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Fixing a positive integer r and 0 � k � r − 1, define f〈r,k〉 for every formal power
series f as f(x) = f〈r,0〉(xr) + xf〈r,1〉(xr) + · · · + xr−1f〈r,r−1〉(xr). Jochemko
recently showed that the polynomial Un

r,k h(x) := ((1 + x + · · · + xr−1)nh(x))〈r,k〉

has only non-positive zeros for any r � deg h(x) − k and any positive integer n. As a
consequence, Jochemko confirmed a conjecture of Beck and Stapledon on the
Ehrhart polynomial h(x) of a lattice polytope of dimension n, which states that
Un

r,0 h(x) has only negative, real zeros whenever r � n. In this paper, we provide an
alternative approach to Beck and Stapledon’s conjecture by proving the following
general result: if the polynomial sequence (h〈r,r−i〉(x))1�i�r is interlacing, so is
(Un

r,r−i h(x))1�i�r. Our result has many other interesting applications. In
particular, this enables us to give a new proof of Savage and Visontai’s result on the
interlacing property of some refinements of the descent generating functions for
coloured permutations. Besides, we derive a Carlitz identity for refined coloured
permutations.

Keywords: Veronese submodule; Ehrhart polynomials; interlacing polynomials;
coloured permutation; Carlitz identity.
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1. Introduction

Suppose that {ai}i�0 is a sequence of real numbers that eventually agrees with a
polynomial, namely there exist i0 � 0 and a polynomial g in i of degree n − 1 � 0
such that ai = g(i) for any i � i0. It is well known that the generating series

∞∑
i=0

ai xi

converges to a rational function of the form

h(x)
(1 − x)n

,

where h(x) is a polynomial with h(1) �= 0, see [26]. Fix a positive integer r. Clearly,
for any 0 � k � r − 1, the generating series
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∞∑

i=0

ari+k xi

also converges to a rational function of the same form

h̄(x)
(1 − x)n

,

where h̄(x) is a polynomial with h̄(1) �= 0. As will be shown later, the polyno-
mial h̄(x) is uniquely determined by n, r, k and h(x). To make this point clear, we
denote h̄(x) by Un

r,k h(x). Such a construction originates from the Veronese subal-
gebra of graded algebra [4]. Given a formal power series f(x), there exist uniquely
determined series f 〈r,0〉(x), f 〈r,1〉(x), . . . , f 〈r,r−1〉(x) such that

f(x) = f 〈r,0〉(xr) + xf 〈r,1〉(xr) + · · · + xr−1f 〈r,r−1〉(xr).

It was shown in [17, lemma 3.1] that

Un
r,k h(x) = ((1 + x + · · · + xr−1)nh(x))〈r,k〉. (1.1)

Rational formal power series of the above form ((Un
r,k h(x))/((1 − x)n)) have

appeared widely in combinatorics [1,3,9,18] and commutative algebra [10,15,19].
For example, given an (n − 1)-dimensional lattice polytope P , the Ehrhart series
of P is ∑

i�0

EP (i)xi =
h∗(P )(x)
(1 − x)n

,

where EP (i) counts the number of lattice points in iP (the i-th dilate of P ), and
h∗(P )(x) is the Ehrhart h∗-polynomial of P with degree less than n. For the r-th
dilate of P , it can be shown that

h∗(rP )(x) = Un
r,0 h∗(P )(x).

Recently, there is an arising interest in the study of the real-rootedness of Un
r,k h(x)

when the numerator polynomial h(x) has only non-negative coefficients. Brenti and
Welker [8] proved that, for a sufficiently large integer r, the polynomial Un

r,0 h(x)
has only distinct, negative, real zeros. Beck and Stapledon [4] showed that, given a
positive integer n, there exists an R > 0 such that if h(x) is a polynomial of degree
less than n with non-negative integer coefficients and h(0) = 1, then the polynomial
Un

r,0 h(x) has only distinct, negative, real zeros for every integer r > R. In the case
of Ehrhart polynomials, Beck and Stapledon proposed the following conjecture.

Conjecture 1.1 ([4, conjecture 5.1]). Let h(x) be the Ehrhart polynomial of a
lattice polytope of dimension n. Then Un

r,0 h(x) has only real zeros whenever r � n.

The original conjecture of Beck and Stapledon requires that Un
r,0 h(x) should

have distinct, negative, real zeros. Here we only focus on its real-rootedness. This
conjecture was recently proved by Jochemko [17], who obtained the following more
general result.
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Theorem 1.2 ([17, theorem 1.1]). Given positive integers r, n and 0 � k � r − 1,
if h(x) is a polynomial of degree � r + k with non-negative coefficients, then the
polynomial Un

r,k h(x) has only real zeros.

Note that taking k = 0 in theorem 1.2 we obtain conjecture 1.1. Jochemko’s
proof of the above theorem involves the notion of interlacing, which has been used
to prove the real-rootedness of several polynomials arising in combinatorics ([17,
20,24,30,32]). Suppose that f(x) and g(x) are two real-rooted polynomials with
positive leading coefficients. We say that g(x) interlaces f(x), denoted g(x) � f(x),
if deg f(x) = deg g(x) or deg f(x) = deg g(x) + 1, and the zeros of g(x) and f(x)
alternate in the following way:

· · · � v2 � u2 � v1 � u1,

where ui and vj are the zeros of f(x) and g(x), respectively. For convention, we let
a � bx + c for any non-negative a, b, c, and let 0 � f and f � 0 for any real-rooted
polynomial f . We say that a sequence of real polynomials (f1(x), . . . , fm(x)) with
positive leading coefficients is interlacing if fi(x) � fj(x) for all 1 � i < j � m.
For more information on interlacing polynomials, we refer the reader to Brändén’s
survey [6].

The proof of Theorem 1.2 relies on the following result due to Fisk [16].

Lemma 1.3 ([16, example 3.76]). Let I denote the constant function h(x) = 1 and
let Un

r,k I be defined as in (1.1) for positive n, r and non-negative 0 � k � r − 1.
Then the sequence (Un

r,r−1 I, . . . , Un
r,1 I, Un

r,0 I) is interlacing.

The main result of this paper is as follows.

Theorem 1.4. Suppose that n, r are positive integers, and h(x) is a polynomial
with non-negative coefficients. If the polynomial sequence (h〈r,r−1〉(x), . . . , h〈r,1〉(x),
h〈r,0〉(x)) is interlacing, then so is the polynomial sequence (Un

r,r−1 h(x), . . . , Un
r,1

h(x), Un
r,0 h(x)).

The above theorem has many immediate consequences. For example, the k = 0
case of theorem 1.2 can be derived from theorem 1.4. Theorem 1.4 also generalizes
lemma 1.3 since, when h(x) is the constant function of value 1, the polynomial
sequence (h〈r,r−1〉(x), . . . , h〈r,1〉(x), h〈r,0〉(x)) is clearly interlacing. As shown by
Jochemko, theorem 1.2 is a consequence of lemma 1.3. For this reason, theorem
1.4 can also be considered as a generalization of theorem 1.2.

The rest of the paper is organized as follows. We first give a proof of Theorem 1.4
in § 2. Then some of its applications are presented in § 3, including the derivation of
the k = 0 case of theorem 1.2 from theorem 1.4. One of the most interesting applica-
tions is to show that the polynomial sequence (Un

r,r−1 h(x), . . . , Un
r,1 h(x), Un

r,0 h(x))
is interlacing provided that h(x) is real-rooted. Based on this criterion, we further
give an alternative proof of the interlacing property of some refinements of the
descent generating functions for coloured permutations, which is essentially due to
Savage and Visontai [24, § 3.3]. Two key identities are used in our proof of Savage
and Visontai’s result, which turn out to be new and will be proved in § 4. To prove

https://doi.org/10.1017/prm.2018.76 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.76


4 P. B. Zhang

these two identities, we establish a Carlitz identity for refined coloured permutations
in § 4.

2. Proof of Theorem 1.4

The objective of this section is to prove theorem 1.4. Our proof relies on the theory
of interlacing polynomials.

Before giving our proof, let us first recall two results due to Fisk [16] which will
be used later. The first one is stated as follows.

Lemma 2.1 ([16, example 3.76]). Let r � 2 be an integer. Given a polynomial
sequence with non-negative coefficients (fr−1(x), . . . , f1(x), f0(x)), define another
sequence (gr−1(x), . . . , g1(x), g0(x)) by

(1 + x + . . . + xr−1)(f0(xr) + xf1(xr) + . . . + xr−1fr−1(xr))

= g0(xr) + xg1(xr) + . . . + xr−1gr−1(xr). (2.1)

If (fr−1(x), . . . , f1(x), f0(x)) is interlacing, then so is (gr−1(x), . . . , g1(x), g0(x)).

Note that successive applications of the above result to

(fr−1(x), . . . , f1(x), f0(x)) = (0, . . . , 0, 1)

and the intermediate polynomial sequences lead to lemma 1.3.
The second result we shall use is as follows.

Lemma 2.2 ([16, lemma 3.16]). If both (f1(x), f2(x), . . . , fn(x)) and (g1(x),
g2(x), . . . , gn(x)) are interlacing, then the polynomial

n∑
i=1

fign+1−i = f1gn + f2gn−1 + · · · + fng1

has only real zeros.

We proceed to prove theorem 1.4.

Proof of Theorem 1.4. We first show the real-rootedness of Un
r,ih(x). By (1.1) the

polynomial Un
r,i h(x) can be expressed in terms of h〈r,j〉(x) and Un

r,jI as follows:

Un
r,i h(x) =(h〈r,i〉(x)Un

r,0I + · · · + h〈r,0〉(x)Un
r,iI)

+ x(h〈r,r−1〉(x)Un
r,i+1I + · · · + h〈r,i+1〉(x)Un

r,r−1I). (2.2)

By lemma 1.3, we know that

(Un
r,r−1 I, . . . , Un

r,1 I, Un
r,0 I)

is interlacing. Since

(h〈r,r−1〉(x), . . . , h〈r,1〉(x), h〈r,0〉(x))
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is interlacing and all the zeros of these polynomials are negative, it follows that

(
h〈r,i〉(x), . . . , h〈r,0〉(x), xh〈r,r−1〉(x), . . . , xh〈r,i+1〉(x)

)

is also interlacing. Hence, the real-rootedness of Ur,i
n h(x) follows from lemma 2.2.

We next prove the sequence

(Un
r,r−1 h(x), . . . , Un

r,1 h(x), Un
r,0 h(x))

is interlacing. This can be done by induction on n. For the initial case n = 0, the
polynomial sequence (h〈r,r−1〉(x), . . . , h〈r,1〉(x), h〈r,0〉(x)) is interlacing. Assume the
argument is true for n. Since

(1 + x + · · · + xr−1)(Un
r,0 h(xr) + xUn

r,1 h(xr) + · · · + xr−1Un
r,r−1 h(xr))

= (Un+1
r,0 h(xr) + xUn+1

r,1 h(xr) + · · · + xr−1Un+1
r,r−1 h(xr)),

the interlacing property of (Un+1
r,r−1 h(x), . . . , Un+1

r,1 h(x), Un+1
r,0 h(x)) immediately

follows from lemma 2.1. This completes the proof. �

3. Applications

In this section, we shall present some applications of theorem 1.4. As will be
shown, this leads to useful criteria to determine the interlacing property of
(Un

r,r−1 h(x), . . . , Un
r,0 h(x)).

First, let us show how to apply theorem 1.4 to prove Beck and Stapledon’s con-
jecture. Since conjecture 1.1 is implied by the k = 0 case of theorem 1.2, we shall
directly show how to derive the latter from theorem 1.4. For k = 0, the hypothesis
of theorem 1.2 tells us that deg h(x) � r. Thus the polynomial h〈r,i〉(x) is just a
constant for each 1 � i � r − 1, and h〈r,0〉(x) is either a constant or a linear poly-
nomial. It is clear that (h〈r,r−1〉(x), . . . , h〈r,1〉(x), h〈r,0〉(x)) is interlacing. Applying
theorem 1.4, we get the following result.

Corollary 3.1. Given a positive integer r, if h(x) is a polynomial of degree� r
with non-negative coefficients, then the sequence (Un

r,r−1 h(x), . . . , Un
r,0 h(x)) is

interlacing.

The above corollary implies that each Un
r,j h(x) is real-rooted for 0 � j � r − 1.

Thus we obtain another proof of the k = 0 case of theorem 1.2, and hence that of
conjecture 1.1.

The second application of theorem 1.4 is concerned with a criterion for determin-
ing the interlacing property of (Un

r,r−1 h(x), . . . , Un
r,0 h(x)) by imposing restrictions

on the coefficients of h(x).
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Corollary 3.2. Fixing a positive integer r, let h(x) be a polynomial with non-
negative coefficients of degree less than 2r, say

h(x) = h0 + h1x + h2x
2 + · · · + h2r−1x

2r−1.

If its coefficients satisfy the following inequalities

hihr+j � hjhr+i, for any 0 � i < j � r − 1,

then the polynomial sequence (Un
r,r−1 h(x), . . . , Un

r,1 h(x), Un
r,0 h(x)) is interlacing.

Proof. By theorem 1.4, it suffices to show

h〈r,j〉(x) = hj + hr+jx � hi + hr+ix = h〈r,i〉(x) (3.1)

for any 0 � i < j � r − 1. There are three cases to consider.

(i) If hr+jhr+i �= 0, we only need to prove that

− hj

hr+j
� − hi

hr+i
,

which is equivalent to the hypothesis hihr+j � hjhr+i.

(ii) If hr+j = 0, then h〈r,j〉(x) is a constant. By convention, (3.1) is true.

(iii) If hr+i = 0 and hr+j �= 0, then from the hypothesis hihr+j � hjhr+i it follows
that hihr+j = 0. Since hr+j �= 0, we must have hi = 0 and hence h〈r,i〉(x) = 0.
By convention, (3.1) is true.

Combining all the above cases, we prove that (h〈r,r−1〉(x), . . . , h〈r,1〉(x), h〈r,0〉(x))
is interlacing. Then applying theorem 1.4 we obtain the desired result. �

Corollary 3.2 also enables us to give another criterion to determine the interlac-
ing property of (Un

r,r−1 h(x), . . . , Un
r,1 h(x), Un

r,0 h(x)) when deg h(x) < 2r. This new
criterion uses the log-concavity of the coefficient sequence of h(x). Recall that a
sequence (ai)i�0 is log-concave if

a2
i � ai−1ai+1, for i � 1,

and it has no internal zeros if ak �= 0 for all k : i < k < j whenever aiaj �= 0. We
have the following result.

Corollary 3.3. Fixing a positive integer r, let h(x) be a polynomial with non-
negative coefficients of degree less than 2r, say

h(x) = h0 + h1x + h2x
2 + · · · + h2r−1x

2r−1.

If the coefficient sequence (h0, h1, . . . , h2r−1) is log-concave and has no inter-
nal zeros, then the polynomial sequence (Un

r,r−1 h(x), . . . , Un
r,1 h(x), Un

r,0 h(x)) is
interlacing.
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Proof. Without loss of generality, we may assume that all hi are positive. By
corollary 3.2, it suffices to show that

hj

hr+j
� hi

hr+i

for any 0 � i < j � r − 1. By the log-concavity of (h0, h1, . . . , h2r−1), for any 0 �
k < � � r − 1 we have

h�

h�+1
� h�−1

h�
� · · · � hk+1

hk+2
� hk

hk+1
,

and thus
h�

hk
� h�+1

hk+1
.

Hence, it follows that

hj

hi
� hj+1

hi+1
� · · · � hr+j

hr+i
.

This completes the proof. �

The well-known Newton inequality says that the coefficients of a real-rooted
polynomial must be log-concave. Thus it is possible to replace the log-concavity
condition by the real-rootedness of h(x) in corollary 3.3. In fact, if h(x) has only
real zeros, then we no longer need the condition on the restriction of deg h(x). As
the third application of theorem 1.4, we have the following result.

Corollary 3.4. Suppose that r is a positive integer and h(x) is a polynomial with
non-negative coefficients. If h(x) has only negative real zeros, then the polynomial
sequence (Un

r,r−1 h(x), . . . , Un
r,1 h(x), Un

r,0 h(x)) is interlacing.

Proof. It is known that if h(x) is a polynomial with non-negative coeffi-
cients and it has only negative real zeros, then the polynomial sequence
(h〈r,r−1〉(x), . . . , h〈r,1〉(x), h〈r,0〉(x)) is interlacing, see [16, theorem 7.65]. By
theorem 1.4, we obtain the desired interlacing of the polynomial sequence
(Un

r,r−1 h(x), . . . , Un
r,1 h(x), Un

r,0 h(x)). �

The remaining of this section is mainly concerned with the application of corollary
3.4 to the real-rootedness of some combinatorially defined polynomials related to
Eulerian polynomials. To be self-contained, we first give an overview of these poly-
nomials. The Eulerian polynomials are not only of interest in combinatorics, but
also of significance in geometry [5,14,25,29]. Recall that the Eulerian polynomials
An(x) appear as h-polynomials in the following rational power series:

∞∑
i=0

(i + 1)nxi =
An(x)

(1 − x)n+1
. (3.2)

Let Sn denote the set of permutations of [n] = {1, 2, . . . , n}. For a permutation
π = (π(1), π(2), . . . , π(n)) ∈ Sn, the descent number of π, denoted des (π), is the
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number of i (1 � i � n − 1) such that π(i) > π(i + 1). It is well known that the
Eulerian polynomial An(x) can be treated as the descent generating function of
Sn, namely,

An(x) =
∑

π∈Sn

xdes (π).

A remarkable property of these polynomials is that they have only real zeros.
There are various generalizations of Eulerian polynomials. Here we focus on two

families of polynomials related to An(x), one of which is the following refinement

A〈�〉
n (x) =

∑
π∈Sn
π(1)=�

xdes (π), (3.3)

and the other is the descent generating function over coloured permutations.
The polynomials A

〈�〉
n (x) have been shown to be real-rooted by Brenti [7]. The

notion of descents was generalized to coloured permutations by Steingŕımsson
[27,28]. Let Zr be the cyclic group of order r. For a positive integer r, the
wreath product Zr � Sn, can be considered as the set of r-coloured permuta-
tions, written as π = (π(1)ξ1 , π(2)ξ2 , . . . , π(n)ξn

), where (π(1), . . . , π(n)) ∈ Sn and
(ξ1, . . . , ξn) ∈ {0, 1, . . . , r − 1}n. The descent number of π ∈ Zr � Sn is defined as

des (π) = |{i ∈ [n] | ξi > ξi+1 or ξi = ξi+1 and π(i) > π(i + 1)}|,
with the convention that π(n + 1) = n + 1, ξn+1 = 0. This means that the coloured
letters are totally ordered as

10 < · · · < n0 < 11 < · · · < n1 < · · · < 1r−1 < · · · < nr−1.

The Eulerian polynomial of Zr � Sn is defined to be the descent generating
polynomial of Zr � Sn, namely,

Gn,r(x) =
∑

π∈Zr�Sn

xdes (π).

Analogous to A
〈�〉
n (x), one can introduce the following refinements of Gn,r(x):

G�,−
n,r (x) =

∑
π∈Zr�Sn

π(1)=�

xdes (π),

G−,c
n,r (x) =

∑
π∈Zr�Sn

ξ1=c

xdes (π),

G�,c
n,r(x) =

∑
π∈Zr�Sn

π(1)=�,ξ1=c

xdes (π),

where 1 � � � n and 0 � c � r − 1 are two integers. The real-rootedness of these
refined polynomials has been studied by Savage and Visontai [24] from the view
point of s-inversion sequences. We shall show that their results can also be derived
from corollary 3.4. Precisely, we shall prove the following result.
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Corollary 3.5 ([24, § 3.3]). Let Gn,r(x), G�,−
n,r (x), G−,c

n,r (x) and G�,c
n,r(x) be defined

as above. Then we have the following result.

(i) The polynomial sequence (G−,0
n,r (x), G−,1

n,r (x), . . . , G−,r−1
n,r (x)) is interlacing.

(ii) The polynomial Gn,r(x) has only real zeros.

(iii) The polynomial sequence (G�,0
n,r(x), G�,1

n,r(x), . . . , G�,r−1
n,r (x)) is interlacing.

(iv) The polynomial G�,−
n,r (x) has only real zeros.

We would like to point out that (ii) of corollary 3.5 was originally due to
Steimgŕımsson [27, theorem 3.19], and (i), (iii) and (iv) were implicitly stated by
Savage and Visontai [24].

In order to prove corollary 3.5 via corollary 3.4, we need to find suitable real-
rooted polynomials h(x) such that the polynomials Un

r,i h(x) correspond to G−,i
n,r(x)

or G�,i
n,r(x), respectively. It turns out that An(x) and A

〈�〉
n (x) fulfil our purpose as

shown below.

Theorem 3.6. For any positive integers n, r and 1 � � � n, there holds

(1 + x + · · · + xr−1)n An(x) = G−,0
n,r (xr) + x · G−,r−1

n,r (xr)
xr

+ · · · + xr−1 · G−,1
n,r (xr)
xr

,

(3.4)

(1 + x + · · · + xr−1)nA〈�〉
n (x) = G�,0

n,r(x
r) + x · G�,r−1

n,r (xr)
xr

+ · · · + xr−1 · G�,1
n,r(x

r)
xr

.

(3.5)

In order not to disrupt the exposition of the applications of our main result, we
defer the proof of Theorem 3.6 to § 4. Note that the left-hand side of (3.4) is the
generating function of coloured permutations of flag descent statistic, see [1,2]. The
r = 2 case of (3.4) was discussed in terms of half Eulerian polynomials, see [31].

We proceed to prove corollary 3.5.

Proof of Corollary 3.5. We first prove (i). It is easy to check that the constant term
of the polynomial G−,i

n,r(x) vanishes for each 1 � i � r − 1. In view of the identity
(3.4) and the real-rootedness of An(x), from corollary 3.4 we derive the interlacing
of the polynomial sequence(

G−,1
n,r (x)
x

, . . . ,
G−,r−1

n,r (x)
x

,G−,0
n,r (x)

)
.

Multiplying each polynomial of the above sequence by x, we get that the sequence(
G−,1

n,r (x), . . . , G−,r−1
n,r (x), xG−,0

n,r (x)
)

is interlacing. Since G−,i
n,r(x) � xG−,0

n,r (x) for all 1 � i � r − 1, we have G−,0
n,r (x) �

G−,i
n,r(x). Therefore, the sequence

(G−,0
n,r (x), G−,1

n,r (x), . . . , G−,r−1
n,r (x))

is interlacing. This completes the proof of (i).
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We continue to prove (ii). Taking

(f1(x), f2(x), . . . , fr(x)) = (1, 1, . . . , 1),

(g1(x), g2(x), . . . , gr(x)) = (G−,0
n,r (x), G−,1

n,r (x), . . . , G−,r−1
n,r (x))

in lemma 2.2, we obtain that the polynomial

G�,−
n,r (x) =

r−1∑
i=0

G�,i
n,r(x)

has only real zeros.
The proofs of (iii) and (iv) are exactly the same as those of (i) and (ii), which

will be omitted here. �

4. Proof of Theorem 3.6

The main aim of this section is to prove theorem 3.6. To this end, we establish a
Carlitz identity for refined coloured permutations. Before presenting our identity,
let us first review some related background.

A generalization of the classical Euler’s identity (3.2) was known before Car-
litz [11]. Let [i]q = 1 + q + · · · + qi−1. For any positive integer n, we define the
q-factorial by (x; q)n =

∏n−1
i=0 (1 − xqi) with (x; q)0 = 1. Define the major index of π,

denoted maj (π), to be the sum of the position i (1 � i � n − 1) which contributes
to its descent number, namely, π(i) > π(i + 1). The following identity is known as
Carlitz identity [11]:

∞∑
i=0

[i + 1]nq xi =

∑
π∈Sn

xdes (π)qmaj (π)

(x; q)n+1
. (4.1)

An analogue of Carlitz identity for coloured permutations was given by
Chow and Mansour [13]. The major index of a coloured permutation π =
(π(1)ξ1 , π(2)ξ2 , . . . , π(n)ξn

), denoted maj (π), is defined as the sum of descent posi-
tions i, and the flag major index of π is defined as fmaj (π) = r · maj (π) −∑n

i=1 ξi.
Chow and Mansour [13] obtained the following identity:

∞∑
i=0

[ri + 1]nq xi =

∑
π∈Zr�Sn

xdes (π)qfmaj (π)

(x; qr)n+1
. (4.2)

In particular, the r = 2 case of (4.2) was already known to Chow and Gessel [12].
For 1 � � � n and 0 � c � r − 1, let

G�,c
n,r(x, q) =

∑
π∈Zr�Sn

π(1)=�,ξ1=c

xdes (π)qfmaj (π).

Clearly, G�,c
n,r(x) = G�,c

n,r(x, 1). The first main result of this section is the following
refinement of (4.2).
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Theorem 4.1. For 1 � � � n and 0 � c � r − 1, there holds

G�,c
n,r(x, q)

(xqr; qr)n
= δ�,1δc,0 +

∞∑
i=1

([ri − c]�−1
q [ri − c + 1]n−�

q qri−c)xi. (4.3)

Our proof of Theorem 4.1 adopts the method of ‘balls in boxes’. For more informa-
tion about this method, see [21–23]. Before giving the proof, let us first introduce
some notations and definitions. Given π = (π(1)ξ1 , π(2)ξ2 , . . . , π(n)ξn

) ∈ Zr � Sn,
there are n + 1 positions between the letters of (π) and on the ends. These posi-
tions are labelled 0, 1, . . . , n from left to right with position i between π(i)ξi

and
π(i + 1)ξi+1 . Let Nj(π) be the number of letters of π with colour j. Define a barred
coloured permutation to be a shuffle of a coloured permutation with a sequence of
bars such that between any two bars the letters are increasing and such that only
letters of colour 0 are allowed in the rightmost compartment. For 1 � � � n and
0 � c � r − 1, let M�,c denote the set of all barred coloured permutations beginning
with �c, which implies that there exist no bars at position 0.

Proof of Theorem 4.1. We shall prove the theorem by counting weighted barred
coloured permutations of M�,c in two different ways.

Beginning with a coloured permutation π ∈ Zr � Sn with π(1) = �, ξ1 = c, we
must place a bar in each descent position. We weigh each bar in position i by
xqi and each letter with colour j by zj . Define the weight of a barred coloured
permutation to be the product of weights of bars and letters. These bars placed
in descent positions contribute a factor of xdes (π)qmaj (π). Next, we place arbitrary
many bars in any positions but no bars in position 0, and the sum of the products
of their possible weights is

n∏
i=1

(1 + xqi + (xqi)2 + · · · ) =
1

(xq; q)n
.

Hence π totally contributes

xdes (π)qmaj (π)
∏r−1

j=0 z
Nj(π)
j

(xq; q)n

to the sum of the weights of all barred coloured permutations of M�,c. Summing
over all π ∈ Zr � Sn with π(1) = �, ξ1 = c, we have∑

π∈Zr�Sn
π(1)=�,ξ1=c

xdes (π)qmaj (π)
∏r−1

j=0 z
Nj(π)
j

(xq; q)n
.

If we substitute q by qr and zj by q−j for 0 � j � r − 1, then the above expression
turns out to be ∑

π∈Zr�Sn
π(1)=�,ξ1=c

xdes (π)qfmaj (π)

(xqr; qr)n
=

G�,c
n,r(x, q)

(xqr; qr)n
.

On the other hand, we count weighted barred coloured permutations of M�,c

but instead start with i bars after �c. With i initial bars given, there are i + 1
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compartments with the leftmost compartment beginning with �c. We label the
compartments 0, 1, . . . , i from right to left. Now we weight each bar by x and each
letter with colour j in compartment k by qkzj . It is straightforward to verify that
the weight of a barred coloured permutation is still the product of weights of bars
and letters of π, namely, these two different weighting methods agree for every
barred coloured permutation.

Let Ω(i, q, z0, . . . , zr−1) denote the sum of the products of the weights of the
letters over all barred coloured permutations of M�,c with initial i bars. Note that,
with i bars given, to create a barred coloured permutation in M�,c, we must choose
a colour and a compartment for each element j ∈ [n]\� (for which we choose colour
c and compartment i) such that �c is the smallest element in compartment i. Given
such a choice, there is a unique way to place all the coloured letters in the same
compartment in increasing order. This implies that the necessary choices for each
j �= � are independently subject to certain conditions, and so Ω(i, q, z0, . . . , zr−1)
factors as

Ω(i, q, z0, . . . , zr−1) =
n∏

j=1

Ωj(i, q, z0, . . . , zr−1),

where Ωj(i, q, z0, . . . , zr−1) denotes the weight contributed by all possible choices
of the letter j.

Since the colour of � is fixed to be c and the compartment of � is fixed to be i,
we have Ω�(i, q, z0, . . . , zr−1) = qizc. To compute Ωj(i, q, z0, . . . , zr−1) for j �= �, we
consider separately the cases c = 0 and c �= 0 in view of the requirement that the
rightmost compartment contains only letters coloured 0.

First we consider the case of c = 0. If j < �, we consider its contribution
according to its colour. If j is coloured 0, then it can be placed in any com-
partment but compartment i, hence it contributes (1 + q + · · · + qi−1)z0 = [i]qz0 to
Ωj(i, q, z0, . . . , zr−1). If j is coloured k (1 � k � r − 1), then it can be placed in any
compartment but compartment 0 (keeping in mind that only letters of colour 0 are
allowed in compartment 0) and hence it contributes (q + q2 + · · · + qi)zk = q[i]qzk

to Ωj(i, q, z0, . . . , zr−1). Therefore, we have

Ωj(i, q, z0, . . . , zr−1) = [i]qz0 + q[i]q
r−1∑
k=1

zk.

Similarly, for any j > �

Ωj(i, q, z0, . . . , zr−1) = [i + 1]qz0 + q[i]q
r−1∑
k=1

zk.

Therefore,

Ω(i, q, z0, . . . , zr−1) =qizc

(
[i]qz0 + q[i]q

r−1∑
k=1

zk

)�−1(
[i + 1]qz0 + q[i]q

r−1∑
k=1

zk

)n−�

.

(4.4)
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We proceed to consider the case of c > 0. For j < �, we consider its contribution
according to its colour. If j is coloured 0, then it can be placed in any compart-
ment but compartment i, hence it contributes (1 + q + · · · + qi−1)z0 = [i]qz0 to
Ωj(i, q, z0, . . . , zr−1). If j is coloured k with 1 � k � c − 1, then it can be placed in
any compartment except for compartment 0 and compartment i, and hence it con-
tributes (q + q2 + · · · + qi−1)zk = q[i − 1]qzk to Ωj(i, q, z0, . . . , zr−1). If j is coloured
k with k > c, then it can be placed in any compartments except for compartment
0, and hence it contributes (q + q2 + · · · + qi)zk = q[i]qzk to Ωj(i, q, z0, . . . , zr−1).
Therefore, for j < � we have

Ωj(i, q, z0, . . . , zr−1) = [i]qz0 + q[i − 1]q
c−1∑
k=1

zk + q[i]q
r−1∑
k=c

zk.

Similarly, for any j > � we have

Ωj(i, q, z0, . . . , zr−1) = [i]qz0 + q[i − 1]q
c∑

k=1

zk + q[i]q
r−1∑

k=c+1

zk.

To summarize, we get

Ω(i, q, z0, . . . , zr−1) = qizc

(
[i]qz0 + q[i − 1]q

c−1∑
k=1

zk + q[i]q
r−1∑
k=c

zk

)�−1

×
(

[i]qz0 + q[i − 1]q
c∑

k=1

zk + q[i]q
r−1∑

k=c+1

zk

)n−�

. (4.5)

Substituting q by qr and zk by q−k for 0 � k � r − 1, it is tedious to verify that
both (4.4) and (4.5) become

Ω(i, q, z0, . . . , zr−1)| q→qr

zk→q−k
= qri−c[ri − c]�−1

q [ri − c + 1]n−�
q .

Then multiplying by xi and summing over i, it follows that

G�,c
n,r(x, q)

(xqr; qr)n
= δ�,1δc,0 +

∞∑
i=1

([ri − c]�−1
q [ri − c + 1]n−�

q qri−c)xi,

as desired. This completes the proof. �

We proceed to prove theorem 3.6.

Proof of Theorem 3.6. We first prove the identity (3.4). By letting q be 1, (4.3)
becomes

G�,c
n,r(x)

(1 − x)n
= δ�,1δc,0 +

∞∑
i=1

(ri − c)�−1(ri − c + 1)n−�xi. (4.6)
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Summing over � from 1 to n in (4.6), we get

G−,c
n,r (x)

(1 − x)n
=
∑n

�=1 G�,c
n,r(x)

(1 − x)n
= δc,0 +

∞∑
i=1

n∑
�=1

(ri − c)�−1(ri − c + 1)n−�xi.

By the geometric summation formula, we have

G−,c
n,r (x)

(1 − x)n
= δc,0 +

∞∑
i=1

((ri − c + 1)n − (ri − c)n)xi. (4.7)

On the other hand, by (3.2) we obtain

An(x)
(1 − x)n

= (1 − x)
∞∑

j=0

(j + 1)nxj =
∞∑

j=0

((j + 1)n − jn)xj .

Decomposing the above summation into r parts by the residue classes of j modulo
r, it follows that

An(x)
(1 − x)n

= 1 +
r−1∑
c=0

∞∑
i=1

((ri − c + 1)n − (ri − c)n)xri−c.

Then by (4.7) we get

An(x)
(1 − x)n

=
r−1∑
c=0

G−,c
n,r (xr)

xc (1 − xr)n
.

Multiplying both sides of the above formula by (1 − xr)n leads to

(1 + x + · · · + xr−1)nAn(x) =
G−,r−1

n,r (xr)
xr−1

+ · · · + G−,1
n,r (xr)

x
+ G−,0

n,r (xr),

as desired. This completes the proof of (3.4).
We proceed to the proof of (3.5), in the same way as that of (3.4). For 0 � i �

r − 1, we have A
〈�〉
n (x) = G�,0

n,1(x). Hence by (4.6) we get

A
〈�〉
n (x)

(1 − x)n
= δ�,1 +

∞∑
j=1

j�−1(j + 1)n−�xj .

Decomposing the summation on the right-hand side into r parts by the residue
classes of j modulo r, we get

A
〈�〉
n (x)

(1 − x)n
= δ�,1 +

r−1∑
c=0

∞∑
i=1

(ri − c)�−1(ri − c + 1)n−�xri−c

Then by (4.6) we have

A
〈�〉
n (x)

(1 − x)n
=

r−1∑
c=0

G�,c
n,r(x

r)
xc (1 − xr)n

.
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Multiplying the both sides of the above formula by (1 − xr)n leads to

(1 + x + · · · + xr−1)nA〈�〉
n (x) =

G�,r−1
n,r (xr)
xr−1

+ · · · + G�,1
n,r(x

r)
x

+ G�,0
n,r(x

r)

as desired. This completes the proof. �
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