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Abstract. Let f : M→ M be a dynamically coherent partially hyperbolic diffeomorphism
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f is one-dimensional, then the volume of center leaves must be bounded in M .
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1. Introduction
1.1. Context. A diffeomorphism f : M→ M in a closed manifold M is said to be
partially hyperbolic if the tangent bundle T M decomposes as a direct sum of continuous
and D f -invariant subbundles,

T M = E s
⊕ Ec

⊕ Eu,

such that vectors in E s are uniformly contracted by D f , vectors in Eu are uniformly
contracted by D f −1, and vectors in Ec have an intermediate behavior.

The bundles E s and Eu uniquely integrate to f -invariant foliations Wu and Ws ,
respectively (see, for example, [HPS77]). The bundles E s

⊕ Ec and Ec
⊕ Eu may or

may not integrate to foliations Wcs and Wcu . If they do integrate to f -invariant foliations
the diffeomorphism is said to be dynamically coherent.

If f is dynamically coherent, the bundle Ec also integrates to an invariant foliation Wc

whose leaves are the connected components of the intersections of leaves of Wcs and Wcu .
This work fits in the context of studying partially hyperbolic diffeomorphisms where

Wc is a compact foliation (namely, all leaves of Wc are compact).
Since Sullivan presented his example in [S76] of a foliation by circles with unbounded

length of leaves, compact foliations have been categorized according to whether the
volume of leaves is uniformly bounded or not (see §2.2.3 for a more detailed discussion). In
particular, in the uniformly bounded case the leaf space is Hausdorff and has a nice orbifold
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structure, while in the non-uniformly bounded scenario the leaf space is not Hausdorff and
may have a complicate structure (see, for example, [E76, V77]).

Pugh posed the following questions (see [RHRHU07, G12]).

Questions. Let f : M→ M be a partially hyperbolic diffeomorphism with a compact
center foliation Wc. Is it true that the volume of center leaves is uniformly bounded? Is it
true that f can be finitely covered by a partially hyperbolic diffeomorphism f̃ : M̃→ M̃
so that there exist a fibration p : M̃→ N whose fibers are the center leaves and an Anosov
diffeomorphism f̄ : N → N such that p is a semiconjugacy between f̃ and f̄ ?

Progress on these questions has been made by Bonatti and Wilkinson [BW05], Bohnet
[B13], Bohnet and Bonatti [BB16], Carrasco [C15] and Gogolev [G12].

1.2. Main result. The main result of this work is the following theorem.

THEOREM 1.1. Let f : M→ M be a dynamically coherent partially hyperbolic
diffeomorphism with compact center foliation Wc. If dim(Eu)= 1 then the volume of the
center leaves is uniformly bounded.

In [B13] Bohnet has studied the case where the volume of the center leaves is uniformly
bounded and dim(Eu)= 1. Combining her results with our main theorem yields the
following corollary.

COROLLARY 1.2. Let f : M→ M be a dynamically coherent partially hyperbolic
diffeomorphism with compact center foliation Wc. If dim(Eu)= 1 then, modulo taking a
double cover, the leaf space M/Wc is a torus Td and the dynamics F : M/Wc

→ M/Wc

induced by f is topologically conjugate to an Anosov automorphism on Td , where
d = codim(Wc).

Observe that Theorem 1.1 and Corollary 1.2 are valid as well if dim(E s)= 1 by working
with f −1 instead of f .

In [G12] Gogolev proved that compact center foliations are uniformly compact under
the assumptions dim(Ec)= 1, dim(E s)≤ 2 and dim(Eu)≤ 2. Combining this result with
our main theorem then yields the following corollary.

COROLLARY 1.3. Let f : M→ M be a dynamically coherent partially hyperbolic
diffeomorphism with compact center foliation. If dim(M)≤ 5 then the volume of the center
leaves is uniformly bounded.

In particular, with Corollary 1.3 we can completely rule out as a center foliation
Sullivan’s example [S76] of a foliation by circles in a 5-manifold with unbounded length
of leaves. Note that for this specific example the result is, as far as we are aware, new. In
Remark 3.6 we give a direct proof for this example without the need of the results from
§4.
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1.3. Organization of the paper and structure of the proof. In §2 we give some
preliminaries from partially hyperbolic dynamics and foliation theory. In particular, we
address the topic of compact foliations and review some definitions and results that will be
useful in the proof of the main theorem.

In §§3 and 4 we give the proof of the main theorem, and the structure is as follows.
The proof will be by contradiction. Assume that the center foliation Wc does not have

uniformly bounded volume of leaves. This is equivalent to the bad set

B = {x : center leaf volume function is not locally bounded at x}

being non-empty (see §2.2.3).
The main result of §3 is that B is saturated by the center-unstable foliation: as the

unstable holonomy of center leaves is trivial (see Lemma 3.2), the stable holonomy groups
of points in the same unstable leave are conjugated (see Lemma 3.3). We deduce that B is
an attractor. In particular, this implies that f cannot be transitive.

Section 4 is dedicated to ruling out the non-transitive case.
The attractor B induces an associated repeller R. We first show that R is saturated by

the center foliation, implying that the center leaf volume function is bounded in R (see
§4.1).

We then give a sort of topological description of center-stable leaves in R, namely, all
of them are bundles over a center leaf with stable manifolds as fibers, thus having trivial
transverse holonomy (see §4.2).

Finally, this allow us to adapt Hiraide arguments [H01] (see also Bohnet [B13]) in order
to disprove the existence of the codimension one transversally unstable repeller ∂R.

2. Preliminaries
2.1. Preliminaries from partially hyperbolic dynamics. Let f : M→ M be a C1

diffeomorphism on M a closed Riemannian manifold. We say that f is partially hyperbolic
if there exist a continuous and D f -invariant decomposition

T M = E s
⊕ Ec

⊕ Eu

and some ` > 0 such that, for every x ∈ M and unit vectors vσ ∈ Eσ for σ ∈ {s, c, u}, one
has that

‖Dx f `(vs)‖< 1, ‖Dx f −`(vu)‖< 1,

and

‖Dx f `(vs)‖< ‖Dx f `(vc)‖< ‖Dx f `(vu)‖.

We call E s, E s
⊕ Ec, Ec, Ec

⊕ Eu , and Eu stable, center-stable, center, center-
unstable and unstable bundles, respectively.

The stable and unstable bundles are known to be uniquely integrable (see, for example,
[HPS77]) to foliations Ws and Wu , respectively. However, the center, center-stable, and
center-unstable bundles may not integrate.

We say that a partially hyperbolic diffeomorphism is dynamically coherent if the
center-stable and center-unstable bundles integrate to f -invariant foliations Wcs and Wcu ,
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respectively. In particular, this implies that the center bundle is also integrable, the center
leaf through a point x ∈ M being the connected component of W cs(x) ∩W cu(x) that
contains x . The resulting foliation, Wc, is then also f -invariant and tangent to the center
bundle. For more information and context on this topic see, for example, [RHRHU07].

Given a point x ∈ M , we denote by W σ (x) the leaf of Wσ through x for σ ∈
{s, cs, cu, u}. We denote by Cx the leaf of Wc through x .

Given a center leaf C, we denote by W σ (C) the leaf of Wσ through C for σ ∈ {cs, cu}.

For x ∈ M and r > 0, we denote by Bσr (x)⊂W σ (x) the intrinsic ball of center x and
radius r > 0 in W σ (x) for σ ∈ {s, cs, c, cu, u}. If dim(Eσ )= 1 we will simply denote it by
(x − r, x + r)σ . If dim(Eσ )= 1 and Wσ is oriented, we write (x, x + δ)u = {y ∈ Bu

δ (x) :
x < y} and W u

+(x)= {y ∈W u(x) : x < y}, and, if y ∈Wu(x), we denote by [x, y]u and
(x, y)u the oriented closed and open segments in Wu(x), respectively, from x to y.

Leaves of Ws and Wu can be obtained as an increasing union of balls, thus, are
homeomorphic to Rdim Es

and Rdim Eu
, respectively.

2.2. Preliminaries from foliation theory. We will consider continuous foliations with
C1-leaves tangent to a continuous distribution. A general reference for this section is
[CC00].

2.2.1. Holonomy of a leaf. Let us briefly recall the definition of the holonomy group of
a leaf.

Consider W a leaf in a foliation W of codimension q. Fix x0 a point in W and let D be
a disk of dimension q transversal to W through x0.

For every loop γ : [0, 1] →W based on x0 one can consider hγ : D′→ D the holonomy
return map to D of the leaves of W through points from a smaller transversal disk D′ ⊂ D.
Consider adequate small transversal disks Dγ (t) through each point γ (t) and, given y in
D′ = Dγ (0), define hγ (y) as the end point of the continuous curve γy defined by γy(t) ∈
Dγ (t) ∩W (y) and γy(0)= y.

For a local homeomorphism h : D′ ⊂ D→ D fixing x0 one defines the germ of h as the
class of all local homeomorphisms that coincide with h in a neighborhood of x0. With the
operation given by composition, these classes form G(x0, D), the group of germs of local
homeomorphisms at x0.

One can see that for basepoint fixed homotopic curves in W based at x0 there
corresponds the same holonomy germ. Since concatenation of curves corresponds
to composition of holonomy maps (whenever well defined) one has a well-defined
homomorphism

φ : π1(W, x0)→ G(x0, D)

where π1(W, x0) is the fundamental group of W based in x0.

Define the holonomy group of W at x0 as φ(π1(W, x0)). The isomorphism class of
φ(π1(W, x0)) does not depend of x0 or D, so we call it holonomy group of W and denote
it by Hol(W ).
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2.2.2. Reeb stability. This next theorem is classical in foliation theory. See, for
example, [CC00, Theorem 2.4.3] and [CLN85, Theorem 3].

THEOREM 2.1. (Generalized Reeb stability theorem) Let W be a compact leaf in a
foliation W such that W has a finite holonomy group Hol(W ). Then there exists U(W )

a neighborhood of W , saturated by leaves of W , in which all leaves of W are compact
with finite holonomy group. Moreover, U(W ) has an associated projection π : U(W )→W
such that for every W ′ ⊂ U(W ) the map π |W ′ :W ′→W is a finite covering with k sheets,
k ≤ |Hol(W )|, and for each y ∈W the set π−1({y}) is a disk transversal to W . The
neighborhood U(W ) can be taken to be arbitrarily small.

2.2.3. Compact foliations. We say that a foliation W is compact if every leaf W of W
is compact.

Given a compact foliation W and a Riemannian metric in M we can consider the volume
function

vol : M→ [0,+∞)

that assigns to each point x ∈ M the volume of the leaf W (x) with respect to the metric in
W (x) induced by the metric of M .

It may be the case that a compact foliation does not have uniformly bounded volume of
leaves, meaning that vol is an unbounded function (see, for example, [S76] or [EV78]).

Given a compact foliation W , define the bad set of W as

B := {x ∈ M : vol is not locally bounded at x}.

The set B does not depend on the choice of the metric in M .

Remark 2.2. The fact that W has uniformly bounded volume of leaves is equivalent to B
being the empty set.

Remark 2.3. Observe that if W is invariant by a C1 diffeomorphism f then B is invariant
by f (namely, f (B)= B). This is going to be used in our context where W will be the
center foliation of a partially hyperbolic diffeomorphism.

Let us show some of the properties of B. For a proof of the following result see, for
example, Epstein [E76] or Lessa [L15].

PROPOSITION 2.4. Let W be a compact foliation. Then the volume function is lower
semicontinuous. That is, lim infxn→x vol(W (xn))≥ vol(W (x)).

Using the previous proposition we can prove our next result (see, for example,
[EMS77]).

PROPOSITION 2.5. The bad set B is closed with empty interior and is saturated by leaves
of W .

Proof. The set B is clearly closed.
Semicontinuous functions are continuous in a residual set and B ⊂ {x ∈ M :

vol is not continuous in x}. Thus, from vol being lower semicontinuous we deduce that
B has empty interior.
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The fact that the volume function is constant along leaves implies that B is saturated
by leaves of W: if x ∈ B then x has arbitrarily large leaves arbitrarily close to it, so if
y ∈W (x) then these arbitrarily long leaves pass close to y as well (due to the continuity
of the foliation W), meaning that y also belongs to B. �

Leaves in B can be completely characterized in terms of holonomy (see, for example,
Epstein [E76, Theorem 4.2]).

PROPOSITION 2.6. Let W be a compact foliation and W a leaf of W . Then W ⊂ B if and
only if |Hol(W )| =∞.

2.3. Stable and unstable holonomies and product neighborhoods. In this section we
give particular definitions and results we will use later. Throughout this section f : M→
M will be a dynamically coherent partially hyperbolic diffeomorphism with compact
center foliation.

2.3.1. Stable and unstable holonomies. A consequence of dynamical coherence is that
each leaf W of Wcs is foliated by center leaves. We denote the restricted foliation by
Wc
|W .

Given a center leaf C, denote by Hol(C) the holonomy group of C as a leaf of Wc.
Denote by Hols(C) the holonomy group of C as a leaf of Wc

|W cs (C).
If W is a leaf of Wcs , denote by Holcs(W ) the holonomy group of W as a leaf of

Wcs . More generally, if V ⊂W , we denote Holcs(V ) the subgroup of Holcs(W ) that
corresponds to holonomy return maps along closed curves inside V .

We define Holu and Holcu analogously.

Remark 2.7. We have that Holcs(C)' Holu(C) and Holcu(C)' Hols(C) for every center
leaf C.

Proof. We prove the first equality; the second one is analogous. Let γ be a loop in a center
leaf C based in some point x0 ∈ C. Consider Du(x0) a small unstable disk through x0. One
can consider, on the one hand, the holonomy return map hγ associated to γ of the leaf
W cs(C) in the foliation Wcs and, on the other hand, the holonomy return map h′γ of the
leaf C in the foliation Wc

|W u(C). Dynamical coherence gives us that hγ coincides with h′γ .
The result follows. �

Remark 2.8. For a set V inside a center-stable leaf W that deformation retracts inside W to
some center leaf C, we have that Holcs(V )' Holcs(C)' Holu(C). For such sets we write
Holu(V ) instead of Holcs(V ), and analogously for Holcu(V ) and Hols(V ).

Remark 2.9. Each one of the previous holonomies is invariant by f .

Dynamical coherence gives a relationship between the holonomy Hol(C) and the
holonomies Hols(C) and Holu(C). In particular, we will need the following proposition
(see, for example, Carrasco [C15, Proposition 2.5]).
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PROPOSITION 2.10. For every center leaf C we have that

max{|Hols(C)|, |Holu(C)|} ≤ |Hol(C)| ≤ |Hols(C)||Holu(C)|.

In particular, Hol(C) is finite if and only if Hols(C) and Holu(C) are finite.

Proof. Let C be a center leaf and x0 a point in C.
Consider D a small disk transversal to Wc and tangent to E s

⊕ Eu in x0. Denote by
Ds and Du the connected components of D ∩W cs(x0) and D ∩W cu(x0) that contain x0,
respectively. More generally, for every x in D denote by Ds(x) and Du(x) the connected
components of D ∩W cs(x) and D ∩W cu(x) that contain x , respectively. We have, in
a neighborhood D′ ⊂ D of x0, local stable/unstable coordinates. That is, for every x in
D′ there exist unique xs ∈ Ds and xu ∈ Du such that x = Du(xs) ∩ Ds(xu). Denote the
coordinates of x by (xs, xu).

Given a loop γ based at x0 we have well-defined holonomy return maps, hs
γ : D

s ′
→ Ds

and hu
γ : D

u ′
→ Du , for center leaves inside W cs(x0) and W cu(x0), respectively. Then

dynamical coherence says that the holonomy return map associated to γ in D can be
written in local coordinates as

hγ = (hs
γ , hu

γ ),

where hγ is given by hγ (x)= (hs
γ (xs), hu

γ (xu)), with x = (xs, xu) the stable/unstable
coordinates defined before.

Elements of Hols(C) and Holu(C) are germs of local homeomorphisms fixing x0 in Ds

and Du , respectively. The previous discussion shows that the map

ψ : Hols(C)× Holu(C)→ Hol(C)

given by ψ(hs
γ , hu

γ )= hγ is surjective. This implies that |Hol(C)| ≤ |Hols(C)||Holu(C)|.
Moreover, since hγ (xs, x0)= (hs(xs), x0) and hγ (x0, xu)= (x0, hu(xu)), we obtain that
max{|Hols(C)|, |Holu(C)|} ≤ |Hol(C)|. �

2.3.2. Product neighborhoods. Assume throughout the rest of this section that
dim(Eu)= 1 and Holu(C)= Id for every center leaf. This hypothesis will be verified later
during the proof of the main theorem.

The following proposition will be of use many times (for similar results see, for
example, [CC00] or [HH87]).

PROPOSITION 2.11. (Product neighborhoods) Let C be a center leaf and consider E =⋃
x∈C Bs(x), where Bs(x)⊂W s(x) is a disk such that Bs(x) ∩ C = {x} for every x ∈ C

and Bs(x) varies continuously with x. Then there exists an homeomorphism over its image
ϕ : E × [−1, 1] → M such that:
(1) ϕ(E × {0})= E;
(2) ϕ(E × {y}) lies inside a Wcs leaf for every y ∈ [−1, 1];
(3) ϕ({x} × [−1, 1]) lies inside a Wu leaf for every x ∈ E.

In this case, ϕ(E × [−1, 1]) will be called a (Wcs,Wu)-product neighborhood of E
and, in an abuse of notation, we will simply refer to it as E × [−1, 1].
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Proof. We can consider ε > 0 such that for every distinct x, x ′ ∈ E we get (x − ε, x +
ε)u ∩ (x ′ − ε, x ′ + ε)u = ∅.

Let us fix x0 ∈ C. By the continuity of Wcs we can consider δ > 0 such that for every
curve γ : [0, 1] → E with γ (0)= x0 and length(γ )≤ 2 diam(E) we have a well-defined
holonomy map

hγ : (x0 − δ, x0 + δ)
u
→ (γ (1)− ε, γ (1)+ ε)u .

Observe that if such a γ is closed, since E =
⋃

x∈C Bs(x)with each Bs(x) a stable disk,
then γ would be homotopic to a loop in C. Since Holu(C)= Id we can take δ > 0 small
enough to ensure that hγ coincides with the identity from (x0 − δ, x0 + δ)

u to itself for
every γ such that length(γ )≤ 2 diam(E).

For every x ∈ E consider γx : [0, 1] → E a curve from x0 to x such that length(γx )≤

diam(E). Now, for every y ∈ (x0 − δ, x0 + δ)
u define

ϕ(x, y)= hγx (y).

This definition is independent of the choice of the curve γx . Indeed, if γ ′x : [0, 1] → E is
another such a curve, the concatenation γx ∗ γ

′
x has length at most 2 diam(E) and then

id= hγx∗γ ′x
= hγx ◦ h−1

γ ′x
implies hγx (y)= hγ ′x (y) for every y ∈ (x0 − δ, x0 + δ)

u .
The properties of the map ϕ follow directly from its definition. �

We will often need a particular instance of the previous proposition.

Remark 2.12. For every center leaf C such that |Hol(C)|<∞ we can consider U s(C)
a neighborhood of C in W cs(C) given by the generalized Reeb stability theorem (see
Theorem 2.1) such that:
• the associated projection π : U s(C)→ C is such that π−1(x) is a disk in W s(x) for

every x ∈ C;
• there exists a (Wcs,Wu)-product neighborhood U s(C)× [−1, 1] of U s(C).

Proof. By the transversality of the foliations Ws and Wc inside W cs(C) and the fact that
U s(C) can be taken arbitrarily small, we obtain that the projection π can be taken along
leaves of Ws .

The neighborhood U s(C) verifies the hypothesis of Proposition 2.11, which implies the
existence of the product neighborhood. �

3. The bad set is saturated by the center-unstable foliation
From now on, let f : M→ M be a dynamically coherent partially hyperbolic
diffeomorphism such that dim(Eu)= 1.

As before, we assume that Wc is a compact foliation. We will see that Wc is in fact
uniformly compact (meaning that the leaf volume function is bounded in M).

Remark 3.1. We can assume from now on that all bundles E s, Ecs, Ec, Ecu and Eu are
orientable.

Proof. By taking a finite cover of M we can lift all bundles E s, Ecs, Ec, Ecu and
Eu to orientable bundles. Then f lifts to a dynamically coherent partially hyperbolic
diffeomorphism f̃ whose center foliation W̃c is the lift of Wc. The lifted center foliation
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W̃c remains compact, and each one of its leaves is a finite cover of some leaf of Wc. Then
if W̃c is uniformly compact, so is Wc. �

Let us first show a simple but yet crucial consequence of the codimension one
hypothesis.

LEMMA 3.2. The group Holu(C) is trivial for every center leaf C.

Proof. Let C be a center leaf. Recall that Holu(C) consists of the holonomy maps
associated to C inside the center-unstable leaf W cu(C).

Let x be a point in C and γ : [0, 1] → C a closed curve based in x . Consider λ′ ⊂
λ⊂Wu(x) small enough one-dimensional transversals through x such that the holonomy
return map associated to γ is a well-defined map hγ : λ′→ λ. As we are assuming that the
unstable foliation is orientable, the map hγ preserves the orientation of λ.

Assume that hγ is not the identity. Then there exists y ∈ λ′ such that {hn
γ (y)}n≥0

or {h−n
γ (y)}n≥0 constitutes an infinite set of points lying in λ. Assume without loss of

generality it is the former.
Fix U a small foliated neighborhood of Wc containing λ. Each point of hn

γ (y) lies on
a different plaque of U . Since each one of these plaques belong to Cy , this contradicts the
fact that Cy is compact. �

From the previous lemma, we deduce that each center leaf C has in W cu(C) a product
neighborhood of the form C × (−δ, δ)u , where each C × {y} corresponds to a center leaf
and each {x} × (−δ, δ)u corresponds to an unstable arc (see Figure 1). This will allow us
to use Remark 2.12.

This kind of ‘stacking’ of center leaves along the unstable direction implies that stable
holonomy is constant along unstable leaves (see Figure 2).

LEMMA 3.3. For every x ∈ M and y ∈W u(x) the groups Hols(Cx ) and Hols(Cy) are
isomorphic.

Proof. Observe that it is enough to give a local argument. Suppose that for every x ∈ M
there is an unstable arc (x − δ, x + δ)u such that Hol(Cy)' Hol(Cx ) for every y ∈ (x −
δ, x + δ)u . This implies that the set {y ∈W u(x) : Hol(Cy) is isomorphic to Hol(Cx )} is an
open subset of W u(x) as well as its complement, and thus the result follows.

Let x be a point in M and denote by C the center leaf through x . Since C is compact there
exists δ > 0 such that Bs

δ(z) ∩ Bs
δ(z
′)= ∅ for every distinct z, z′ ∈ C. Thus

⋃
z∈C Bs

δ(z)
(denote it by Bs

δ(C)) is in the hypothesis of the Proposition 2.11 and we can consider a
(Wcs,Wu)-product neighborhood Bs

δ(C)× (−1, 1).
Given t ∈ (−1, 1), we can define a projection pt : Bs

δ(C)× {0} → Bs
δ(C)× {t} along

unstable leaves inside Bs
δ(C)× (−1, 1), namely,

pt (z, 0)= (z, t).

The projection pt then identifies Wc
|Bs
δ(C)×{0} homeomorphically with Wc

|Bs
δ(C)×{t}

since the leaves of Wc are the connected components of the intersection of leaves of Wcs
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FIGURE 1. Local picture of a center-unstable leaf.

FIGURE 2. Stable holonomy is preserved along the unstable direction.

with leaves of Wcu . This implies that

Hols(Cy)' Hols(Cx )

for every y ∈ {x} × (−1, 1). �

Recall from the preliminaries that we denote the bad set B of Wc as the points of M in
which the leaf volume function is not locally bounded.

COROLLARY 3.4. The bad set B of Wc is saturated by the center-unstable foliation.

Proof. From Proposition 2.6 we have that a center leaf belongs to B if and only if
|Hol(C)| =∞. By Proposition 2.10 and Lemma 3.2, we have that |Hol(C)|<∞ if and
only if |Hols(C)|<∞.

Lemma 3.3 then implies that B is saturated by the unstable foliation. As it is also
saturated by the center foliation (see Remark 2.5) the result follows. �

We obtain the following corollary.

COROLLARY 3.5. The bad set B of Wc is a proper attractor. In particular, there are no
transitive, codimension one, dynamically coherent partially hyperbolic diffeomorphisms
with compact center foliation and unbounded volume of leaves.
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Proof. The set B is compact, f -invariant, has empty interior and is saturated by the center-
unstable foliation (see Corollary 3.4). In particular, B is transversally stable and not all M ,
and thus a proper attractor. This implies that f cannot be transitive. �

The aim of the rest of the work is to show that same result follows in the non-transitive
scenario.

We finish this section by noting that, by what we have done up to this point and the
work of Gogolev in [G12], one is already able to disregard the Sullivan foliation [S76] as
the center foliation of a dynamically coherent partially hyperbolic system.

Remark 3.6. The Sullivan foliation [S76] cannot be the center foliation of a dynamically
coherent partially hyperbolic diffeomorphism.

Proof. The example given by Sullivan is a foliation by circles in a five-dimensional
compact space M with unbounded length of leaves.

Assume that Sullivan’s foliation is the center foliation of a dynamically coherent
partially hyperbolic diffeomorphism. As the center foliation is one-dimensional (in a five-
dimensional manifold), Gogolev’s work implies that it has uniformly bounded volume of
leaves if dim(E s)= 2 and dim(E s)= 2 (see the main theorem in [G12]).

It remains to rule out the codimension one case. Assume without loss of generality that
dim(Eu)= 1.

Let us denote the Sullivan foliation by F . In this particular case, the bad set B of F has
the structure of the unitary tangent bundle T 1S2 of a 2-sphere. Moreover, the leaves of the
foliation in B are exactly the fibers of this unitary tangent bundle.

By Corollary 3.4, the set B is saturated by the center-unstable foliation, and so center-
unstable leaves foliate B.

Given a center leaf C, we have that Holu(C)= Id and then C has a neighborhood C ×
(−δ, δ)u in W cu(C) such that each C × {y} is a center leaf (see Figure 1).

This implies that the center-unstable foliation in B ' T 1S2 projects to a (topological)
foliation without singularities in the base S2. This is impossible. �

4. Proof of the non-transitive case
We saw in the previous section that f cannot be transitive if the bad set B of Wc is not
empty. Lose the transitivity hypothesis and assume that B is non-empty. We will see that
this yields a contradiction.

4.1. Construction of the repeller R. Let us consider R the repelling set induced by the
attractor set B (see Figure 3):

R= M
∖ ⋃

x∈B
W s(x).

We will next closely study R. In particular, we will see that is saturated by center-stable
leaves.

For every r > 0, let us write Bs
r (B)=

⋃
x∈B Bs

r (x).

https://doi.org/10.1017/etds.2019.15 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.15


2360 V. De Martino and S. Martinchich

FIGURE 3. Repeller R.

LEMMA 4.1. The set R is non-empty, f -invariant, compact and saturated by the stable
foliation.

Proof. Since B is saturated by leaves of Wcu , it follows that
⋃

x∈B W s(x) is open. This
implies that R is compact.

Let us show that R is not empty. The set
⋃

x∈B W s(x) is the increasing union
of the open sets {

⋃
x∈B Bs

n(x)}n . If it were the case that M =
⋃

x∈B W s(x), then M
would coincide with Bs

n0
(B) for some n0. Then f −n(M) would be contained in a small

neighborhood of the proper compact subset B for some big enough n, which of course is
impossible.

Since
⋃

x∈B W s(x) is f -invariant and saturated by Ws , the same holds for R. �

We are on the way to proving that R is also saturated by the center foliation. The proof
will rely on the following three lemmas.

The next lemma is the main observation that will allow us to continue to work in a
neighborhood of R as if the center foliation were uniformly compact.

LEMMA 4.2. For every ε > 0 there exists K > 0 such that if C is a center leaf with
vol(C) > K then C ⊂ Bs

ε(B).

Proof. Fix ε > 0 and suppose that there is no such K . Then there exists a sequence (xn)n∈N

in M\ Bs
ε(B) such that vol(Cxn )

n
−→∞. By taking a convergent subsequence xnk

k
−→ x ∈

M\ Bs
ε(B) we obtain that vol is not locally bounded in x . So x should be a point of B, but

that is impossible since x ∈ M\ Bs
ε(B). �

The following lemma relates the diameter and volume of leaves.

LEMMA 4.3. For every K > 0 there exists D > 0 such that if C is a center leaf with
vol(C) < K then diam(C) < D.

Proof. Take {Ui }i=1,...,l a finite covering of M by foliated boxes of the center foliation.
For each i ∈ {1, . . . , l} denote by di the supremum of the diameter of center plaques in
Ui , and by vi the infimum of the volume of center plaques in Ui . Write d =maxi {di } and
v =mini {vi }.

Now let C be a center leaf with vol(C) < K . We have that C has less than K/v + 1
plaques in each Ui and then diam(C) < ld(K/v + 1)= D. �
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From the continuity of Wc we have our next lemma.

LEMMA 4.4. Given D > 0 and ε > 0, there exists δ > 0 such that for any x and y with
d(x, y) < δ we have that Bc

D(y)⊂ Bε(Cx ).

We can now prove the following proposition.

PROPOSITION 4.5. The set R is saturated by the center foliation.

Proof. Suppose that there exist x ∈R and y ∈ Cx such that y ∈ M\R. Since y ∈ M\R
there exists w ∈ B such that y ∈W s(w).

Denote d = d(B,R) > 0. Note by Lemma 4.2 that vol is bounded in R, say by some
constant K > 0.

By Lemma 4.3 there exists D > 0 such that for every center leaf C with vol(C) < K the
diameter of C is less than D. So for every z ∈R we have that Bc

D(z)= Cz .
We can now consider N large enough so that, by Lemma 4.4, the points f N (w) and

f N (y) are close enough to ensure that Bc
D( f N (y))⊂ Bd/2(B). This yields a contradiction

since f N (y) ∈ C f N (x) and f N (x) ∈R since R is f -invariant. This shows that for every
x ∈R the leaf Cx ⊂R. �

4.2. Completeness and trivial holonomy for center-stable leaves in R. In this
subsection we prove some properties of R in order to implement the proof of Hiraide
in §4.3.

Let us first show in the following proposition that center-stable leaves in R are complete
(this terminology is used in [BW05, C15, BB16]).

PROPOSITION 4.6. For every center leaf C in R we have that W cs(C)=
⋃

x∈C W s(x).

Proof. Let C be a center leaf in R. If we prove that
⋃

x∈C W s(x) is saturated by center
leaves then

⋃
x∈C W s(x) will be a non-empty open and closed subset of W cs(C) and then

will coincide with W cs(C).
Let us consider y0 ∈

⋃
x∈C W s(x). We want to show that Cy0 ⊂

⋃
x∈C W s(x). Let x0 be

any point in C and let γ : [0, 1] →W cs(C) be a continuous path from x0 to y0.
For every t ∈ [0, 1] denote by Ct the center leaf through γ (t).
Recall that by Proposition 2.6 the center leaves in B coincide with those with infinite

holonomy group. Thus, since R ∩ B = ∅, for every t ∈ [0, 1] we have that Ct ⊂W cs(C)
satisfies |Hols(Ct )|<∞.

We can then take for each Ct a neighborhood U s(Ct ) of Ct in W cs(Ct ) given by
the generalized Reeb stability theorem (see Theorem 2.1). The associated projection
πt : U s(Ct )→ Ct can be taken such that π−1

t (x) is a disk in W s(x) for every x ∈ Ct (see
Remark 2.12).

Then {U s(Ct )}t∈[0,1] is an open cover of γ ([0, 1]). Let us take a finite subcover
{U s(Ct0), . . . , U s(Ctk )} such that Cx0 = Ct0 , Cy0 = Ctk and U s(Cti ) ∩ U s(Cti+1) 6= ∅ for
every 0≤ i ≤ k − 1.

Observe that, if C′ is a center leaf in some U s(Cti ), then each stable disk of a point of
Cti intersects C′.
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Observe also that since each U s(Cti ) is saturated by center leaves, so it is each U s(Cti ) ∩

U s(Cti+1).
Then, by taking C′i ⊂ U s(Cγ (ti )) ∩ U s(Cγ (ti+1)) we deduce that each stable leaf of Ci

intersects Ci+1.
This implies that Cy0 ⊂

⋃
x∈C W s(x) as we wanted. �

The following result is a mild extension of Lemma 4.2 that will come in handy later.

LEMMA 4.7. There exists a constant C > 0 such that for every x in R we have #{Cx ∩

W s(x)}< C.

Proof. Cover R by a finite number {Ui }1≤i≤k of foliated boxes for the Wc foliation. Let
d > 0 be such that each plaque of each Ui has volume larger than d.

By Lemma 4.2 the volume function is bounded in R, say by some constant K .
Let us show that #{Cx ∩W s(x)}< K/d + 1 for every x ∈R.
Suppose there exist x ∈R and distinct points {x = x0, . . . , xl} ⊂ {Cx ∩W s(x)} with

l ≥ K/d + 1.
Let γ > 0 be a Lebesgue number for the covering {Ui }1≤i≤k . Then we can consider

N large enough to ensure that diam({ f N (x0), . . . , f N (xl)}) < γ in W s( f N (x0)) with
the intrinsic topology. So { f N (x0), . . . , f N (xl)} is contained in some member Ui0 of the
covering.

Since the points { f N (x0), . . . , f N (xl)} are close in W s( f N (x0)) in the intrinsic
topology, then each one of them lies on a different plaque of Ui0 . On the other hand,
{ f N (x0), . . . , f N (xl)} ⊂ f N (Cx ). This contradicts the fact that vol( f N (Cx ))≤ K . �

We can now give some kind of a description of center-stable leaves in R (see Bohnet
[B13, Corollary 4.10] for a similar result).

PROPOSITION 4.8. Let W be a center-stable leaf in R. Then there exists a center leaf C in
W such that for every x ∈ C we have that C ∩W s(x)= {x}. Therefore, W is a bundle with
base C and fibers {W s(x)}x∈C .

Proof. Observe that it is enough to prove what we want for some f N (W ).
Cover R by a finite (Wcs,Wu)-product neighborhood {U s(Ci )× [−1, 1]}1≤i≤k with

each U s(Ci ) being a Generalized Reeb stability neighborhood of the center leaf Ci (see
Remark 2.12).

Let γ > 0 be a Lebesgue number for the covering.
Let W be a center-stable leaf in R. By the previous lemma, we have that #{Cx ∩W s(x)}

is bounded by a constant C > 0 for every x ∈W . So, let us consider x0 ∈W such that
l = #{Cx0 ∩W s(x0)} is maximal in W . Let {x0, . . . , xl−1} = Cx0 ∩W s(x0).

Let N > 0 be large enough so that diam({ f N (x0), . . . , f N (xl−1)}) < γ in
W s( f N (x0)) with the intrinsic topology. Then there exist i ∈ {1, . . . , k} and t ∈ [−1, 1]
such that { f N (x0), . . . , f N (xl−1)} ⊂ U s(Ci )× {t}. Moreover, { f N (x0), . . . , f N (xl−1)}

belongs to the same s-disk in the generalized Reeb stability neighborhood U s(Ci )× {t}.
So each s-disk of U s(Ci )× {t} intersects f N (Cx0) in at least l distinct points.
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This implies that (Ci × {t}) ∩W s(x)= {x} for every x ∈ Ci × {t}. Otherwise, f N (Cx0)

would intersect some stable leaf in at least 2l distinct points and this is impossible since
l = #{Cx0 ∩W s(x0)} is maximal in W and, therefore, also in f N (W ). �

Remark 4.9. For W as in Proposition 4.8 we have that the group Hol(W ) is trivial. Indeed,
any closed curve in W is freely homotopic to a closed curve in C, which has trivial unstable
holonomy (see Lemma 3.2).

4.3. Adapted Hiraide arguments to rule out the existence of R. This last subsection is
dedicated to prove that the set R as described before cannot exist. The proof we give is an
adaptation of the work by Hiraide in [H01] and by Bohnet in [B13]. However, the proof
itself is self-contained.

The key advantage of Hiraide’s proof over Newhouse’s (Anosov case; see [N70]) is that
the former takes place in a neighborhood of the repeller while the latter makes a more
global argument. As we want to avoid dealing with the bad set, we find it more convenient
to follow Hiraide’s proof. It is worth mentioning that for the reasons just mentioned the
authors could not directly adapt Newhouse’s proof.

From now on we will work with both R and its boundary ∂R in M . Note that, as well
as R, the set ∂R is non-empty, closed, saturated by the center-stable foliation, has trivial
transversal holonomy, and the volume of its center leaves is uniformly bounded. The set
∂R has empty interior.

Let us fix an orientation of Wu .
For every x ∈R we can consider U s(x)× [−1, 1] a (Wcs,Wu)-product neighborhood

of x with U s(x) a small center-saturated generalized Reeb stability neighborhood of Cx

(see Remark 2.12).
Let {Vi = U s(xi )× (−1, 1)}0≤i≤k be a finite cover of R. Define V =

⋃
0≤i≤k Vi .

We will show that for certain points near ∂R the center-stable leaf through this point
must remain in V (see Lemma 4.13) while it must also intersect B, thus yielding a
contradiction.

Remark 4.10. We can assume that:
• V ∩ B = ∅ (this is obtained by taking each U s(x)× [−1, 1] disjoint from B);
• U s(xi )× {1} ∩ ∂R= ∅ (we can assume this since ∂R has empty interior).

For every i ∈ {0, . . . , k} let 0< ti < 1 be such that U(xi )× [ti , 1] ∩ ∂R= U(xi )×

{ti }. Denote each U(xi )× {ti } by P+i . Informally speaking, P+i is the last (according to
the orientation of Wu) center-stable plaque of Vi that is contained in ∂R.

LEMMA 4.11. There exists a pair (x0, δ) ∈ ∂R× R+ such that either (x0, x0 + δ)
u
∩

R= ∅ or (x0 − δ, x0)
u
∩R= ∅.

Proof. Observe first that the set R cannot be saturated by the unstable foliation (because
in that case it would be all M), so there must exist a point x ∈R such that W u(x) ∩
M\R 6= ∅.

As R ∩W u(x) is closed in W u(x)with the intrinsic topology then there must be at least
one connected component I of W u(x)\R. Choose x0 an endpoint of I . �
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Fix (x0, δ) given by the previous lemma. Assume that (x0, x0 + δ)
u
∩R= ∅

(otherwise, simply change the orientation of Wu).
By Propositions 4.6 and 4.8 we have W cs(x0)=

⋃
x∈C W s(x) for some center leaf C ⊂

W cs(x0) such that C ∩W s(x)= {x} for every x ∈ C. Assume, without loss of generality,
that Cx0 is such a center leaf.

Some of the plaques {P+1 , . . . , P+k } could possibly be contained in W cs(x0). Denote
them all by {P+i1

, . . . , P+im
}. We can now consider N > 0 large enough to ensure that

(P+i1
∪ · · · ∪ P+im

)⊂
⋃

x∈Cx0

Bs
N (x).

If W cs(x0) contains none of the plaques {P+1 , . . . , P+k } then take N > 0 to be any
positive number.

For simplicity, let us denote
⋃

x∈Cx0
Bs

N (x) as E . The subset E of W cs(x0) is then in
the hypothesis of the Proposition 2.11 (in particular, Holu(E)= Id) so we can consider a
(Wcs,Wu)-product neighborhood E × [−1, 1] of it. Recall that this means that each E ×
{y} lies in a center-stable leaf, each {x} × [−1, 1] lies in an unstable leaf and E × {0} = E .

By eventually shrinking it in the unstable direction, we can assume that E × [−1, 1] is
contained in V .

LEMMA 4.12. Through every x ∈W cs(x0)\E there exists Lx = [x, x + δx ]
u a closed,

non-trivial unstable segment that intersects R just in its endpoints. Moreover, Lx varies
continuously with x in W cs(x0)\E and is contained in any element Vi of the covering that
contains x.

Proof. Let x ∈W cs(x0)\E . The point x lies in some Vi . Then it must be that the connected
component of (W u

+(x) ∪ {x}) ∩ Vi that contains x intersects R in at least some other point
distinct from x (since x /∈

⋃
0≤i≤k P+i ).

Observe that the fact that x lies inside W cs(x0) and (x0, x0 + δ)
u is disjoint from

R implies that x cannot be accumulated in W u
+(x) ∪ {x} by points of W u

+(x) ∩R. The
existence of the stated δx > 0 follows.

The definition of Lx does clearly not depend on the choice of the Vi containing x . The
continuous dependence on x follows. �

By shrinking E × [−1, 1] even more (if necessary) in the unstable direction, we can
assume that {x} × [0, 1] ⊂ Lx for every x ∈ ∂E .

Now, let y ∈ (x0, x0 + δ)
u be close enough to x0 such that y ∈ E × [0, 1]. Since y ∈

M\R we have that W cs(y) ∩ B 6= ∅. On the other hand, we will see that W cs(y)⊂ V , and
this will yield a contradiction since V ∩ B = ∅.

Then, the proof of the main theorem will be finished with the following.

LEMMA 4.13. (Sandwich lemma) For y as above we have W cs(y)⊂ V .

Proof. First, note that
⋃

x∈W cs (x0)\E Lx is a foliated interval bundle with base W cs(x0)\E
and fibers the Lx s that are transversal to Wcs for every x .

We then have a well-defined projection along fibers π :
⋃

x∈W cs (x0)\E Lx →

W cs(x0)\E given by π([x, x + δx ))= x for Lx = [x, x + δx ] .
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FIGURE 4. The leaf W cs (y) gets enclosed between the leaves of ∂R.

For every γ : [0, 1] →W cs(x0)\E and z ∈ Lγ (0) we can lift γ to γz : [0, 1] →W cs(z)
such that π ◦ γz = γ . This lift defines a projection pγ : Lγ (0)→ Lγ (1) given by pγ (z)=
γz(1).

Fix x ′0 ∈ ∂E .

CLAIM. For every curve γ : [0, 1] →W cs(x0)\E such that γ (0)= γ (1)= x ′0 there
exists a homotopy γs : [0, 1] →W cs(x0)\E with endpoints fixed such that γ0 = γ and
γ1([0, 1])⊂ ∂E.

Proof of claim. For every s ∈ (0, 1] we can consider a retraction rs :W cs(x0)=⋃
x∈Cx0

W s(x)→
⋃

x∈Cx0
Bs

N/s(x) such that rs varies continuously with s and is the
identity in E =

⋃
x∈Cx0

Bs
N (x). For every s ∈ (0, 1] compose γ with rs to get a curve

γs and set γ0 as γ . Then the homotopy γs is as desired, and this proves the claim. �

Now, for every x ∈W cs(x0)\E consider γx : [0, 1] →W cs(x0)\E such that γx (0)= x ′0
and γx (1)= x .

Remark. The existence of such a γx is guaranteed if dim(E s)≥ 2 for this implies
that W cs(x0)\E is path connected. Otherwise, if dim(E s)= 1 and W cs(x0)\E has two
connected components simply add x ′′0 ∈ ∂E not in the same connected component as x ′0
and reproduce the arguments that follow separately in each connected component, with x ′0
and x ′′0 playing the same role.

Denote y = (x0, t) in E × (0, 1). Observe that we can extend E × (0, 1) to a
(Wcs,Wu)-product neighborhood (E ∪ ∂E)× (0, 1). Denote by y′ the point (x ′0, t) in
these coordinates (see Figure 4).

Define F :W cs(x0)\E→W cs(y) by

F(x)= pγx (y
′).

CLAIM. The definition of F does not depend on the choice of γx .

Proof of claim. If γ ′x : [0, 1] →W cs(x0)\E is another path such that γ ′x (0)= x ′0 and
γ ′x (1)= x , we have to prove that γ ′−1

x ∗ γx lifts to a closed path (γx ∗ γ
′−1
x )y′ from y′

to itself.
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By the first claim, γ ′−1
x ∗ γx is homotopic to some closed path α : [0, 1] →W cs(x0)\E

such that α([0, 1])⊂ ∂E . This homotopy lifts to a homotopy contained in W cs(y′) from
(γ ′−1

x ∗ γx )y′ to αy′ , with αy′ being the lift of α from y′.
Recall that we have y′ ∈ (E ∪ ∂E)× {t}. Then the lift αy′ has to be closed because

αy′([0, 1]) is contained in W cs(y′) and this implies αy′([0, 1])⊂ (∂E × {t}) and then
αy′(1)= (∂E × {t}) ∩ Lx ′0

= y′. This proves the claim. �

So we have a well-defined map F :W cs(x0)\E→W cs(y). We can extend F to E in
the natural way: F(x)= (x, t) for every x ∈ E . Then we have F :W cs(x0)→W cs(y).

The map F is clearly an injective local homeomorphism. Given a Lebesgue number
η > 0 for the covering V =

⋃
0≤i≤k Vi , there exists δ > 0 such that for every x ∈W cs(x0)

we have that Bcs
δ (F(x))⊂ F(Bcs

η/2(x)). We deduce from this that F is a proper map. Then
F is also surjective, and this implies that W cs(y)⊂ V since E × {t} and every Lx are
contained in V . �
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