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Helicity, as one of only two inviscid invariants in three-dimensional turbulence,
plays an important role in the generation and evolution of turbulent flows. Through
theoretical analyses, we find that there are two channels in the helicity cascade
process, which differs dramatically from the traditional viewpoint. In this paper, we
have conducted important research on the newly proposed dual-channel helicity
cascade theory, including vortex dynamic processes, intermittent discrepancies,
tensor geometries, etc. The first channel mainly originates from the vortex twisting
process, and the second channel mainly originates from the vortex stretching process.
Antisymmetric tensors are introduced to the derivations of dual-channel helicity
cascade theory, and a complex rotation frame leads to a higher helicity transfer
efficiency. By analysing data from direct numerical simulations of typical turbulent
flows, we find that these two channels behave differently. The ensemble averages of
helicity flux in different channels are equal in homogeneous and isotropic turbulence,
while they are different in other types of turbulent flows. The intermittency of the
second channel is stronger than that of the first channel. In addition, we find a novel
mechanism of hindered or even inverse energy cascades, which could be attributed to
the second-channel helicity flux.
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1. Introduction

Helicity exists in many natural phenomena, such as hurricanes, tornadoes and
rotating ‘supercell’ thunderstorms in the atmosphere, Langmuir circulations in the
oceans, and the α-effect and ω-effect in magnetic fields (Lilly 1986; Moffatt &
Tsinober 1992). In the past few decades, there have been numerous theoretical and
numerical studies indicating that helicity could reduce the aerodynamic drag and
nonlinearity of Navier–Stokes equations (NSEs) and improve the mixing effectiveness
of reactants (Moffatt & Tsinober 1992; Duquenne, Guiraud & Bertrand 1993). Helicity,
the integral of the scalar product of velocity u and vorticity ω, is the second inviscid
invariant of three-dimensional (3-D) NSEs, which indicates that helicity cascade
exists in 3-D turbulent flows. Recently, new research has shown that helicity is a
conservative quantity even in viscous flows (Moffatt 2017; Scheeler et al. 2017).
Helicity is a topological variable, which measures the degree of the linkage of the
vortex lines in a flow field (Moffatt 1969), and consists of linking, twisting and
writhing (Moffatt 2017).

The classic Richardson–Kolmogorov–Onsager picture of 3-D turbulence is based
on the concept of an energy cascade, which ignores the topology of vortices
(Frisch 1995). Theoretically, there are two possibilities describing the dynamic
properties of helicity and energy cascades. One is simultaneous energy and helicity
cascades towards smaller scales, and the other is a pure helicity cascade with
no cascade of energy, leading to broken −5/3 power-law solutions in turbulent
magnetohydrodynamic, convective and atmospheric flows (Brissaud 1973; Kessar
et al. 2015). Many studies have revealed through direct numerical simulations (DNS)
and shell models that there simultaneously exist a transfer of energy and helicity to
small scales in turbulent flows at high Reynolds number (Brissaud 1973; Waleffe
1992; Biferale 2003; Chen, Chen & Eyink 2003a; Biferale, Musacchio & Toschi
2013). During the joint cascade process of energy and helicity in helical turbulence,
the helicity flux is more intermittent than the energy flux (Chen et al. 2003b). For
rotating helical turbulence, the helicity flux dominates the direct energy cascade to
small scales and the direct helicity cascade is highly intermittent (Mininni & Pouquet
2009, 2010). However, the impact of helicity on the decay rate of turbulent flows
works in rotating flows, rather than in non-rotating flows (Teitelbaum & Mininni
2009).

The role of helicity in the behaviour of turbulent dynamic systems has been a
controversial issue in recent decades. Previous studies have argued that the helicity
cascade is carried along locally and linearly by the energy cascade and acts as
a passive scalar (Andre & Lesieur 1977). Another argument insists that the helicity
cascade has a dramatic effect on the energy cascade. For instance, helicity can impede
the forward energy cascade and even promote the inversion of energy transfer, which
could be explained as a helical bottleneck effect (Pelz et al. 1985; Moffatt 2014;
Stepanov et al. 2015; Sahoo, Alexakis & Biferale 2017; Słomka & Dunkel 2017).
In fact, there is always the possibility that inverse energy cascades exist when
mirror symmetry is broken (Biferale, Musacchio & Toschi 2012). The theory of
triadic interactions indicates that interactions with the same helicity always lead to
an inverse energy cascade, which is considered a new physical mechanism for the
inverse energy cascade in 3-D turbulence (Alexakis 2017; Alexakis & Biferale 2018).

Traditional theory reveals that there is only one channel of helicity cascade in
turbulent flows, and that both forward and backward cascades exist in the same
channel (Chen et al. 2003a; Eyink 2006; Pouquet et al. 2017). In turbulent flows,
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vortex twisting plays a major role in the helicity cascade process (Eyink 2006).
In addition, in laminar flows, the role of vortex stretching has been proven to
be associated with the decrease of helicity (Moffatt & Dormy 2019). Therefore,
a complete description of vortex dynamics in the helicity cascade procedure is
uncertain, based on current turbulent cascade theory. In this paper, through theoretical
and numerical investigations, we discover for the first time that two channels exist
in the helicity cascade process. The physical mechanisms of the dual channels are
totally different, and they behave differently in anisotropic turbulent flows.

The paper is organized as follows. In § 2, we propose that there exist two channels
of helicity cascade, which is deduced from the NSEs. The numerical simulations are
briefly described in § 3. Next in § 4, we discuss the similarities and differences of the
proposed two channels in homogeneous and isotropic turbulence. The effects of the
two channels on the energy cascade process are explored in § 5. Finally, conclusions
will be given in § 6.

2. Derivation of dual channels in the helicity cascade

In this study, we employ the 3-D incompressible NSEs as

∂u/∂t+ (u · ∇u)=−∇(p/ρ)+ ν∇2u, (2.1)

where u is velocity, p is pressure, ρ is density (which is constant in incompressible
flows) and ν is the viscosity coefficient. To study the characteristics of the helicity
cascade, we use the coarse-graining method to filter the flow field (Aluie 2011; Yu
et al. 2013). Using a smooth low-pass filter function G∆(r), we can obtain the filtered
physical variable such as ũ(x)=

∫
dr G∆(r)u(x+ r) representing the filtered velocity

field on scale ∆. As mentioned above, we employ the isotropic filter in this paper. The
filtered momentum equation can be deduced by making a coarse-graining operation on
the above momentum equation as

∂ ũi

∂t
+ ũj

∂ ũi

∂xj
=−

∂ p̃
∂xi
+ ν

∂2ũi

∂xj∂xj
−
∂τij

∂xj
, (2.2)

where ũi is the filtered ith velocity component, p̃ is the filtered pressure, ν is the
kinematic viscosity coefficient and τij = ũiuj − ũiũj is the subgrid-scale (SGS) stress.
Making a curl operation of (2.2), the following filtered vorticity equation can be
obtained:

∂ω̃i

∂t
+ ũj

∂ω̃i

∂xj
= ω̃j

∂ ũi

∂xj
+ ν

∂2ω̃i

∂xj∂xj
−
∂γij

∂xj
, (2.3)

where ω̃i is the filtered ith vorticity component, and γij = (ω̃iuj − ω̃iũj)− (ω̃jui − ω̃jũi)
can be called as SGS vortex stretching stress, which is a newly proposed SGS tensor
in this study.

Based on the above equations, the governing equations of large-scale energy e∆ =
1
2 |ũ|

2 and large-scale helicity h∆ = ũ · ω̃ could be easily obtained as follows:

∂te∆ +∇ · J=−ΠE
∆ − 2νS̃ : S̃, (2.4)

∂th∆ +∇ ·Q=−ΠH1
∆ −Π

H2
∆ − 4νS̃ : R̃, (2.5)

where S̃ = 1
2(∇ũ+ (∇ũ)T), Ω̃ = 1

2(∇ũ− (∇ũ)T) and R̃ = 1
2(∇ω̃+ (∇ω̃)

T). Here, J=
ũ|ũ|2/2 + τ · ũ − 2νS̃ · ũ denotes the space transport of large-scale energy equation,
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and ΠE
∆ =−τ : S̃ denotes the SGS energy flux. Here Q denotes the spatial transport

of large-scale helicity, which is defined as

Q= h∆ũ+ ω̃ · τ + ũ · γ +
p̃
ρ
ω̃− 1

2 |ũ|
2ω̃− 2ν(ũ · R̃ + ω̃ · S̃). (2.6)

It needs to be mentioned specifically here that the first-channel helicity flux refers
to ΠH1

∆ and the second-channel helicity flux refers to ΠH2
∆ . They can be expressed as

ΠH1
∆ =−τ : R̃, ΠH2

∆ =−γ : Ω̃. (2.7a,b)

The second-channel helicity flux is a newly defined physical quantity, and it represents
the projection of the SGS vortex stretching stress on the vorticity tensor. From the
definition of the first and second channels, we can find that the first channel originates
mainly from the vortex twisting process (Eyink 2006), which is deduced from the
filtered momentum equation, and the second channel originates mainly from the vortex
stretching process, which is deduced from the vortex stretching term ωiSij. Hence, we
can conclude that the helicity cascade is a combined process of vortex twisting and
stretching.

Following the gradient expansion of subgrid stress (Eyink 2006), we can write the
first- and second-channel helicity fluxes using the isotropic filter in the approximation
forms as follows:

ΠH1,A
∆ ≈

∆2

12

{
−Tr(R̃S̃

2
)+

1
4
ω̃TR̃ω̃+ R̃ : (S̃ × ω̃)

}
, (2.8)

ΠH2,A
∆ ≈

∆2

12

{
1
2
ω̃TS̃ξ̃ −

1
2
ω̃TR̃ω̃+ R̃ : (S̃ × ω̃)

}
, (2.9)

where ξ̃ = ∇ × ω̃, the superscript A denotes the approximation of helicity flux, and
the superscript T denotes the transpose of a matrix. The first term in (2.8) represents
the inter-amplification of the strain-rate field and the symmetric vorticity gradient
field; while the first term in (2.9) reflects the complicated vortex stretching dynamical
process, which originates the evolutions of vorticity and vorticity gradient under the
influence of the velocity strain field. This physical description of the vortex dynamical
procedure of the second channel of helicity cascade is consistent with the original
definition, and it provides a new vortex perspective for helicity cascade.

3. Numerical simulations

To further explore the statistical features of the dual-channel helicity cascade, we
performed forced helical homogeneous and isotropic turbulence (HIT) within a cubic
box with sides of length 2π with a pseudospectral solver, and the injection rates of
kinetic energy and helicity are 0.1 and 0.3, respectively. The numerical simulations
are carried out by solving the following incompressible NSEs:

∂u/∂t+ (u · ∇u)=−∇(p/ρ)+ ν∇2u+ f . (3.1)

The external forcing f can be constructed by the injection rates of energy and
helicity in the lowest two shells (Teimurazova et al. 2018). Specific parameters are
summarized in table 1.
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FIGURE 1. (a) Spectra of energy and helicity. (b) Ensemble averages of the first-channel,
the second-channel and total helicity fluxes on the different filter widths ∆ in HIT. The
first-channel and second-channel helicity fluxes on the plane of y+ = 10 on the different
filter widths ∆ in turbulent channel flows (TCF) are shown in the inset, and δν is the
viscous length scale.

Case Grid Reλ ∆/η λ/η LI/η ε δ τη Tcon/τη Tave/τη T0

HIT 10243 341 1.52 21 102 0.10 0.30 0.054 219 30 0.338

TABLE 1. Some flow field parameters of HIT: Reλ is the Taylor-microscale Reynolds
number, ∆ is the grid spacing, η is the Kolmogorov length scale, λ is the transverse
Taylor microscale, LI is the longitudinal integral length scale, ε is the mean kinetic energy
dissipation rate, δ is the mean helicity dissipation rate, τη is the Kolmogorov time scale,
Tcon is the total computational time until convergence, Tave is the averaging time for
statistical analysis after convergence, and T0 is the large-eddy turnover time scale. The
reader can refer to Frisch (1995) for specific definitions. The numerical simulations can
be considered as convergent when the viscous dissipation rates of energy and helicity are
balanced with the inputting rates of energy and helicity, respectively.

The power-law solutions of kinetic energy and helicity, which ignore any
intermittency corrections (Chen et al. 2003a), can be written as

E(k)∼CEε
2/3k−5/3, H(k)∼CHδε

−1/3k−5/3, (3.2a,b)

where CE and CH are Kolmogorov constants of energy and helicity, respectively. We
show the ensemble averages of energy and helicity fluxes in the inset of figure 1(a)
and the spectra of energy and helicity in figure 1(a). The broad regions consistent
with the scaling exponent −5/3 of the spectra of energy and helicity, and the long
plateau of energy and helicity fluxes indicate the existence of their inertial subrange
in our numerical simulations.

4. Similarities and differences of the dual channels

4.1. Equality relation
In HIT, the ensemble averages of the first-channel and second-channel helicity fluxes
are exactly equal in our numerical simulations. The equality of ensemble averages
of these two channels in HIT can be proven exactly by the 3-D homogeneity
condition. The detailed deductions are shown in appendix A. In figure 1, we present
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FIGURE 2. (a) Flatness of energy flux, and the first- and second-channel helicity fluxes.
(b) The p.d.f.s of the first-channel helicity flux and the second-channel helicity flux with
∆/η= 24. The p.d.f.s of energy flux and total helicity flux with ∆/η= 24 are shown in
the inset. The symbols ν and σ denote the corresponding mean and root-mean-square.

the dependences of the ensemble averages of the first-channel, second-channel and
total helicity fluxes, on the different filter widths ∆, and their equality relations are
numerically proven. However, the equality of these two-channel fluxes will be broken
in other anisotropic flows, such as turbulent channel flows. We access the DNS
data of turbulent channel flows with Reτ ≈ 1000 via the Johns Hopkins Turbulence
Database (Graham et al. 2016). The plane y+ = 10 in the buffer layer was selected
to typically exhibit the discrepancies of the ensemble averages of the two channels,
and the isotropic filter is only employed in the horizontal directions. Their numerical
results are shown in the inset of figure 1(b), which confirms the difference between
the two channels of the helicity cascade in anisotropic turbulent flows.

4.2. Intermittent discrepancy
These two channels of the helicity cascade in HIT have different statistical
properties in a higher statistical order. The normalized fourth-order energy flux
and the first-channel and second-channel helicity fluxes are chosen to illustrate their
statistical discrepancies, which are related to the intermittency representing the strong
non-Gaussian fluctuations. This could be assessed quantitatively by flatness (Buzzicotti
et al. 2018) as

F(∆)= 〈(ΠX
∆)

4
〉/〈(ΠX

∆)
2
〉

2, X = E,H1,H2. (4.1a,b)

We exhibit the flatness of the first- and second-channel helicity fluxes and energy flux
in figure 2(a). It is apparent that the flatness of the second-channel helicity flux is
larger than that of the first-channel helicity flux, and the flatness of the first-channel
helicity flux is larger than that of the energy flux over the whole scales. To further
explore the discrepancy of their intermittency, we show their normalized probability
density functions (p.d.f.s) at a filter width ∆ = 24η in figure 2(b). Previous studies
revealed that a nearly symmetric distribution of helicity flux exists (Chen et al.
2003b), and we find that the distribution of the second-channel helicity flux is more
symmetric than that of the first-channel helicity flux shown in figure 2(b). The
discrepancies in flatness and distribution indicate that the second-channel helicity flux
is more intermittent than the first-channel helicity flux, and the first-channel helicity
flux is more intermittent than the energy flux, which is consistent with the conclusion
in Chen et al. (2003b). The distribution regularities are similar at other scales, which
are not shown for the sake of simplicity.
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The eigenframe of the first channel The eigenframe of the second channel

¬̂3

ß̂3 ß̂1

å̂1

ı̂1

å̂2
i ı̂2

i

å̂3
i ı̂3

i

å̂2
r ı̂2

r

å̂3
r

ı̂3
r

ß̂2

¬̂1

¬̂2

R
¡

ij Ø¡ij†ij ©ij

MR Mp

(a) (b)

FIGURE 3. A schematic representing the relationships of the eigenframe of the first and
second channels of helicity cascade; the superscripts r and i denote the real and imaginary
parts of an eigenvector, respectively.

4.3. Tensor geometry
The turbulent cascade represented by the inner product of two tensors must address
their relative alignment, and the tensor geometry in the turbulent cascade determines
the efficiency of energy transfer (Ballouz & Ouellette 2018). The tensor geometries
of the first- and second-channel helicity fluxes are totally different. The first channel
consists of two real symmetric matrices, and the second channel consists of two real
antisymmetric matrices. By eigen-decomposition, they can be expressed as

ΠH1
∆ =−Tr[λMT

R(φ, θ, ψ)ΛMR(φ, θ, ψ)], (4.2)
ΠH2
∆ = Tr[αMT

P(φ, θ, ψ)βMP(φ, θ, ψ)], (4.3)

where φ, θ and ψ are three ZYZ Euler angles (Shuster 1993; Ballouz & Ouellette
2018). In (4.2), λ and Λ are the diagonal matrices consisting of three eigenvalues of
matrix τ and R̃, respectively, and the MR is the real rotation matrix from the second
matrix R̃ to the first matrix τ . In (4.3), α and β are the diagonal matrices including
three eigenvalues of matrix γ and Ω̃ , respectively, and MP is the plural rotation matrix
from the second matrix Ω̃ to the first matrix γ . Here, we select one of the alternative
rotation matrices as

MR =

 cψcφ − sψcθsφ cψsφ + sψcθcφ sψsθ
−sψcφ − cψcθsφ −sψsφ + cψcθcφ cψsθ

sθsφ −sθcφ cθ

 ,
where c and s denote cosine and sine, respectively.

The symmetric property of the two second-order tensors in the first channel
determines that the eigenframes and rotation matrix are real, which is very similar to
the tensor geometry of the energy cascade. The antisymmetric property of the tensors
in the second channel determines that they are plural. According to the properties
of the antisymmetric matrix, its three eigenvalues are zero and two conjugated pure
imaginary numbers. For any eigenvector, its imaginary and real parts are isometric and
orthogonal. Hence, we can easily determine the orthogonal and parallel geometric
relationships between the eigenvectors’ real and imaginary parts in figure 3. The
imaginary and real parts of the second eigenvector can be uniquely merged into a
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FIGURE 4. The average efficiencies of the first- and second-channel helicity fluxes as a
function of ∆/η. The blue dashed line is a reference line with constant value 0.46.

new orthogonal vector, so it is in the third eigenvector. Therefore, the real rotation
matrix MR can also be applied equally to the rotation matrix of the second channel.
For simplicity, the rotation matrix for the first and second channels is denoted by
symbol M .

The first- and second-channel helicity fluxes are expanded by the corresponding
eigenvalues and rotation matrix as

−ΠH1
∆ = λ1Λ1[M

2
11 −M2

21 −M2
12 +M2

22] + λ3Λ3[M
2
33 −M2

32 −M2
23 +M2

22]

+ λ1Λ3[M
2
31 −M2

21 −M2
32 +M2

22] + λ3Λ1[M
2
13 −M2

12 −M2
23 +M2

22], (4.4)

where λ1 and λ3 are the first and third eigenvalues of matrix τ , and Λ1 and Λ3 are the
first and third eigenvalues of matrix R̃. In addition, the incompressible condition has
been considered in the above derivation, that is, λ1+ λ2+ λ3= 0. The divergence-free
property of vorticity means that Λ1+Λ2+Λ3= 0. Nevertheless, the properties of an
antisymmetric matrix lead to a more simplified expansion as follows:

ΠH2
∆ = α3β3[M

2
33 −M2

32 −M2
23 +M2

22], (4.5)

where α3 is the third eigenvalue of matrix γ , and β3 is the third eigenvalue of matrix
Ω̃ . The simpler rotation frame of the second channel of helicity flux involves lower-
dimensional transformation, and this feature determines that the efficiency of helicity
transfer through the second channel is naturally higher. Following the similar definition
of the efficiency of energy cascade (Ballouz & Ouellette 2018), the efficiency of the
helicity cascade through the first and second channels can be defined as

Γ1 =
ΠH1(λi, Λi, φ, θ, ψ)

ΠH1
max(λi, Λi)

, Γ2 =
ΠH2(αi, βi, φ, θ, ψ)

ΠH2
max(αi, βi)

. (4.6a,b)

The maximum of the first- and second-channel helicity fluxes can be achieved by
seeking the optimal rotation matrix.

The averages of the helicity transfer efficiency through the first and second channels
are numerically investigated in figure 4. Consistent with previous analysis, the helicity
transfer efficiency through the second channel is higher, and the average efficiency in
the inertial subrange is approximately 46 %. Besides, the average efficiency through
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FIGURE 5. The local spatial average of energy flux conditioned on (a) the first-channel
helicity flux ΠH1

∆ and (b) the second-channel helicity flux ΠH2
∆ . The longitudinal axis

represents different filter widths, and ΠH′
∆ denotes the variance of the total helicity flux.

the second channel is also higher than the average efficiency of the energy cascade
of 25 % in the inertial subrange (Ballouz & Ouellette 2018). Hence, we can infer that
helicity tends to be reserved by the second channel, which means that more helicity
is kept for transferring to the next scale. This second channel with higher transfer
efficiency may serve as a new perspective for helicity transfer.

5. Roles of the dual channels in the energy cascade process

Relative to the triadic interactions of the same-chirality velocity (Biferale et al.
2012), the dual-channel helicity cascade proposed in this paper provides a new
viewpoint for the mechanism of hindered or even inverse energy cascade. ‘Vortex
thinning’ caused by the vortex stretching procedure as a physical mechanism for
inverse energy cascade originates from the negative eddy viscosity theory (Kraichnan
1976), and is popularly applied to geophysics (Salmon 1998).

The conditional averaging method is always used to estimate the effects of certain
factors on turbulent dynamos (Kovasznay, Kibens & Blackwelder 1970; Block et al.
2006). To evaluate the correlation between the energy flux and helicity flux at different
length scales, we take the local spatial average of the energy flux conditioned on
the first-channel and second-channel helicity fluxes in figure 5. The numerical results
indicate that the ensemble average of the energy flux conditioned on the second
channel is always smaller than that conditioned on the first channel, which is reflected
as the lighter red or blue regions in figure 5(b). This means that the second channel
of helicity cascade hinders the energy cascade at relatively large scales, and it can
even reverse the direction of the energy cascade at small scales. In contrast, the first
channel of helicity cascade promotes the forward energy flux, which is reflected by
the scarlet regions in figure 5(a).

The local spatial averages of the energy flux conditioned on the absolute value of
the ratio of the second and first channels of helicity cascade on four typical filter
widths of relatively large scales are exhibited in figure 6. When the ratio is larger than
one, we define that the second channel is dominant. The amplitudes of the energy flux
are always smaller when the second channel is dominant. In addition, the amplitude
of the energy flux also depends on the dominance degree of the second channel of
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FIGURE 6. The local spatial average of energy flux conditioned on the absolute value of
the ratio of the second channel and the first channel of helicity cascade on the typical
filter widths (∆/η= 49, 65, 98 and 195).

helicity cascade. The above numerical evidence confirms again the hindering role of
the second channel of helicity cascade in the inertial subrange. Based on the local
conditional averaging method, we infer that the influence regularity of the second
channel also applies to anisotropic turbulent flows. Therefore, we conclude that the
second channel of helicity cascade provides a new perspective for controlling energy
cascade. Under the influence of the second channel of helicity cascade, the small
scales do not easily receive energy from large scales, and viscosity is not inclined
to work well in near-dissipation regions. This conclusion is consistent with previous
opinions that helicity can decrease the viscous dissipation of energy (Linkmann 2018).

6. Conclusions

This research reveals that a dual-channel helicity cascade exists in turbulent flows,
and their properties are theoretically and numerically investigated in diverse aspects.
The dynamics of these two channels are mainly dominated by vortex twisting and
stretching, respectively. They behave differently in homogeneous and isotropic
turbulence and anisotropic flows. The second channel of helicity cascade is more
intermittent than the first channel. The tensor geometry of the second channel
involves plural eigenframes and rotation matrix, which is more complicated than
the tensor geometry of the first channel of helicity cascade and energy cascade. The
first eigenvalue of the antisymmetric matrix is zero, which simplifies the helicity
transfer procedure through the second channel and improves the transfer efficiency.
The newly proposed second channel of helicity cascade can be recognized as a new
promoting mechanism for the inverse energy cascade.

The dual-channel helicity cascade theory is a new perception of the helicity cascade
in turbulent flows. When and where the second channel is dominant in a specific
turbulent flow should be further verified. In natural phenomena, such as tornados
and rainstorms, the role of the second channel needs to be further explored. In
engineering turbulence control, the second channel of helicity cascade may serve
as a practical scheme to improve fluid machinery efficiency. We infer that new
turbulence models based on the dual-channel theory should be proposed to describe
the turbulence process more precisely. More open issues exist, such as further analyses
in compressible flows, and general anisotropic turbulent flows.
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Appendix A. The derivation to prove the relation of the ensemble averages
of the two helicity fluxes

Here, we provide a detailed derivation to prove the relation of the ensemble
averages of the two helicity fluxes in both HIT and TCF.

The following identical equation exists:

∇ · (a× b)= b · (∇× a)− a · (∇× b), (A 1)

where a and b are two arbitrary vectors. If we make an ensemble average of the left-
hand side of the above identity, we can obtain the following result only when the
three directions of flow are homogeneous:

left-hand side= 〈∇ · (a× b)〉 = 0. (A 2)

Hence, 〈b · (∇× a)〉 = 〈a · (∇× b)〉.
If we define ai = ui and bi = ∂τij/∂xj, the first- and second-channel helicity fluxes

could be expressed as

〈ΠH1
∆ 〉 = −

〈
∂(ωiτij)

∂xj

〉
+

〈
ωi
∂τij

∂xj

〉
=

〈
ωi
∂τij

∂xj

〉
=

〈
∂τij

∂xj
εijk
∂uk

∂xj

〉
= 〈b · (∇× a)〉, (A 3)

〈ΠH2
∆ 〉 = −

〈
∂(uiγij)

∂xj

〉
+

〈
ui
∂γij

∂xj

〉
=

〈
ui
∂γij

∂xj

〉
=

〈
uiεijk

∂(∂τkm/∂xm)

∂xj

〉
= 〈a · (∇× b)〉. (A 4)

Hence, 〈ΠH1
∆ 〉 = 〈Π

H2
∆ 〉 only in homogeneous and isotropic turbulence.
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