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A crossing-shock-wave/turbulent-boundary-layer interaction is investigated using the
k–ε turbulence model with a new low-Reynolds-number model based on the approach
of Saffman (1970) and Speziale et al. (1990). The crossing shocks are generated by
two wedge-shaped fins with wedge angles α1 and α2 attached normal to a flat
plate on which an equilibrium supersonic turbulent boundary layer has developed.
Two configurations, corresponding to the experiments of Zheltovodov et al. (1994,
1998a, b), are considered. The free-stream Mach number is 3.9, and the fin angles
are (α1, α2) = (7◦, 7◦) and (7◦, 11◦). The computed surface pressure displays very
good agreement with experiment. The computed surface skin friction lines are in
close agreement with experiment for the initial separation, and are in qualitative
agreement within the crossing shock interaction region. The computed heat transfer
is in good agreement with experiment for the (α1, α2) = (7◦, 7◦) configuration. For
the (α1, α2) = (7◦, 11◦) configuration, the heat transfer is significantly overpredicted
within the three-dimensional interaction. The adiabatic wall temperature is accurately
predicted for both configurations.

1. Introduction
Three-dimensional shock-wave/turbulent-boundary-layer interactions commonly

occur in a wide range of applications in high-speed flows and strongly influence
the flow-field characteristics (Greene 1970; Settles & Dolling 1986, 1990; Zheltovodov
1996). For sufficiently strong shocks, the flow pattern includes separation of the
boundary layer and formation of vortices. An adequate understanding of the flow
structures caused by shock-wave/turbulent-boundary-layer interaction, and the ability
of a theoretical model to accurately predict the aerothermodynamic loads (i.e. sur-
face pressure, skin friction and heat transfer), are crucial for the improved design of
supersonic aircraft components such as inlets or nozzles.

Recent research efforts have concentrated on a particular family of flows involv-
ing three-dimensional shock-wave/turbulent-boundary-layer interactions, namely the
crossing shock (‘double fin’) interactions (figure 1), due to applications to high-speed
inlets (Edwards 1976; Sakell, Knight & Zheltovodov 1994). Significant research efforts
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Figure 1. Crossing shock (‘double fin’).

have been concentrated on the development and evaluation of turbulence models ca-
pable of providing accurate predictions of the flow structure and aerothermodynamic
loads on the bottom flat-plate surface (Narayanswami et al. 1992; Narayanswami,
Horstman & Knight 1993a; Narayanswami, Knight & Horstman 1993c); Garrison
et al. 1992; Garrison & Settles 1992, 1993; Garrison 1994; Garrison et al. 1994;
Gaitonde, Shang & Visbal 1995; Gaitonde & Shang 1995; Knight et al. 1995a;
Gaitonde et al. 1997, 1998). A review of theoretical and experimental studies of the
crossing-shock interactions can be found in Knight et al. (1995b), Degrez (1993),
Zheltovodov, Maksimov & Shevchenko (1998a) and Zheltovodov et al. (1998b). The
computed flows generally exhibit good agreement with experimental data for surface
pressure, shock structure, and boundary layer profiles of pitot pressure and yaw
angle. However, the accurate prediction of the surface heat transfer and skin friction
remains a challenging problem (Narayanswami et al. 1993a; Garrison et al. 1994).

While the surface pressure is to a large extent determined by the inviscid rotational
character of the flow and therefore not strongly affected by the particular choice of the
theoretical turbulence model (Knight et al. 1995b), the surface derivative quantities
(i.e. skin friction and heat transfer) are strongly influenced by the turbulence model.
Consequently, one of the greatest challenges for accurately computing the crossing
shock interaction is the modelling of the turbulence quantities of such flows. The
two-equation k–ε model is a popular choice since it can in principle predict complex
flow fields better than algebraic models and is significantly simpler than sophisticated
higher-order closures. A major difficulty in the implementation of the k–ε model is
the treatment of the near-wall region, where the classical high Reynolds number k–ε
model is invalid. To overcome this difficulty and allow integration to the boundary,
wall damping functions can be introduced which lead to the creation of a so-called
‘low-Reynolds-number k–ε model’. Many such models have been developed in recent
years and significant research efforts have been invested in the validation of different
turbulence models for the computation of flows with shock-wave/boundary-layer
interaction, in particular flows with crossing shock interactions. In this paper, we
present results using the k–ε model with the new low Reynolds number model of
Becht & Knight (1995) which was developed on the basis of three principles, namely
(i) the model employs the physical dissipation rate ε, (ii) the normal distance n is
avoided, and (iii) the minimum number of modifications is introduced, as described
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Simulation of crossing shock wave interaction 123

by Speziale, Abid & Anderson (1990). The low Reynolds number modifications, based
on the ideas of Saffman (1970) and Speziale et al. (1990), are (i) incorporation of
molecular diffusion of k and ε, (ii) modification of the turbulent eddy viscosity µT
to provide proper asymptotic behaviour near the wall, and (iii) modification of the
dissipation of ε to avoid singularities in the ε equation near the wall.

The objective of the present paper is to assess the capability of the standard
k–ε model with the new low Reynolds number model to predict crossing-shock-
wave/turbulent-boundary-layer interactions. The experimental configuration of Zhel-
tovodov et al. (1994) is considered. Complete details of the experiment are provided in
Zheltovodov et al. (1998a, b). Computational results are compared to the experimental
data at M∞ = 3.9 for (α1, α2) = (7◦, 7◦) and (7◦, 11◦). Comparison is also presented
with previous computational results of Knight et al. (1995b) using the k–ε Chien
model, and Zha & Knight (1996) using a full Reynolds stress equation model for the
(α1, α2) = (7◦, 11◦) case.

2. Governing equations
2.1. Reynolds-averaged Navier–Stokes

The Reynolds-averaged equations for conservation of mass, momentum and energy
are

∂ρ̄

∂t
+
∂ρ̄ũi

∂xi
= 0, (2.1)

∂ρ̄ũi

∂t
+
∂ρ̄ũiũj

∂xj
= − ∂p̄

∂xi
+
∂Tij
∂xj

, (2.2)

∂ρ̄ẽ

∂t
+
∂ (ρ̄ẽ+ p̄) ũi

∂xi
=

∂

∂xi

(Qi +Tij ũj) , (2.3)

where the Einstein summation convention is employed and the overbar represents
ensemble averaging, i.e.

f̄ = lim
n→∞

1

n

ν=n∑
ν=1

f(ν) (2.4)

where f(ν) are the individual realizations of the variable f(x, y, z, t). A mass-averaged
(Favre-averaged) variable f̃ is defined as the density-weighted ensemble average,

f̃ =
1

ρ̄
lim
n→∞

1

n

ν=n∑
ν=1

(ρf)(ν) (2.5)

and the fluctuating variable f
′′

in the mass-averaged expansion is

f
′′

= f − f̃. (2.6)

Alternatively, the fluctuating variable f
′

in the unweighted expansion is

f
′
= f − f̄. (2.7)

In (2.1) to (2.3), ρ̄ is the mean density, ũi is the mass-averaged velocity, p̄ is the
mean pressure, and ẽ is the mass-averaged total energy per unit mass,

ẽ = cvT̃ + 1
2
ũiũi + k̃ (2.8)
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where k̃ is the mass-averaged turbulence kinetic energy

ρ̄k̃ = 1
2
ρu

′′
i u
′′
i . (2.9)

The total stress is defined as

Tij = −ρu′′i u′′j + τ̄ij (2.10)

where the mean molecular viscous stress τ̄ij is

τ̄ij = − 2
3
µ̃
∂ũk

∂xk
δij + µ̃

(
∂ũj

∂xi
+
∂ũi

∂xj

)
(2.11)

where µ̃ ≡ µ(T̃ ). The total heat flux is

Qi = −cpρT ′′
u
′′
i − q̄i (2.12)

where the molecular heat flux is

q̄i = −cpµ̃
P r

∂T̃

∂xi
(2.13)

and Pr is the molecular Prandtl number.
The Reynolds-averaged equations (2.1) to (2.3) neglect the triple correlation

1
2
ρu

′′
ju
′′
ju
′′
i and velocity–molecular shear correlation u

′′
i τij which are negligible under

practical circumstances (Knight 1993b).

2.2. Turbulence model for high Reynolds number

The closure of the Reynolds-averaged equations (2.1) to (2.3) requires specification

of the turbulent stress −ρu′′i u′′j and turbulent heat flux −cpρT ′′
u
′′
i . We adopt the high

Reynolds number form of the two-equation k–ε model of Jones & Launder (1972).
The equation for the turbulence kinetic energy k̃ is taken to be

∂ρ̄k̃

∂t
+
∂ρ̄k̃ũi

∂xi
= −ρu′′i u′′j ∂ũi∂xj

− ρ̄ε̃+
∂

∂xi

(
µT

ρ̄σk

∂ρ̄k̃

∂xi

)
. (2.14)

The equation for the dissipation is

∂ρ̄ε̃

∂t
+
∂ρ̄ũiε̃

∂xi
= −Cε1 ε̃

k̃
ρu′′i u′′j

∂ũi

∂xj
− Cε2ρ̄ ε̃

2

k̃
+

∂

∂xi

(
µT

σε

∂ε̃

∂xi

)
. (2.15)

The turbulent stresses are

−ρu′′i u′′j = µT

(
∂ũi

∂xj
+
∂ũj

∂xi
− 2

3

∂ũk

∂xk
δij

)
− 2

3
ρ̄k̃δij (2.16)

and the turbulent heat flux is

−cpρT ′′
u
′′
i = cp

µT

P rt

∂T̃

∂xi
(2.17)

where the turbulent eddy viscosity is

µT = ρ̄Cµ
k̃2

ε̃
. (2.18)

The turbulence model constants are based on the standard values (Launder &
Sharma 1974; Wilcox 1993) and are presented in table 1. The governing equations
(2.14) to (2.18) are applicable only within fully turbulent regions, and consequently
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Constant Value

Cµ 0.09
Cε1

1.44
Cε2

1.92
Prt 0.9
σk 1.0
σε 1.3

Table 1. Standard k–ε model constants.

cannot be integrated directly to a solid boundary. The low Reynolds number mod-
ifications to allow integration to a solid boundary are presented in the following
section.

2.3. Turbulence model for low Reynolds number

We present the motivation, definition and calibration of the low Reynolds number
model.

2.3.1. Motivation

The first low Reynolds number modification to the k–ε model was developed by
Jones & Launder (1972, 1973). The modifications included the formal introduction of
molecular diffusion in the k and ε equations, incorporation of a functional dependence
of two of the model constants on the turbulence Reynolds number Rt ≡ ρk2/εµ,
introduction of a pseudo-dissipation rate ε ′ = ε − εw (where εw is the turbulent
dissipation rate at the wall) apparently on the basis of numerical considerations, and
inclusion of additional source terms in the k and ε equations.

Numerous other low Reynolds number modifications for the k–ε model have
been proposed including, for example, Launder & Sharma (1974), Hoffman (1975),
Reynolds (1976), Hassid & Poreh (1978), Dutoya & Michard (1981), Lam & Bremhorst
(1981), Chien (1982), Myong & Kasagi (1990), So, Zhang & Speziale (1991), Yang
& Shih (1993), and Fan, Lakshminarayana & Barnett (1993). A detailed examination
of the first seven of these was performed by Patel, Rodi & Scheuerer (1985) who
concluded that the models of Launder & Sharma, Chien, and Lam & Bremhorst
yielded comparable results and are significantly more accurate than the others.

The low Reynolds number k–ε models recommended by Patel et al., as well as
many subsequent models (e.g. Myong & Kasagi 1990; So et al. 1991; Fan et al. 1993),
are characterized by one or more of the following limitations:

(a) Pseudo-dissipation rate The pseudo-dissipation rate, introduced by Jones &
Launder (1972) for numerical reasons, is unphysical. Its use has been criticized
for many years (e.g. Reynolds 1976). Although it might be argued that the use of
the pseudo-dissipation rate is fundamentally a philosophical question, nevertheless we
maintain that, in the absence of a compelling numerical requirement, it is unnecessary.
As described later, we have found no numerical difficulties in using the dissipation
rate ε and imposing the physically correct boundary condition for ε at the wall.

(b) Dependence on n The normal distance n, employed in many low Reynolds
number modifications in the form of the dimensionless distance n+ ≡ nu∗/νw (where

u∗ ≡
√
τw/ρw and τw is the (local) wall shear stress) or Rn ≡

√
kn/ν, cannot be uniquely

defined in all cases. This occurs even for simple geometries (e.g. in the vicinity of a
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two-dimensional compression corner, in the neighbourhood of a three-dimensional
corner, etc.).

(c) Extensive number of modifications Speziale et al. (1990) demonstrated that a
minimum of three functional modifications to the k–ε model is required for integration
to a solid boundary, namely (i) incorporation of molecular diffusion of k and ε (similar
to the suggestion of Saffman 1970), (ii) modification of the turbulent eddy viscosity
µT to provide proper asymptotic behaviour near the wall, and (iii) modification of
the dissipation of ε to avoid singularities in the ε equation near the wall. Many
low Reynolds number modifications employ significantly more than this minimum
number. While the choice of the low Reynolds number modifications is not unique
and the ultimate value is determined by the ability of the model to predict turbulent
flows, nonetheless we consider simplicity of the low Reynolds number modifications
to be an important attribute.

The new low Reynolds number model avoids all of these limitations.

2.3.2. Equations for k̃ and ε̃

The equation for the turbulence kinetic energy (2.14) is modified in two ways. First,
molecular diffusion of k̃ is formally incorporated in the manner proposed by Saffman
(1970):

∂ρ̄k̃

∂t
+
∂ρ̄k̃ũi

∂xi
= −ρu′′i u′′j ∂ũi∂xj

− ρ̄ε̃+
∂

∂xi

(
µT

ρ̄σk

∂ρ̄k̃

∂xi
+ µ̃

∂k̃

∂xi

)
. (2.19)

Second, the turbulent eddy viscosity is modified by a dimensionless factor fµ to provide
the correct asymptotic behaviour of the turbulent stresses close to a solid boundary

µT = ρ̄Cµfµ
k̃2

ε̃
(2.20)

where asymptotic analysis (see, for example, Speziale et al. 1990) shows† fµ = O(n−1)
as n → 0. Additionally, fµ → 1 as n → ∞. The dimensionless function fµ is deter-
mined through consideration of the viscous sublayer and logarithmic region of an
incompressible flat-plate turbulent boundary layer as described in the next section.

The equation for the dissipation is likewise modified by incorporation of molecular
diffusion of ε̃ in the manner proposed by Saffman (1970) and the inclusion of the
dimensionless function f2 for the dissipation term

∂ρ̄ε̃

∂t
+
∂ρ̄ũiε̃

∂xi
= −Cε1 ε̃

k̃
ρu′′i u′′j

∂ũi

∂xj
− Cε2f2ρ̄

ε̃2

k̃
+

∂

∂xi

[(
µT

σε
+ µ̃

)
∂ε̃

∂xi

]
(2.21)

where asymptotic analysis (Speziale et al. 1990) indicates f2 = O(n2) as n → 0, and
f2 → 1 as n→∞.

The dimensionless function f2 is taken to be

f2 = 1− exp (−Cεs
√
Rt) (2.22)

where Rt is the turbulence Reynolds number

Rt =
ρ̄k̃2

µ̃ε̃
. (2.23)

This provides the proper asymptotic behaviour near the wall assuming ε → εw as

† The argument requires the assumption that the density fluctuations at the wall may be neglected.
This is certainly true for incompressible flow. Although not formally correct for compressible flows
(adiabatic or isothermal walls), it is nonetheless invoked (e.g. Zhang et al. 1992).
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n→ 0 where εw is the (positive) value of the turbulence kinetic energy dissipation at
the wall, and k̃ = O(n2) as n → 0. The dimensionless constant Cεs is determined by
comparison with direct numerical simulation (DNS) results as described below.

The boundary conditions for the turbulence variables at a solid boundary are

k̃ = 0, ε̃ =
2µ̃w
ρ̄w

(
∂
√
k

∂n

)2

, (2.24)

where n is the normal distance to the boundary and the subscript w implies evaluation
at the wall. These boundary conditions are exact.

2.3.3. Determination of fµ and Cεs
The low Reynolds number model introduces the dimensionless functions fµ and

f2. The functional form of fµ and the constant Cεs in f2 are determined through
consideration of the viscous sublayer and logarithmic region of an incompressible
flat-plate turbulent boundary layer (i.e. the ‘constant stress layer’) in the manner
proposed by Saffman (1970). In this region, convective effects are negligible and the
model equations are

0 =
∂

∂y

(
−ρu′′v′′ + µ

∂u

∂y

)
, (2.25)

0 = −ρu′′v′′ ∂u
∂y
− ρε+

∂

∂y

[(
µT

σk
+ µ

)
∂k

∂y

]
, (2.26)

0 = −Cε1

ε

k
ρu′′v′′

∂u

∂y
− Cε2

f2

ρε2

k
+

∂

∂y

[(
µT

σε
+ µ

)
∂ε

∂y

]
, (2.27)

where the Reynolds shear stress is

−ρu′′v′′ = µT
∂u

∂y
(2.28)

and

µT = ρCµfµ
k2

ε
. (2.29)

The tilde is omitted since the flow is incompressible.
The boundary conditions at the wall are

u = 0, (2.30)

k = 0, (2.31)

ε =
2µ

ρ

(
∂
√
k

∂y

)2

, (2.32)

and the asymptotic boundary conditions for y →∞ are

u =
u∗
κ

ln
(yu∗
ν

)
+ Bu∗, (2.33)

k =
u2∗√
Cµ
, (2.34)

ε =
u3∗
κy
, (2.35)

where u∗ =
√
τw/ρ is the local friction velocity.
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Figure 2. Predicted and DNS results for ε.

For the incompressible constant-stress layer, the following form of the turbulent
eddy viscosity is assumed:

µT =

{
ρκu∗ym[2(y/ym)3 − (y/ym)5] for y 6 ym
ρκu∗y for y > ym.

(2.36)

The functional form for µT satisfies the appropriate asymptotic forms (Wilcox 1993;
Speziale et al. 1990) as y → 0 and y → ∞, and is continuously differentiable for
all y. It is emphasized that equation (2.36) is employed only for the incompressible
constant-stress-layer analysis.

The momentum equation (2.25) may be directly integrated, using (2.28) and (2.36)
and subject to boundary conditions (2.30) and (2.33). The constant B in (2.33) depends
on the value of ym. It may be verified that ym = 33.0ν/u∗ yields B = 5.0 in agreement
with experiment (Monin & Yaglom 1971).

The turbulence model equations (2.26) and (2.27) may be solved for k and ε subject
to boundary conditions (2.31), (2.32), (2.34) and (2.35). The constant Cεs is determined
by requiring εw = 0.26u4∗/ν in agreement with the DNS of Spalart (1988) for a flat-
plate turbulent boundary layer. This yields Cεs = 0.17. Comparison of the predicted
and DNS profiles for ε are presented in figure 2 where ε+ = εν/u4∗.

The dimensionless function fµ is then obtained from (2.29) as a function of Rt. The
functions f2 and fµ are shown in figure 3. These functions are employed without mod-
ification for the subsequent computations. The low Reynolds number modifications
are summarized in table 2.

2.3.4. Validation of the low Reynolds number model

A detailed validation of the low Reynolds number model was performed for
adiabatic and isothermal flat-plate zero-pressure-gradient turbulent boundary layers
from incompressible to Mach 6 in Becht & Knight (1995). We present results for
incompressible flow since the improvements to the model are based on arguments for
incompressible turbulent flow. We also present results for Mach 4 which corresponds
to the free-stream conditions for the experiments of Zheltovodov et al. (1994, 1998a, b)
for the crossing shock, and are representative of the accuracy of the model for Mach
2 to 6 (Becht & Knight 1995).
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Figure 3. Functions f2 and fµ.

Function Expression

f2(Ret) 1− exp (−Cεs
√
Rt)

where Cεs = 0.17

fµ(Ret) See figure 3

Table 2. Low Reynolds number functions.

Incompressible flow

The predictions of the model equations for the incompressible flat-plate boundary
layer experiment of Weighardt & Tillman (1951) are presented in figures 4 and 5. The
computed and experimental skin friction agree to within 9%. The velocity profiles
are displayed at Reθ = 1.2× 104 and agree within 2%.

Mach 4 adiabatic wall

The computed skin friction for the adiabatic Mach 4 turbulent boundary layer
is compared with the empirical Van Driest II formula (Hopkins & Inouye 1971) in
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Figure 4. Skin friction coefficient from Weighardt & Tillman.
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Figure 5. Velocity profile from Weighardt & Tillman.

figure 6. The predictions are within the experimental uncertainty (±10%) for the
entire range of Mach numbers (Becht & Knight 1995).

The computed velocity profile in the near-wall region is presented in figure 7 and
compared with the compressible law of the wall (White 1974)

uc =
u∗
κ

ln
yu∗
νw

+ B̂u∗ (2.37)

where uc is the transformed compressible velocity

uc =
U∞
A

sin−1

{
2A2v − B√
B2 + 4A2

}
+
U∞
A

sin−1

{
B√

B2 + 4A2

}
(2.38)

with v = u/U∞ and B̂ = 5.0, and

A2 =
γ−1

2
Prt

T∞
Tw

M2
∞, B = −PrtqwU∞

cpTwτw
, (2.39)

and qw is the heat transfer at the wall. The computed profiles demonstrate close
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Figure 6. Skin friction for M∞ = 4 (adiabatic).
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Figure 7. Velocity profile in the near-wall region for M∞ = 4 (adiabatic).

agreement with the compressible law of the wall within a region near the wall. The
computed velocity profile in the outer region is presented in figure 8 and compared
with the compressible defect law (White 1974)

Uec − uc =
u∗
κ

{
2Π

[
1− sin2

(
π

2

y

δ

)]
− ln

y

δ

}
(2.40)

where Uec is the transformed compressible velocity evaluated at the edge of the
boundary layer δ. The defect law is a consequence of the general compressible law of
the wall and wake

uc =
u∗
κ

ln
yu∗
νw

+ B̂u∗ +
2Πu∗
κ

sin2

(
π

2

y

δ

)
(2.41)
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Figure 8. Velocity profile in the outer region for M∞ = 4 (adiabatic)
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Figure 9. Skin friction for M∞ = 4 (isothermal).

where Π = 0.55 for a flat-plate boundary layer (White 1974). The computed profile
demonstrates good agreement with the defect law.

The computed adiabatic wall temperature Taw/T∞ = 3.85, which is within 4.7%
of the value obtained from asymptotic analysis of the turbulence model equations
(Knight 1993a)

Tadia = T∞
(

1 +
γ−1

2

√
PrtM

2
∞

)
. (2.42)

Additionally, the computed adiabatic wall temperature agrees with the commonly
used expression (White 1974), wherein

√
Prt is replaced by Prt in (2.42), to within

2% over the same Mach number range (Becht & Knight 1995).
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Figure 10. Velocity profile in the near-wall region for M∞ = 4 (isothermal).
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Figure 11. Velocity profile in the outer region for M∞ = 4 (isothermal).

Mach 4 isothermal wall

The computed skin friction is compared with the empirical Van Driest II theory
(Hopkins & Inouye 1971) in figure 9 for Tw = 0.4Taw . The prediction is within the
experimental uncertainty (±10%).

The computed Reynolds analogy factor 2Ch/Cf = 1.24, where the heat transfer
coefficient is defined as

Ch =
qw

ρ∞U∞cp(Tw − Tadia)
. (2.43)

This is within 12.7% of the theoretical value of 1.1 based on asymptotic analysis of
the model equations (Knight 1993a).

The computed velocity profile in the near-wall region is presented in figure 10
and compared with the compressible law of the wall (2.37). The computed profiles
demonstrate good agreement. The computed velocity profile in the outer region is
presented in figure 11 and compared with the compressible defect law (2.40). Excellent
agreement is observed.
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Inviscid shock
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11°

1

Figure 12. Experimental configuration for (α1, α2) = (7◦, 11◦) (Zheltovodov et al.).

pt∞ Tt∞ δ∗∞
Reference M∞ α1 α2 Reδ∞ MPa K mm

Case 1 3.95 7◦ 7◦ 3.1× 105 1.5 261 1.1
Case 2 3.95 7◦ 11◦ 3.0× 105 1.5 260 1.1

M∞ free-stream Mach number Tt∞ free-stream total temperature
Reδ∞ Reynolds number based on δ∞ δ∗∞ upstream displacement thickness
pt∞ free-stream total pressure α1, α2 fin angles (deg)

Table 3. Experimental (Zheltovodov et al. 1994, 1998a, b) and computational conditions.

3. Crossing shock interaction
3.1. Details of computations

The computational results are compared to the experimental data of Zheltovodov
et al. (1994, 1998a, b) for the (α1, α2) = (7◦, 7◦) and (7◦, 11◦) configurations. For the
(α1, α2) = (7◦, 11◦) case, the computations are also compared with previous simula-
tions by Knight et al. (1995b) using the low Reynolds number correction of Chien
(1982), and by Zha & Knight (1996) using a full Reynolds stress equation (RSE)
model. The experimental configuration, which consists of two fins mounted on a flat
plate, is shown in figure 12 for (α1, α2) = (7◦, 11◦). The incoming flow parameters are
summarized in table 3.

The inflow profiles were generated with a boundary layer code (Becht & Knight
1995) which utilizes the same turbulence model. The inflow profile matches the
experimental displacement thickness. The thin boundary layers on sidewalls can be
neglected since the reflected shock waves either intersect the sidewalls near the exit
or not at all (Knight et al. 1995b; Zha & Knight 1996).

The craft code (Molvik & Merkle 1989), modified to incorporate the low Reynolds
number model of Becht & Knight, was used for all computations. The code solves
the full three-dimensional Reynolds-averaged compressible Navier–Stokes equations
coupled with the turbulence model equations. The code utilizes the method of Roe
(1981) for the inviscid fluxes, central differencing for the viscous fluxes and turbulence
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α1 α2

Reference (deg.) (deg.) Wall Nx Ny Nz

Case 1a 7 7 I 101 79 49
Case 1b 7 7 A 101 79 49
Case 2a 7 11 I 101 81 49
Case 2b 7 11 A 101 81 49
Case 2c 7 11 I 202 81 49
Case 2d 7 11 I 101 162 49
Case 2e 7 11 I 101 81 98
Case 2f 7 11 I 101 81 49

Reference ∆x/δ∞ ∆ymin/δ∞ ∆ymax/δ∞ ∆zmin/δ∞ ∆zmax/δ∞ ∆y+
2 |rms ∆y+

2 |aver
Case 1a 0.5 2.2× 10−4 0.5 0.2 0.5 0.55 0.52
Case 1b 0.5 2.2× 10−4 0.5 0.2 0.5 0.63 0.59
Case 2a 0.5 2.2× 10−4 0.5 0.2 0.5 0.70 0.62
Case 2b 0.5 2.2× 10−4 0.5 0.2 0.5 0.80 0.72
Case 2c 0.25 2.2× 10−4 0.5 0.2 0.5 0.72 0.65
Case 2d 0.5 1.1× 10−4 0.25 0.2 0.5 0.35 0.31
Case 2e 0.5 2.2× 10−4 0.5 0.1 0.25 0.70 0.63
Case 2f 0.5 2.2× 10−4 0.5 0.2 0.5 0.68 0.60

LEGEND

Nx number of points in x I Isothermal wall
Ny number of points in y A Adiabatic wall
Nz number of points in z
∆y+

2 |rms r.m.s. grid spacing at wall in wall units
∆y+

2 |aver average grid spacing at wall in wall units

Table 4. Details of computations.

source terms and an approximate factorization of the Jacobian. The modified craft
code was validated through comparison of results for adiabatic and isothermal flat-
plate compressible turbulent boundary layers with separate computations performed
with a boundary layer code (Becht 1994) incorporating the same turbulence model.

For each configuration, two separate computations were performed in order to
determine the local heat transfer coefficient (2.43). First, the wall temperature was fixed
at Tw = 1.031Tt∞ , and the local heat transfer qw(x, z) determined. Then, the wall was
assumed adiabatic and the local adiabatic wall temperature Taw (x, z) was determined.
This approach has been employed previously for comparison with experimental heat
transfer (Knight et al. 1995b; Zha & Knight 1996; Lee, Settles & Horstman 1992).

Details of the computational grids are presented in table 4. For each case, the
isothermal and adiabatic computations are indicated (e.g. Case 1a and 1b). For
the (α1, α2) = (7◦, 11◦) configuration, four additional computations were performed.
Three of these computations (Cases 2c to 2e) represent a grid refinement study
wherein the number of grid points in each direction was successively doubled. The
fourth additional computation (Case 2f) incorporated a different wall temperature
(Tw = 1.0385Tt∞). The results of the four additional computations showed no sig-
nificant change in the predictions of the bottom surface flow pattern, pressure,
adiabatic wall temperature and heat transfer predictions within the region of compar-
ison with experiment (Gnedin 1996). Therefore, the (α1, α2) = (7◦, 11◦) computation
represents an effectively grid-converged solution. Since the grid employed for the
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Figure 13. Computed skin friction lines for (α1, α2) = (7◦, 7◦): (a) left incident separation line;
(b) right incident separation line; (c, d) lines of divergence; (e) downstream coalescence line.

weaker (α1, α2) = (7◦, 7◦) case was essentially the same as used for (α1, α2) = (7◦, 11◦),
we therefore consider the (α1, α2) = (7◦, 7◦) computation to be grid-converged also.

3.2. Results for (α1, α2) = (7◦, 7◦)
The computed surface skin friction lines and experimental surface flow visualization
for the (α1, α2) = (7◦, 7◦) configuration are presented in figures 13 and 14, respectively.
The separation lines (lines of coalescence) (a) and (b) originating from the fin leading
edges are apparent in the computation and experiment. The computed and experi-
mental separation line angles agree within 7%. The computed skin friction lines do
not intersect but, after changing direction, slowly converge towards each other. Two
weak divergence lines (c) and (d) can be found near the fin surfaces.
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Figure 14. Experimental surface flow for (α1, α2) = (7◦, 7◦).
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Figure 15. Wall pressure on TML for (α1, α2) = (7◦, 7◦).

The computed and experimental surface pressure, normalized by the free-stream
static pressure p∞, are displayed in figures 15 and 16 along the throat middle line
(TML) (the streamwise line which bisects the channel at its minimum cross sec-
tion) and at the three streamwise locations. The uncertainty in the surface pressure
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Figure 16. Wall pressure at x = 46 mm, x = 79 mm and x = 112 mm for (α1, α2) = (7◦, 7◦).
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Figure 17. Ch on TML for (α1, α2) = (7◦, 7◦).
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Figure 18. Taw on TML for (α1, α2) = (7◦, 7◦).

measurements is ±0.5%. The computed surface pressure displays excellent agreement
with experiment.

The computed and experimental surface heat transfer coefficient Ch on the TML
is presented in figure 17. The experimental uncertainty for Ch is ±10% to ±15%.
Reasonable agreement with the experiment is observed. The heat transfer coefficient
is predicted typically within 25% in the three-dimensional interaction region. The
slight increase in Ch within the three-dimensional interaction is also predicted.

The adiabatic wall temperature Taw on the TML is presented in figure 18. The
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Figure 19. Computed skin friction lines for (α1, α2) = (7◦, 11◦): (a) left incident separation line;
(b) right incident separation line; (c) left downstream coalescence line; (d, e) lines of divergence.

experimental uncertainty in Taw is less than 0.2%. Close agreement is observed. The
maximum difference between the predicted and measured Taw is less than 2%.

3.3. Results for (α1, α2) = (7◦, 11◦)
Figures 19 and 20 present the computed surface skin friction lines and experimental
surface flow visualization respectively. It has been previously noted (Knight et al.
1995b; Narayanswami, Horstman & Knight 1993b) that the computed surface skin
friction lines are sensitive to the turbulence model employed. Comparison of current
results with figure 6 of Knight et al. (1995b) shows general agreement as well as a
number of substantially different details. Both incident separation lines emanating
from the fin leading edges (a and b) are clearly observed in figure 19 in agreement
with experimental results and previous simulations of Knight et al. (1995b). These
separation lines are associated with the incident single-fin interactions. The computed
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Figure 20. Experimental surface flow for (α1, α2) = (7◦, 11◦).

and experimental separation line angles, measured relative to the x-axis, agree within
9%. However, contrary to the computation with the k–ε Chien model (Knight et al.
1995b), the incident separation lines do not coalesce near the centre of the region,
but rather continue further downstream almost in parallel until they converge at x ≈
110 mm to form a narrow band of skin friction lines (c), which is offset to the left-hand
side of the channel. This is denoted in Knight et al. (1995b) as the left downstream
coalescence line, and represents the surface image of the boundary between the left-
and right-hand vortices generated by the incident single-fin interactions. The vortices
are evident in the crossflow velocity vectors (figure 21) at x = 112 mm. The crossflow
velocity vectors near the surface change direction at (c). Lines of divergence are
also apparent near the right-hand fin (d) and left-hand fin (e) associated with the
incident single-fin interaction. In a major difference with the k–ε Chien model results,
a second line of coalescence (the right downstream coalescence line) is not present in
this computation. Consequently, the model does not predict a secondary separation
underneath the left-hand side of the right-hand vortex (see Knight et al. 1995b). The
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Figure 21. Crossflow velocity vectors at x = 112 mm for (α1, α2) = (7◦, 11◦).
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Figure 22. Wall pressure at x = 112 mm for (α1, α2) = (7◦, 11◦).

difference is due to deviation in the predictions of the pressure distribution in the
spanwise direction, obtained with each turbulence model as described below.

The computed and experimental surface pressure distribution in the spanwise
direction at x=112 mm, normalized by the free-stream static pressure p∞, is displayed
in figure 22. This location corresponds to the streamwise location No. 4 (see figure
12). The plot contains computational results obtained with three different turbulence
models as described above. The abscissa z–zTML represents the spanwise distance
measured from the TML. The computed and experimental surface pressure are in
general agreement for all three models. However, unlike in the present computations,
Chien’s model predicts a local adverse pressure gradient in spanwise direction in the
region −10 mm < z–zTML < −4 mm. As described in detail in Knight et al. (1995b),
the flow near the surface at this location is moving towards the left-hand fin and
the adverse pressure gradient causes the secondary separation and the appearance
of the right downstream coalescence line, which is not predicted by the present
computation.
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Figure 23. Wall pressure on TML for (α1, α2) = (7◦, 11◦).
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Figure 24. Wall pressure at x = 46 mm for (α1, α2) = (7◦, 11◦).
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Figure 25. Wall pressure at x = 79 mm for (α1, α2) = (7◦, 11◦).

The computed and experimental surface pressure along the TML, displayed in
figure 23, are in good agreement for x < 135 mm, although the computation under-
estimates the extent of the upstream influence, as observed in previous studies (e.g.
Narayanswami et al. 1992; Knight et al. 1995b). The computed pressure does not
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Figure 26. Ch on TML for (α1, α2) = (7◦, 11◦).
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Figure 27. Taw on TML for (α1, α2) = (7◦, 11◦).

accurately predict the pressure rise (beginning at x = 145 mm) associated with the
shock reflection from the 7◦ fin, since all of the computations omit the boundary
layers on the fin surfaces. The computed and experimental surface pressure at x = 46
and 79 mm are displayed in figures 24 and 25. Close agreement is again observed.

The computed and experimental surface heat transfer coefficient Ch on the TML
is presented in figure 26. All three turbulence models overpredict the heat transfer
by approximately a factor of two downstream of the intersection of the shocks
(which occurs at x = 93.7 mm), with a modest improvement in the computations
performed with RSE and present models compared to the k–ε Chien model. The
overprediction in Ch is actually an overprediction in qw , since a series of studies (Zha
& Knight 1996; Gnedin 1996) has demonstrated that the computed qw is proportional
to the computed Tw−Taw . A possible explanation is that the turbulence models
overestimate the effects of the shock/boundary layer interaction on the turbulence
production, thereby generating excessive turbulence kinetic energy and overestimating
the turbulent thermal conductivity. Further experiments (in particular, measurements
of the turbulence statistics within the flowfield) are needed to assist in the identification
of the specific weaknesses in these models and develop improved models.

The computed and experimental Taw on the TML are displayed in figures 27
and 28. The results of the present computation exhibit excellent agreement with the
experiment, and represent an improvement over the predictions by the k–ε Chien and
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Figure 28. Taw on TML for (α1, α2) = (7◦, 11◦).

RSE (Zha & Knight) models. The experimental results for Taw obtained using the
thermocouple and thermovision techniques agree closely, with a maximum difference
of 1.5%.

4. Conclusions
A collaborative experimental and theoretical (computational) study of a crossing-

shock-wave/turbulent-boundary-layer interaction has been performed. Two configura-
tions – (α1, α2) = (7◦, 7◦) and (7◦, 11◦) – have been examined at Mach 3.9. Experimental
data include surface pressure and heat transfer, adiabatic wall temperature and
surface flow visualization. The computations employ the three-dimensional Reynolds-
averaged compressible Navier–Stokes equations. Turbulence is represented by the
two-equation k–ε model with a new low-Reynolds-number model which has been
validated for compressible adiabatic and isothermal flat-plate zero-pressure-gradient
boundary layers. For the (α1, α2) = (7◦, 11◦) configuration, previous results obtained
using the k–ε Chien model and a full Reynolds stress equation (Zha & Knight) model
are also presented for comparison. The principal conclusions are:

The computed surface pressure displays very good agreement with experiment for
the (α1, α2) = (7◦, 7◦) and (7◦, 11◦) configurations. For the (7◦, 11◦) case, similar very
good agreement is obtained by the k–ε Chien and full RSE models.

The computed surface skin friction lines are in close agreement with experiment
for the initial separation lines, and are in qualitative agreement within the crossing
shock interaction region. However, for the (α1, α2) = (7◦, 11◦) case, the present model
does not predict the secondary separation line. This feature is predicted by the k–ε
Chien model.

The computed heat transfer is in good agreement with experimental data for the
(α1, α2) = (7◦, 7◦) configuration. For the (α1, α2) = (7◦, 11◦) configuration, the computed
heat transfer is significantly overpredicted within the three-dimensional interaction.
However, a modest improvement is achieved compared to the computations with the
k–ε Chien model, and the results are comparable with the predictions of the full RSE
model.

The adiabatic wall temperature is accurately predicted for all configurations. For
the (α1, α2) = (7◦, 11◦) case, the model displays a definite improvement over the k–ε
Chien and full RSE models.

The experimental data for Taw obtained with the thermocouple and thermovision
techniques are in close agreement.
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Additional experimental data, including turbulence measurements within the three-
dimensional interaction, are needed to improve the understanding of the flow field
and assist in the development of improved models.

New turbulence models are needed to improve prediction of flow-field quantities of
engineering interest (e.g. surface heat transfer) which are strongly influenced by the
turbulence structure.
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