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We discuss two different approaches for the analysis of the Poisson and of the non-

homogeneous biharmonic equations in two dimensions. The first approach yields the solution

as an integral in the complex z-plane (the physical plane), involving explicitly the given

boundary conditions. The second approach yields an integral in the complex k-plane (the

Fourier plane), involving the Fourier transforms of the given boundary conditions. For simple

boundary value problems, such as certain problems formulated in the half complex plane, the

first approach is easier. However, for more complicated problems, such as those formulated in

the interior of an equilateral triangle, it appears that only the second approach can be used.

Furthermore, the second approach also seems more efficient for numerical computations.

1 Introduction

The classical Green’s function approach provides a powerful method for obtaining integral

representations for the solution of the basic linear elliptic PDEs, such as the Poisson and

the Helmholtz equations. However, these representations involve both the Dirichlet and

the Neumann data. Thus, to solve either the Dirichlet or the Neumann boundary value

problem, one must first eliminate either the Neumann or the Dirichlet boundary values

respectively. For very simple domains this can be achieved using the method of images.

However, for more complicated domains or more complicated boundary conditions, such

as mixed boundary conditions, it is not possible to eliminate the uknown boundary values

using the method of images.

We also note that for the Poisson equation in two dimensions, it is possible to determine

the Neumann boundary value in terms of the given Dirichlet boundary condition – the

so-called Dirichlet to Neumann map – by formulating a Hilbert problem1 in the complex

z-plane. This formulation can also be used for other more complicated problems [16, 18].

In what follows we discuss two different approaches for the solution of boundary value

problems for a certain class of physically significant non-homogeneous linear elliptic

1 This problem involves determining an analytic function in a given domain by prescribing a

relation between its real and imaginary parts on the boundary of the domain.
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equations. These PDEs include the Poisson equation as well as the non-homogeneous

biharmonic equation. A crucial role in both our approaches is played by a certain

equation which couples all boundary values and which has been called by one of the

authors the global relation.

The first approach, just like the classical Green’s function method, yields the solution in

the physical plane. However, in comparison with the Green’s function method, it involves

the following novel steps:

(a) For the derivation of the integral representation, it uses the Dbar formula.

(b) For the solution of simple boundary value problems, it uses the analysis of the global

relation instead of the method of images.

(c) For the solution of more complicated boundary value problems, it also uses the

analysis of the global relation instead of the formulation of a Hilbert problem.

Overall, it appears that this approach yields in a straightforward manner the solution of

a wide class of boundary value problems.

The second formulation is the extension to non-homogeneous PDEs of the general

approach introduced by the first author [4, 5].

The above two approaches are used for the solution of the following concrete boundary

value problems:

(1) The Poisson equation in the upper half plane with Dirichlet or Neumann or the more

general oblique Neumann boundary conditions (see equation (4.3)).

(2) The analogous problem for the quarter plane (see equations (5.4)–(5.7)).

(3) The Dirichlet-second Neumann boundary value problem for the non homogeneous

biharmonic equation in the upper half plane (see equations (7.3)–(7.4)).

(4) The determination of the second Neumann (ψyy(x, 0)) and of the third Neumann

(ψyyy(x, 0)) boundary values for the non homogeneous biharmonic equation in the

upper half plane, in terms of the Dirichlet (ψ(x, 0)) and Neumann (ψy(x, 0)) boundary

conditions (see equations (7.18)–(7.20)).

(5) The determination of the Neumann and third Neumann boundary values in terms of

Dirichlet and second Neumann boundary conditions (see equations (8.4)–(8.14)) for

the non homogeneous biharmonic equation in the interior of an equilateral triangle.

Notation. The usual complex variable will be denoted by z, and its complex conjugate

by z,

z = x+ iy, z = x− iy. (1.1)

The exterior product will be denoted by ∧. Since, it is skew symmetric, it follows that

dz ∧ dz = 0, dz ∧ dz = 0, dz ∧ dz = −dz ∧ dz = −2i dx dy. (1.2)

Subscripts z, z̄, x, y, etc, will denote partial derivatives, for example Φz = ∂Φ
∂z
, etc.
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Figure 1. Part of the convex polygon Ω.

2 The basic mathematical formalism

Proposition 2.1 Let the complex-valued function Φ(z, z̄) satisfy the equation

Φz̄ = G, z ∈ D ⊂ �2, (2.1)

where z is the usual complex variable, G(z, z̄) is a given complex-valued function with appro-

priate smoothness, and D is a simply connected, bounded domain of the complex z−plane.

Then: (a) Φ admits the integral representation

Φ(z, z̄) =
1

2πi

∫
∂D

Φ(ζ, ζ̄) dζ

ζ − z
+

1

2πi

∫∫
D

G(ζ, ζ)

ζ − z
dζ ∧ dζ, z ∈ D, (2.2)

where ζ = ζR + iζI , and ∂D denotes the boundary of D.

Furthermore, the boundary values of Φ satisfy the global relation∫
∂D

Φ(ζ, ζ̄) dζ

ζ − z
= −

∫∫
D

G(ζ, ζ)

ζ − z
dζ ∧ dζ, z � D. (2.3)

(b) Suppose that D is the interior of the convex polygon Ω specified by the corners

z1, . . . , zn, zn+1 = z1, see Figure 1. Define the function F(z, z̄) by the equations

Fz = G, F |∂D = 0. (2.4)

Then, Φ also admits the integral representation

Φ(z, z̄) = F(z, z̄) +
1

2π

n∑
j=1

∫
lj

eikzΦ̂j(k) dk − 1

2π

n∑
j=1

∫
lj

eikzF̂j(k) dk, z ∈ Ω, (2.5)

where lj are the rays in the complex k-plane

lj = {k ∈ � : arg(k) = − arg(zj − zj+1)}, j = 1, . . . , n, (2.6)

oriented from zero to infinity, and the functions Φ̂j(k), F̂(k) are defined by the following
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integrals along the boundary of the polygon:

Φ̂j(k) =

∫ zj

zj+1

e−ikzΦ(z, z̄) dz, (2.7)

F̂j(k) =

∫ zj

zj+1

e−ikzF(z, z̄) dz, j = 1, . . . , n, k ∈ �. (2.8)

Furthermore, the following global relation is valid for all complex k,

n∑
j=1

Φ̂j(k) =

n∑
j=1

F̂j(k), k ∈ �. (2.9)

Proof (a) Define the differential form W by

W (ζ, ζ̄; z) =
Φ(ζ, ζ̄)

ζ − z
dζ. (2.10)

Then, the differential dW with respect to ζ is given by

dW =
∂

∂ζ

(
Φ(ζ, ζ̄)

ζ − z

)
dζ ∧ dζ =

[
Φζ̄(ζ, ζ̄)

ζ − z
+ Φ(ζ, ζ̄)

∂

∂ζ

(
1

ζ − z

)]
dζ ∧ dζ. (2.11)

Replacing Φζ by G(ζ, ζ), and using the identity

∂

∂ζ

(
1

ζ − z

)
= −2πiδ(ζ − z), (2.12)

we obtain

dW =
G(ζ, ζ̄)

ζ − z
dζ ∧ dζ +

{
−2πiδ(ζ − z)Φ(ζ, ζ̄) dζ ∧ dζ, z ∈ D,

0, z � D.
(2.13)

Poincaré’s lemma (or the complex form of Green’s theorem [1]), yields∫
∂D

W =

∫∫
D

dW. (2.14)

Substituting equations (2.10) and (2.13) in equation (2.14), we obtain equations (2.2)

and (2.3).

(b) It is shown in Fokas et al. [5, 6] that if H(z) is a holomorphic function, i.e. if H(z)

satisfies the equation

∂z̄H = 0, z ∈ Ω, (2.15)

in a convex polygon Ω specified by the corners z1, . . . , zn, then H(z) admits the following

integral representation:

H(z) =
1

2π

n∑
j=1

∫
lj

eikzĤj(k) dk, z ∈ Ω, (2.16)

where the rays lj are defined by equation (2.6) and the functions Ĥj(k) are defined by

Ĥj(k) =

∫ zj

zj+1

e−ikzH(z) dz, j = 1, . . . , n, k ∈ �. (2.17)
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Furthermore, the functions Ĥj(k) satisfy the global relation

n∑
j=1

Ĥj(k) = 0, k ∈ �. (2.18)

If F is defined in terms of G by equations (2.4), then equation (2.1) can be rewritten in

the form

∂z(Φ− F) = 0. (2.19)

Replacing in equations (2.16)–(2.18), H by Φ− F, we find equations (2.5)–(2.9). �

It is straightforward to show that the global relation (2.3) is equivalent with the following

global relation in the complex k-plane∫
∂D

e−ikzΦ(z, z) dz = −
∫∫

D

e−ikzG(z, z) dz ∧ dz, k ∈ �. (2.20)

Indeed, using the expansion

1

ζ − z
= −

∞∑
j=0

ζj

zj+1
, |ζ| < |z|,

in equation (2.3), and equating the coefficients of 1
zj+1 , we find∫

∂D

ζjΦ(ζ, ζ̄) dζ = −
∫∫

D

ζjG(ζ, ζ) dζ ∧ dζ,

where j is a non-negative integer. This equation is precisely the equation obtained by

inserting the expansion

e−ikz =

∞∑
j=0

1

j!
(−ik)jzj ,

in equation (2.20) and equating the coefficients of kj .

The global relation (2.9) can be written in the alternative form

n∑
j=1

Φ̂j(k) = −
∫∫

Ω

e−ikzG(z, z) dz ∧ dz, k ∈ �. (2.21)

This equation is a direct consequence of equation (2.20). Replacing in this equation G by

Fz̄, and using Poincaré’s lemma (equation (2.14)), equation (2.21) becomes equation (2.9).

It is shown in Fokas & Zyskin [12] that equation (2.16) is a consequence of Cauchy’s

theorem

H(z) =
1

2πi

∫
∂D

H(ζ) dζ

ζ − z
. (2.22)

Indeed, if D is the convex polygon Ω, then it can be shown (see Appendix A) that equation

(2.22) can be transformed to equation (2.16).
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3 The Poisson equation

There exists a large class of elliptic PDEs which can be written in the form of the basic

equation (2.1). For such equations, the results of Proposition 2.1 can be used immediately.

The first example of an equation that can be written in the form (2.1) is the Poisson

equation.

Proposition 3.1 (Integral representations and global relations). Let the complex-valued

function Ψ (z, z̄) satisfy the Poisson equation

Ψzz = G, z ∈ D ⊂ �2, (3.1)

where z denotes the usual complex variable, G(z, z) is a given complex-valued function with

appropriate smoothness and D is a simply connected, bounded domain of the complex z-plane.

Then: (a) Ψ admits the integral representation

Ψz(z, z̄) =
1

2πi

∫
∂D

Ψζ(ζ, ζ̄) dζ

ζ − z
+

1

2πi

∫∫
D

G(ζ, ζ) dζ ∧ dζ
ζ − z

, z ∈ D. (3.2)

Furthermore, the boundary values of Ψ (z, z̄) satisfy the global relation∫
∂D

Ψζ(ζ, ζ̄) dζ

ζ − z
= −

∫∫
D

G(ζ, ζ)

ζ − z
dζ ∧ dζ, z � D. (3.3)

(b) Suppose that D is the interior of the convex polygon Ω specified by the corners

z1, . . . , zn+1 = z1 (see Figure 1). Then, Ψ also admits the integral representation

Ψz(z, z̄) = F(z, z̄) +
1

2π

n∑
j=1

∫
lj

eikzΨ̂j(k) dk − 1

2π

n∑
j=1

∫
lj

eikzF̂j(k) dk, z ∈ Ω, (3.4)

where lj are the rays in the complex k-plane defined by (2.6), the functions F and F̂j are

defined by equations (2.4) and (2.8), and the function Ψ̂j(k) is defined by the integral

Ψ̂j(k) =

∫ zj

zj+1

e−ikzΨz(z, z̄) dz, j = 1, . . . , n, k ∈ �. (3.5)

Furthermore, the following global relation is valid for all complex k,

n∑
j=1

Ψ̂j(k) =

n∑
j=1

F̂j(k), k ∈ �. (3.6)

Proof Proposition 3.1 follows immediately from the result of the previous section by

replacing Φ with Ψz. �

The first term of the right-hand side of (3.2), as well as the functions Ψ̂j(k), are defined

in terms of Ψz evaluated on the boundary ∂D. The function Ψz involves a combination

of the Dirichlet and Neumann boundary values. However, for a well-posed problem, only

one of these values (or a combination) is prescribed as a boundary condition. Thus, in

order to solve a concrete boundary value problem, we must first eliminate the unknown

boundary values. Depending on the given boundary value problem, this can be done
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α

Figure 2. The angle α.

either using equations (3.2) and (3.3) (the z-plane approach), or using equations (3.4)–(3.6)

(the k-plane approach). In what follows we will illustrate both these approaches.

4 The oblique Neumann problem for the Poisson equation in the upper half complex plane

Proposition 4.1 (The Oblique Neumann Problem)

Let the real-valued function ψ(x, y) satisfy the Poisson equation in the upper half complex

z-plane,

ψzz = g, Imz � 0, (4.1)

where g(x, y) is a given real-valued function with appropriate smoothness and decay. Assume

that the derivative of the function ψ is prescribed along the direction making an angle α

with the x-axis (see Figure 2), i.e.

ψy(x, 0) sin α+ ψx(x, 0) cos α = h(x), −∞ < x < ∞, (4.2)

where h(x) is a given function with appropriate smoothness and decay. Then, for −∞ < x <

∞, y � 0, ψz(x, y) is given by

ψz=
eiα

2iπ

∫ ∞

−∞

h(ξ)

ξ− (x+ iy)
dξ− 1

π

∫ ∞

−∞
dξ

∫ ∞

0

dη

(
1

ξ− x+ i(η− y)
− e2iα

ξ− x+ i(η+ y)

)
g(ξ, η).

(4.3)

For the particular cases of the Dirichlet (ψx(x, 0) = h(x)) and of the Neumann (ψy(x, 0) =

−h(x)) boundary value problems, the value of α in equations (4.2) and (4.3) is α = 0 and

α = π/2, respectively.

Proof If D is the upper half complex plane, equations (3.2) and (3.3) become

ψz =
1

4iπ

∫ ∞

−∞

[ψξ(ξ, 0) − iψy(ξ, 0)]

ξ − (x+ iy)
dξ − 1

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
g(ξ, η)

ξ − x+ i(η − y)
,

−∞ < x < ∞, y � 0, (4.4)

0 =
1

4iπ

∫ ∞

−∞

[ψξ(ξ, 0) − iψy(ξ, 0)]

ξ − (x+ iy)
dξ − 1

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
g(ξ, η)

ξ − x+ i(η − y)
,

−∞ < x < ∞, y � 0. (4.5)
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Taking the complex conjugate of equation (4.5) and then replacing y by −y in the

resulting equation, equation (4.5) becomes

0 =
1

4iπ

∫ ∞

−∞

[−ψξ(ξ, 0) − iψy(ξ, 0)]

ξ − (x+ iy)
dξ − 1

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
g(ξ, η)

ξ − x+ i(−η − y)
, (4.6)

−∞ < x < ∞, y � 0.

By manipulating equations (4.4) and (4.6) it is possible to eliminate the unknown

boundary values. Indeed, multiplying equations (4.4) and (4.6) by e−iα/2 and −eiα/2,
respectively, and adding the resulting equations we find equation (4.3). �

We note that since ψ is real, it is straightforward to compute ψ from ψz.

For the Dirichlet boundary value problem, we can determine the Neumann boundary

value, i.e. ψy(x, 0), by evaluating equation (4.3) with α = 0 at y = 0. Alternatively, it

is possible to compute directly the Neumann boundary value without first solving the

problem in the interior of the domain. This can be achieved by analysing the global

relation as z approaches the boundary of the domain. Actually, the following Dirichlet to

Neumann correspondence is valid.

Proposition 4.2 (The Dirichlet to Neumann correspondence for the half plane).

Let the real-valued function ψ(x, y) satisfy the Poisson equation (4.1) in the upper-half

complex z-plane.Then, the Neumann boundary value ψy(x, 0) can be expressed in terms of

the Dirichlet boundary value ψx(x, 0) by the equation

ψy(x, 0) =
1

π
−
∫ ∞

−∞

ψξ(ξ, 0)

ξ − x
dξ − 4

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
ηg(ξ, η)

(ξ − x)2 + η2
, −∞ < x < ∞, (4.7)

where −
∫ ∞

−∞ denotes the principal value integral. Equivalently, the Dirichlet boundary value

can be expressed in terms of the Neumann boundary value by the equation

ψx(x, 0) = − 1

π
−
∫ ∞

−∞

ψy(ξ, 0)

ξ − x
dξ − 4

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
(ξ − x)g(ξ, η)

(ξ − x)2 + η2
, −∞ < x < ∞. (4.8)

Proof Taking the limit in equation (4.5) as y approaches zero from negative values, we

find

1

2

∫ ∞

−∞

(
ψξ(ξ, 0) − iψy(ξ, 0)

) dξ

ξ − (x− i0)
= 2i

∫ ∞

−∞
dξ

∫ ∞

0

dη
g(ξ, η)

ξ − x+ iη
. (4.9)

Using the Plemelj formulae [1], the left-hand side of this equation becomes

− iπ

2
[ψx(x, 0) − iψy(x, 0)] +

1

2
−
∫ ∞

−∞

(
ψξ(ξ, 0) − iψy(ξ, 0)

) dξ

ξ − x
. (4.10)

Replacing the left-hand side of equation (4.9) by the above expression, and considering

the real and imaginary parts of the resulting equation, we find equations (4.7) and (4.8).

�

We emphasise that the global relation yields the above maps without the need to

solve the Poisson equation in the upper half domain. This remarkable feature is true in
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β2

β1

Figure 3. The angles β1 and β2.

general: The global relation evaluated on the boundary yields the (generalised) Dirichlet

to Neumann map via an analysis restricted only on the boundary of the given domain.

The usefulness of equations (4.7) and (4.8) is at least twofold: (a) For some physical

problems, one is interested only in the unknown boundary value, and not in the full

solution. (b) For some problems it seems that it is not possible to eliminate the unknown

boundary values, whereas it is still possible to determine the unknown boundary values by

analysing the global relation (such a problem is discussed in section 7). After determining

the unknown boundary value, equation (3.2) combined with the fact that ψ is real, yield

ψ(x, y) for z in D.

5 The oblique Neumann problem for the Poisson equation in the quarter plane

The Laplace equation in the quarter plane, in the semistrip, and in the interior of the

isosceles triangle was analysed in [6] using equations (3.4)–(3.6). It is straightforward to

extend these results to the Poisson equation. For the sake of economy we only consider

the oblique Neumann problem for the quarter plane.

Proposition 5.1 Let the real-valued function ψ(x, y) satisfy the Poisson equation in the

quarter plane

ψzz = g, 0 � x � ∞, 0 � y � ∞, (5.1)

where g(x, y) is a given real-valued function with appropriate smoothness and decay. Suppose

that the derivative of the function ψ is prescribed along the direction making an angle β1

with the y-axis as well as along the direction making an angle β2 with the x-axis (see

Figure 3), i.e.

−ψx(0, y) sin β1 + ψy(0, y) cos β1 = h1(y), 0 < y < ∞,

−ψy(x, 0) sin β2 + ψx(x, 0) cos β2 = h2(x), 0 < x < ∞, (5.2)

where h1(y) and h2(x) have appropriate smoothness and decay and h1(0) = h2(0).

Assume that β1 + β2 = nπ/2, n = 0, or 1, or 2. Define the function f in terms of the

function g(x, y) by

f(z, z̄) =

∫ ∞

0

dξ

∫ ∞

0

dη
g(ξ, η)

ξ + iη − z
. (5.3)

https://doi.org/10.1017/S0956792506006607 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792506006607


332 A. S. Fokas and D. A. Pinotsis

2

1

Figure 4. The quarter plane and the relevant spectral functions.

Then ψz is given by

ψz = f(z, z̄) +
1

2π

∫ i∞

0

eikz
[
2e−iβ1H1(k) + 2e−i(2β1+β2)H2(ik) − e−2iβ1A(k̄)

]
dk + C(z)

+
1

2π

∫ ∞

0

eikz
[
2ei(β1+2β2)H1(−k) + 2eiβ2H2(−ik) − e2i(β1+β2)B(k)

]
dk, (5.4)

where

H1(k) = −1

2

∫ ∞

0

ekyh1(y) dy, H2(k) =
1

2

∫ ∞

0

ekxh2(x) dx, (5.5)

A(k) =

∫ ∞

0

e−ikxfdx− i

∫ ∞

0

ekyfdy, B(k) = A(−k) + e−2iβ1A(−k), (5.6)

C(z) = − 1

2π

∫ ∞

0

eikz
(∫ ∞

0

e−ikxfdx

)
dk +

i

2π

∫ i∞

0

eikz
(∫ ∞

0

ekyfdy

)
dk. (5.7)

Proof Let j1(y) and j2(x) denote the unknown derivatives in directions normal to the

directions of the given derivatives, i.e.

−ψy(0, y) sin β1 − ψx(0, y) cos β1 = j1(y), 0 < y < ∞,
ψx(x, 0) sin β2 + ψy(x, 0) cos β2 = j2(x), 0 < x < ∞. (5.8)

Using equations (5.2a) and (5.8a) to express {ψx(0, y), ψy(0, y)} in terms of {h1(y), j1(y)},
as well as equations (5.2b) and (5.8b) to express {ψx(x, 0), ψy(x, 0)} in terms of {h2(x), j2(x)},
we find

ψy(0, y) = h1(y) cos β1 − j1(y) sin β1,

ψx(0, y) = −h1(y) sin β1 − j1(y) cos β1, (5.9)

ψy(x, 0) = j2(x) cos β2 − h2(x) sin β2,

ψx(x, 0) = h2(x) cos β2 + j2(x) sin β2.

Equation (3.5) implies

ψ̂1(k) = e−iβ1 [H1(k) + iJ1(k)] , ψ̂2(k) = eiβ2 [H2(−ik) + iJ2(−ik)] , (5.10)

where the functions H1, H2 are defined by equations (5.5) and

J1(k) =
1

2

∫ ∞

0

ekyj1(y) dy, J2(k) = −1

2

∫ ∞

0

ekxj2(x) dx. (5.11)
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The global relation (3.6) and its Schwartz conjugate are

e−iβ1H1(k) + ie−iβ1J1(k) + eiβ2H2(−ik) + ieiβ2J2(−ik) = A(k), π � argk �
3π

2
, (5.12)

eiβ1H1(k) − ieiβ1J1(k) + e−iβ2H2(ik) − ie−iβ2J2(ik) = A(k̄),
π

2
� argk � π, (5.13)

where the known function A(k) is defined by equation (5.6).

We supplement the above two equations with the equations obtained from them by

substituting k → −k; we will refer to these equations as (5.12)’ and (5.13)’. Equations

(5.12), (5.13), (5.12)’ and (5.13)’, are four equations relating the four unknown functions

J1(k), J1(−k), J2(ik), J2(−ik). Using equations (5.12)’ and (5.13)’ we find

J2(−ik) = e2i(β1+β2)J2(ik) +N1(k), k = �+, (5.14)

where N1(k) is a known function. Also, equation (5.13) implies

J1(k) = −e−i(β1+β2)J2(ik) +N2(k), k = i�+, (5.15)

where N2(k) is a known function. Although the function J2(ik) is an unknown function,

it does not contribute to the solution. Indeed, substituting the above expressions into the

integral representation (3.4) we find

ψz =
i

2π

(
ei(2β1+3β2)

∫ ∞

0

eikzJ2(ik) dk − e−i(2β1+β2)

∫ i∞

0

eikzJ2(ik) dk

)
+N(z, z̄), (5.16)

where N(z, z̄) is the right-hand side of equation (5.4). The functions eikz and J2(ik) are

analytic and bounded in the first quadrant of the complex k-plane. Thus if

ei(2β1+3β2) = e−i(2β1+β2), i.e e4i(β1+β2) = 1,

the application of Cauchy’s theorem in the first quadrant of the complex k-plane implies

that the unknown function J2(ik) does not contribute to ψz. The integral representation

(5.4) follows by using the analyticity of H2(ik). �

5.1 Comparison of the representations in the k- and z-planes

Having constructed an integral representation in the complex k-plane, it is straightforward

to obtain an integral representation in the complex z-plane. For simplicity we consider

the Laplace equation, i.e.

ψz =
1

π

∫ i∞

0

eikz
[
e−iβ1H1(k) + e−i(2β1+β2)H2(ik)

]
dk

+
1

π

∫ ∞

0

eikz
[
ei(β1+2β2)H1(−k) + eiβ2H2(−ik)

]
dk, (5.17)

where H1(k) and H2(k) are defined by equations (5.5).
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By computing explicitly the k-integral, equation (5.17) yields

ψz(z) =
1

2π

∫ ∞

0

(
ei(β1+2β2)

iz − ξ
+

e−iβ1

iz + ξ

)
h1(ξ) dξ

+
i

2π

∫ ∞

0

(
eiβ2

z − ξ
+
e−i(2β1+β2)

z + ξ

)
h2(ξ) dξ. (5.18)

This equation has the advantage that it involves directly the boundary conditions h1

and h2, whereas equation (5.17) involves the Fourier transform of the boundary conditions.

However, it appears that the representations in the k-plane are in general is more efficient

for numerical computations. Indeed, by appropriately deforming the contours in the

complex k-plane, it is possible to obtain contours involving integrands with strong decay.

6 The non-homogeneous Biharmonic equation

Proposition 6.1 Let the complex-valued function Ψ (z, z̄) satisfy the non-homogeneous bi-

harmonic equation

Ψzzzz = G, z ∈ D ⊂ �2, (6.1)

where z denotes the usual complex variable, G(z, z) is a given complex-valued function with

appropriate smoothness, and D is a simply connected, bounded domain of the complex z-plane.

Then: (a) Ψ admits the integral representation

Ψzz =
1

2πi

∫
∂D

[
(z − ζ)Ψζζζ +Ψζζ

] dζ

ζ − z
+

1

2πi

∫∫
D

(z − ζ)G
dζ ∧ dζ
ζ − z

, z ∈ D. (6.2)

Furthermore, the boundary values of Ψ satisfy the two global relations∫
∂D

Ψζζζ

ζ − z
dζ = −

∫∫
D

G

ζ − z
dζ ∧ dζ, (6.3)

and ∫
∂D

Ψζζ − ζΨζζζ

ζ − z
dζ =

∫∫
D

ζG

ζ − z
dζ ∧ dζ, z � D. (6.4)

(b) Suppose that D is the interior of the convex polygon Ω specified by the corners

z1, . . . , zn+1 = z1 (see Figure 1). Then, Ψ also admits the integral representation

Ψzz =F +
1

2π

n∑
j=1

∫
lj

eikz[zΨ̂ (1)
j (k) + Ψ̂

(2)
j (k)] dk− 1

2π

n∑
j=1

∫
lj

eikz[zF̂ (1)
j (k) + F̂

(2)
j (k)]dk, z ∈ Ω,

(6.5)

where the rays lj are defined by equation (2.6), the function F is defined in terms of G by

the equation

Fzz = G, F |∂D = Fz̄ |∂D = 0,
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and the functions Ψ̂ (m)
j , F̂

(m)
j , m = 1, 2, are defined by the following equations:

Ψ̂
(1)
j (k) =

∫ zj

zj+1

e−ikzΨzzz dz, Ψ̂
(2)
j (k) =

∫ zj

zj+1

e−ikz(Ψzz − zΨzzz) dz, (6.6)

F̂
(1)
j (k) =

∫ zj

zj+1

e−ikzFz̄ dz, F̂
(2)
j (k) =

∫ zj

zj+1

e−ikz(F − zFz) dz, j = 1, . . . , n, k ∈ �. (6.7)

Furthermore, the following global relations are valid for all complex k,

n∑
j=1

Ψ̂
(m)
j (k) =

n∑
j=1

F̂
(m)
j (k), m = 1, 2, k ∈ �. (6.8)

Proof The functions Ψzzz and Ψzz − zΨzzz satisfy the basic equation (2.1):

∂z(Ψzzz) = G, ∂z(Ψzz − zΨzzz) = −zG. (6.9)

Thus, replacing in equations (2.2) and (2.3) Φ by Ψzzz, as well as replacing in equations

(2.2) and (2.3) Φ by Ψzz − zΨzzz and G by −zG, we find the global relations (6.3) and

(6.4) as well as the following equations

Ψzzz =
1

2πi

(∫
∂D

Ψζζζ

ζ − z
dζ +

∫∫
D

G

ζ − z
dζ ∧ dζ

)
, (6.10)

Ψzz − zΨzzz =
1

2πi

(∫
∂D

Ψζζ − ζΨζζζ

ζ − z
dζ −

∫∫
D

ζG

ζ − z
dζ ∧ dζ

)
. (6.11)

Multiplying equation (6.10) by z and adding the resulting equation to equation (6.11),

we obtain equation (6.2).

(b) If F is defined in terms of G by equation (2.4), then

−zG = ∂z̄(−zF + ∂−1
z̄ F). (6.12)

This suggests replacing F by Fz̄. Thus equations (2.5)–(2.9) yield the global relations (6.8)

as well as the following equations:

Ψzzz = Fz̄ +
1

2π

n∑
j=1

∫
lj

eikzΨ̂
(1)
j (k) dk − 1

2π

n∑
j=1

∫
lj

eikzF̂
(1)
j (k) dk, (6.13)

Ψzz − z̄Ψzzz = F − zFz̄ +
1

2π

n∑
j=1

∫
lj

eikzΨ̂
(2)
j (k) dk − 1

2π

n∑
j=1

∫
lj

eikzF̂
(2)
j (k) dk, (6.14)

where Ψ̂ (m)
j , F̂

(m)
j , m = 1, 2, are defined by equations (6.6) and (6.7). Multiplying equation

(6.13) by z̄ and adding the resulting equation to equation (6.14) we find equation (6.5).

�
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7 The non-homogeneous Biharmonic equation in the upper half complex plane

Proposition 7.1 (The Dirichlet-second Neumann boundary value problem).

Let the real-valued function ψ(x, y) satisfy the non-homogeneous biharmonic equation in

the upper half of the complex z-plane,

ψzzzz = g, Imz � 0, (7.1)

where g(x, y) is a given real-valued function with appropriate smoothness and decay. Assume

that the Dirichlet as well as the second Neumann boundary conditions are prescribed

ψ(x, 0) = h1(x), ψyy(x, 0) = h2(x), −∞ < x < ∞, (7.2)

where the real-valued functions h1(x) and h2(x) have appropriate smoothness and decay.

Then ψzz is given by

ψzz =
z̄

πi

1

8

∫ ∞

−∞
(h′′′

1 (ξ) + h′
2(ξ))

dξ

ξ − z

+
1

πi

1

8

∫ ∞

−∞
[2(h′′

1(ξ) − h2(ξ)) − ξ(h′′′
1 (ξ) + h′

2(ξ))]
dξ

ξ − z
+ G(z, z̄), (7.3)

where

G(z, z̄) =
z̄

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
g(ξ, η)

ξ − iη − z
− 1

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
(ξ + iη)g(ξ, η)

ξ − iη − z

− 1

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
[z̄ − (ξ − iη)]g(ξ, η)

ξ + iη − z
. (7.4)

Proof The definitions

∂z =
1

2
(∂x − i∂y), ∂z =

1

2
(∂x + i∂y),

imply the identities

ψzzz =
1

8

(
ψxxx + ψxyy − iψyyy − iψxxy

)
, (7.5)

ψzz =
1

4

(
ψxx − ψyy − 2iψxy

)
. (7.6)

Using these identities in equation (6.2) as well as in equations (6.3) and (6.4) and then

taking the complex conjugate and letting y → −y in the latter two equations, we find

ψzz =
z̄

2πi

1

8

∫ ∞

−∞
(ψξξξ + ψξyy − iψyyy − iψξξy)(ξ, 0)

dξ

ξ − z

+
1

2πi

1

8

∫ ∞

−∞
[2(ψξξ − ψyy − 2iψξy) − ξ(ψξξξ + ψξyy − iψyyy − iψξξy)](ξ, 0)

dξ

ξ − z

− 1

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
[x− iy − (ξ − iη)]g(ξ, η)

ξ + iη − z
, (7.7)
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as well as

− z̄

2πi

1

8

∫ ∞

−∞
(ψξξξ + ψξyy + iψyyy + iψξξy)(ξ, 0)

dξ

ξ − z

=
z̄

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
g(ξ, η)

ξ − iη − z
, (7.8)

1

2πi

1

8

∫ ∞

−∞
[2(ψξξ − ψyy + 2iψξy) − ξ(ψξξξ + ψξyy + iψyyy + iψξξy)](ξ, 0)

dξ

ξ − z

=
1

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
(ξ + iη)g(ξ, η)

ξ − iη − z
. (7.9)

Subtracting equations (7.8) and (7.9) from equation (7.7), the unknown boundary values

are eliminated and we find equation (7.3). �

Having obtained ψzz , it is straightforward to find ψ.

Suppose that instead of ψyy(x, 0), we prescribe the Neumann boundary condition

ψy(x, 0). In this case it is not clear how to manipulate equations (7.7)–(7.9) in order to elim-

inate the unknown boundary values. However, in this case we can determine the unknown

boundary value by analysing the generalised Dirichlet to Neumann correspondence.

Proposition 7.2 (A generalised Dirichlet to Neumann correspondence for the half plane).

Let the real-valued function ψ(x, y) satisfy the non-homogeneous biharmonic equation (7.1)

in the upper half of the complex z-plane. Then, for −∞ � x � ∞, the following identities

are valid:

(ψxxx + ψxyy)(x, 0) = − 1

π
−
∫ ∞

−∞
(ψyyy + ψξξy)(ξ, 0)

dξ

ξ − x

− 16

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
(ξ − x)g(ξ, η)

(ξ − x)2 + η2
, (7.10)

[2(ψxx −ψyy) − x(ψxxx +ψxyy)](x, 0) = − 1

π
−
∫ ∞

−∞
[4ψξy − ξ(ψyyy +ψξξy)](ξ, 0)

dξ

ξ− x

− 16

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
[ξ(ξ − x) − η2]g(ξ, η)

(ξ − x)2 + η2
. (7.11)

Equivalently, equations (7.10) and (7.11) can be expressed in the following form

(ψyyy + ψxxy)(x, 0) =
1

π
−
∫ ∞

−∞
(ψξξξ + ψξyy)(ξ, 0)

dξ

ξ − x

− 16

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
ηg(ξ, η)

(ξ − x)2 + η2
, (7.12)

[−4ψxy + x(ψyyy + ψxxy)](x, 0) = − 1

π
−
∫ ∞

−∞
[2(ψξξ − ψyy) − ξ(ψξξξ + ψξyy)](ξ, 0)

dξ

ξ − x

+
16

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
(2ξη − ηx)g(ξ, η)

(ξ − x)2 + η2
. (7.13)
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Proof Letting ζ = ξ + iη in equations (6.3) and (6.4), as well as taking the limit as z

approaches the real axis from below,and using Plemelj formulae, we find the following

equations:

[ψxxx + ψxyy − i(ψyyy + ψxxy)](x, 0) +
1

π
−
∫ ∞

−∞
[ψyyy + ψξξy + i(ψξξξ + ψξyy)](ξ, 0)

dξ

ξ − x

= −16

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
g(ξ, η)

ξ − x+ iη
, (7.14)

{[2(ψxx − ψyy) − x(ψxxx + ψxyy)] + i[−4ψxy + x(ψyyy + ψxxy)]} (x, 0)

+
1

π
−
∫ ∞

−∞
{[4ψξy − ξ(ψyyy + ψξξy)] + i[2(ψξξ − ψyy) − ξ(ψξξξ + ψξyy)]} (ξ, 0)

dξ

ξ − x

= −16

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
(ξ − iη)g(ξ, η)

ξ − x+ iη
. (7.15)

The real and imaginary parts of equations (7.14) and (7.15) yield equations (7.10)–

(7.13). �

The analysis of equations (7.10) and (7.11) (or equivalently of equations (7.12) and (7.13))

yields the generalised Dirichlet to Neumann map for a variety of boundary conditions.

As an illustrative example we consider the Dirichlet-Neumann boundary value problem.

Proposition 7.3 (The Dirichlet-Neumann boundary value problem).

Let the real-valued function ψ(x, y) satisfy the non-homogeneous biharmonic equation

(7.1) in the upper half of the complex z-plane with given Dirichlet and Neumann boundary

conditions

ψ(x, 0) = h1(x), ψy(x, 0) = −h2(x), −∞ < x < ∞. (7.16)

Then the second and third Neumann boundary values,

ψyy(x, 0) = f1(x), ψyyy(x, 0) = f2(x), (7.17)

are given by the following expressions:

f1(x) = −xG1(x) + G2(x)

2
+ h′′

1(x) − 2

π
−
∫ ∞

−∞

h′
2(ξ) dξ

ξ − x
, (7.18)

f2(x) = h′′
2(x) +

1

π
−
∫ ∞

−∞

[
h′′′

1 (ξ) + f′
1(ξ) − G1(ξ)

]
dξ

ξ − x
, (7.19)

where

G1(x) = −16

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
(ξ − x)g(ξ, η)

(ξ − x)2 + η2
,

G2(x) = −16

π

∫ ∞

−∞
dξ

∫ ∞

0

dη
[ξ(ξ − x) − η2]g(ξ, η)

(ξ − x)2 + η2
. (7.20)
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Proof Denoting by G1(x) and G2(x) the double integrals appearing in the right-hand side

of equations (7.10) and (7.11) and denoting ψyy(x, 0) and ψyyy(x, 0) by f1(x) and f2(x)

respectively, equations (7.10) and (7.11) yield

h′′′
1 + f′

1 = − 1

π
−
∫ ∞

−∞
(f2 − h′′

2)
dξ

ξ − x
+ G1, (7.21)

2(h′′
1 − f1) − x(h′′′

1 + f′
1) =

1

π
−
∫ ∞

−∞
[4h′

2 + ξ(f2 − h′′
2)]

dξ

ξ − x
+ G2. (7.22)

Using the identity

−
∫ ∞

−∞

ξf(ξ) dξ

ξ − x
=

∫ ∞

−∞
f(ξ) dξ + x−

∫ ∞

−∞

f(ξ) dξ

ξ − x
, (7.23)

and replacing h′′′
1 + f′

1 by the right-hand side of equation (7.21), equation (7.22) simplifies

to the following equation

f1 = −xG1 + G2

2
+ h′′

1 − 2

π
−
∫ ∞

−∞

h′
2 dξ

ξ − x
− 1

2π

∫ ∞

−∞
(f2 − h′′

2) dξ. (7.24)

Taking the limit as x → ∞, it follows that the last term in equation (7.24) vanishes and

hence we find equation (7.18).

Also, equation (7.21) implies

1

π
−
∫ ∞

−∞
f2

dξ

ξ − x
=

1

π
−
∫ ∞

−∞
h′′

2

dξ

ξ − x
− h′′′

1 − f′
1 + G1. (7.25)

Taking the inverse Hilbert transform of equation (7.25) we find equation (7.19). �

8 The non-homogeneous Biharmonic equation in an equilateral triangle

Proposition 8.1 (A generalised Dirichlet to Neumann map for an equilateral triangle). Let

the real-valued function ψ(x, y) satisfy the non homogeneous biharmonic equation in an

equilateral triangle

ψzzzz = g, z ∈ D, (8.1)

where g is a given real-valued function with appropriate smoothness, and D denotes the

interior of the equilateral triangle with the following corners (see figure 5)

z1 =
l√
3
e
iπ
3 , z2 = z1, z3 = − l√

3
. (8.2)

Let ψ satisfy symmetric Dirichlet and second Neumann boundary conditions,

ψ(j)(s) = f0(s), ψ(j)
nn (s) = f1(s), j = 1, 2, 3, s ∈

[
− l

2
,
l

2

]
, (8.3)

where ψ(j)(s) denotes the value of ψ on the side (j), ψ(j)
nn (s) denotes the second normal deriv-

ative on the side (j), and f0(s), f1(s) have appropriate smoothness and are continuous at the

corners of the triangle. Then, the unknown Neumann and third Neumann boundary values,
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i.e. the functions ψ(j)
n (s) = ψn(s) and ψ(j)

nnn(s) = ψnnn(s), can be determined as follows. The

function ψn(s) is obtained by integrating the equation

∂sψn(s) =
2i

l

∞∑
−∞

e− 2inπs
l

Q(1)
(

2inπ
l

)
sinh (ᾱ(inπ))

, n ∈ �, (8.4)

where Q(1)(k) is given in terms of the known boundary conditions by the following expres-

sions:

Q(1)(k) = iE(−iαk)W (1)(k) + iE(iαk)W (1)(k), (8.5)

E(k) = e
k l

2
√

3 , (8.6)

W (1)(k) = A(1)(k) − [E(−ik)R̃(k) + E(−iαk)R̃(αk) + E(−iαk)R̃(αk)], (8.7)

R̃(k) =
1

4

∫ l
2

− l
2

eks {(f1(s) − f′′
0 (s))

−1

8
(
l

2
√

3
− is)

[
8

l

∞∑
−∞

e− 2inπs
l

Q(2)
(

2inπ
l

)
sinh (ᾱ(inπ))

− i(f′′′
0 (s) + f′

1(s))

]}
ds, n ∈ �, (8.8)

A(1)(k) =

∫∫
D

e−ikzzg(z, z) dz ∧ dz, k ∈ �, (8.9)

Q(2)(k) = iE(−iαk)W (2)(k) + iE(iαk)W (2)(k), (8.10)

W (2)(k) = A(2)(k) − [E(−ik)R(k) + E(−iαk)R(αk) + E(−iαk)R(αk)], (8.11)

R(k) =
1

8

∫ l
2

− l
2

eks(f′′′′
0 (s) + f′

1(s)) ds, (8.12)

A(2)(k) = −
∫∫

D

e−ikzg(z, z) dz ∧ dz, k ∈ �. (8.13)

The function ψnnn(s) is given in terms of the known boundary conditions by the expression

ψnnn(s) =
8

l

∞∑
−∞

e− 2inπs
l

Q(2)
(

2inπ
l

)
sinh (ᾱ(inπ))

− ∂s

(
2i

l

∞∑
−∞

e− 2inπs
l

Q(1)
(

2inπ
l

)
sinh (ᾱ(inπ))

)
, n ∈ �. (8.14)

Proof The sides (z2, z1), (z3, z2), (z1, z3), each of length l, will be referred to as sides (1),(2),(3)

respectively. On each side we identify the positive direction T̂ and the outward normal

N̂, see Figure 5. Let α denote the following complex cube root of unity

α = e
2iπ
3 = −1

2
+
i
√

3

2
.

For the equilateral triangle, the global relations (6.8) become

3∑
j=1

ψ̂
(1)
j (k) = A(2)(k),

3∑
j=1

ψ̂
(2)
j (k) = A(1)(k), (8.15)
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Figure 5. The domain D for an equilateral triangle.

where A(1)(k) and A(2)(k) are defined by equations (8.9) and (8.13) respectively, and ψ̂(1)
j , ψ̂

(2)
j

are defined by the following equations

ψ̂
(1)
j (k) =

∫ zj

zj+1

e−ikzψzzzdz, ψ̂
(2)
j (k) =

∫ zj

zj+1

e−ikz (ψzz − zψzzz) dz, j = 1, 2, 3, k ∈ �.

(8.16)

We next compute the above functions:

Side 1: The variable z can be parametrized as

z(s) =
l

2
√

3
+ is, s ∈

[
− l

2
,
l

2

]
.

Since the normal and the tangential derivatives are parallel to the x and y axes

respectively, equations (7.5) and (7.6) give

ψzzz =
1

8
(ψnnn + ψnss − iψsss − iψnns),

ψzz =
1

4
(ψnn − ψss − 2iψns). (8.17)

Side 2: If z varies along side (2), ζ varies along side (1), i.e. z = ζ exp(− 2iπ
3

). Thus,

z(s) =

(
l

2
√

3
+ is

)
e− 2iπ

3 , s ∈
[

− l

2
,
l

2

]
.
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The equations ∂zz = exp( 4iπ
3

)∂ζζ and ∂zzz = exp( 2iπ
3

)∂ζζζ , imply

ψzzz =
1

8
α(ψnnn + ψnss − iψsss − iψnns),

ψzz =
1

4
α(ψnn − ψss − 2iψns). (8.18)

Side 3: In a similar way we find

ψzzz =
1

8
α(ψnnn + ψnss − iψsss − iψnns),

ψzz =
1

4
α(ψnn − ψss − 2iψns). (8.19)

Substituting the above expressions in the global relations (8.15) we find

E(−ik)[R(k) + iI(k)] + E(−iαk)[R(αk) + iI(αk)] + E(−iαk)[R(αk) + iI(αk)] = 0, (8.20)

E(−ik)[R̃(k) + iĨ(k)] +E(−iαk)α[R̃(αk) + iĨ(αk)] +E(−iak)α[R̃(αk) + iĨ(αk)] = 0, (8.21)

where the functions R(k), R̃(k) are defined by equations (8.12) and (8.8) respectively, and

I(k) =
1

8

∫ l
2

− l
2

eks(ψnnn(s) + ψnss(s)) ds, (8.22)

Ĩ(k) = − i

2

∫ l
2

− l
2

eksψns(s) ds, k ∈ �. (8.23)

Hence, equation (8.20) can be written as

E(−ik)I(k) + E(−iαk)I(αk) + E(−iαk)I(αk) = (−i)W (2)(k), (8.24)

where W (2)(k) is the known function defined by equation (8.11).

Multiplying equation (8.24) by E(iαk) and multiplying its Schwarz conjugate by E(−iαk)
we obtain

e(αk)I(k) + e(−k)I(αk) + I(αk) = (−i)E(iαk)W (2)(k), (8.25)

e(−αk)I(k) + I(αk) + e(k)I(αk) = iE(−iαk)W (2)(k), (8.26)

where

e(k) = ek
l
2 , (8.27)

and we have used the identities

E(iᾱk)E(−iαk) = e(k), E(iαk)E(−ik) = e(ᾱk). (8.28)

Subtracting equation (8.25) from equation (8.26), we find

(e(k) − e(−k)) I(αk) = (e(αk) − e(−αk)) I(k) + Q(2)(k), (8.29)
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where Q(2)(k) is the known function defined by (8.10). By evaluating the last equation at

those values of k for which the coefficient of ψ(ᾱk) vanishes, i.e. at e2(k) = 1, or

kn =
2inπ

l
, n ∈ �,

it follows that I(k) can be determined. Recalling the definition of I(k) and evaluating

equation (8.29) at kn = 2inπ
l

, we find

1

8
sinh (ᾱ(inπ))

∫ l
2

− l
2

e2iπn
s
l (ψnnn(s) + ψnss(s)) ds = Q(2)

(
2inπ

l

)
, n ∈ �. (8.30)

Thus,

ψnnn(s) + ψnss(s) =
8

l

∞∑
−∞

e− 2inπs
l

Q(2)
(

2inπ
l

)
sinh (ᾱ(inπ))

. (8.31)

Similarly, the second global relation (8.21) yields equation (8.4). Using the latter equation

as well as equation (8.31), we obtain equation (8.14). �

9 Conclusions

During the twentieth century, the Riemann-Hilbert formalism became a very useful

technique for the integration of several types of boundary-value problems in the theory

of elasticity. The solution of such problems can be expressed through integral equations

formulated in the complex z -plane [16], [18].

There exists an extension of the Riemman-Hilbert formalism, called the Dbar formalism

[1]. In this case, the function to be found fails to be analytic in a two-dimensional domain

of the complex plane, as opposed to the case of a Riemann-Hilbert problem where the

function loses its analyticity only on a curve. The solution of the basic problem appearing

in the Dbar formalism, the so-called Dbar problem, was obtained in 1912 by the Romanian

mathematician D. Pompeiu.

The Dbar formalism has motivated various elegant generalisations in one and several

complex variables [13]–[15]. Also, it has found applications to the solution of integrable

nonlinear PDEs [2, 10], as well as in the inversion of important integral transforms such

as the Radon and the attenuated Radon transforms [11].

A new method for solving boundary value problems for both linear and integrable

nonlinear PDEs was introduced in [4]. The implementation of this method involves the

formulation of a Riemann-Hilbert or a Dbar problem in the complex Fourier space

(denoted by k), instead of the formulation in the physical space used earlier. In this new

framework, the Dbar formalism has found new applications, for example, in the solution

of boundary value problems in time-dependent domains [7], as well as, to the spectral

analysis of differential operators [8].

In this paper, we have presented a methodology for the analysis of boundary value

problems for certain linear non-homogeneous elliptic PDEs in two dimensions. This

methodology involves two main features: (a) It yields an explicit integral representation
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for the solution. (b) It characterizes the generalised Dirichlet to Neumann map through

the solution of the so called global relation. This is an equation which couples both the

specified as well as the unknown values of the function and its derivatives on the boundary.

We have introduced two different approaches for the construction of the above integral

representations. The first approach involves formulating the solution in the physical space

(denoted by z). Although this formulation is well-known in the literature, it seems that

results for non-homogeneous equations are rather sporadic, as opposed to the systematic

approach introduced here. Furthermore, in the classical approach, the integral repres-

entation is obtained using Green’s functions, and the associated generalised Dirichlet

to Neumann map is determined either through the method of images or through the

formulation of a Hilbert problem. This is to be contrasted with our approach, where the

integral representation is obtained by solving a Dbar problem (see also Pinotsis [17]), and

the associated generalised Dirichlet to Neumann map is obtained by analysing the global

relation. A novel extension of this approach to multidimensions is presented in Fokas &

Pinotsis [9]. The second formulation expresses the solution in the spectral space (denoted

by k) and constitutes an extension to non-homogeneous elliptic PDEs of the method

introduced in Fokas [4]. In particular, the analogous formulations for the Laplace and the

biharmonic equations have been given in Fokas & Kapaev [6] and Crowdy & Fokas [3]

respectively.
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Appendix

Following Fokas & Zyskin [12] we will show that if the domain D is a convex polygon,

then equation (2.22) can be mapped to equation (2.16).

The Fourier representation of Dirac’s delta function is given by

δ(z) =
1

4π2

∫∫
R2

eik1x+ik2y dk1 dk2,

where k1, k2, x, y are real. Using in this equation

δ(z) = − 1

2πi
∂z

(
1

z

)
, x =

z + z

2
, y =

z − z

2i
,

and integrating the resulting equation with respect to z̄, we find

1

z
=

1

iπ

∫∫
R2

e
1
2 (ik1+k2)z+

1
2 (ik1−k2)z

dk1dk2

ik1 − k2
. (A1)

Using this identity in equation (2.22) (with z − ζ instead of z), and letting ζ = ξ + iη,

we find

H(z) = − 1

2π2

∫∫
R2

⎛⎝ n∑
j=1

∫ zj

zj+1

eik1(x−ξ)+ik2(y−η)H(ξ + iη)(dξ + idη)

⎞⎠ dk1dk2

ik1 − k2
. (A2)
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eN

Figure 6. The orthonormal vectors eT and eN associated with the side (zj+1, zj).

Let us concentrate on the term involving the side (zj+1, zj). Suppose that this side makes

an angle θ with the x-axis (see Figure 6). Let eT be the unit vector along this side, and

eN the unit vector perpendicular to this side pointing outwards.

Expanding the vector
−→
k = (k1, k2) along eT , eN, and denoting the corresponding

components by kT , kN, we find,(
kT
kN

)
=

(
cos θ sin θ

sin θ − cos θ

) (
k1

k2

)
.

Hence,

ik1 − k2 = eiθ(kN + ikT ). (A3)

Similarly, expanding the vector
−→
X = (x − ξ, y − η) along eT and eN, and denoting the

corresponding components by (XT ,XN), we find,

(XN + iXT ) = ieiθ [(x− ξ) + i(y − η)] . (A4)

Since the inner product
−→
k · −→

X is invariant under rotation, it follows that

k1(ξ − x) + k2(η − y) = kTXT + kNXN. (A5)

The point (x, y) lies inside the convex polygon Ω, and eN points outwards, therefore

XN < 0. Hence, we can compute the relevant integral by integrating in the lower-half

complex kN-plane. Thus the relevant term of the right-hand side of equation (A2) becomes

1

2π

∫ ∞

0

dkT

∫ zj

zj+1

ekT (iXT+XN )−iθH(dx+ i dy). (A6)

Using (A5) and reparametrizing kT by keiθ , the above equation becomes

1

2π

∫
lj

eikzĤj(k) dk. (A7)
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