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SUMMARY
This paper proposes and evaluates swarming mechanisms of patrolling unmanned aerial vehicles
(UAVs) that can collectively search a region for intruding UAVs. The main contributions include
the development of multi-objective searching strategies and investigation of the required sensor con-
figurations for the patrolling UAVs. Numerical results reveal that it is sometimes better to search
through a region with a single swarm rather than multiple swarms deployed over sub-regions.
Moreover, a large communication range does not necessarily improve search performances, and the
patrolling swarm must have a speed close to the speed of the intruding UAVs to maximize the search
performances.
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1. Introduction
Unmanned aerial vehicles (UAVs), also popularly known as drones, are opening new applica-
tions in the commercial sectors, such as parcel delivery, emergency response, surveillance, aerial
photography-video services, and many others. Besides these commercial applications, groups and
individuals use drones privately, thanks to the ubiquity of low cost and quickly evolving technolo-
gies.1 These civilian drones must follow some strict rules–regulations, for example, staying away
from restricted zones or following predefined paths.2, 3 Furthermore, since the increased use of drones
continues in the civilian sectors, various concerns about guarding individual rights and privacy inva-
sions are emerging.4, 5 As the cases of violating the relevant laws and regulations are sometimes found
in the news,6 it is obvious that such violations might be widespread when the number of drones and
their applications increase further. Therefore, some sort of monitoring or patrolling mechanism is
required to keep the sky safe and secured. This paper addresses such an emerging need and proposes a
new search framework using a set of drones that can collectively disperse in the target space to locate
and track individuals or groups (swarms) of civilian drones. In other words, we develop a collective
search mechanism using a set of drones, where the targets are also dynamic objects in 3D space.

1.1. Related work
Drones are considered to be very effective remote sensing tools, particularly in areas that traditionally
have been inaccessible. Application areas include surveillance,7 search and rescue,8 natural disaster
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operations,9 mapping10 water sampling,11 and inspection.12 Recent research on remote sensing is
mainly focused on the detection and tracking of objects located on the ground. Such a task is com-
paratively less complicated than detecting and tracking flying objects due to the vast field of view
(FOV) of drones and the limited speed of ground moving objects. The remaining parts of this sec-
tion briefly review current state-of-the-art technologies that can be used to enable drones to carry out
search tasks.

Planning is a primary task for effective search. Various approaches to planning are proposed in the
literature, for example, graph theory can be used to determine controlled random paths for effective
search,13 while stochastic models can be used for planning the paths of both single and multiple
UAVs.14 Hierarchical probabilistic decisions-based search for ground objects has also been proposed
for multiple UAVs and unmanned ground vehicles.14

A set of paths is generated for the drone that ensures a complete sweep of the target surveillance
area, which cleans the dirty space from intruder drones while simultaneously preventing new drones
to enter.15 This is a guaranteed but costly approach that requires a large number of drones for a large
area, and therefore may not be feasible in the most practical scenarios.

Some recent works applied bio-inspired heuristic techniques for realizing intelligent search of
the ground objects, for example, pedestrians or cars.16–19 The firefly algorithm along with decentral-
ized clustering was proposed for pedestrians tracking in a large crowd using UAVs.16 Imitating the
technique of how the living species explore an area for foods, an odor-centered search method was
proposed by employing multiple mobile robots.17 In a paper,20 the robots search for wind direction
and then search for the tails of odor to locate the plume source. In ref. [21], Hoff et al. used virtual
pheromone in a 2D environment to enable the robots to choose a beacon or wandering tasks for
foraging.

Over the years, pursuit-evasion games have been studied under various search aspects. With global
visibility for all players in the game framework, they are not well-suited for robots with limited
sensing capabilities in realistic scenarios. Perhaps, the probabilistic pursuit-evasion approach and
dynamic programming22 are the most widely used search methods in the robotic area. However,
both methods are computationally demanding, and they could not fit well in the environment having
large numbers of entities.23 In a multi-robot system, decentralized control platforms are used to
accomplish the search tasks.24 However, in the literature, except a few,25, 26 searchers and evaders are
only designed to undertake pursuit-evasion context in the 2D space, and their implementability and
performance in a 3D environment remain unexplored.

For searching the 3D airspace, traditionally, ground station-based technologies, for example, radar
or radar hybrid systems, have been used..27–30 With emerging consumers for drones in the civilian
sectors, these ground station-based technologies cannot be considered as an effective option because
they are typically restricted to geographical sites. To overcome the above-mentioned issues, new flex-
ible and mobile technologies are developed such as Skynet,1 Droneshield,2 and SkySafe.3 However,
they also have limitations when the number of drones is large.

Despite constraints in geographical sites, a swarm of UAVs is highly adaptable to different loca-
tions, providing low-cost portable means of monitoring. In the case of a large number of drones, for
example, a swarm of drones, another set of searching UAVs can be employed to find and track the
others, similar to the game theory. Such existing studies mostly rely on unlimited ranges of a camera
and wireless communication,31 except for some recent research.32

In ref. [30], authors used a swarm of submarines for exploring unmanned submarine where the
main contribution is designing a swarm search that can work in ocean waves. Recently, Davis et al.33

used a distributed Reynolds flocking model34 based on a single virtual leader that influences the other
members. The system in ref. [33] applied this model to fixed-wing UAVs for motion planning. In our
earlier work,35 a multi-objective heuristic method was proposed for proper search planning in the 3D
space.

The existing search approaches, to the best of authors’ knowledge, are sensitive to confusing
behaviors of the drones.28 The confusing phenomenon is a result of limited FOV of the searchers

1http://anti-drones.net/.
2https://www.droneshield.com/.
3https://www.skysafe.io/.
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and due to the intelligent behavior of the opponents who intentionally perplex the searcher to avoid
being caught up. To the best of authors’ knowledge, there is no reported intrusion by a swarm of
flying intruders, and relevant research is very limited. We address a perceived future problem in
the area of flying intruders. The main challenge in the search task is to detect the intruders with
intelligent behavior against the searchers. Confusing behavior is one of such a bit of intelligence that
is unknown to the searchers. The intruders may enhance their perception range beyond the physical
FOV by sharing information via wireless communication and try to stay away from the searchers.
The searchers need to be cooperative and intelligent with better physical capabilities (sensing range,
speed, etc.) to tackle the intruders effectively.

Most of the existing search methods do not consider the impact of various factors related to prac-
tical implementation, for example, sensor configuration, limitation of FOV, communication range, or
sudden failure of some UAVs. There are a few exceptions, in ref. [36] tracking using quadrotors that
is limited to a laboratory experiment, while in refs. [32, 37] authors performed outdoor experiments
with a swarm of 50 fixed-wing UAVs, but their system still requires a human in the loop for selecting
the appropriate tactics.

1.2. Contribution
In this paper, we have proposed and developed searching methods to detect the moving drones in
the 3D space by employing a swarm of monitoring drones.38 Specifically, more structured search
strategies are formulated that enable the monitoring swarm effectively utilizes their limited resources
in a large area. These strategies are based on multi-objective optimization (MOO) that is implemented
in a distributed but cooperative framework, where the individual monitoring drones share their states
with their neighbors. The proposed strategies have been tested in a very realistic scenario where
the drones have confusing-evasive behavior. Despite such complexity with limited resources, it is
found that the proposed strategies could succeed in detecting the most targets within the reasonably
minimum time with high efficiency. Furthermore, the proposed strategies have also been compared in
terms of their continuing task accomplishment and final outcomes. Finally, the effects of the sensor
configuration and the number of swarm members have also been evaluated and illustrated.

To address the issues mentioned above, in Section 2 system design is described, while Section 3
provides implementation-specific parameters and results from simulations that evaluate the perfor-
mance of the presented algorithm. Section 4 concludes the paper and proposes future directions of
research.

2. System Design
Consider a bounded 3D environment that contains an unknown number of UAVs or is subject to
an incursion of unwanted or prohibited UAVs. These anonymous drones may have very simple or
deterministic behavior or may have cooperative, intelligent, or evasive behavior. Consider that the
environment contains some UAVs having heterogeneous behavior that form a swarm H. Each UAV in
swarm H is equipped with a camera having 360◦ FOV and a wireless communication device having
limited signal transmission range R. In this sense, swarm H has a partial view of its environment.

For the purpose of monitoring such a swarm of unknown size, capability, and unknown heteroge-
neous behavior, we propose to employ another swarm of UAVs, named as monitoring or patrolling
swarm M, that can effectively disperse, search, and track swarm H to accomplish any given task.
Considering practical aspects and cost-effectiveness, UAVs of swarm M are equipped with a sim-
ple camera mounted on a pan-tilt gimbal that has a limited FOV and a limited range R of wireless
communication. Despite considering such limitations, an adaptive intelligent swarming mechanism
is developed to accomplish the monitoring task efficiently. Specifically, the collective objective of
the monitoring swarm, in a broad view, is to detect all the members of H efficiently by searching
the space in a reasonably short time. The overall mission of the monitoring swarm should consist
of dispersion, search, and tracking. However, the scope of this paper is kept limited to searching the
space and detecting the unknown members of swarm H only. We have made a few assumptions in
this fundamental research. Each UAV in the patrolling swarm has a limited communication range.
The weather condition is good enough to detect any intruders when they come within a limited FOV.
Furthermore, there is no hill or high-rise building that can limit the view or restrict the movement
of the UAVs. Environmental conditions may affect the UAVs’ search performance, but since this is
fundamental research, we only consider ideal conditions.
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2.1. Problem formulation
Let us define the swarms using their individual members as H= {h1, h2, . . . , hJ} and M=
{m1,m2, . . . ,mI}. Consider a discrete-time framework, where each step is denoted by t and the
step size is �t. The position pq(t) of any UAV q ∈ {H,M} ( i.e., belongs to either swarm) at time
t is expressed by the 3D coordinate with respect to the environment considered, which is given by
pq(t)= [xq(t), yq(t), zq(t)] ∈R

3. Similarly camera orientation fq(t) of any UAV in Euler angels is
given by fq(t)= [θq(t), φq(t), ψq(t)] ∈R

3, where θq, φq, and ψq express yaw, pitch, and roll of the
camera, respectively. The collective state of an UAV is given by sq = [pq, fq]. The velocity of each
UAV is given by

vq(t)=
√

v2
xq(t)+ v2

yq(t)+ v2
zq(t),

where vxq, vyq, and vzq are vector elements of vq. Furthermore, vq(t) is subject to a constraint Vmin
q <

vq(t) < Vmax
q .

At each time t, UAV q ∈ {M,H} at state pq(t) can cover a volume Vq. For q ∈M, the cov-
ered volume is Vm(fq)= αβγ/3, and similarly, for q ∈H centering at pq, the covered volume is
Vh(fq)= 4/3πr3, where α, β, γ , and r are diagonal, horizontal, vertical FOVs, and a camera range,
respectively. The total covered volume by swarm M is Vm = ∪mi∈Mfi, which is much smaller than
the total volume of search space VS (Vm � VS).

Movement of UAV q ∈ {M,H} from the current state to the next state is subject to the following
constraints:

‖pq(t + 1)− pq(t)‖< Rv, q ∈ {H,M}, (1)

‖θq(t + 1)− θq(t)‖ ≤ π

24
, q ∈M, (2)

‖φq(t + 1)− φq(t)‖ ≤ π

24
, q ∈M, (3)

where Rv is a constant.
After planning, each UAV generates a proper control command to execute the planned motion

according to its specifics physics. In the next section, we will describe how the swarm H members
plan their motion for generating their behaviors.

2.2. Multi-objective optimization
2.2.1. Problem formulation. MOO is a tool that can handle different objectives simultaneously
to choose the best action in a conflicting context. A brief review of MOO problem formula-
tion and decision-making process are described here. First, let S ∈R

3 be a design space and
x = {x1(t), x2(t), . . . , xn(t)} ∈ S be the decision vector with lower and upper bounds given by xmin ≤
xi ≤ xmax. The general MOO problem can be expressed using u objectives as

min f (x)= {f1(x), f2(x), . . . , fu(x)}, (4)

where fi(x) : Rn →R is the i-th objective. When there are conflicting objectives, improving one
objective may deteriorate the others. To have the optimal value and identify a set of trade-off solu-
tions, a Pareto front is used. A Pareto front is a set of all non-dominated solutions obtained from
MOO. For the sake of defining the domination concept, candidate solutions are defined as {a, b} ∈ S.
Candidate a dominates candidate b, that is, shown by a ≺ b, if ∀j = 1, . . . ,m fi(a) < fi(b)∧ ∃ j :
fj(a)≤ fj(b), MOO identifies the closest approximation of true Pareto front, while MOO seeks for
a diverse Pareto optimal set. A decision vector a∗ is non-dominated or Pareto optimal if there is no
other feasible decision vector a �= a∗ ∈ S such that f (a)≺ f (a∗).

2.2.2. Decision-maker. Some solutions on a Pareto front may work better than others due to the
nature of the specific problem. The best solution must, therefore, be selected. This selection pro-
cess can be performed in multiple ways. The most commonly used approaches are the knee-based
approach and the vector-based approach. Knee-based approaches require at least four solutions on
the Pareto front, and as shown in ref. [35], our system does not always satisfy this requirement. We
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have therefore opted for a vector-based approach.39 We refer the reader to the appendix for a more
detailed description of our vector-based approach.

2.3. Behavior of swarm (H)
In practice, the behavior of swarm H is unknown and unpredictable; it may be a set of simple
or very complex behaviors. Each planned movement of hj ∈H for time t + 1 is represented by
pj(t + 1), and pj(t + 1) represents the next position of UAV hj, and we assume that hj has l = 1, .., n
neighbors within its communication range. For the sake of considering the worst-case scenario, we
assume swarm H has an intelligent complex behavior. We assume that swarm H follows subsequent
objectives.

First of all, hj UAVs consider an objective to keep large gaps from the other UAVs in H. This
objective is given by the following cost function, which is to be minimized:

c1 =
n∑

j=1

1

‖pj(t + 1)− pl(t)‖ . (5)

Swarm H produces complex motion to confuse swarm M and adds non-linear motion to their
evasive trajectories using (6), which produces a zig-zag like motion. We define this objective as:

c2 = ∑n
f =1

pf (t)− pj(t + 1)

(‖pf (t)− pj(t + 1)‖)2

+σ ∑n
l=1

pj(t + 1)− pl(t)

(‖pf (t)− pj(t + 1)‖)2 ,
(6)

where the value of σ changes randomly from 1 to 0 in every iteration. The motion produces similar
patterns as those observed in fish schooling40 and gazelle-lion41 models.

Swarm H can show two features using the two above-defined objectives. First, swarm H can
remain in the surveillance space or can escape to its base station as the second feature. We assume
that hj UAVs’ base station is placed outside of the surveillance area, and they can leave the surveil-
lance area rapidly. The new objective does reduce the distance of each hj from the destination point
(base station). Combining this objective with the above-mentioned objectives, hj UAVs show zig-zag
motion when they are evading to their base station. Such behavior is realized by minimizing c3:

c3 = �∑n
f =1 ‖pj(t + 1)− pbs‖ , (7)

where � is either equal to one or zero depending on the selected feature. In addition, pbs is the position
of base station which is located in the outside of the search area.

3. Development of Monitoring Swarm
We design searching tasks for having an effective monitoring performance, and we assume that
swarm M dispersed well using proper dispersion algorithm. In search mode, each UAV maxi-
mizes its search area, which is a combination of two objectives: the UAV’s position and the camera
orientation. The position is selected in a way to maintain a suitable distance among mi UAVs.
Additionally, camera orientation is chosen considering the camera orientation of its neighbor’s for
having a minimum or, if possible, no overlap. Such objectives are achieved by mi UAVs by solving a
multi-objective problem, which is formulated in the next section.

3.1. Development of search objectives
For the monitoring swarm of UAVs, the search approach is developed according to the method in
ref. [35]. In this approach, each UAV mi ∈M plans its next position and camera FOV for time t + 1,
which is represented by a corresponding vector:

si(t + 1)= (pi(t + 1), fi(t + 1)), (8)

where i = 1, 2, . . . , I.
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The main goal considered for the entire swarm is to maximize the collective patrolling coverage at
every step. To attain such a global goal by controlling each UAV locally, the objectives of each UAV
are to avoid the same camera coverage of its neighbor and keep a minimum distance from its peer.
Specifically, subject to constraint Eqs. (1)–(3) and using the states of all known neighbors within the
communication range, the first objective for UAV i is given by:

o1 =
n∑

k=1

‖fi(t + 1)− fk(t)‖, (9)

where fi(t + 1) represents the next camera orientation and fk(t) , k =, 1, 2, . . . , n represent the cur-
rent camera orientations of all the neighbors. By maximizing objective o1, each UAV tries to have
different camera orientations than the neighbors to have larger collective camera coverage.

The second objective is to maintain a minimum distance from the other peers while dispersing in
the area, which is given by minimizing the following objective function:

o2 =
n∑

k=1

l�pk exp(η�pk), (10)

where�pk is the Euclidean distance of the next position from the current position of the UAV, which
is defined as:

�pk = ‖pi(t + 1)− pk(t)‖, (11)

and parameter l is dynamically tuned as

l =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a if
Rmax

8
<�pk ≤ Rmax

6

b if
Rmax

10
<�pk ≤ Rmax

8

c if �pk ≤ Rmax

10

(12)

where

Rmax = pi + R. (13)

Using o2, each UAV is maximizing the distance with other peers, while Eq. (12) penalizes UAVs
that are too close with other peers. The rationale behind the proposed objectives (O1,O2) is that the
proper positioning and proper setting of the camera orientation of searchers maximize the patrolling
coverage that improves search efficiency. We assume all UAVs have preliminary information about
the search location, and each UAV deploys itself initially. According to the above objective, they try
to be dispersed by reasonable distance from each other.

Patrolling is a very complex task as the individual UAVs have to take cooperative moves contin-
uously in the environment without any global coordination. A simple single-objective optimization
approach cannot make a balanced move of UAVs by trading off various aspects of such a complex
scenario. On the contrary, the MOO approach is capable of deciding the proper move with contradic-
tory objectives of the UAVs, and consequently, the swarm is expected to perform more efficiently in
attaining the collective goal of detecting intruders. Only two objectives are used to manage the opti-
mization burden reasonable while providing robust behavior of UAVs in the dynamic environment.
In the next section, we develop different search solutions using the above-mentioned objectives.

3.2. Solution techniques
Using the objectives described above, the performance of the patrolling swarm is evaluated using the
following three different implementation techniques to identify the best one.

3.2.1. Single swarm implementation. This method simply releases the patrolling swarm to the
area of interest for searching. The swarm searches the entire surveillance space without restricting
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Fig. 1. The process of planning the next position for UAV a1 considering its peers (a2,a3,a4) within commu-
nication range: (a) the status at time t, (b) a way of generating candidate solutions for next iteration, and (c)
choosing the best solution.

movements of its members within some sub-space, that is, individual UAVs freely move throughout
the entire space.

3.2.2. Multi-swarm implementation. This method divides the space into some sub-spaces of equal
size and allocates all swarm members into the specific sub-spaces to form sub-swarm, that is,
members’ movements are restricted within the sub-space. Each sub-swarm has an equal number
of members and they stay within the sub-space for the entire observation period.

3.2.3. Mapping. This method divides the entire surveillance space into cells (Ncell) and creates a
grid map to keep the visiting time trace of swarm members. The approach imitates the pheromone-
based communication mechanism found in the ant colony system.18 The grid map contains decaying
pheromone markers to indicate the last time of visiting by a member. Therefore, any cells that have
not been visited by any member recently can be identified easily. It is assumed that each swarm
member has access to information of adjacent cells from the grid map. In practice, the update of the
grid map and sharing information can be realized using the gossip-based approaches using ad-hoc
communication,19 where members share their search history with the other peers. Using such shared
information, a single swarm is used to search the entire space.

The procedure after building a map is as follows: first, the search space is divided into S sub-
spaces, and then the last search time for each sub-space is computed using the current time and the
last searched time. Then closest UAVs are targeted to specific unsearched regions that the time of
the last search exceeds the predefined threshold time (Tt). In this paper, the whole space is divided
into Ncell.

3.3. Implementation of MOO
The proposed MOO is implemented in a discrete-time framework using an embedded computing
system that determines the next pose of each UAV at each time step t. In this technique, several pose
offsets are randomly generated in a virtual sphere of radius Rv centering the UAV’s current, as shown
in Fig. 1. Using each of these candidate solutions, objective functions are evaluated to select the best
solution. The UAV then moves to the target pose at the next step t+1.

Updates of the pose of UAV hj are similar to Eq. (5).
For distribution of F candidates inside the virtual sphere around the mi UAV (as a center of the

virtual sphere), we have

pg = pc − Rv + (pc + Rv − (pc − Rv))× δ, (14)

where δ is a random number in the range of (0,1]. In addition, pg and pc are generated position and
the current position of the mi UAV. Furthermore, Rv is the virtual sphere’s radius, and rand is a unit
random variable. Rv is the radius of the virtual spheres when the area of interest is bounded.

Both mi and hj UAVs use different multi-objectives, namely multi-objective evolutionary algo-
rithm using decomposition (MOEA/D) and multiple-objective particle swarm optimization (MPSO).
We choose these heuristic optimization algorithms according to our earlier work,35 which shows both
MPSO and MOEA/D perform well in the search problem.
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Fig. 2. The simulation environment: searcher ID 12 has detected intruder ID 24.

3.3.1 The procedure of the proposed MOO system

Step 1: Receive the user’s preferences and initialize the algorithm parameters.
Step 2: Position the hj UAVs in set mode.
Step 3: Run the user’s preferred search techniques. Perform positioning and camera alignment for

mi UAVs. (Start the MOO, finding a set of non-dominated solutions, and choose the best
solution according to a decision-maker).

Step 4: Go to step 2 until stopping criteria (maximum iterations) is satisfied.

4. Experiments and Results
We develop a swarm simulator using MathWorks Matlab running on a desktop PC with an Intel Core
i7 processor and 16GB RAM. For mi UAVs, the HFOV and VFOV are 21.77 × 21.77 degrees to a
depth of 200 m as a DFOV, and the communication range is 1000 m, which with growing off-the-shelf
hardware can be implemented in practice.42 For hj UAVs, the FOV is 360 degree with a finite depth of
300 m (e.g., Ricoh Theta4), and also with a limited communication range of 1000 m. The maximum
speeds for mi and hj UAVs are set to VM

max = 40 m/s and VH
max = 35 m/s, respectively. In addition, we

defined two different space sizes (�S), namely smaller space (�1) and larger space (�2), which are
set to 500 × 500 × 500 m3 and 1000 × 1000 × 1000 m3, respectively. In this paper, we arbitrarily
choose environments with two different volumes to observe how the environment size influences
searchers’ performance. In selecting the sizes of the environment, it is ensured that the camera view
remains much smaller than the environment size to keep the searching task challenging enough for
evaluating the proposed method. An image of the simulation environment is shown in Fig. 2 where
a searcher has detected an intruder. As described in the earlier section, MOEA/D is applied for mi

UAVs, and MPSO is applied for hj UAV. In both MOEA/D and MPSO algorithms, the population
size is set to 15, and results are obtained after running it for 50 generations. The population size
of 15 is chosen in this study according to some sensitivity analysis. Specifically, we have applied
different ranges of population sizes, and it is found that the population size lower than 15 reduces
the performance while a higher population size does not have a distinctive impact on the obtained
results. Each simulation lasts for a specific time, which is equal to 200 iterations. Other related
details are described in Tables I and II. The heuristic optimization has stochastic nature, therefore
for a statistically meaningful comparison, all results of this section are taken from the average of 30
independent runs of the respective simulation using the same initial settings for both swarms.

The proposed framework of monitoring swarm using UAVs with above settings is evaluated con-
sidering various aspects. Specifically, the comparison of the algorithms and methods is conducted
first, which are followed by the study on various configurations and their impact on the overall swarm
performance.

4https://theta360.com/uk/.
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Table I. Implementation-specific parameters.

Par Value Par Value Par Value

Rv 500 m r 100 m σ 0.1–1
R 50 m Cmax 3 n1 5
a 5 b 6 c 8
Ref [0.0207, 0.016] Ncell 8 α 200
β 200 γ 200 η 1

Table II. The parameters of MOOs.

Algorithm Parameter Value

MPSO43 Max archive size 10
c1 1
c2 2
Grid inflation (α) 10
Leader selection pressure (β) 2
Number of grids per each dimension 7

MOEA/D44 Max archive size 20
Subproblems 3
Number of neighbors (T) 3
Mutation rate 0.5

Fig. 3. Comparison of the average detection percentage among various strategies when the number of mi UAV
is (a) 16 and (b) 32.

4.1. Evaluation of search strategies
In this evaluation, we consider 20 hj UAVs that are randomly placed in the environment and they
remain in the surveillance space for the entire simulation period. We introduce the monitoring swarm
to detect all hj UAVs and observe the success of the swarm in terms of the detection rate over sim-
ulation time. Figure 3 shows the progressive performance, in terms of detection percentage, of the
monitoring swarm with 16 and 32 members, respectively. In each case, three search approaches are
compared, which are single swarm search (S1), mapping (Mapping), and sub-swarming (DivS1).

In both cases of 16 and 32 UAVs in the monitoring swarm, the mapping approach, which splits
the entire space into small cells and keeps a record of their cell visits, could slowly detect hj UAVs as
shown in Fig. 3. Interestingly, the swarm search, which employs a single swarm without splitting the
space or assigning individuals to a specific sub-space, works similar to sub-swarming, which divides
the surveillance area into sub-space and assigns a few UAVs or a small swarm to each sub-space.
Both S1 and DivS1 outperform mapping in terms of both the progressive and final detection rates.
Between these two, swarming has less complexity in practice comparing to sub-swarming, where
it requires proper scattering of UAVs in the predefined cells. This implies that the collective search
approach is the best since it wisely sends its UAVs towards the dense area of hj nodes, whereas the
mapping approach often keeps its individual to an unimportant sub-space even when no or very few
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Fig. 4. Two snapshots from the simulator between iterations (a) 1 and (b) 37.

hj UAVs exist. Another drawback of the sub-swarming approach is that after detecting of all hj UAVs
in the sub-space, the corresponding mi UAVs remains in the area. This is clearer when the hj UAVs
leave the surveillance area rapidly as shown in Fig. 5. On the other hand, in the swarming search
approach after each detection, a monitoring UAV may move to the other part of the surveillance
area for further detection and contributes to the global achievement of the swarm. These impressive
search results illustrate the capability of the proposed method and formulation of the framework. The
finding of this simulation also confirms findings of refs. [45, 46] where single swarm outperformed
other swarming techniques. Two snapshots of simulation take at iteration 1 and 37 are shown in
Fig. 4.

In addition to the above progressive evaluation of the three strategies, we have also evaluated
their overall detection performance in a very special case, where some of the hj UAVs exist in the
surveillance area for a short time. The proposed approaches are tested in terms of total detections
when hj UAVs escape from the surveillance area to the outside. In this sense, the searchers have a
very limited time to find the hj UAVs, and it is a good measure to see how the different approaches
can deal with this realistic issue. According to Fig. 5, S1 and DivS1 perform better than Mapping.
It should be noted that in the case of evasive hj UAVs, their fast detection is crucial. In fact, a major
advantage of S1 is global efficient coverage.

The accuracy of the algorithm varies depending on the number of searchers, their sensor ranges,
and searching time. Furthermore, the accuracy of the search process also depends on the intrudersTM

hiding strategies, the number of intruders, and the surveillance space size.
Hereafter, according to the above, S1 is chosen as the best search strategy in the following sec-

tions. Next, this search strategy, S1, is compared with an existing approach called Levy flight, which
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Fig. 5. The comparison among the approaches for different number of mi UAVs when hj UAVs are escaping
from the simulation environment to the outside after iteration 50.

(a) (b)

Fig. 6. The comparison between MOO search and traditional Levy flight search. (a) Environment I (smaller)
(1) and (b) environment II (larger).

is a well-known traditional search approach. This search method generates a random jump for each
searcher. In Fig. 6(a), the search performance is compared when there are 16 searchers and 40 intrud-
ers in the smaller environment (�1) . We want to evaluate the collective search performance when
the number of intruders is much higher than the searchers and observe whether searchers are per-
plexed by detecting multiple intruders concurrently. Considering 16 searchers in the environment,
we choose 40 intruders that are more than double the searchers’ number. The comparison in this fig-
ure illustrates the effectiveness of S1 comparing to Levy flight. Since search has a higher complexity
in larger environments, in Fig. 6(b), it is found that MOO outperforms the traditional Levy flight.

4.2. Impact of hardware configuration
The purpose of this evaluation is to determine how certain hardware configuration impacts the search
performance. The studied configuration is limited to the communication range and the maximum
velocity.

https://doi.org/10.1017/S0263574721000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000059


1920 Search strategies and specifications

Fig. 7. Effects of communication range on the detection rate of mi UAVs.

J J J

Fig. 8. The comparison of communication ranges in hj UAVs when mi UAVs work with multi-swarm
implementation, and hj UAVs vary from 5 to 15 with different communication range.

4.2.1. Communication range. The main goal of this experiment is to study the impact of different
communication ranges in detection rates. According to Fig. 7, a higher communication range in S1
among mi UAVs does not always result in better performance. In other words, a communication
range in the patrolling swarm does not always indicate an enhanced performance. According to the
simulation result, after a point, a higher communication range leads to a drop in the performance.
This is due to the fact that a very high communication range leads to adding too much information
to searchers. This distracts searchers with unimportant data that result in improper functioning.

Since limited FOV in patrolling swarm grows the stochastic results in detections of intruders, it
is difficult to interpret how the communication range in intruders may affect patrolling swarm’s total
detections. To come up with this, a FOV of the patrolling swarm in the evaluation of communication
range of hj is set to 360◦. As a result, in this only specific evaluation, a patrolling swarm can detect any
intruders within its camera range. In addition, to get more distinctive results, in this experiment, the
environment is set to a larger environment (�2) while there are 16 patrolling UAVs and 40 intruders.
According to Fig. 8, in zig-zag trajectory mode, the hj UAVs communication range could slightly
affect the number of the escaped hj UAVs. The trend in Fig. 9 shows with increasing communication
range of hj UAVs, until a specific point, a number of non-detected UAVs also increase. According to
results, larger communication ranges lead to better escaping behavior until a certain point; this is due
to the fact that with higher communication range hj UAVs are more aware of mi UAVs which help
intruders to avoid being detected by patrolling UAVs.
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Fig. 9. Communication range of hj UAVs’ effect on detection rate of mi UAVs.

Fig. 10. The impact of velocity ratio between the mi searchers and hj intruders in detections of hj UAVs where
hj has a fixed velocity (35 m/s).

In short, higher communication range improves the performance and leads to higher awareness
about the area in intruding UAVs. After reaching a certain point, the increase of communication range
deteriorates the performance of intruders.

4.2.2. Velocity impact on detections. Velocity relations between the searchers and evaders affect
the rate of detections. The evaders evade from the area of interest to the outside as shown in
Fig. 10. We compare different relations between the maximum speed in UAVs in swarm M and
swarm H. As the speed of hj UAVs going larger than mi UAVs, the successful detections in mi

UAVs fall, and similarly, when mi UAVs have higher speed comparing to hj UAVs there is higher
detection.
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Fig. 11. The impact of number of mi UAVs in successful escape of hj UAVs and average iteration for all
detections.

Fig. 12. The impact of abrupt failure of mi UAVs at iteration (a) 30 and (b) 75.

4.3. Other specifications
A few specifications are common in swarm robotics, for example, effect of failure in the members
or effect of the number of swarm members. We conducted a few experiments to study some other
issues.

4.3.1. Number of mi UAVs. To show how the number of UAVs affects the search in terms of detec-
tions. As shown in Fig. 11, as the number of mi UAVs increases, the number of escaped hj UAVs
decreases. In addition, the average iteration of all detections by mi UAVs decreases as a result of
increased number of mi UAVs. This trend can be generalized to all settings, and in this experiment,
hj UAVs are set to 10 UAVs when mi UAVs vary from 5 to 30.

4.3.2. Abrupt fails or removal of mi UAVs. In this test, the robustness of the search algorithm to the
failure of mi UAVs due to malfunction or any other reason is studied. In this specific test, the whole
simulation time is set to 150 iterations, and the abrupt failure is happened in both initial and final
iterations to test the algorithm.

In the first experiment, a certain number of mi UAVs (10, 15, 20, and 25) failed at iteration 30
suddenly. As shown in Fig. 12(a), there is a slight difference in performance regarding total detections
of hj nodes.

In another experiment, leaving of searchers in the half of total studied iterations (iteration 75 out
of 150) is studied. The simulation results in both experiments confirm the robustness of the algorithm
in such situations (Fig. 12(b)).
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5. Conclusion
This paper has developed a swarming search technique for patrolling UAVs to efficiently detect
moving objects or intruding UAVs in a 3D space. Specifically, we have designed a MOO approach
for searching that incorporates several strategies to improve the search quality in the swarm versus
swarm context. Several hardware configurations of both the intruding and patrolling UAVs, in terms
of communication ranges, maximum velocity, and camera coverage, are evaluated by observing their
detection and escaping performances. The evaluation results indicate that a single swarm is the best
choice when the intruding swarm stays or leaves the surveillance space. Next, the simulation results
reflect that the high communication range does not always indicate a swarm’s better performances.
The findings show that the communication range in the patrolling swarm after reaching a threshold
deteriorates the performance, while a higher communication range until a certain point in the
intruding swarm improves the escaping performance. The patrolling swarm performances can be
improved further by modeling the intruders’ behavior and tackling them accordingly, which we keep
as future work.
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Appendix
In this section, we discuss the decision-making process to choose the best solution from the Pareto
front. Firstly, in the decision-maker setup, the number of solutions in Pareto front varies in each
iteration. Vector-based approach can work with any number of solutions in the Pareto front, so
the vector-based decision-maker is applied when the vector passes from a reference point (Ref ).
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Fig. A.1. Vector-based preference decision-making with two objectives (f1 and f2) where Q is a solution that we
wish to compute its preference value using the reference vector V .

Reference vectors provide a preference of the designer in the solution space. Each solution is com-
pared with the perpendicular distance d1, while d2 improves the diversity as shown in Fig. A.1.47 To
do this, the following equation computes the preference-based intersection value.

g1 = d1 + λd2, (A1)

where g is preference value, and the smallest value of g is the most preferred solution. λ is

λ= cos−1

( �V.�P
‖�V‖‖�P‖

)
, (A2)

�V is a reference vector connecting the center to Ref , �P is a vector connecting the center to point Q,
and | . | represents dot product. The point Q represents a solution on Pareto front that we would like
to compute its preference value.39

Secondly, for the scenario that we have more than two objectives, the vector-based decision-
maker could not perform well. Therefore, we have used a new decision-maker. The idea behind
this decision-maker is quite similar to the above-mentioned vector-based decision-maker.47 The
preference value is as follows:

g2 = (1 + p(λ))‖d‖, (A3)

where p(λ) is a penalty function and is similar to:47

p(λ)= O
λ

γ
, (A4)

where γ is the minimum angle between �V and other �P for all objectives, and O is the total number of
objectives.
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