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A weakly nonlinear time-dependent theory for the evolution of superharmonics
generated by the nonlinear self-interaction of a mode-1 internal tide in non-uniform
stratification is developed and compared to numerical simulations. The forcing
by the internal tide is found to excite near-pure mode-1 superharmonics whose
natural frequency is moderately different from twice the internal tide frequency.
Consequently, the superharmonics undergo a slow periodic growth and decay that is
comparable to an acoustic ‘beat’. At low latitudes the beat frequency is smaller and
the superharmonics can grow to larger amplitude, allowing for the possibility of a
superharmonic cascade.
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1. Introduction

Through its oscillatory motion across variable bottom topography, it is estimated
that 1 TW of the barotropic tide is converted into internal gravity waves (Wunsch
& Ferrari 2004). Although in the near field the waves are manifest as vertically
propagating beams, far from the generation site the internal tide is primarily
composed of low modes. It is an open question how energy cascades from the
large scales of the internal tides to small scales where mixing and dissipation can
act. Some proposed mechanisms, as recently reviewed by MacKinnon et al. (2017),
include interaction with topography and continental slopes, parametric subharmonic
instability, interaction with mesoscale eddies, and nonlinear steepening of sufficiently
large-amplitude internal tides.

Recent studies have demonstrated another mechanism for energy transfer to small
scales whereby the self-interaction of internal waves in non-uniform stratification
forces superharmonic disturbances. It will be shown in § 2.2 that this effect appears
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FIGURE 1. Snapshots from a fully nonlinear simulation showing (a) the full horizontal
velocity field at times indicated and (b) the corresponding horizontal velocity field with the
flow associated with the mode-1 parent mode removed. In this simulation, the background
stratification is N2(z) = N0

2ez/d with d = 0.2H and Coriolis parameter f = 0.01N0. The
simulation is initialised with a parent mode 1 with wavenumber k= 0.2/H and frequency
ω = 0.027N0. Note the growth of the superharmonic to a maximum amplitude at N0t '
1000, followed by decay to zero amplitude at N0t' 2000, corresponding to approximately
8.5 full periods of the parent mode. This process then repeats.

naturally from the equations of motion when the buoyancy frequency is non-uniform
with depth. This mechanism was first recognised in the context of an internal wave
beam interacting with the thermocline (Diamessis et al. 2014), and later through
the self-interaction of the internal tide (Wunsch 2015; Sutherland 2016; Varma &
Mathur 2017). The theoretical development of the latter studies assumed that the
superharmonic response had twice the frequency of the internal tide (referred to
hereafter as the ‘parent’ mode) with no temporal evolution of the superharmonic
amplitude. However, simulations have shown that their time dependence need not be
restricted to twice the frequency of the parent (Sutherland 2016).

Wunsch (2017) explored this theoretically for a piecewise-constant stratification
profile, and found a near-resonant initial growth of the superharmonic response,
comparing the interaction between the internal tide and superharmonics to that of a
forced harmonic oscillator whereby the nonlinear self-interaction of the parent excites
a superharmonic with frequency close to its natural unforced frequency. However, this
study assumed that, after a period of initial growth, the oscillating transients would
be damped by viscosity and the system would reach steady state.

Motivating the present work is the result of long-time numerical simulations
similar to those of Sutherland (2016) of horizontally periodic mode-1 internal tides
in non-uniform stratification typical of the ocean, which show that superharmonics
do not grow to steady state but instead periodically grow and decay, as shown
in figure 1. Here we develop a weakly nonlinear (WNL) theory to explain this
phenomenon. In § 2.1 we introduce a theoretical framework for the parent internal
tide in arbitrary stratification, N2(z). In § 2.2 we develop a time-dependent theory for
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Superharmonics of internal tides

the generation of superharmonics, using a slow-/fast-time-scale separation to extend
the evolution beyond the initial growth phase considered by Wunsch (2017). In § 2.3
this is extended to a WNL theory incorporating energy transfer between the parent
and superharmonic. Numerical simulations employing realistic exponential oceanic
stratification are introduced in § 3 and compared to the theoretical results. A summary
of results is given in § 4, wherein the theory is applied to the examination of internal
tides emanating from the Hawaiian islands.

2. Theory

The fully nonlinear equation for an inviscid, incompressible Boussinesq fluid on
the f -plane with spanwise-invariant flow is written as a linear operator acting on the
streamfunction, ψ , being forced by nonlinear terms as follows (Wunsch 2017):

∇
2ψtt + f 2ψzz +N2ψxx =N (ψ, v, b), (2.1)

in which subscripts denote partial derivatives, N2(z) is the background stratification,
f is the (constant) Coriolis parameter, b is the buoyancy, v is the spanwise velocity,
and the along-stream and vertical velocities are given in terms of the streamfunction,
respectively, by u=−ψz and w=ψx. The nonlinear forcing is given explicitly by

N =∇ · [∂t(uζ )− ∂x(ub)+ f ∂z(uv)], (2.2)

in which u= (u,w) and ζ =−∇2ψ .

2.1. Parent mode
We seek horizontally periodic solutions of a single mode vertically bounded by −H 6
z 6 0. In terms of the streamfunction,

ψ (1)(x, z, t)=
1
2
α
ωd
k
ψ̂1(z)eiφ

+ c.c., (2.3)

in which φ ≡ kx−ωt, k is the prescribed horizontal wavenumber of the parent mode,
ω is its frequency, d is a characteristic length scale of the stratification profile N2(z),
c.c. is the complex conjugate, and the vertical structure function ψ̂(z) is normalised so
that max |ψ̂(z)| = 1. The non-dimensional amplitude α is a measure of the maximum
horizontal flow associated with the waves compared with their phase speed. The
superscript on ψ and subscript on ψ̂ correspond to a horizontal wavenumber 1k.
Substituting (2.3) into (2.1) and neglecting the nonlinear terms gives the eigenvalue
problem for ψ̂1:

ψ̂ ′′1 + k2 N2(z)−ω2

ω2 − f 2
ψ̂1 = 0, (2.4)

with ψ̂(0)= ψ̂(−H)= 0. For prescribed k, the solution gives a set of eigenfunctions
ψ̂1 with corresponding frequencies ω. Generally, equation (2.4) is solved numerically
using a Galerkin method. In what follows, we only consider a vertical mode-1 parent
wave for which ψ̂1 is non-negative for all z.

Given the streamfunction of the parent mode, the polarisation relations give u(1) =
−∂zψ

(1), w(1)
= ∂xψ

(1), the spanwise velocity v(1)= 1
2αv̂1eiφ

+ c.c. and buoyancy b(1)=
1
2αb̂1eiφ

+ c.c., in which

v̂1 = i
fd
k
ψ̂ ′1, b̂1 = dN2ψ̂1. (2.5a,b)
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2.2. Superharmonic response
Consider now the nonlinear terms in (2.1). The O(α) parent mode self-interacts
in these terms to create an O(α2) forcing upon the linear operator acting on the
O(α2) correction to the streamfunction. This forcing has a term that is proportional
to e0iφ that forces a mean flow, and a term that is proportional to e2iφ that forces
a superharmonic with twice the horizontal wavenumber of the parent. Although
the forcing is also at twice the frequency of the parent, we will show that the
superharmonic response has a temporal evolution that is not necessarily at frequency
2ω.

Using the polarisation relations, the nonlinear forcing terms are calculated using
(2.4) to replace second derivatives of ψ̂1. Substituting these into (2.1) gives

∇
2ψtt + f 2ψzz +N2ψxx = G0(z)+ G2(z)e2iφ

+ c.c., (2.6)

where

G0 =−
α2kωd2f 2

4(ω2 − f 2)

(
2(N2
−ω2)

∂

∂z
|ψ̂1|

2
+ (N2)′|ψ̂1|

2

)
, (2.7)

G2 =
α2kωd2(4ω2

− f 2)(N2)′

4(ω2 − f 2)
ψ̂2

1 . (2.8)

This equation is equivalent to the result of Wunsch (2017) when viscosity is neglected
in equation (2.9) therein. We make this assumption throughout, justified by the large
length scales and slow time scales of the parent and superharmonic internal modes.
Viscous dissipation will also act to a similar extent on the parent and superharmonic,
so we expect that it will not fundamentally modify their interactions.

In the case of uniform stratification and no background rotation, there is no forcing
through self-interaction, which is a consequence of monochromatic internal waves
being an exact solution of the fully nonlinear equations of motion.

To be justified later, we neglect the forcing of the mean flow (through G0), focusing
upon the forcing of superharmonics by a parent mode in non-uniform stratification
through

∇
2ψ (2)

tt + f 2ψ (2)
zz +N2ψ (2)

xx = G2(z)e2iφ
+ c.c. (2.9)

The streamfunction of the superharmonic is assumed to evolve in time and space
according to

ψ (2)
=

1
2
α2ωd

k
ψ̃2(z, T)e2iφ

+ c.c. (2.10)

Crucially, its time dependence is allowed to vary not only with frequency 2ω (in the
e2iφ term), but also on a slow time scale T = εt, with ε� 1 to be defined explicitly
below. This is intended to capture the growth and decay of superharmonics, which
was observed in simulations to occur on time scales much longer than ω−1. Note
that this slow-time-scale assumption need not be made a priori, but is made here
for convenience and justified later. We construct the following expansion in terms of
vertical structure functions ψ̂2,j:

ψ̃2(z, T)=
∞∑

j=1

aj(T)ψ̂2,j(z). (2.11)
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Superharmonics of internal tides

For each j, ψ̂2,j(z) is the vertical structure of the jth mode of the unforced
superharmonic, which has corresponding frequency ω2,j. Explicitly, ψ̂2,j satisfies
(cf. (2.4))

ψ̂ ′′2,j + 4k2 N2
−ω2

2,j

ω2
2,j − f 2

ψ̂2,j = 0. (2.12)

The expansion (2.11) is similar to the eigenvalue expansion (2.10) of Wunsch
(2017), although here we have made the slow-time-scale assumption and continue
with arbitrary background stratification. Applying Sturm–Liouville theory to (2.12),
the set of eigenfunctions ψ̂2,j can be shown to be orthogonal with respect to the
weight function W(z)≡N2

− f 2 so that∫ 0

−H
ψ̂2,j(z)ψ̂2,l(z)W(z) dz= δj,l

∫ 0

−H
(ψ̂2,j(z))2W(z) dz. (2.13)

Thus, substituting (2.10) and (2.11) into (2.9), multiplying through by another basis
function, integrating over z ∈ [−H, 0] and using (2.13) gives

ε2äj − 4iωεȧj − 4ω2∆jaj =−2ω2Mj, (2.14)

where ȧ denotes ∂a/∂T and Mj and ∆j are constants defined by

Mj = d
4ω2
− f 2

4(ω2 − f 2)

ω2
2,j − f 2

4ω2

∫ 0

−H
(N2)′ψ̂2

1 ψ̂2,j dz∫ 0

−H
(N2
− f 2)ψ̂2

2,j dz
, ∆j =

4ω2
−ω2

2,j

4ω2
. (2.15a,b)

Notice that ∆j is effectively the normalised difference between the superharmonic
forcing frequency 2ω and natural frequency ω2,j of the unforced superharmonic
vertical mode j.

The first term of (2.14) is O(ε) smaller than the second term, and is neglected to
leading order in ε. The evolution of aj at leading order in ε is given by

ȧj −
iω∆j

ε
aj =−

iωMj

2ε
. (2.16)

The steady solution (e.g. that considered by Wunsch (2015) and Varma & Mathur
(2017)) can be found as a special case of (2.16) using the initial condition aj(0) =
Mj/2∆j. Here we impose the initial condition aj(0)= 0 so that there is a pure parent
mode at t= 0. The solution to (2.16) is then

aj =
Mj

2∆j
(1− e(iω∆j/ε)T). (2.17)

For internal tides in realistic oceanic stratification for which N2 is monotonically
increasing with height over most of the ocean depth, two effects conspire to ensure
that most of the forcing results in excitation of a mode-1 superharmonic by a mode-1
parent (i.e. aj� a1 for j> 1).

Firstly, the integrand in the numerator of (2.15) is single-signed only in the case
with j= 1, suggesting Mj is largest for j= 1. For example, when j= 2, the integrand
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FIGURE 2. Twice the parent dispersion relation 2ω(k)/N0 and the dispersion relation of
the unforced superharmonic ω(2k)/N0 for the cases (a) f = 0 and (b) f = 0.01N0.

(N2)′ψ̂2
1 ψ̂2,j is not single-signed and much of the integral will cancel so that M2 �

M1. A realistic oceanic stratification will include a surface mixed layer in which (N2)′

changes sign. But, since ψ̂1 = 0 at the surface, this effect is minimal when (N2)′ is
multiplied by ψ̂1 in the integrand because the vertical structure function goes to zero
near the surface.

Secondly, ∆1 is small for realistic oceanic parameters because 2ω(k) ' ω(2k).
This is illustrated in figure 2 (similar to figure 2 of Wunsch (2017)) where the
superharmonic dispersion relation ω(2k) and twice the parent dispersion relation
2ω(k) are plotted for the cases f = 0 and f = 0.01N0. In each case, the (normalised)
vertical separation between the two curves for each k scales with ∆1. For values of k
representative of low-mode internal tides, ω(k) is near-linear and ∆1 is small. Since
ω(0)= f , in the case f = 0 the dispersion relation intersects the origin and ω(2k) is
even closer to 2ω(k). Hence, from (2.15),

0 .∆1�∆j, j> 1. (2.18)

The dominance of superharmonics being excited with near-pure mode-1 structure
is a robust result for realistic values of the relative Coriolis parameter, parent
mode horizontal wavenumber and for various representative profiles of the ocean
stratification. This is illustrated in table 1, which gives percentage values of
max |a2|/max |a1| = (M1/∆1)/(M2/∆2), being the relative amplitude of the mode-2 to
the mode-1 component of the superharmonic in the expansion (2.11), as computed
for three different background stratification profiles typically used to model the
ocean. The choice of stratification profile does not modify the result; for various
realistic values of f and k, the mode-2 component is less than 5 % of the mode-1
component. For f = 0 (at the equator) the dominance of the mode-1 component is
more pronounced, with the mode-2 component being less than 0.5 % that of mode 1.

It is possible to create a non-realistic stratification in which the mode-1 dominance
of the superharmonic breaks down. For example, the symmetric top-hat stratification
used by Sutherland (2016) has M1 = 0, since in (2.15), (N2)′ is odd and ψ̂1 even
about the midpoint in depth. In this case, the superharmonics generated have a higher
vertical wavenumber (Sutherland 2016).
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Superharmonics of internal tides

f /N0 kH Profile 1: d/H Profile 2: zmix/H Profile 3: d/H
0.1 0.2 0.005 0.01 0.1 0.2

0 0.2 0.057 0.057 0.057 0.057 0.077 0.057
0 0.5 0.35 0.37 0.37 0.37 0.42 0.31
0.01 0.2 2.1 0.67 0.67 0.67 2.0 0.75
0.01 0.5 0.81 0.48 0.48 0.49 0.81 0.43
0.02 0.2 4.3 1.8 1.8 1.8 3.9 1.9
0.02 0.5 1.9 0.81 0.81 0.82 1.7 0.72

TABLE 1. Maximum amplitude of the mode-2 component of the superharmonic as a
percentage of the mode-1 component. Profile 1: N2

= N2
0 ez/d. Profile 2: As in profile 1,

with a mixed layer of depth zmix given by N2(z) = 1
2 N2

0 ez/d
[1 − tanh((z + zmix)/σ )] with

σ = 0.001H and d= 0.2H. Profile 3: N2
=N2

0 d2/(d− z)2.

The dominance of a1 is now used to simplify the expression for the superharmonic
at leading order. The slow-time parameter is defined such that

ε ≡∆1 =
4ω(k)2 −ω(2k)2

4ω(k)2
. (2.19)

Writing a≡ a1, ψ̂2≡ ψ̂2,1, ψ̂1≡ ψ̂1,1, ω2,1≡ω2, M≡M1 and ∆≡∆1, the structure and
evolution of the dominantly excited superharmonic is given by

ψ (2)
=

1
2
α2ωd

k
a(T)ψ̂2e2iφ

+ c.c., a(T)=
M
2ε
(1− eiωT), T = εt. (2.20a,b)

The superharmonic therefore evolves periodically on two time scales, one oscillating
at the fast forcing frequency 2ω and the other describing the slow growth and decay
at a ‘beat’ frequency εω.

This evolution is an extension of the ‘near-resonance’ described in Wunsch (2017).
As ε → 0, the forcing frequency approaches the natural frequency of the mode-1
superharmonic, and the system is near resonance. The maximum amplitude of the
superharmonic becomes larger with a longer period as ε→ 0, until in the limit ε = 0
the growth is linear and true resonance occurs. Therefore ε is a measure of how far
the system is from triadic resonance, as reviewed by Staquet & Sommeria (2002).

The values of ε, M and other quantities for various realistic parameter regimes in
an exponential stratification are shown in table 2. In particular, note that ε decreases
as f decreases whilst M stays relatively constant, implying that the maximum
superharmonic amplitude is greater at low latitudes – a conclusion also reached
by Wunsch (2017) for a piecewise-constant stratification profile.

Repeating the above analysis for the mean flow would recover an O(α2) solution.
By comparison with (2.20), it can be seen that the mean flow is O(ε) smaller than
the superharmonic because it does not exhibit the same near-resonant behaviour. It is
thus neglected at leading order in ε (though see van den Bremer, Yassin & Sutherland
(2019)).

2.3. Weakly nonlinear theory
The expression (2.20) predicts that the ratio of the maximum superharmonic amplitude
to the parent amplitude is given by α/ε. This theory assumes that the parent maintains
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f /N0 kH d/H ω/N0 ε D M D/M

0 0.2 0.1 0.014 0.007 0.82 0.81 1.01
0 0.2 0.2 0.025 0.010 0.84 0.83 1.01
0 0.5 0.1 0.036 0.040 0.82 0.77 1.06
0 0.5 0.2 0.061 0.056 0.84 0.78 1.07
0.01 0.2 0.1 0.018 0.248 0.75 0.74 1.01
0.01 0.2 0.2 0.027 0.114 0.81 0.78 1.01
0.01 0.5 0.1 0.037 0.091 0.81 0.76 1.06
0.01 0.5 0.2 0.062 0.074 0.83 0.78 1.07
0.02 0.2 0.1 0.025 0.496 0.67 0.68 1.01
0.02 0.2 0.2 0.032 0.302 0.76 0.75 1.01
0.02 0.5 0.1 0.041 0.209 0.78 0.73 1.06
0.02 0.5 0.2 0.064 0.123 0.82 0.77 1.07

TABLE 2. Values of the frequency ω/N0, ε (as defined by (2.19)), D (as defined by
(2.24)–(2.25)), M (as defined by (2.15)) and D/M for given Coriolis parameter f /N0, parent
wavenumber kH and stratification length scale d/H, where the stratification is given by
N2
=N2

0 ez/d.

its initial energy, never losing energy to the superharmonic. It is therefore valid only
in the limit α/ε� 1; that is, in the case that the superharmonic does not grow large
enough to extract significant energy from the parent. However, for superharmonics
that grow to finite amplitude, the modification of the parent due to the growth of the
superharmonic must be taken into account.

We construct a coupled system comprising the parent and superharmonic only, with
total streamfunction given by

ψ =
1
2
ωd
k
(αp(T)ψ̂1eiφ

+ α2a(T)ψ̂2e2iφ)+ c.c., (2.21)

where p(T) is the (complex-valued) parent amplitude (previously taken to be 1) and
a(T) is again the superharmonic amplitude, not necessarily as defined in (2.20). We
immediately consider only the mode-1 components of the parent and superharmonic,
due to the strong amplification of the mode 1 as described in § 2.2.

We begin by modifying the original equation (2.16) for the superharmonic forced
by parent self-interaction to include the effect of the changing parent amplitude.
Under the assumption that εṗ� ωp and noticing that the polarisation relations (2.5)
remain valid for the now-varying parent at leading order in ε, equation (2.16) for
j= 1 becomes simply

ȧ− iωa=−iω
M
2ε

p2. (2.22)

The equation for the forcing of the parent due to the interaction of the parent
and superharmonic can now be derived. Using the same methodology as in the
consideration above of the parent self-interaction gives, at leading order in ε,

ṗ=−iωα2 D
2ε

ap∗, (2.23)
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Superharmonics of internal tides

where p∗ is the complex conjugate of p, and D is a constant given by

D=
(ω2
− f 2)

∫ 0

−H
D(z)ψ̂1 dz

ω2
∫ 0

−H
(N2
− f 2)ψ̂2

1 dz
, (2.24)

with

D(z) =
d
2

[
ψ̂1ψ̂2(N2)′

(
3−

4ω2
+ 2f 2

ω2
2 − f 2

)
− 2f 2ψ̂1ψ̂

′

2
N2
−ω2

ω2 − f 2

− 8f 2ψ̂ ′1ψ̂2
N2
−ω2

2

ω2
2 − f 2

− 2f 2(ψ̂ ′1ψ̂2 + ψ̂1ψ̂
′

2)

(
N2
−ω2

ω2 − f 2
+

N2
−ω2

2

ω2
2 − f 2

)
+ (2ψ̂ ′1ψ̂2 + ψ̂1ψ̂

′

2)(N
2
− f 2)

(
ω2

ω2 − f 2
−

4ω2

ω2
2 − f 2

)]
. (2.25)

The equations (2.22) and (2.23) form a coupled nonlinear set of ordinary differential
equations for a(T) and p(T). They can be compared with the general off-resonant triad
equations (15.1) of Craik (1985). From them, a conservation law for |a| and |p| can
be derived using initial conditions p(0)= 1 and a(0)= 0:

|p|2 +
α2D
M
|a|2 = 1. (2.26)

This result is similar to conservation of energy – as energy drains from the parent,
the superharmonic must gain a proportional amount of energy. The factor D/M gives
a constant ‘efficiency’ controlling how much the parent amplitude must decay as the
superharmonic grows. Table 2 shows that, for a range of realistic parameters, D/M'1.
This can be understood by approximating ε ' 0, so that (2.19) gives ω2 ' 2ω.
Assuming further that f 2

� ω2
� N2

0 , equations (2.4) and (2.12) with j = 1 give
ψ̂1' ψ̂2. It can then be seen from (2.15) and (2.24)–(2.25) that D/M' 1. In the case
ε = 0, there is true resonance, and (2.26) is equivalent to conservation of energy in a
resonant triad (see Staquet & Sommeria (2002); see also p. 136 of Craik (1985)).

The coupled equations (2.22) and (2.23), together with (2.26), can be further
manipulated to give the single evolution equation

Ẍ +ω2(X − 1
2δ(1− X)(1− 3X))= 0, (2.27)

where X = 1− |p|2 (= α2D/M|a|2 > 0) and δ =MD(α/ε)2. From this, the maximum
superharmonic amplitude can be calculated analytically. However, because we have
neglected the 3k superharmonic, the theory leading to (2.27) is only valid for X to
O(δ2). Instead, we find the asymptotic solution to (2.27) for δ� 1 using the Poincaré–
Lindstedt method, giving the solution for X to O(δ2). In terms of |a|, we find

|a|2 =
M2

2ε2
(1− 2δ)[1− cos((1+ δ)εωt)]. (2.28)

Taking the leading order in δ of (2.28) is consistent with the previous result (2.20).
The correction derived by the WNL theory reduces the maximum amplitude of the
superharmonic from the first-order theory, representing the reduction in superharmonic
forcing by the parent as the parent loses energy to the superharmonic. The period of
the superharmonic slow oscillation is also reduced by the WNL correction.
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3. Simulations

This study was motivated by and is validated with fully nonlinear simulations,
described in detail in Sutherland (2016). The two-dimensional rotating Boussinesq
equations are solved in a rectangular domain with horizontally periodic boundary
conditions and free-slip conditions at the top and bottom of the domain. The stationary
stratification N2(z) is imposed, and is taken to be exponentially varying as N2

=N2
0 ez/d,

with an e-folding depth d= 0.2H. Time scales are scaled by the maximum buoyancy
frequency N0 and length scales are scaled by the total domain depth H.

The simulations are initialised with the parent mode ψ (1), as defined in (2.3).
Throughout, the wavenumber k of the parent is taken to be k = 0.2/H, representing
long waves characteristic of low-mode internal tides. The Coriolis parameter f
is generally taken to be f = 0.01N0 unless otherwise specified, which is typical
throughout mid-latitudes. For a given k, the mode-1 frequency ω and vertical structure
ψ̂1 are first found from (2.4), solved numerically using a Galerkin method. The
mode-1 solution is then used as the initial condition for the nonlinear simulations.

There is no noise superimposed on the initial state, ensuring that triadic resonant
instability cannot develop. That said, a study using similar simulations that included
superimposed noise found only superharmonics and no evidence of triadic resonant
instability for a range of realistic oceanic stratifications (Sutherland & Jefferson 2020).

The primary metrics derived from the simulations for comparison with theory are
the normalised superharmonic and parent amplitudes, defined for i= 1, 2 by

‖ψ (i)
‖

2(t)=

∫ 0

−H
|ψ (i)(x, z, t)|2 dz∫ 0

−H
|ψ (1)(x, z, 0)|2 dz

, (3.1)

where ψ (1) is the component of the full ψ field with wavenumber k (the ‘parent’)
and ψ (2) is the component with wavenumber 2k (the superharmonic). Note that the
normalisation is such that ‖ψ (2)

‖ ∼ O(α). Applied to the theoretical form (2.20) of
the superharmonic, and noticing that ψ̂1(z)' ψ̂2(z), this gives ‖ψ (2)

‖
2
' |a|2.

When determining the amplitude or period of the superharmonic from the
simulations, the amplitude is taken as the first maximum in ‖ψ (2)

‖
2, and the period as

the time of the first minimum of ‖ψ (2)
‖

2 after t= 0. For larger-amplitude simulations
in particular, the period and amplitude may not be constant with time, probably due
to further nonlinear interactions. An investigation of these effects would require very
long simulations, and is not considered here.

Figure 3(a) shows the evolution in time of the superharmonic and parent from a
simulation with α = 0.05 and ε = 0.11. This is compared with the predictions of the
first-order theory (2.20) and WNL theory (2.28). The first-order prediction (dashed)
reproduces the observed long-time-scale oscillation of the superharmonic with period
correct to 5 % accuracy. The maximum amplitude of the superharmonic is slightly
overpredicted, as is expected due to the first-order prediction not accounting for loss
of energy from the parent into the superharmonic, which reduces the magnitude of
the forcing on the superharmonic and thus the superharmonic amplitude. This issue
is also clearly evident in the assumption leading to (2.20) that the parent amplitude
stays constant, when realistically it should reduce comparably to the growth of the
superharmonic over each cycle.
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FIGURE 3. Simulations and theoretical predictions of (a) the parent (i = 1) and
superharmonic (i= 2) component of the amplitude ‖ψ (i)

‖
2 as defined by (3.1) against time

for α = 0.05 and (b) the maximum superharmonic amplitude max ‖ψ (2)
‖ against parent

amplitude α. In both cases N2
= N2

0 ez/d, d = 0.2H, k = 0.2/H, f = 0.01N0 and ε = 0.11.
The small oscillations with frequency 2ω visible in the parent amplitude are numerical
and can be reduced with higher spatial resolution.

The WNL theory (dotted) improves on the first-order theory by capturing the
variation in the parent amplitude and more accurately predicting the maximum
amplitude of the superharmonic. Although the superharmonic amplitude prediction is
good, the minimum parent amplitude is overestimated. This is probably due to the
parent also losing energy to the mean flow and 3k superharmonic, both unaccounted
for in this model. Figure 3(b) shows the maximum amplitude of superharmonics
measured from simulations that were run for different values of α whilst keeping ε

constant at 0.11. The agreement with the prediction of WNL theory is excellent, with
under 10 % error up to α = 0.1 (α/ε ' 1).

From figure 3(a) it is clear that the period is underpredicted by the WNL theory,
with a relative error of 17 %. This error is consistent with the neglect of the next
order in ε throughout the derivation of the model; when taking time derivatives, ε� 1
was often invoked in order to neglect second-order terms. In this case, ε ' 0.1, so an
O(10 %) error is expected. Figure 4(a) shows that both the first-order prediction of
the period T = 2π/εω and the WNL prediction of the period are in good agreement
with the period measured from simulations, which were run for different values of ε
(by changing the value of f ) whilst keeping α/ε constant at 0.44. Figure 4(b) shows
the relative error of the first-order and WNL period predictions to the period from
simulations. Interestingly, in this case the first-order theory appears to do better than
the WNL theory at predicting the period. However, as predicted, the error in the WNL
theory decreases for decreasing ε, suggesting that it is indeed due to the neglect of
higher orders in ε.

4. Conclusion

We have shown that the evolution of superharmonics of internal tides in non-
uniform stratification can be described by a weakly nonlinear theory for the interaction
between a mode-1 parent wave and the mode-1 superharmonic that it dominantly
excites. The system is analogous to a forced oscillator exhibiting near-resonance,
which allows the superharmonic to grow to an O(α/ε) maximum amplitude relative
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FIGURE 4. (a) The period of the long-time-scale superharmonic evolution against ε, from
simulations (pink triangles), from first-order theory (blue dashed) and by the asymptotic
approximation to the WNL theory (black solid). (b) The relative error between the period
from simulations and first-order theory (blue circles) and WNL theory (pink triangles).
Both are for fixed α/ε = 0.44.

to the parent mode. The superharmonic amplitude is shown to be periodic with a
‘beat’ frequency of approximately εω, a measure of the difference between the forcing
frequency of twice the parent frequency and the natural frequency of the mode-1
superharmonic. The superharmonic amplitude is predicted to be periodic in time for
any initial condition except in the special case a(0)=M/(2∆) for which a steady-state
bound superharmonic is generated, as in Wunsch (2015) and Varma & Mathur
(2017). The predicted weakly nonlinear evolution for a superharmonic with zero
initial amplitude were compared with the results of fully nonlinear two-dimensional
simulations and were found to be give good agreement in the limit α . ε� 1.

It remains to ask whether, under realistic oceanic conditions, superharmonics can
grow to significant amplitude over the time for the parent wave to traverse the ocean,
and whether they can be described by this theory. Using parameters and stratification
typical of the low-mode semi-diurnal internal tide propagating from the Hawaiian
Ridge (Zhao et al. 2010), we estimate that kH ∼ 0.17, f ∼ 0.006N0, α ∼ 0.02 and
ε∼ 0.14. These last two perturbation parameters lie well within the parameter regime
described by this theory. Thus we predict from (2.28) that superharmonics should
grow to 11 % of the size of the parent. The time scale for growth to the first
superharmonic maximum, also found using (2.28), is approximately 2 days. Using
the predicted horizontal group velocity of the parent, we find that in this time the
internal tide would propagate ∼500 km which, being much less than ocean basin
scales, leads us to assert that the growth and decay of superharmonics excited by
internal tides should indeed be manifest in reality. For comparison, using an estimate
of the growth rate of triadic resonant instability from Sutherland & Jefferson (2020),
we find the expected e-folding time for growth of triadic resonant instability (should
it exist) to be O(12 days) for these parameters. Since such instabilities grow out of
the noise field, the expected time for finite manifestation of the instability would
be considerably longer. In the simulations of Sutherland & Jefferson (2020) having
stratification representative of the ocean, there was no evidence for the onset of
triadic resonant instability even after the equivalent of 35 days.

However, if the internal tide were to propagate equatorwards, the reduction in
f would reduce ε. For the same stratification and tidal frequency as above, a
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superharmonic at the equator would have ε∼ 0.007 and α/ε∼ 3, a regime that cannot
be described by the current theory. This result is significant, as it suggests that, for
an internal tide beam travelling towards the equator, superharmonics could grow
to significant amplitude, potentially exciting further superharmonics and facilitating
further cascade to smaller scales and dissipation.

In order to make proper predictions of the generation of superharmonics by an
oceanic low-mode internal tide, several extensions to this idealised work are required.
These include but are not limited to the consideration of the impact of horizontally
variable depth, three-dimensional effects, currents and shear, turbulent dissipation,
higher vertical mode interactions, varying f with latitude during the propagation of
the internal tide, and a domain that is not horizontally periodic. All of the above
have the potential to modify the dispersion relation in such a way as to move the
system towards or away from resonance, and it will be the subject of future work to
investigate the relevance of this mechanism in the ultimate dissipation of the internal
tide.
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