kraichnan.

In this section we examine the evolution of the energy spectrum of the three-vortex
interaction to see how the results compare to the predictions of Gilbert (1988) and
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to the results from fully turbulent DNS. When comparing the results here with the
predictions of Gilbert (1988) it is important to bear in mind that he assumed that
the spiral vorticity was weak (and therefore passive), and that there is no external
strain. In our case, the merging vortices are of equal strength, and the negative vortex
provides an external strain that pushes the positive vortices together.

The Fourier energy spectrum at various times for the hyper-viscous and Newtonian
viscosity simulations are shown in figure 3 and the evolution of the slope 2p of the
energy spectrum E(k) ∝ k−2p is shown in figure 4. Two power-law ranges develop
early on in the interaction: a large well-defined relatively shallow slope at intermediate
scales, and a smaller less well-defined steeper one at smaller scales. Both slopes quickly
decrease to a minimum at the time of merger (about t = 5.3) and then slowly increase
again. The hyper-viscous simulation, as expected, has shallower slopes (associated
with stronger gradients) and decays very slowly to a quasi-equilibrium of about −3.
The value of −3 is the limit of Gilbert’s result (2.4) for vortices with very strong
shear (s � 1) or space-filling filaments. This may mean that our forced interaction
is equivalent to the passive wrapping of a vortex patch around a vortex with very
strong shear. In fact we observe that half of the enstrophy of the two positive vortices
is transformed from coherent structures to vorticity filaments.

We have checked that these spectral results are not specific to this particular
merger interaction by examining the merging of two unequal vortices of the same
sign. The larger vortex has the size R = 1, the smaller has the size R = 0.7, they
are initially separated by a distance r = 2.2 and they have equal maximum vorticity.
This interaction also develops an intense spiral in physical space and a power-law
energy spectrum: the slope of the energy spectrum becomes as shallow as −1.5 at
the time of merger, before reaching the quasi-equilibrium value of −3. Note that
the slope −1.5 indicates that the filaments have a non-trivial accumulating spiral
structure and that they dominate the energy spectrum (see Vassilicos & Hunt 1991
for a discussion of accumulating spiral structures). These results suggest that the
generation of power-law energy spectra and accumulating spiral structures is a fairly
general characteristic of vortex merger in two dimensions. In particular, the long-term
k−3 spectrum appears to be generic.

It would be useful to directly calculate the energy spectrum due to the filaments
alone, to see if there is any evidence of non-trivial (i.e. the wrapping becomes infinitely
tight, or ‘accumulating’, at the centre) spiral structure. We have therefore divided
the hyper-viscous vorticity field at t = 10 into filamentary and coherent vortex parts
using a wavelet packet algorithm developed by Farge et al. (1992). We first project the
vorticity field onto a wavelet packet basis and plot the cumulative energy contained
in the wavelet packet modes (see figure 5a). The division between the filamentary and
coherent vortex parts of the flow occurs at the second change in slope on the plot
in figure 5(a), the corresponding percentage is found by fitting straight lines to the
straight sections and finding the intersection. This calculation shows that the largest
31 modes containing 83% of the enstrophy correspond to the coherent vortices, while
the remaining 1 048 545 modes which contain 17% of the enstrophy correspond to
the filamentary part of the vorticity field. It was checked that 83% is enough to
just separate the filamentary and coherent parts of the flow. Figure 5(b–d) shows
cross-sections of the total vorticity field, the coherent part and the filamentary part.
The results of this decomposition are presented in figure 6 and show that this method
clearly separates spiral filaments from the vortices (no filamentary structure remains
in the vortex core).

Figure 6(c) shows that the filaments have an intermediate-range energy spectrum
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Figure 3. Fourier energy spectrum of the simulations. (a) Newtonian viscosity, (b) hyper-viscosity.

with a power law like k−2, while the vortical part has a power law like k−6 which
confirms previous observations (Farge et al. 1992). Note that the power-law range of
the filamentary part extends to large scales, while the power-law range of the coherent
part extends to small scales. This indicates that both filamentary and coherent parts
are multi-scale and cannot be separated by a simple Fourier high-pass filter. The
small difference between the spectra of the total field and that of the filamentary
part alone indicates that the filaments control the overall spectrum of the flow in the
intermediate and small scales.

Figure 6(g) shows that at t = 30 all three fields have an energy spectrum like k−3 at
intermediate scales. At the same time figure 2(b) shows that the spiky filaments have
decayed to kinks, and thus it is the combination of the kinks and the Gaussian core
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Figure 4. Evolution of energy spectrum slope 2p; the solid and dashed lines indicate slopes in the
well-defined intermediate-scale and poorly defined small-scale ranges respectively. (a) Newtonian
viscosity simulation, (b) hyper-viscosity simulation.

which produce the k−3 spectrum. This may be understood by noting that the kinks
are discontinuities in the slope of the vorticity which gives a k−6 spectrum at small
scales and a k−4 spectrum at intermediate scales; the accumulating spiral structure can
then reduce this slope further from −4 to −3. It is interesting to note that although
all filaments were removed from the coherent field at t = 10, by t = 30 enough
irregularities had formed to change the slope of the energy spectrum from −6 to −3.
This suggests that the −3 slope is an extremely robust property of two-dimensional
vortical flows.

A good indication of the energy spectrum of a fully turbulent flow may be obtained
by averaging the energy spectrum of the merger over the period of the interaction.
This reproduces the spectrum of a turbulent flow containing many merging events at
various stages. The plots of the time-averaged energy spectra for the two simulations
are shown in figure 7. The hyper-viscous simulation has a large power-law range
of about k−3, while the Newtonian viscosity simulation has a smaller power-law
range of k−4. These time-averaged spectra are compatible with results from DNS of
two-dimensional turbulence which suggests that the complete merging interaction is
a fundamental interaction of two-dimensional turbulence.

Recently Nielsen et al. (1996) did a similar simultaneous analysis of a vortex merger
in physical and Fourier space. They considered the merger of two identical vortices
using hyper-viscous DNS and found that the interaction creates an energy spectrum
with a slope of about −4. This slope is slightly steeper than the slope of −2 to −3
we have found, probably because the three-vortex interaction creates much stronger
gradients and tighter spiral wrapping of vorticity. Nielsen et al. also attempted to
separate out the structures responsible for this spectrum by taking a Fourier high-
pass filter of the field. They concluded that the −4 slope is associated with the
“distorted vortex boundary”. As noted earlier, a high-pass filter cannot accurately
or completely separate the two parts of the field since they are both multi-scale.
However, in general our results agree with those of Nielsen et al. since we find that
the power-law intermediate-range energy spectrum of the total field is associated
with spiral filaments of intense vorticity. Our analysis definitely confirms the main
result of Nielsen et al. that a collection of coherent structures of all sizes is not
required to generate an inertial-range energy spectrum typical of two-dimensional
turbulence. Farge & Holschneider (1991) have proposed a different model for the
vortices of two-dimensional turbulence: a cusp, which is also able to reproduce a
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Figure 5. (a) Cumulative energy contained in the wavelet packet coefficients at t = 10. The coherent
vortices are represented by those modes below the second kink, and the remaining modes define
the filaments (straight lines have been fitted). (b) Cross-section of the vorticity field at t = 10,
x/π = 1. (c) Coherent part of the vorticity field, note that filaments have been removed completely.
(d) Filamentary part of the vorticity field.

power-law energy spectrum without resorting to a hierarchy of vortices of different
sizes.

3. Stability of vorticity filaments
In the previous Section we saw that the vorticity filaments created during the merg-

ing interaction show no signs of instability, neither in the hyper-viscous simulation,
nor in the Newtonian viscosity simulation. Dritschel (1989) has suggested that the
coherent vortices may stabilize the vorticity filaments in two-dimensional turbulence.
We now test this theory directly by separating the vorticity field into filamentary and
coherent parts as described in §2.2.2 and restarting the simulation with these three
fields (total, coherent, filamentary) as separate initial conditions.

Figure 6 clearly demonstrates that it is the coherent vortex that stabilizes the
filaments: the total field shows no signs of instability; however, when the vorticity
field contains only filaments they are quickly destabilized by the Kelvin–Helmholtz
instability and form many new coherent vortices. It is interesting to note that
by t = 30 all three fields have developed the same energy spectrum: the cascade
spectrum k−3. Thus the filaments alone have created a kind of two-dimensional
turbulence!
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Figure 6. Dynamical analysis of coherent structures and incoherent background flow. (a) Total
vorticity at t = 10 computed with a resolution 10242. (b) Vorticity corresponding to the coherent
vortices alone at t = 10. They are made up of 31 strong wavelet packet coefficients which contain
83% of the total enstrophy. (c) Energy spectra at t = 10: —, the total energy spectrum; – – –, the
coherent vortices energy spectrum; – · –, the filament energy spectrum. (d) Vorticity corresponding
to the filaments alone at t = 10. They are made up of 1 048 545 weak wavelet packet coefficients
which contain 17% of the total enstrophy. (e) Integration of the total vorticity up to t = 30. (f)
Integration of the coherent vortices alone up to t = 30. (g) Energy spectra at t = 30: —, the total
energy spectrum; – – –, the coherent vortices energy spectrum; – · –, the filament energy spectrum.
(h) Integration of the filaments alone up to t = 30.
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Figure 7. Time-averaged energy spectra: —, hyper-viscosity simulation;
– – –, Newtonian viscosity simulation.

We have demonstrated that the vortex stabilizes the filaments, but we have not
yet explained how it does it. Two mechanisms have been suggested: adverse shear
(Dritschel 1989) and straining (Dritschel et al. 1991). We will first consider the adverse
shear mechanism.

3.1. Adverse shear

Following Dritschel’s (1989) approach we do a linear stability analysis of a circular
strip of vorticity (rectangular cross-section), but substitute a Gaussian central vortex
for the circular vortex patch he considered. We consider a Gaussian vortex to be a
good model of a coherent vortex (as suggested by McWilliams 1984) because when
coherent structures are widely separated they relax to the Gaussian shape under the
effect of diffusion (the nonlinear Jacobian terms of the Navier–Stokes equations are
zero in this case). Consider the basic state defined by a ring of uniform vorticity ω
bounded inside by the circle r = a and outside by the circle r = b. Adverse shear is
introduced by placing a Gaussian vortex ω(r) = Γ/(πr2

0) exp(−r2/r2
0), of circulation

Γ and radius r0, at the origin.
The net rotation rate of the system (reference frame, Gaussian vortex and strip) is

Ω + 1
2
ω

(
1− a2

r2

)
+

Γ

2πr2

(
1− exp(−r2/r2

0)
)
, (3.1)

where Ω is the rotation rate of the reference frame, the second term is the contribution
from the strip, and the third term is the contribution from the Gaussian vortex. The
rotation rate of the reference frame is chosen so that the two edges of the strip, in
equilibrium, rotate at the same rate, but in opposite directions. Therefore we must
have

Ω + 0 +
Γ

2πa2

(
1− exp(−a2/r2

0)
)

= −Ω − 1
2
ω

(
1− a2

b2

)
− Γ

2πb2

(
1− exp(−b2/r2

0)
)
,

(3.2)
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and thus

Ω = − 1
4
ω

([
(1 + Λ)− a2

b2
(1− Λ)

]
− Λ

[
exp(−a2/r2

0) +
a2

b2
exp(−b2/r2

0)

])
, (3.3)

where Λ = Γ/(πa2ω) is the dimensionless adverse shear.
Linear stability is determined by adding disturbances of the form

η±(θ, t) = Re[η̂± exp(ikθ − iσt)] (k = 1, 2, 3, . . .) (3.4)

to the outer and inner edges of the ring, respectively, linearizing the equations of
motion and solving a two-by-two determinant for the eigenvalue σ. The result is

σ = ± 1
2
ω

([
1− 1

2
k

((
1− a2

b2

)
− Λ

(
(1− exp(−a2/r2

0))

−a
2

b2
(1− exp(−b2/r2

0))

))]2

−
(a
b

)2k

)1/2

. (3.5)

The expression for the disturbance (3.4) shows that the ring is stable provided σ is
purely real. Introducing the dimensionless quantities

ω̂ =
ω

ω0

, σ̂ =
σ

ω0

, â =
a

r0
, b̂ =

b

r0
, (3.6)

(3.5) becomes

σ̂ = ± 1
2
ω̂

([
1− 1

2
k

((
1− â2

b̂2

)
− Λ

(
(1− exp(−â2))

− â
2

b̂2
(1− exp(−b̂2))

))]2

−
(
â

b̂

)2k
)1/2

. (3.7)

and Λ = 1/(â2ω̂). Figure 8 shows contours of Im(σ) in the (k̂, â)-plane for a strip

width b̂− â = 0.05 and strip vorticity of ω̂ = 1, 0.5, 0.25. The contour plots in figure 8
show that the adverse shear generated by the Gaussian vortex is never sufficient to
completely stabilize the strip if ω̂ = 1 or ω̂ = 0.5; however, when ω̂ = 0.25 there is a
fairly large band of stable positions a = (0.6, 2.3). Thus we conclude that the adverse
shear generated by a Gaussian vortex can only stabilize a weak circular filament at
a narrow range of distances near the edge of the vortex. Filaments too far or too
close are still unstable. Note, however, that Dritschel (1989) found that true nonlinear
stability requires less adverse shear than suggested by the linear stability analysis.
Thus the results presented here should be treated as conservative estimates of the
stability of the filament.

Our results are consistent with those of Dritschel (1989) for the case of a central
point vortex or a vortex patch: sufficient adverse shear can stabilize a circular filament.
The major differences are due to the fact that Dritschel could not consider filaments
within the vortex core, and that the smooth variation of shear in a Gaussian vortex
leads to a more complicated stability pattern. In particular, there is an additional
region of instability at the centre of the vortex.

The results of this linear stability analysis have been confirmed by a fully nonlinear
DNS with initial conditions of a circular filament around a Gaussian vortex. These
simulations show that filaments placed in the core of the vortex quickly become
unstable. The instability starts as a small-scale perturbation that grows and eventually
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Figure 8. Contours of unstable phase space for a circular filament of width 0.05 around a Gaussian
vortex of unit size and maximum vorticity. The contours of Im(σ) are plotted, k is the wavenumber
of the perturbation and â is the distance from the centre of the vortex. 10 contours are plotted
between zero and the maximum of Im(σ). (a) Vorticity of filament ω̂ = 1.0, (b) ω̂ = 0.5, (c) ω̂ = 0.25,
(d) ω̂ = 0.25, closeup.

creates four new vortices along the circle at the initial radius of the filament. Weak
filaments at the edge of the vortex are stable. These results show that neglecting the
interaction between the strip and the filament is justified in the above analysis.

We have found an explanation for the stability of the weak filaments at the edge
of the vortex, but the DNS shows that all the filaments created during the merger are
stable, even those in the vortex core (see figure 1). We will show that this stability is
due to straining of the filament by the vortex.

3.2. Straining

Dritschel et al. (1991) demonstrated that even a small amount of straining along the
length of a vorticity filament can stabilize it. Since adverse shear cannot stabilize
the filaments in the vortex core, straining may be the stabilizing effect. At this point
it is important to note that the filaments created during the merger are not in fact
circular (although the weak filaments at the vortex edge are close to circular), but
are spirals that are constantly strained by the rotation of the vortex. This straining is
especially pronounced in the core region of the vortex. Is this straining likely to be
strong enough to stabilize the filaments?

For flows with continuous vorticity the strain rate γ and shearing rate 1/2Λ may
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be computed from the formulae

γ = t̂ · ∇u · t̂, (3.8a)
1
2
Λ = n̂ · ∇u · t̂, (3.8b)

where ∇u is the velocity gradient tensor, n̂ = ∇ω/|∇ω| is the unit vector parallel to
the vorticity gradient and t̂ = −êz × n̂ is a vector which points along the contours of
vorticity and has larger vorticity on the right. By calculating γ/ωf and (1/2Λ)/ωf ,
where ωf is the vorticity in the filament, one can estimate whether the straining is
sufficient to stabilize the filament.

We have seen that the shear actually destabilizes the filament in the vortex core, so
we need only calculate the straining γ. In particular, we should calculate the straining
along the spiral created by placing a strip of vorticity across the centre of a Gaussian
vortex (we treat the vorticity as passive). The strain along the spiral filament is

γ =
duS
dS

=
∂uS
∂r

∂r

∂S
= −u′(r)r ∂θ

∂S

∂r

∂S
= −ru′(r)∂θ

∂r

(
∂r

∂S

)2

, (3.9)

where the prime denotes differentiation with respect to r, uS is the velocity component
along the arclength of the spiral, ∂/∂S is the derivative along this arclength and u(r)

is the velocity component of the Gaussian vortex in the θ̂-direction. But,

∂r

∂S
=

[
1− r2

(
∂θ

∂S

)2
]1/2

=

[
1 + r2

(
∂θ

∂r

)2
]−1/2

,

and θ = (u(r)/r)t, thus

∂θ

∂r
=

t

r2

(
ru′(r)− u(r)

)
,

and therefore

∂r

∂S
=

[
1 +

t2

r2
(ru′(r)− u(r))2

]−1/2

. (3.10)

Combining (3.9) and (3.10) we find that the strain rate along a spiral in a Gaussian
vortex is

γ =
−(t/r)u′(r)(ru′(r)− u(r))
1 + (t2/r2)(ru′(r)− u(r))2

(3.11)

where u(r) = Γ/(2πr)(1−exp(−r2/4)) for the Gaussian vortex ω(r) = Γ/π exp(−r2/4).
Plots of the strain rate generated by the Gaussian vortex used in the DNS for

spirals with varying numbers of turns are shown in figure 9(b), it shows that the peak
strain rate grows and moves to smaller radii as time increases. Dritschel et al. (1991)
demonstrated that a strain rate of γ/ω > 0.25 completely removes all instabilities, and
thus the Gaussian spiral straining should be strong enough to stabilize all filaments
in the core region (since ωf 6 ω = Γ/π).

Besides its stabilizing effect, the spiral straining also lengthens the filament, which
means its width must decrease proportionally by conservation of vorticity of material
surfaces. When the filaments are thin enough viscosity becomes dominant and they
diffuse away. Calculations show that this thinning process is extremely rapid in the
vortex core. Thus, spiral straining first stabilizes and then removes filaments from the
vortex core. This picture is consistent with the results of the DNS (see figure 1).
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Figure 9. (a) A four-turn spiral created by a Gaussian vortex. (b) Strain rates along the spiral
created by the DNS Gaussian vortex ω(r) = π exp(−r2π2) with —, 2; – – –, 4; – · –, 8 turns (number
of turns N = t/(2πr2

0/Γ ) where r0 is the radius of the vortex and Γ is its circulation).

4. Vortex with filaments in weak external strain
4.1. Asymptotic calculation

In the previous Section we showed that the filaments created during the merger of two
vortices are stabilized by the new approximately Gaussian vortex that is formed. The
filaments in the vortex core are stabilized and then dissipated by spiral straining, but
the approximately circular filaments at the edge of the vortex are stabilized by adverse
shear and exist for a relatively long time. The question we now address is how these
stable filaments at the edge of the vortex affect its subsequent interactions. The effect
of distant vortices is essentially a weak irrotational strain. In this section we follow the
method of Ting & Tung (1966) and Jiménez et al. (1996) to calculate how the presence
of a vorticity filament changes the deformation of a Gaussian vortex in response to
weak irrotational strain. The degree of sensitivity to this weak straining determines
how robust the vortices are, and whether they undergo merging interactions. Thus this
response is a major factor controlling the vortex interactions which are responsible
for the energy cascade and decay of two-dimensional turbulence.

Following Jiménez et al. (1996) we take a two-dimensional vortex of circulation Γ ,
subject to a constant uniform strain s(x,−y). The velocity of the vortex and of the
strain are comparable at a distance of order Rs = (Γ/s)1/2, while the vortex size at a
characteristic time O(s−1) is of order Rv = (ν/s)1/2. Its characteristic vorticity is then
ωc = Γ/R2

v . We consider the weakly perturbed limit where

ε =
ν

Γ
=

s

ωc
=

(
Rv

Rs

)2

� 1. (4.1)

When length is normalized by Rs and time by s−1, the vorticity equation becomes

∂ω

∂t
− J(ψ,ω) = ε∇2ω, ω = −∇2ψ (4.2)

where ψ ∼ xy at infinity. Choosing inner variables

(x̂, ŷ) = ε−1/2(x, y), t̂ = t, ψ̂ = ψ, (4.3)
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the vorticity equation becomes

J(ψ̂, ω̂) = ε

(
∂ω̂

∂t̂
− ∇2ω̂

)
. (4.4)

The zeroth-order, or basic, solution is

J(ψ̂, ω̂) = 0, ω̂0 = ω̂0(ψ̂0), (4.5)

where we assume the perturbation expansion ω̂ = ω̂0 + εω̂1 + . . ., and a similar
expansion for ψ̂. Note that we will assume an axisymmetric basic solution.

The equation for the first-order perturbation is

J(ψ̂0, ω̂1) + J(ψ̂1, ω̂0) =
1

r̂

∂

∂θ

(
ω̂1

ψ̂0

∂r̂
− ψ̂1

ω̂0

∂r̂

)
. (4.6)

If the above equation is averaged over all angles we obtain a compatibility condition
that defines the basic solution

∂ω̂0

∂t̂
− ∇̂2ω̂0 = 0. (4.7)

Substituting the compatibility equation (4.7) into the first-order perturbation equation
(4.6) we get the equation defining the first-order solution

J(ψ̂0, ω̂1) + J(ψ̂1, ω̂0) = 0. (4.8)

The directional and radial dependences can be separated to give the equation

ψ̂1 = 2
(

1
4
r̂2 − f(r̂, t̂)

)
sin 2θ, (4.9)

where f(r̂, t̂) satisfies the boundary value problem

f′′ +
1

r̂
f′ − 4

r̂2
f =

(
1
4
r̂2 − f

) ω̂′0
ψ̂′0
, (4.10a)

f = O(r̂2) as r̂ → 0, f = O(r̂−2) as r̂ →∞, (4.10b)

where the prime denotes differentiation with respect to r̂. Up until this point the
derivation has exactly followed Jiménez et al. (1996), the only difference being that
we have not used the self-similarity variable χ = r̂/t̂1/2 (since in our case the basic
solution is not self-similar).

Jiménez et al. (1996) consider the basic solution which corresponds to a point
vortex at t = 0,

ω̂0(r, t) =
1

4πt
exp(−r̂2/4t̂), (4.11)

which is a Gaussian vortex that spreads self-similarly as time increases (‘Lamb’s
vortex’). To the diffusing point vortex we now add a diffusing ring vortex: the vortex
one obtains when vorticity initially concentrated on a circle is allowed to diffuse. This
ring vortex models the approximately circular vorticity filaments at the edge of the
Gaussian vortex created by the merger. Note that the circulation Γ used for the
normalization is the circulation of the Lamb’s vortex alone. The addition of a ring
vortex slightly decreases the region where irrotational strain dominates, but this does
not affect the validity of the first-order asymptotic analysis.

In cylindrical coordinates the distribution of vorticity at any time t can be found
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from its distribution at t = 0 via the formula

ω(r, t) =
1

2νt

∫ ∞
0

exp(−(r2 + s2))I0

( rs
2νt

)
sω(s, 0) ds, (4.12)

where I0(x) is the zeroth-order modified Bessel function, and ω(r, 0) is the vorticity
distribution at t = 0 (Carslaw & Jaeger 1959). If sources of strength Γ/2π dθ are
evenly distributed around a circle of radius R (4.12) gives the vorticity distribution at
time t̂ as

ω̂(r̂, t̂) =
Γ

4πt̂
exp[−(r̂2 + R2)/4t̂ ]I0

(
r̂R

2t̂

)
, (4.13)

where we have switched to normalized variables. Note that if r̂R/2t̂ � 1 the above
expression simplifies to

ω̂(r̂, t̂) ≈ Γ

4πR(πt̂)1/2
exp[−(r̂ − R)2/4t̂ ]. (4.14)

Because the vorticity filaments that form at the edge of a vortex during merging
are effectively much younger than the vortex, for simplicity we will take the age of
the Gaussian vortex to be unity and consider ring vortices of various ages. Thus the
initial condition is a Lamb’s vortex of age 1− t̂ (where t̂ is the age of the ring vortex
considered), plus a circle of vorticity. The total vorticity field at time t̂ is therefore

ω̂(r̂, t̂) =
1

4π

[
exp(−r̂2/4) +

Γ

t̂
exp[−(r̂2 + R2)/4t̂]I0

(
r̂R

2t̂

)]
, (4.15)

where the circulation of the Lamb’s vortex is unity by the normalization, and Γ is
the circulation of the ring vortex. For thin ring vortices R/t̂� 1 (4.15) simplifies to

ω̂(r̂, t̂) =
1

4π
(exp(− 1

4
r̂2) + (πt̂)−1/2 exp[−(r̂ − R)2/4t̂ ]). (4.16)

The appropriate expression (4.15) or (4.16) can then be used to calculate the quantity
ω̂′/ψ̂′ in (4.10), where ψ̂′(r̂, t̂) = −(1/r̂)

∫ ∞
0
sω̂(s, t̂) ds. The function f(r̂, t̂) is found by

numerically solving the boundary value problem defined by (4.10).
Once the function f(r̂, t̂) has been calculated, the ellipticity µ (which is a measure

of the deformation of the streamlines or vorticity of the vortex) may be calculated
from the formula

µ =
a− b
a+ b

= ε
|ψ̂|max
r̂|ψ̂′0|

+ O(ε2) = ε
2( 1

4
r̂2 − f(r̂, t̂))

r̂|ψ̂′0|
, (4.17)

where a and b are respectively the major and minor axes of the ellipse.
Because it is difficult to define the age of a filament in the merging interaction,

we consider ring vortices with a specified maximum vorticity ω̂max and circulation Γ
relative to the Lamb’s vortex, and calculate the age t̂ accordingly. These quantities
can be estimated from the DNS and compared with the results obtained here.

Figure 10(a) shows the ellipticity of the flow for high- and low-circulation rings, and
no ring. At radii greater than r = R the ring vortices always reduce the deformation,
merely due to the additional shear associated with the filaments. However, inside the
ring r < R the ring vortices can either reduce or increase the deformation, depending
on the strength and position of the ring. In order to quantify this dependence,
in figure 10(b) the ‘neutral curve’ dividing reduced from increased deformations is
plotted in the (Γ , R)-plane for three relative maximum vorticities ω̂max = 1, 0.5, 0.25.
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Figure 10. Effect of the ring vortex on the deformation of vortex core. (a) Ellipticity of the flow
µ/ε as a function of radius r: —, no ring vortex; – – –, Γ = 1, R = 4, ω̂max = 1; – · –, Γ = 0.25,
R = 4, ω̂max = 1. (b) Neutral deformation curve: below the curve the ring vortex reduces vortex
core deformation, above it the ring vortex increases vortex core deformation: —, ω̂max = 1; – – –,
ω̂max = 0.5; – · –, ω̂max = 0.25.

The deformation was also calculated for several vortices with the same ω̂max, but it
was found that the total circulation is the only significant parameter. Three main
qualitative conclusions may be drawn. The ring vortex reduces the deformation if:
the ring is close enough to the vortex core, if its maximum vorticity is large enough
compared to the central vortex, and if its circulation is large enough compared to
the central vortex. Otherwise the vortex ring slightly increases deformation inside the
ring r < R.

In the DNS the maximum possible circulation in the filaments at the edge of the
vortex core is roughly equal to the circulation of the vortex core, and the maximum
vorticity of the filaments is at most equal to the maximum vorticity of the core.
Judging from figure 10(b), the filaments at the edge of the vortex core may slightly
increase the deformation of the core compared to the case of no filaments. However,
the kinks in the vortex core are in fact decayed filaments and these filaments may
have a large circulation compared to the Lamb’s vortex core. For example, a ring
with Γ = 4, R = 2, ω̂max = 0.5 produces a kink very similar to that seen in figure 2(a)
at t = 10 and reduces the deformation by roughly 8%. Thus, the kinks in the core
could significantly reduce the deformation due to distant vortices compared to the
deformation of a Lamb’s vortex alone.

There is also the question of how quickly the maximum vorticity of the ring
vortex decays, and hence how long it has a significant effect on the deformation
of the vortex core. Equation (4.14) shows that at small times t̂ � R2/4 the ring
decays slowly like t̂−1/2, whereas at longer times t̂ � R2/4 the ring has diffused to
form a single peak at the centre which decays quickly like t̂−1 (as for the Lamb’s
vortex). Between these two ranges is a transition range at t̂ ∼ R2/4 during which the
maximum vorticity remains approximately constant. Adding several rings increases
this ‘quasi-equilibrium’ transition period roughly proportionally to the number of
rings. Physically, this is because the diffusing vorticity fills the gaps between the rings
and is effectively not diffusing away. A longer transition period also means that the
maximum vorticity is much higher than in the one-ring case once the t̂−1 range is
reached. Thus, a sequence of ring vortices (or approximately circular spiral vortices)
may alter the deformation of the vortex core for a significant period of time.
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4.2. Numerical calculation

In the previous subsection we made a first-order asymptotic calculation of the effect of
weak external strain on a Lamb’s vortex surrounded by a ring vortex. This calculation
indicates that the ring usually reduces the effect of external strain, although if the
ring is weak and outside the vortex core it may have the opposite effect. We now
present the results of a DNS to check the previous analytical results in a slightly
more realistic situation.

The strain is produced by an array of two positive Lamb’s vortices at (π/2, π/2),
(3π/2, 3π/2) and two negative Lamb’s vortices at (π/2, 3π/2), (3π/2, π/2) in a square
domain of size 2π. These vortices have a circulation of magnitude |ΓS | = 1/8 and
initial radius r0 = 1/(4π), and produce an approximately uniform strain of strength
s = 4Γs/π

3 + O((r/π)4) near (π, π). We place another Lamb’s vortex of the same size
at (π, π) with circulation Γ = 1/(4π2). For these initial conditions the size of the ‘cat’s
eye’ where the asymptotic calculation should be valid is Rs = 1/2, and the ratio of
the external strain to the maximum vorticity in the strained vortex is 1/(8π2) � 1,
which shows that the external strain is indeed weak.

We consider three cases: no ring, a ‘shielding’ ring (R = 3/2r0, Γr = Γ , ωmax is
equal to ωmax of the central vortex), and an ‘anti-shielding’ ring (R = 4r0, Γr = 1/2Γ ,
ωmax is half ωmax of the central vortex). All simulations are performed on a 1 0242

grid with Newtonian viscosity ν = 5.0× 10−5 and are run until t = 80. The results of
the simulations are shown in figure 11.

Figure 11(b) clearly shows that the shielding ring vortex reduces the deformation of
the central Lamb’s vortex, while figure 11(c) shows that the anti-shielding ring vortex
has little effect. The quantitative results in figure 11(d) show the strong reduction in
ellipticity produced by the shielding vortex inside the ring vortex. The anti-shielding
vortex does in fact slightly increase the ellipticity near the centre of the Lamb’s
vortex, but slightly reduces the ellipticity at larger radii. Note that these effects
are still significant at t = 80 even though figure 11(a) shows that by this time the
rings have diffused into the vorticity profile of the Lamb’s vortex. Figure 11(d) also
confirms that the first-order asymptotic calculation predicts the ellipticity reasonably
accurately in all three cases.

These results suggest that filaments in the vortex core may significantly reduce
the deformation caused by weak strain, even at long times when the filaments have
blended into the vortex core. (Note that figure 10b shows that intense filaments closer
than about 3r0 should always be shielding, even for very small relative circulations.)
Weaker vorticity filaments outside the vortex core may slightly increase the deforma-
tion very close to the centre of the vortex, and slightly reduce the deformation further
away. However, both changes are very small and the effect of weak filaments outside
the vortex core is probably negligible. The main effect of the filaments created during
the vortex merger is thus to decrease the deformation caused by weak external strain
and hence stabilize the new vortex.

4.3. Physical explanation

The shielding is in fact due to two different effects, which act in different regions at
different times. Outside the ring (r > R), and at long times when the ring vorticity
has diffused to the centre, the effect of external strain is reduced simply because the
velocity gradient produced by the ring adds to that produced by the Lamb’s vortex.
The combination of the ring and the Lamb’s vortex is essentially equivalent to a
single, stronger vortex.

However, at short and intermediate times the ring vorticity at r < R is still negligible
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Figure 11. DNS calculation of the effect of weak external strain on a Lamb’s vortex with
and without ring vortices. In all figures: —, no ring vortex; – – –, ‘shielding’ ring vortex, – · –,
‘anti-shielding’ ring vortex. Note that in the contour plots 10 equally spaced contours are plotted
between (ωmax/100, ωmax), which means contours for different cases are not necessarily at the same
level. (a) Cross-section of vorticity field at t = 0 (initially upper curves) and t = 80 (lower curves).
(b) Vorticity contours, comparison of no ring vortex and shielding ring vortex cases. (c) Vorticity
contours, comparison of no ring vortex and anti-shielding ring vortex cases. (d ) Comparison of
asymptotic calculations of ellipticity (lines) with numerical results (symbols: o, no ring; ×, shielding
ring; *, anti-shielding ring) for the three cases. The asymptotic curves have been normalized by
matching the amplitude of the asymptotic curve for no ring at r = 0.05 to the amplitude of the
equivalent DNS point. Note the significant reduction of ellipticity in shielding case, and slight
increase in ellipticity near r = 0 in anti-shielding case.

and the previous mechanism does not apply. In this case the shielding is due to the
deformation of the ring caused by the external strain. The strain compresses the ring
in one direction and stretches it in the other. The DNS shows that the ring becomes
narrower and more intense in the compressed direction and wider and less intense in
the stretched direction (this is shown in figure 12a). Before the deformation the velocity
inside the ring (due to the ring) is insignificant (uθ(r) ∼ Γr/(2πδ

2) exp(−R2/δ2),
r � δ, where δ is the width of the ring). However, the elliptical deformation breaks
the symmetry of the ring, and significant velocity gradients appear inside it (see
figure 12a).

Qualitatively, one may understand the resulting velocity profiles as follows. In the
compressed direction the vorticity becomes more concentrated and intense. The limit
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Figure 12. Model calculation of the velocity profile due to a circular and an elliptical ring vortex:
—, circular ring vortex; – – –, elliptical ring vortex (compressed direction); – · –, elliptical ring vortex
(stretched direction). (a) Vorticity cross-sections. (b) Velocity profiles, note the different gradients
near the centre.

of this process is a pair of identical point vortices. The velocity profile of such vortices
at (±1, 0) with circulation Γ = 2π along the line separating them is

v(x, 0) =
−2x

1− x2
∼ −2x+ O(x3), x� 1. (4.18)

The velocity gradient u′θ(r) of the Lamb’s vortex is, however, positive and is increased
by the external strain. Thus the negative velocity gradient induced by the elliptical
ring vortex tends to oppose the action of the external strain. Now, in the stretched
direction the vorticity spreads: the limit of this tendency is a vortex patch with a
positive velocity gradient u′θ(r). In the stretched direction the external strain tends
to reduce the velocity gradient of the Lamb’s vortex, thus the ring vortex opposes
the action of the external strain in this direction as well. These velocity profiles are
calculated numerically for a model elliptical ring vortex in figure 12(b). The previous
argument does not, however, explain the small anti-shielding effect due to distant
and weak ring vortices. This suggests that anti-shielding involves a more complex
dynamical interaction between the central vortex and the ring.

5. Discussion and conclusions
In the first part of this paper we presented the results of a DNS of the merging of

two identical positive Gaussian vortices pushed together by a weaker negative vortex.
Identical DNS using both Newtonian and hyper-viscosity were performed and the
results compared. The hyper-viscous simulation did not introduce any important
spurious effects, but gave a good approximation to the equivalent high-Reynolds-
number flow.

One of the main characteristics of the merging interaction is the formation of
intense spiral filaments of vorticity. The filaments in the core blend quickly into the
vortex profile, but leave ‘kinks’ in the vorticity profile that persist for long times. The
filaments at the edge of the vortex remain well-defined for a longer time and thus
the equilibrium configuration is a Gaussian vortex with kinks surrounded by a halo
of approximately circular filaments at the edge. Roughly half the enstrophy goes into
the new positive vortex, while the remainder goes into the filaments. We analysed
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this interaction in both physical and Fourier space and found that the interaction
generates power-law energy spectra typical of two-dimensional turbulence, and that
these spectra are associated with the spiral vorticity filaments. The time-averaged
energy spectra of the Newtonian and hyper-viscous simulations have power-law
inertial ranges of k−4 and k−3 respectively. This spectrum should be representative of
a two-dimensional turbulent flow containing many merging interactions at different
stages. Thus, the k−4 and k−3 spectra might be interpreted as low- and high-Reynolds-
number limits, respectively, for two-dimensional turbulence.

In the second part of the paper we considered the stability and effect of the vorticity
filaments. We divided the vorticity field into filamentary and coherent parts using
a novel wavelet packet technique. By restarting the simulations with the separated
fields as new initial conditions we demonstrated that the coherent vortices do indeed
stabilize the vorticity filaments.

A linear stability analysis showed that the adverse shear generated by a Gaussian
vortex can only stabilize weak filaments in a fairly narrow band of distances at the
edge of the vortex. We then calculated the strain rate generated by a Gaussian vortex
along the spiral created when a passive strip of vorticity winds round the vortex. A
comparison of this strain rate with the calculations of Dritschel et al. (1991) showed
that it should be strong enough to stabilize filaments in the vortex core. The rapid
straining also thins the filaments which makes them diffuse rapidly. Thus, coherent
vortices stabilize filaments by a combination of adverse shear at the edge of the
vortex and spiral straining in the vortex core. In fully developed two-dimensional
turbulence filaments are only created during vortex interactions, thus it is likely that
most filaments in these flows are also stable.

Finally, we used the asymptotic method of Jiménez et al. (1996) to calculate the
effect of a filamentary circular ring vortex at radius R on the deformation of a
Lamb’s (Gaussian) vortex in an external weak irrotational strain. We found that the
deformation (measured by the ellipticity of the vorticity contours) is always reduced
compared to the case with no ring in the region outside the ring (r > R), but may be
either reduced or slightly increased inside the ring r < R. The deformation is reduced
if the ring is close enough to the vortex core, and has a strong enough maximum
vorticity and circulation compared to the Gaussian vortex. The filaments generated
at the edge of the vortex during the merging interaction may slightly increase the
deformation near the centre of the vortex, while the kinks in the vortex core (remnants
of ring vortices) may significantly decrease the deformation. In general, any increase
in deformation due to weak filaments should be insignificant; however, filaments in
the vortex core may significantly reduce the deformation due to weak external strain
and hence stabilize the vortex. The results of the first-order asymptotic calculation
were confirmed by performing a DNS of a Lamb’s vortex in the weak irrotational
strain field produced by four other vortices. The first-order asymptotic predictions of
vortex ellipticity as a function of radius agreed reasonably well with the DNS results
for vortices with and without rings.

These results show that vorticity filaments, although passive, may alter the dynamics
of a two-dimensional turbulent flow by changing the response of a vortex to the strain
of other vortices in the flow. This change in response may in turn modify such vortex
characteristics as the minimum approach for merger and robustness.

Vorticity filaments may also have another important role: that of reducing entropy.
Overall, entropy must increase during the merging interaction, but the end product
of the interaction is a single coherent vortex. This structure clearly has a low entropy.
However, vorticity filaments are ejected from the merging vortices and these filaments
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then diffuse smoothly (since they are stable) which greatly increases the entropy. (In
the merging interaction that we examined roughly half the enstrophy is dissipated in
the form of filaments.) Thus, the coherent structures eject entropy (in the form of
filaments) physically far from themselves in order to reduce their own entropy. The
filaments serve a sort of ‘house-cleaning’ role in turbulence by physically separating the
entropy-decreasing (coherent vortices) and the entropy-increasing (vorticity filaments)
parts of the flow. The inhomogeneity in space of viscous dissipation (and diffusion of
vorticity) is essential for, and created by, the coherent vortical structures of turbulence.

In summary, we have examined all stages in the ‘life’ of a vorticity filament:
creation through vortex merger, stabilization by the new vortex, effect on subsequent
vortex interactions, viscous diffusion and decay. The results help us to understand
the role and properties of vorticity filaments in two-dimensional turbulence and may
also explain more general properties such as the development of energy spectra, the
robustness and nearly circular form of coherent vortices and the fact that filaments
in two-dimensional turbulence show little sign of instability.

This research was supported by the Training and Mobility of Researchers pro-
gramme of the EU under contract ERBFMBICT950365. The computations were
performed on the Cray C98 of IDRIS under contract number 950317. We are grate-
ful for the helpful comments of many colleagues and in particular for the advice
of David Dritschel, and to Eric Goirand for kindly providing the wavelet packet
software.

Appendix A. Vortex terminology
The notion of a filament of vorticity in two-dimensional turbulence (Dritschel

et al. 1991; Gilbert 1988) is different from that of a filament of vorticity in three-
dimensional turbulence (Douady, Couder & Brachet 1991; Moffatt, Kida & Ohkitani
1994; Jiménez et al. 1993). In two-dimensional turbulence the ‘filaments’ are one-
dimensional structures which therefore cannot have internal organization, while in
three-dimensional turbulence the ‘filaments’ are two-dimensional structures which
may have internal organization (e.g. Schwartz 1990). During the preparation of
this article, which deals with two-dimensional turbulence, we considered replacing the
term ‘filament’ by a new term, for example ‘thread’, in order to clarify the terminology.
Finally, however, we decided that it is preferable to retain the term vorticity ‘filament’
for the two-dimensional case, and we propose that the term vorticity ‘tube’ be adopted
for the three-dimensional case.

We therefore propose that the term ‘filament’ be reserved to characterize the
one-dimensional vorticity structures in the background flow which result from the in-
teractions of coherent structures. Such filaments are generic in two-dimensional flows,
but may also occur in three-dimensional flows. We propose that the term vorticity
‘tube’ be used to characterize the two-dimensional coherent vortices observed in three-
dimensional turbulence. It is important that vorticity tubes and vorticity filaments are
clearly distinguished because they are different types of structures: vorticity tubes are
relatively long-lived concentrations of vorticity which are dynamically active, while
vorticity filaments are transitory and largely passive. Moreover, it seems to us that
this clarification of the taxonomy of turbulence must be taken seriously because there
is at present a profusion of different terminologies (worms, ‘vermisseaux’, ribs, sinews
. . . ) that tend to confuse and may prevent a better theoretical understanding of the
nature and role of the coherent structures that have been observed in turbulence.
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Appendix B. Statistical interpretation

One should be very cautious when attempting to make a statistical interpretation
of energy spectra obtained from numerical simulations of turbulent flows. We believe
that a statistical interpretation is hardly relevant for such simulations because the
energy spectra are obtained from only one realization of a flow computed for a
periodic domain, or for a finite domain with boundary conditions.

A statistical interpretation of the energy spectra relies on the hypothesis that
turbulence, namely the Navier–Stokes dynamics in the limit of very large Reynolds
numbers, is a stationary and ergodic random process described by random variables
having definite probability distributions. In general, these properties allow us to
interchange averages over space and averages over time. Thus a space average over a
single realization of a turbulent flow may be treated as equivalent to averaging many
different realizations, provided that the spatial dimensions of the flow are much larger
than its integral scale. In particular, Wiener–Khintchine’s theorem, which states that
the Fourier transform of one realization of a stationary and ergodic random process
in <n is the same as the Fourier transform of the correlation function of this process,
can then be used to relate energy spectra and correlations.

Unfortunately, numerical simulations never use an unbounded domain <n, but
are obliged to use a bounded domain with given boundary conditions, or a torus
with periodic boundary conditions. Moreover, the cases studied in this paper are
not stationary because there is no external forcing to compensate the dissipation of
enstrophy and thus the flow is in a decaying regime. Finally, the ergodic hypothesis
is probably not valid either because we consider a very special case derived from the
three-point vortex system which, in the inviscid limit, converges to a single point in
a finite time. In any case, even if the random process is ergodic, the realization of
the flow we are studying has not had sufficient time to visit the entire phase-space
of the two-dimensional Navier-Stokes attractor. These comments also apply to most
numerical simulations of turbulence.

For all these reasons, we do not think that a statistical interpretation of the energy
spectra is appropriate. We propose instead a geometrical interpretation, which relates
the power-law behaviour of the energy spectra to the shape and spatial distribution
of the most singular coherent structures produced by the nonlinear dynamics of the
turbulent flow (Farge & Holschneider 1991; Farge et al. 1992).
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