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ABSTRACT
The general problem of determining cruise fuel burn is addressed by considering the variation
of the product of engine overall efficiency and airframe lift-to-drag ratio, (ηo L/D), with Mach
number and lift coefficient. This quantity is the aerothermodynamic determinant of fuel burn
rate. Using a small amount of real aircraft data and exploiting normalisation, it is found that
near universal relationships exist between the key variables. With this major simplification, an
analytic, near exact solution is derived in which the aircraft-related input data are reduced to
just three parameters, namely the optimum value of (ηo L/D) and the lift coefficient and Mach
number combination at which it occurs. These are quantities that are either available from
open information sources or can be estimated using established analytic methods. By
introducing models of the take-off and climb and the descent and landing phases, the method
is extended to provide accurate trip fuel estimates.

It is shown that there is an ideal flight level (IFL) at which the fuel consumption rate is a
minimum for all speeds in the normal cruise operating range. Furthermore, the IFL at the end
of cruise is approximately the same for all aircraft, whilst the IFL at the beginning of cruise
depends, primarily, on the distance to be flown. There is little dependence on the size of the
aircraft, or its take-off mass.

In the context of the ‘fuel-based’ assessment of operational inefficiency, the method is
further developed to determine the sensitivity of the trip fuel requirement to changes in the
operational parameters governed by air traffic management (ATM). The result is two simple
equations. These are used to estimate the current ATM fuel burden. At the global level, this is
about 20% with more than half being attributable to flights of less than 1,200 km.

Finally, the method is used to estimate the fuel burn penalty associated with reducing
contrail formation by simply avoiding those regions of the atmosphere that are supersaturated
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with respect to ice. If the aircraft is at the IFL when avoiding action is required, flying below
the supersaturated region minimises the additional fuel use. Even when multiple evasive
manoeuvres are needed, the additional trip fuel requirement is expected to be less than 0.5%.

Keywords: Aviation; Flight physics; Cruise fuel consumption; Cruise altitude; Trip fuel;
Operational inefficiency; Air traffic management; Environmental impact; Contrail
avoidance

NOMENCLATURE
A,B coefficients in Equation (16)
Ae sum of the engine core and bypass jet exit cross-sectional areas,

multiplied by the number of engines
Apax reference area for a typical passenger in a single class cabin= 0.65m2

AR wing aspect ratio
BAM basic aircraft mass (operational empty mass – mass of operational

items)
Cd airframe drag coefficient=D/(0.5γp∞ (M∞)

2Sref)
Cdo zero-lift drag coefficient
CL lift coefficient=mg/(0.5γp∞ (M∞)

2Sref)
Ct thrust coefficient=Fn/(0.5γp∞ (M∞)

2 Ae)
D drag force
e aircraft Oswald efficiency factor
ETRW ratio of energy used for a trip to revenue work done
FL flight level
FM fuel mass
Fg gross thrust, summed over all engines
Fn net thrust, summed over all engines
G (CL)ηLDmM2

1
g acceleration due to gravity (9.81 m/s2 at sea level)
h true altitude relative to mean sea level
IA indicated, or ‘pressure’, altitude
IFL ideal flight level
L lift force
LCV lower calorific value of fuel (≈ 43.106 J/kg for kerosene)
L/D aircraft lift-to-drag ratio
LM landing mass
m instantaneous total aircraft mass
_mair total mass flow rate of air entering engine intakes
_mf total instantaneous fuel flow rate to the engines
Mref reference mass for a ‘typical’ passenger plus normal baggage

allowance (= 95 kg)
M Mach number
MEM manufacturer’s empty mass (=BAM)
MFM maximum total fuel mass
MLM maximum permitted landing mass

1828 THE AERONAUTICAL JOURNAL DECEMBER 2018

https://doi.org/10.1017/aer.2018.121 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2018.121


MPM maximum payload (passengers + cargo) mass (=MZFM −OEM)
MTOM maximum permitted take-off mass
MZFM maximum zero fuel mass (maximum permitted aircraft mass

without fuel)
n ratio of (ηoL/D)avg to (ηoL/D)opt
OEM aircraft operational empty mass (mass of aircraft without payload and

without fuel)
OIM mass of the operational items
PM payload mass (passengers + cargo)
p∞ ambient static pressure
po total pressure – see Equation (A.1)
pSL static pressure at sea level (1,013.25 hPa in the ISA)
R distance measured along the great circle connecting the departure and

destination points, with the origin at the departure point
ℜ gas constant for air (287 J/kg/K)
S distance measured along the ground track connecting the departure and

destination points, with the origin at the departure point
Sref aircraft reference wing area (gross wing plan area)
T∞ ambient static temperature
To total temperature – see Equation (A.2)
TFM mass of the trip fuel (fuel burned between ‘brakes off’ at take-off and

‘brakes off’ at the end of the landing run)
TOM total aircraft mass at the start of the take-off run
V∞ true air speed
Vcw component of wind speed normal to the ground track (crosswind)
Vgt speed along the ground track
Vhw component of wind speed parallel to the ground track (headwind)
W headwind speed normalised with true air speed (Vhw/V∞)
X non-dimensional great circle distance (R.g/(LCV.(ηoL/D)opt))
ZFM zero fuel mass (mass of aircraft, including payload ,but without

any fuel)
α trip fuel mass/aircraft take-off mass
β mass of fuel carried, but not to be consumed during flight (= reserve,

contingency and tankered)/aircraft take-off mass
Γ extra distance travelled relative to great circle track per unit great circle

distance travelled (= ΔR/R)
γ ratio of specific heats for air (= 1.4)
γc average climb gradient
γd average descent gradient
ΔR difference between ground track length and great circle length between

two points
ΔX non-dimensional ΔR
εcl climb ‘lost’ fuel index – see Equation (D.3).
εdl descent ‘recovered’ fuel index – see Equation (D.6)
εt overall ‘lost’ fuel index – Equation (D.11)
ηo propulsion system overall efficiency
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Subscripts

aa in the arrival area
avg average
cas calibrated air speed
cd net value for climb and descent
cl take off and climb
cont contingency
cr in the cruise
da in the departure area
des design
dl descent and landing
eas equivalent air speed
fc final cruise
HSC high-speed cruise value
ic initial cruise
issr ice supersaturated region
LRC long-range cruise
LDm when aircraft L/D has its maximum value
MRC maximum range cruise
MO maximum permitted operational value
nc not consumed on flight
opt when (ηoL/D) has its absolute maximum value
res reserve
ref reference
SL at sea level
TE at the entry to the turbine
t value for total journey from departure point to destination
ηLDm when (ηoL/D) has its maximum value for a given Mach number
ηm when η0 has its maximum value
∞ flight, or freestream, value

1.0 INTRODUCTION
In the context of civil aviation’s interaction with the environment, it is well known that the
generation of carbon dioxide (CO2) through the burning of kerosene is very important. At the
global level, most fuel is burned in the cruise phase and, at any given point, all aircraft have a
single combination of speed and altitude that delivers the absolute minimum fuel burn rate.
However, at present, deviations from this optimum condition, sub-optimum climb and des-
cent profiles and tracks longer than the great circle distance between departure and destination
are routinely imposed by ATM for reasons of safety and to meet the requirements of noise
abatement. All such changes result in extra fuel consumption and, hence, extra CO2. Whilst
some attempts, e.g. the Intergovernmental Panel on Climate Change (IPCC) – Ref. 1, have
been made to estimate the overall magnitude of this excess, neither the total nor the relative
contributions of the individual elements appear to have been quantified by accurate, rigorous
analysis. However, the approximate overall scale of the problem has been determined, see
Ref. 2, where it is noted that the International Civil Aviation Organisation (ICAO) figures for
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annual global aviation fuel consumption indicate that all operational inefficiencies combined
result in a fuel penalty that is close to 100%, i.e. twice as much fuel is burned than is actually
needed to perform the revenue work. Whilst there are many factors contributing to this very
large figure, ATM clearly plays a role.

Unfortunately, carbon dioxide formation is just one of a number of ways in which aviation
interacts with the environment – see Ref. 3. Of the additional mechanisms, there is evidence
suggesting that direct and indirect increased radiative forcing by ‘persistent’ contrails is one
of the more prominent. Persistent contrails are formed when an aircraft flies through a region
of the atmosphere that is temporarily supersaturated with respect to ice. Whilst the contrails
themselves contribute directly to the Earth’s overall radiation balance, a potentially more
damaging situation arises if the contrails subsequently trigger increased cirrus cloud cover.
The ice supersaturated regions (ISSRs) are known to cover a very large horizontal area (width
and length being of order 100 km), see Ref. 4, whilst being relatively thin in the vertical
direction (depth being of order 1,000m), see Ref. 5. Consequently, contrail formation can be
avoided if the aircraft is flown above, below or around these regions. However, such pro-
cedures may lead to the generation of yet more carbon dioxide.

It seems likely that any future operating strategies designed to minimise the environmental
impact of an individual flight will require, at the very least, a balancing of the effects of
increased atmospheric radiative forcing through additional CO2 emissions and through the
formation of contrails and cirrus cloud. Therefore, in order to establish the optimum flight
trajectory, it is necessary to know two things. First, where the aircraft should be to achieve
minimum fuel use and, second, the size of the fuel penalty incurred when a deviation, lateral
or vertical, is made to either avoid a region of supersaturated air altogether, or to avoid
forming those contrails that would have a large climate impact – see Refs 6 and 7. Given the
wide range of routes being served, the large number of different aircraft types and the
complexity of aircraft and engine design, it would appear that these simple questions do
not have simple answers. Nevertheless, some attempts have been made, see for example Refs
7–11. These are based either on the actual performance of a single aircraft, generalised data
base methods,1 an estimate using a simplified ‘first principles’ approach or the output from a
proprietary ‘black box’ method. However, in the first case, real aircraft data are difficult to
obtain and it is unclear whether the results apply to other types. In the other cases, the
accuracy is difficult to judge and the results may not be independently verifiable. None can be
claimed to be entirely satisfactory and any general conclusions based on the use of such
methods should be treated with caution.

In this paper, a novel, independently verifiable method that answers both the key questions
and which permits a wider investigation of ‘fuel based’ inefficiency in the civil aviation
network is described. It is built on a number of physical characteristics that are common to all
large civil transport aircraft and their engines and fundamental principles of dynamic simi-
larity. Special emphasis is placed on obtaining the smallest set of relations, in the simplest
possible form and requiring the minimum amount of input data, whilst delivering high
accuracy. Since no expert aeronautical engineering knowledge is required, the method can be
easily used by members of the environmental science and related communities to support
their work.

1 It appears that the most commonly used data base method is the EUROCONTROL Base of Aircraft Data
(BADA), which has restricted access and whose accuracy cannot be easily assessed.
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2.0 BACKGROUND
In standard aircraft design and performance texts, e.g. Refs 12–14, the material is usually
presented in terms of fundamental quantities such as Mach number, dynamic pressure, engine
overall efficiency, lift coefficient and drag coefficient. However, some of the data used in this
analysis come from sources intended for use by flight crew, e.g. flight crew operating manuals
(FCOMs), and these contain terminology and vocabulary that may be unfamiliar. Aircrew
work with direct measurements of total pressure, total temperature and static pressure and
they merge these with weather information and air traffic directives to manage the ground
track, time to destination, fuel usage and separation from other traffic. They describe the
performance of the aircraft in terms of Mach number, indicated air speed (IAS), calibrated air
speed (CAS), true air speed (TAS) and conceptual parameters such as indicated altitude (IA)
and flight level (FL). Therefore, data from aircraft manuals usually require translation into the
more familiar, fundamental parameters. Consequently, the definitions of the various terms and
the relationships linking them are discussed in detail in Appendix A.

3.0 FUNDAMENTAL CONSIDERATIONS
The overall propulsion efficiency is defined as

ηo =
Fn:V1
_mf :LCV

; …(1)

where Fn is the total delivered, or net, thrust from the engines, V∞ is the true airspeed, _mf

is the total instantaneous fuel flow rate and LCV is the lower calorific value of the fuel
(43.106 J/kg for kerosene). Hence, in straight and level flight at constant speed, the instan-
taneous fuel flow rate is

_mf =� dm
dt

=
D:V1
ηo:LCV

=
mg

ηoL =Dð Þ
V1
LCV

; …(2)

where L is the lift, D is the drag, m is the instantaneous total mass of the aircraft and g is the
acceleration due to gravity. When the aircraft is following a prescribed ground track, whilst
being subjected to an opposing wind whose parallel to track (headwind) and normal to track
components (crosswind) are Vhw and Vcw respectively, the resultant speed along the ground
track, Vgt, is

Vgt =
dS
dt

=V1 1� Vcw

V1

� �2
 !1

2

�Vhw; …(3)

where S is the distance travelled. However, provided that Vcw is less than 15% of the aircraft’s
true airspeed (roughly 70 kn in practice), the crosswind component may be ignored and, with
no restriction placed upon the magnitude of the headwind, the fuel consumption per unit
distance travelled along the ground track is

dmf

dS
=� dm

dS
� mg

ηoL =Dð ÞLCV 1�Wð Þ�1; …(4)

where W is the ratio of headwind speed to the aircraft’s true airspeed. Clearly, for a given
aircraft, the required fuel consumption per unit distance travelled is smallest when (ηo L/D) is
as large as possible.
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In straight and level flight at a constant speed, the total thrust, Fn, is equal to the aircraft
drag. Therefore, thrust and, consequently, overall efficiency depend on those parameters that
govern the drag. Hence, for a given aircraft and engine combination, the product of the
engines’ overall efficiency and the airframe’s lift-to-drag ratio (ηo L/D), is, primarily, a
function of the flight Mach number, M∞, and the lift coefficient, CL.

2 This is illustrated in
Fig. 1, which shows these variations for the Douglas DC-10-10. The curves are cross plots of
data taken from the aircraft’s flight crew operating manual (FCOM), reproduced by Shevell
(Ref. 12, Fig. 15.17). The data show that curves of (ηo L/D) versus lift coefficient at fixed
Mach number and versus Mach number at fixed lift coefficient both exhibit maxima. Hence,
each aircraft has an absolute maximum, or optimum, value of (ηo L/D) occurring at a par-
ticular combination of flight Mach number, (M∞)opt, and lift coefficient, (CL)opt. In the case of
the DC-10-10, (ηo L/D)opt is 4.86 when M∞ is 0.80 and CL is 0.48. Flight at this condition
requires the absolute minimum amount of fuel to be consumed per unit distance travelled over
the ground. Conversely, for a given quantity of fuel, the aircraft covers the largest possible
distance. Hence, this particular Mach number and lift coefficient pair are termed the ‘max-
imum range cruise’, or MRC, values.
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Figure 1. The variation of (ηoL/D) with lift coefficient at constant Mach number for the Douglas DC-10-10
aircraft, after Shevell (Ref. 12).

2 The aircraft drag is weakly dependent on the flight Reynolds’ number. However, for the range of speeds, altitudes
and temperatures encountered in cruise, the impact of Reynolds’ number on (ηo L/D) is generally less than 2%.
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Differentiating Equation (4) gives the sensitivity of fuel consumption per unit distance
flown to changes in headwind, i.e.

d dmf = dSð Þ
dmf = dS

� W

1�Wð Þ
dW
W

: …(5)

The sensitivity decreases as the true airspeed increases and, since weather conditions may
change en route, it is prudent to plan the fuel requirement on the basis of a cruising speed that
is somewhat higher than the MRC value, i.e. some fuel is sacrificed for higher speed. This is
the basis for the use of ‘long-range cruise’, or LRC, conditions frequently encountered in
operations literature. The LRC Mach number is defined as the largest Mach number at which
(ηo L/D) is 99% of (ηoL/D)opt. Referring again to Fig. 1, this definition delivers a unique Mach
number and lift coefficient pair, which for the DC-10-10 are, 0.83 and 0.45, respectively.
Hence, a 1% fuel sacrifice delivers about a 3.5% increase in cruise Mach number. Alter-
natively, if viewed as a potential time saving, this would give more than 20 min on a 10 h
flight. Shorter flight times reduce time-based maintenance costs and may help with flight
scheduling.

The maximum cruise Mach number is reached when either the engines are operating at the
maximum cruise rating, or the achieved Mach number reaches the regulated maximum
permitted value. The relevant regulated speed is the maximum operating Mach number,MMO.
According to Schaufele (Ref. 13), MMO is usually equal to, or slightly above (by 0.01 or
0.02), the aircraft’s design cruise Mach number, the latter being determined by either max-
imum manoeuvre loads, maximum gust loads or buffet onset. In the case of the DC-10-10,
MMO is 0.88, which gives a typical margin of 0.08 over MMRC and 0.05 over MLRC. In routine
operations, the fastest condition is the ‘catch up’, or high-speed cruise, Mach number, MHSC,

which is about 0.02 above MLRC.
Referring once again to Fig. 1, it can also be seen that, as the flight Mach number increases,

the lift coefficient for maximum (ηoL/D), (CL)ηLDm, decreases. Moreover, to a good
approximation, the expression

CLð ÞηLDmM2
1 � 0:305 …(6)

captures the relevant CL values for Mach numbers in the range 0.80–0.86, i.e. the normal
operating range for the aircraft. Since the variation is driven, primarily, by changes in wave
drag and engine overall efficiency, this simple relation cannot be exactly true. Nevertheless, it
is very useful simplification when analysing cruising performance.

4.0 GENERAL RELATIONSHIPS
For the past 50 years, market demands and a strictly controlled operating environment have
constrained aircraft configuration development. Consequently, design changes have been, and
continue to be, largely incremental. The implication is that the overall performance of aircraft,
both old and new, can be captured by the same key parameters and that any deviations from
the characteristics governed by these parameters ought to be small. This hypothesis can be
tested by using the DC-10-10 as the baseline.
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In compressible flow, but in the absence of wave drag, an aircraft’s cruise drag polar may
be approximated by

Cd=
D

γ = 2ð Þp1M21Sref
� Cdo +

1
π:AR:e

� �
C2
L; …(7)

where Sref is the aircraft’s gross wing area, Cdo is the zero-lift drag coefficient, AR is the wing
aspect ratio and e is the Oswald efficiency factor. All these quantities are dependent on the
aircraft geometry. In addition, the Oswald efficiency factor has a very weak dependency upon
Mach number – see for example Ref. 15.3 Noting that L/D (= CL/CD) has a maximum when
the lift coefficient, (CL)LDm, is equal to (π.AR.e.Cdo)0.5, it can be shown that

L =Dð Þ
L =Dð Þmax

=
2 CL = CLð ÞLDm
� �

1 + CL = CLð ÞLDm
� �2 …(8)

and

Cd

Cdð ÞLDm
=

Ct

Ctð ÞLDm
=

1 + CL = CLð ÞLDm
� �2

2
: …(9)

Therefore, normalising the lift coefficient with the value for maximum lift-to-drag ratio
removes all the aircraft specific, geometric parameters. Furthermore, when CL is close to
(CL)LDm, it can be shown that

L =Dð Þ
L =Dð Þmax

� 1�0:5
CL

CLð ÞLDm
�1

� �2

+ 0:5
CL

CLð ÞLDm
�1

� �3

…(10)

and

Cd

Cdð ÞLDm
� CL

CLð ÞLDm
: …(11)

As demonstrated in Appendix B, for a gas turbine powered aircraft, the overall propulsion
efficiency depends only on the flight Mach number and the total delivered thrust coefficient,

Ct =
Fn

γ = 2ð Þp1M21Ae
; …(12)

where Ae is the sum of the core and bypass jet exit cross-sectional areas multiplied by the
number of engines. In general, at a given Mach number, an engine will have a maximum
overall efficiency, (ηo)max, at a particular value of the thrust coefficient, (Ct)ηm. An example of
the variation of ηo with Ct for an existing engine is given in Fig. B1 of Appendix B. In
general, the maximum value of ηo is observed to be, primarily, a function of the Mach
number. The relationship has a near ‘power law’ form, with the exponent being a function of
the bypass ratio and, typically, having a value in the range 0.6–0.7, see Ref. 16. For the
example given in Appendix B, the exponent is about 0.65. This being the case, normalising ηo
and Ct with their maximum values will remove much of the Mach number dependence.
Figure 2 shows the effect for the engine used in Appendix B.

3 Strictly speaking, Cdo is made up of two terms – skin friction and form drag – and both exhibit a weak
dependence on Mach number. However, as Mach number increases, the reduction in skin friction is largely offset by
an increase in the form drag and it is usually assumed that these opposing effects cancel.
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In this variation, there is a clear speed effect that is significant for Mach numbers above 0.6,
with the engine efficiency increasing as Mach number increases. This may be due to com-
pressibility, or to variations in the inlet and nozzle operating efficiencies. However, the
improvement is always less than 5% for normalised thrust coefficients between 0.6 and 1.2.
Therefore, to a good approximation, normalising the efficiency and the corresponding thrust
coefficient with (ηo)max and (Ct)ηm, respectively, produces a near single curve for Mach
numbers below 0.6, i.e.

ηo
ηoð Þmax

� function
Ct

Ctð Þηm

 !

� 1�0:50
Ct

Ctð Þηm
�1

 !2

+ 0:10 Ct
Ctð Þηm �1

� �3
:

…(13)

where the approximating function is a truncated Taylor expansion about the point (1,1) and
the coefficients are those for the lowest Mach number (0.5).

From Equation (9), it can be seen that since thrust and drag are equal in straight and level
flight at constant speed, when CL/(CL)LDm is in the range 0.6–1.2,

Ct

Ctð Þηm
� Ctð ÞLDm

Ctð Þηm

 !
CL

CLð ÞLDm

� �
: …(14)
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Figure 2. The variation of normalised engine overall efficiency with normalised thrust coefficient and Mach
number for an existing turbofan engine, derived from Fig. 8.2 of Ref. 28.
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Engines are usually sized so that, in the cruise, L/D and ηo are both close to their respective
maximum values, i.e. (Ct)LDm and (Ct)ηm are approximately equal. Hence, combining
Equations (10), (13) and (14) gives

ηoL =Dð Þ
ηoL =Dð Þmax

� function
CL

CLð ÞLDm

� �

� 1�1:00
CL

CLð ÞLDm
�1

� �2

+ 0:60 CL
CLð ÞLDm �1

� �3
:

…(15)

When wave drag is taken into account, as the Mach number increases, the drag rises above
the level given by Equation (7), leading to a corresponding reduction in the lift-to-drag
ratio. This effect opposes the growth of ηo and, hence, reduces the rate of rise of (ηoL/D)
with Mach number. Eventually, wave drag becomes the dominant effect. Consequently, as
illustrated in Fig. 1, rather than continuing to increase monotonically, (ηoL/D)max passes
through a maximum as Mach number increases, i.e. (ηoL/D) has an optimum value. Wave
drag is a complex function of both Mach number and lift coefficient. However, in normal
aircraft operations, whilst the effects of wave drag are important, its magnitude is quite
small; typically less than 10 drag counts (1 drag count=ΔCd of 0.001), which is usually
less than 5% of the total.4 Therefore, given that wave drag is relatively small, the relation
given in Equation (15) should still be valid, at least approximately, if the values of the
various normalising parameters are taken at the condition for maximum (ηoL/D), rather
than those for maximum (L/D).

Taking the data from Fig. 1, for each combination of (ηoL/D), M∞ and CL, (ηoL/D) is
normalised with the maximum value for that particular Mach number, each CL is normalised
with the value giving the maximum value of (ηoL/D) for that Mach number and each Mach
number is normalised with the value that gives the optimum (= absolute maximum) (ηoL/D).
The results are given in Fig. 3 where it can be seen that the curves for constant (M∞/Mopt)
form a nested set, with those for progressively higher Mach numbers exhibiting greater
dependence on the normalised lift coefficient. This reflects the increasing importance of wave
drag, offset slightly by increasing engine overall efficiency, as the Mach number increases.
Furthermore, these curves are not symmetrical about the line CL/(CL)ηLDm equal to unity,
reflecting the fact that increasing the lift coefficient, at fixed Mach number, always increases
the wave drag. The figure confirms the expectation that the principal variable controlling the
normalised (ηoL/D) is the normalised lift coefficient.

Equations (8) and (15) are also included in the figure. As expected, Equation (15) is good
approximation to the low Mach number (incompressible) limiting curve. Comparing Equa-
tions (10) and (13) shows that the contributions of induced drag and engine overall efficiency
to normalised (ηoL/D) in response to changes in the normalised lift coefficient are large and
approximately equal, whilst the effects of wave drag are somewhat smaller.

To aid interpolation, the curves may be represented by a truncated Taylor expansion about
the point (1,1),

ηoL =Dð Þ
ηoL =Dð Þmax

� 1 +
A

2
CL

CLð ÞηLDm
�1

 !2

+
B

6
CL

CLð ÞηLDm
�1

 !3

…(16)

Therefore, the coefficients A and B are estimates of the normalised second and third deri-
vatives of (ηoL/D) with respect to CL at (1,1). Recalling that the engine maximum efficiency

4 At the ‘catch-up’ Mach number, wave drag is between 8% and 10% of the total drag.
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exhibits a near power law variation with Mach number, A and B can be approximated by
simple functions of the normalised Mach number, i.e. for (M∞/Mopt)< 0.975,

A=B � �2:6; …(17)

otherwise

A � � 2:6 + 120
M1
Mopt

�0:975

� �2
 !

…(18)

and

B � � 2:6 + 270
M1
Mopt

�0:975

� �2
 !

: …(19)

Equations (16)–(19) fit the DC-10-10 data to better than 1% for CL/(CL)ηLDm in the range
0.6–1.2 and for all values of M∞/Mopt up to 1.1.

Figures 4–7 show the variation of normalised (ηoL/D) with normalised lift coefficient at
fixed normalised Mach number for four aircraft that vary, substantially, in terms of size,
design range and age. The data are derived from tables in the flight crew operations manual
and, whilst not being generally available, a number of these documents, or relevant extracts
from them, can be easily found on the internet, see also, for example, Refs 17–19. These data
do exhibit some scatter, as illustrated in Fig. 4, but this is limited to a maximum of about 1%.
In Figs. 5, 6 and 7, the raw data have been smoothed by using a function of the form given in
Equation (16), with the coefficients being determined by the least squares error criterion.
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Figure 3. The variation of normalised (ηoL/D) with normalised CL and M∞ for the DC-10-10.
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The estimates generated by applying Equations (16) to (19) are also shown. In all cases, these
estimates, based solely on the DC-10-10 characteristics, lie within 2% of the FCOM data and
it is quite impossible to identify any particular aircraft from such normalised plots. Therefore,
the general conclusion is that, to a very good approximation, these equations are valid for all
aircraft.5
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Figure 4. The variation of normalised (ηoL/D) with normalised CL for Aircraft 1 for a range of Mach numbers
below Mopt. Open symbols are data and the solid line is Equation (16).
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Figure 5. The variation of normalised (ηoL/D)with normalised CL for M∞/MMRC for Aircraft 2. Solid lines are
based on smoothed data and dashed lines are estimates from Equation (16).

5 Some FCOM data may be confidential and this could prevent the open reporting of an analysis for a particular
aircraft type. However, the conclusion drawn here does not require any aircraft to be identified. Hence, it can be easily
verified independently by using data for any available aircraft and performing the comparison with Equation (16).
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Having demonstrated that the normalised distributions of (ηoL/D) with lift coefficient and
Mach number are essentially ‘universal’, the next step is to examine the variation of (CL)ηLDm
and (ηoL/D)max, with Mach number. These results are presented in Figs. 8 and 9.

Figure 8 shows the variation of (CL)ηLDm/(CL)opt with M∞/Mopt for the DC-10-10, Aircraft
1 and Aircraft 3. Once again, all the data are well represented by a single curve that can be
approximated by

CLð ÞηLDm
CLð Þopt

� 1:05; …(20)
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Figure 6. The variation of normalised (ηoL/D) with normalised CL for M∞/MMRC for Aircraft 3. Solid lines are
based on smoothed data and dashed lines are estimates from Equation (16).
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Figure 7. The variation of normalised (ηoL/D) with normalised CL for M∞/MMRC for Aircraft 4. Solid lines are
based on smoothed data and dashed lines are estimates from Equation (16).
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for M∞/Mopt <0.8, whilst for 0.8<M∞/Mopt< 1.1,

CLð ÞηLDm
CLð Þopt

� 1:05 + 5:0
M1
Mopt

�0:80

� �3

�55
M1
Mopt

�0:80

� �4

: …(21)

The shape of the curve is determined by the wave drag. At the lower Mach numbers, where
wave drag is very small, the lift coefficient for maximum lift-to-drag ratio is constant. As the
flight Mach number increases, (CL)ηLDm decreases monotonically. Initially, the decline is
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Figure 8. The variation of normalised (CL)ηLDm with normalised Mach number for a number of different
aircraft.
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Figure 9. The variation of normalised (ηoL/D)max with normalised Mach number for a number of different
aircraft.
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gentle, with a 5% reduction from the incompressible value being felt at Mopt. At higher Mach
numbers, the aircraft enters the ‘drag rise’ region and, consequently, the drop off
becomes rapid. Also shown is the parameter, G, where

G= CLð ÞηLDmM2
1 � 1:01 CLð ÞoptM2

opt: …(22)

This approximate relation provides an estimate of the variation of (CL)ηLDm with Mach
number for Mach numbers in the range Mopt to 1.06Mopt, i.e. the practical operating range for
aircraft in the cruise. The constant of proportionality has been chosen to give the best fit
(±1%) over this limited range.

Finally, the variation of normalised (ηoL/D)max with normalised Mach number is presented
in Fig. 9 and, once again, all data fall upon a near ‘universal’ curve. For 0.80<M∞/Mopt<
1.0, the curve may be represented by the approximate relation

ηoL =Dð Þmax

ηoL =Dð Þopt
� 1�6:00

M1
Mopt

�1

� �2

�15:0
M1
Mopt

�1

� �3

…(23)

and, for 1.0≤M∞/Mopt <1.08,

ηoL =Dð Þmax

ηoL =Dð Þopt
� 1�233

M1
Mopt

�1

� �3

: …(24)

At the lower Mach numbers, (ηoL/D)max increases with increasing Mach number due to the
effect of Mach number on the overall propulsion efficiency. However, this benefit is pro-
gressively reduced by wave drag development at the higher Mach numbers. Eventually, wave
drag becomes the dominant effect and (ηoL/D)max peaks before dropping rapidly as the
aircraft enters the ‘drag rise’ regime.

Given the near universal nature of the normalised curves, good estimates for the perfor-
mance of any particular aircraft can be determined once the values of (ηoL/D), CL and M∞ are
known at the optimum (maximum range cruise) condition. Importantly, these parameters may
be estimated using information that is in the public domain, see for example Refs 20 and 21,
and standard theoretical, or empirical, methods. Hence, the method can be used without the
need for aircraft type specific, potentially confidential, FCOM data.

By way of example, approximate values of these quantities for a number of aircraft are
listed in Table 1.

5.0 OPTIMUM CRUISE ALTITUDE
Atmospheric pressure, p∞, and geometric altitude above sea level, h, are linked by the
hydrostatic equation,

p1
pSL

= 1�
ðh
0

ρ1gdh; …(25)

where ρ∞ is the air density, and a solution requires knowledge of the complete variation of
density, or temperature, with altitude. On any given day, the dependency of air temperature
upon height is not known. However, in aircraft operations, the variation of pressure with
height in the ‘International Standard Atmosphere’ (ISA – see Ref. 22) is universally adopted
for the determination of ‘altitude’ from pressure – see Appendix A. The exact relations are
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cumbersome. However, since aircraft usually cruise at indicated altitudes (IA) between
30,000 and 40,000 ft, it is convenient to specify ‘altitude’ in terms of the non-dimension flight
level, FL, and this can be linked to the local static pressure by a simple power-law without
incurring a significant loss of accuracy. Hence, for this limited range of altitudes, the flight
level is given by

FL � 144
p1
pSL

� ��0:61

: …(26)

This relation may be differentiated to give the effect of small fractional changes, i.e.

d FLð Þ
FL

� d IAð Þ
IA

� �0:61
dp1
p1

: …(27)

In straight and level flight, lift is equal to aircraft weight and, from the definition of lift
coefficient,

p1
pSL

=
2

γCLM21

� �
mg

pSLSref

� �
: …(28)

As previously noted, for aircraft operating in the normal Mach number range, (CL)ηLDm(M∞)
2

(=G) is almost constant. Consequently, Equations (22), (26) and (28) reveal that each aircraft
type has a single ‘ideal’ cruising flight level, IFL, at which (ηoL/D) is approximately a
maximum for all Mach numbers in the normal operating range. This ideal altitude depends on
the aircraft’s instantaneous weight and so it gradually increases as the flight progresses. An
aircraft flying at constant Mach number may be kept at the ideal altitude continuously by
climbing at exactly the rate required to keep the lift coefficient constant, i.e. following the so-
called ‘cruise-climb’ trajectory.

All aircraft have a number of ‘certified’ parameters that are approved by the Regulating
Authority and which are set out in the aircraft’s Type Certificate Data Sheet, e.g. Ref. 23. The
list includes a maximum permitted take-off mass, MTOM, a maximum permitted landing
mass, MLM, a maximum permitted mass before any fuel is loaded, known as the maximum
permitted ‘zero fuel’ mass, MZFM, and a maximum permitted operating altitude, FLmax.

Table 1
Approximate values for the principal characteristics of a number of

aircraft types

Aircraft MMRC MLRC MMO G (ηoL/D)opt
DC-10-10 0.80 0.83 0.88 0.31 4.85
A310-300 0.78 0.80 0.84 0.34 5.20
A320-200 0.76 0.78 0.82 0.35 5.30
A330-200 0.79 0.82 0.86 0.35 7.00
A330-300 0.79 0.82 0.86 0.34 6.90
A340-300 0.78 0.82 0.86 0.36 6.50
B757-300 0.78 0.81 0.86 0.34 5.20
B767-300 0.77 0.80 0.86 0.33 6.00
B777-300 0.81 0.84 0.89 0.36 7.10
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In addition, the internal volume of the fuel tanks determines the maximum fuel mass, MFM.
These parameters are fundamental characteristics that define the aircraft’s legal operating
boundaries.

In Ref. 24, it is shown that all current, turbo-fan powered, civil transport aircraft with more
than 100 seats have approximately the same wing loading at their certified maximum landing
masses, i.e.

gMLM
pSLSref

� constant= 3:50
gMref

pSLApax

� �
; …(29)

where Mref is 95 kg and Apax is 0.65m2. For this class of aircraft, the wing loading is
determined, primarily, by the need to minimise the fuel requirement, although it does have
other implications, e.g. take-off and landing distance, – see, for example, Ref. 14. This being
the case, Equation (29) may not be valid for types where the wing loading is determined by
other criteria, e.g. business jets. Nevertheless, at any point in the cruise, the ideal flight level
(IFL) for a large, turbo-fan aircraft is given by

IFL � 725 G
MLM
m

� �0:61

: …(30)

Clearly, if an aircraft is to land without first dumping fuel, its mass at the end of the cruise
phase, mfc, must not exceed MLM by more than the mass of the fuel to be used during
descent, approach and landing, MFdl. The determination of MFdl requires a detailed knowl-
edge of the descent approach and landing profiles and the appropriate relations are developed
in Appendix D. However, MFdl is typically about 1% of the landing mass (see for example
Ref. 20). Moreover, as shown in Table 1, G shows little variation between aircraft types, with
0.335 being a good average value. Hence, the minimum value for the ideal altitude at the final
cruise location is approximately the same for all aircraft, being

IFLfcð Þmin � 372 1� MFdl
mfc

� �� �0:61

� 370: …(31)

If an aircraft is to land with a mass lower than the certified maximum value, the ideal altitude
will be greater than FL 370, with the upper limit being fixed by the certified FLmax. This
maximum altitude is determined by a combination of design decisions and, whilst it should
exceed the altitude for minimum fuel burn, there are at least three reasons why the excess
should be small. First, the engine size (weight) increases with increasing FLmax. Second, the
weight of the fuselage structure increases as Flmax increases and, third, there is a passenger
physiological limit imposed by the impact of hypoxia in the event of a sudden loss of cabin
pressure. However, since these issues are common to all large passenger transport aircraft, the
maximum value is almost the same for all current types,6 being about FL 410 ± 20.
Therefore, if an aircraft is to fly at the ideal altitude for the whole trip, without dumping fuel
before landing,

370≤ IFLfc ≤ 410 …(32)

or

185hPa≤ p1ð Þfc ≤ 215hPa …(33)

6 Business jets, which will not be considered here, but which have different market objectives and, hence, different
design criteria, typically fly above FL 410 and FLmax can be as high as FL 510.
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and, hence, the mass at landing must lie in the range

0:845≤
LM
MLM

≤ 1:0: …(34)

When the aircraft lands, it will have payload and unused fuel on board. The combination of
the payload and residual fuel masses, including reserve, contingency, tankered and taxi-in
fuel, is known as the ‘disposable’ mass, DM. This can be any permitted combination of
payload and fuel and is given by

DM= PM +FMnc =LM�OEM=LM� ZFM�PMð Þ: …(35)

where PM is the payload mass, FMnc is the mass of the fuel that is not consumed during the
flight and OEM is the operational empty mass. The OEM is the mass of the aircraft before any
payload and fuel are loaded. Strictly speaking, OEM should be further subdivided into the
manufacturers empty mass, MEM, (sometimes known as the basic aircraft mass, BAM) and
the operational items mass, OIM, which, in general, depends upon the payload and the route.
However, in this analysis, no accuracy is lost by treating OEM as a fixed quantity. In addition,
the non-consumed fuel, some of which may be used on subsequent flights, must be greater
than, or equal to, the minimum reserve fuel required by the regulatory authority, FMres, plus
any contingency fuel, FMcont, specified by the operator or the crew. The fuel needed for the
flight is known as the trip fuel and the trip fuel mass, TFM, is obtained by integrating
Equation (4) all the way from departure to destination. This process is set out in Appendix D
and an approximate, though accurate, solution is given by

TFM
TOM

= αt � 1�EXP � Xt + εtð Þð Þ= 1�EXP �Xt

� �
; …(36)

where Xt is the non-dimensional trip distance, given by

Xt =
gRt

ηoL =Dð ÞoptLCV
; …(37)

with Rt being the great circle distance between the departure and destination points, εt is the
total ‘lost fuel’ index and LCV is the lower calorific value of the fuel. The total lost fuel index
captures the additional fuel used in the climb and descent phases, fuel wasted by not cruising
at the optimum speed and height, fuel used to fly extra distance due to route deviations and
fuel lost, or saved, because of the wind. Using the general definition for ‘lost fuel’ given in
Appendix D,

εt � εcd +
ΔX

n 1�Wavg
� � + 1�n 1�Wavg

� �� �
n 1�Wavg
� �

 !
Xt; …(38)

where εcd is the sum of the indices for the climb, εcl, and the descent, εdl, ΔX is the normalised
total deviation from the great circle track, Wavg is the normalised headwind averaged over the
whole route and n is

n=
ηoL =Dð Þavg
ηoL =Dð Þopt

…(39)

see Appendix D (Equation (D.2)). It should be noted that εt may be interpreted as an
‘additional non-dimensional, distance flown at optimum cruise conditions’ and that it is not
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necessarily small compared to the actual non-dimensional distance covered, Xt, particularly
when there is a strong headwind.

At this point, it is useful to introduce the concept of ‘design’ range, Rdes, being defined here
as the absolute maximum distance that can be flown in still air conditions when carrying the
largest permissible payload mass and the minimum permissible reserve fuel. This means that
payload is added until the aircraft mass reaches the MZFM and then fuel is added until
MTOM is reached and, for this reason, Rdes is sometimes called the ‘harmonic’ range. The net
lost fuel index for climb and descent must also have its minimum value, (εcd)min, implying
that optimum climb, cruise and descent trajectories are flown, with no wind and no air traffic
imposed deviations from the great circle route. In which case,

MZFM
MTOM

=EXP � Xdes + εcdð Þmin

� �� ��βmin; …(40)

where Xdes is the non-dimensional design range and

FMres

TOM
=

FMncð Þmin

TOM
= βmin: …(41)

The design range, (ηoL/D)opt, (εcd)min and βmin are all fundamental characteristics of the
aircraft and, as such, can be established to any desired level of accuracy.

The take-off mass, TOM, is the sum of the landing and the trip fuel masses, i.e.

TOM=LM +TFM=
LM
1�αtð Þ =

LM

EXP �Xt

� � ≤MTOM: …(42)

Hence, for a given landing mass, as the trip length increases more trip fuel is needed and,
eventually, either the take-off mass reaches the maximum permitted value, MTOM, or the
fuel mass reaches its maximum value, MFM, i.e. the tanks are full.

Combining Equations (40) and (42) reveals that, for a given route, i.e. known values for Xt

and (εcd)min, the aircraft take-off mass fraction, TOM/MTOM, landing mass fraction,
LM/MLM, and the non-dimensional design range are linked by the relation

Xdes =�LN EXP εcdð Þmin

� � TOM =MTOMð ÞEXP �Xt

� �
LM =MLMð Þ MLM =MZFMð Þ + βmin

� �� �
: …(43)

As will be discussed later, according to Randle et al.(20), (εcd)min is about 0.0067, whilst, from
Ref. 24, βmin is about 0.045 and, for the aircraft currently in service,

MLM
MZFM

� 1:075: …(44)

This being the case, with a little rearrangement and approximation, for a given route, the
aircraft that can take off and land at the maximum permitted masses, has a design range given
by

Xdes � 0:018 + 0:952Xt; …(45)

Moreover, if, as is usually the case,

εt ≥ 0:051Xt�0:0194; …(46)

Xdes will be greater than Xt. Consequently, this aircraft can carry the maximum possible
disposable load, can carry the maximum permitted payload, has the lowest MTOM for a
given payload, i.e. it is the smallest aircraft needed to serve the route, and has an energy to
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revenue work ratio, ETRW, that is at, or close to, the optimum value. Therefore, from an
operational, a commercial and an environmental perspective, this is the ‘perfect’ aircraft for
the route.

The mass of the aircraft at the beginning of the cruise, mic, is equal to the take-off mass,
TOM, less the mass of the fuel, MFcl, used to accelerate and climb to the initial cruise height
and speed. Hence, the ideal initial cruise altitude is

IFLic � 372:3
MLM
LM

� �0:61

EXP �0:61 Xt

� �� �� �
1� MFcl

TOM

� ��0:61

: …(47)

Here too, the determination of climb fuel requires a detailed knowledge of the take-off and
climb profiles and, again, the appropriate relations are developed in Appendix D. However,
since MFcl is typically about 2.5% of the take-off mass, see Ref. 20, it follows from Equation
(34) that the initial IFL must lie in the range

376≤
IFLic

EXP �0:61 Xt

� �� � ≤ 419: …(48)

On a given route, the ‘perfect’ aircraft carrying its maximum disposable mass will have the
lowest IFL at all points in the flight. When this aircraft is landing with a mass below the
maximum permitted, the IFL will be somewhere between the minimum and the maximum
value. Clearly, it is also possible to carry the same payload in aircraft with design ranges both
greater than and smaller than the ‘perfect’ value. However, in all cases, the final and initial
ideal cruise altitudes will fall within the range given by Équations (32) and (48). Taking all
possible scenarios into account,

IFLic � 397EXP �0:61 Xt

� �� �
; p1ð Þic � 192:5EXP Xt

� �
hPa …(49)

and

IFLfc � 390; p1ð Þfc � 200hPa; …(50)

with an error range of ± 5%, or FL ± 20, whilst the change in the IFL over the course of
the trip is

IFLfc�IFLic � 242 Xt�0:03
� �

orΔp1 � 192:5 0:04�Xt

� �
hPa …(51)

Therefore, to a good approximation, the final ideal cruise flight level is the same for all
aircraft under all operating conditions and is close to the 200 hPa isobar. This simple, rather
surprising, result is a direct consequence of designing aircraft for (near) minimum fuel burn,
i.e. the final optimum cruise altitude is an output of the design process and not an input to it.
On the other hand, the initial ideal cruise altitude is determined by the trip fuel requirement
and this depends upon the route length, the headwind, the aircraft’s optimum (ηoL/D) and the
value of the lost fuel index. However, importantly, it is almost independent of the size of the
aircraft, its take-off mass and its design range.

All other things being equal, the more fuel efficient the aircraft type, the greater the initial
ideal cruise altitude, with a 10% increase in (ηoL/D) increasing the initial altitude for the
longest journeys flown by about 1,000 ft. Conversely, flights with air traffic imposed inef-
ficiencies require more fuel and so the initial altitude for minimum fuel cruise will decrease.
Therefore, the trend towards more fuel-efficient aircraft and more efficient ATM systems
means that the initial ideal cruise altitude will increase and, for a given route, the difference
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between the initial and final ideal cruise altitudes will decrease, reducing the average gradient
of the cruise-climb trajectory.

The mass of the aircraft at any intermediate point in the cruise, X, is given by

m

TOM
=EXP � X + εcrð Þð Þ=EXP �Xc

� �
; …(52)

where,

Xc � εcl +
X +ΔXcr +ΔXda

n 1�Wavg
� �

 !
: …(53)

Hence, for Xcl ≤X ≤ Xt�Xdlð Þ;
IFL � 391 EXP �0:61 Xt�Xc

� �� �� �
…(54)

and the non-dimensional climb gradient at any location is

d IFLð Þ
dX

� 0:61ðIFLÞ: …(55)

The ideal cruise-climb trajectory gives the lowest fuel burn for all Mach numbers in the
normal operating range. However, currently and for safety reasons, aircraft are not permitted
to cruise climb, nor are they guaranteed to be able to use the ideal initial cruise flight level.
Cruise begins at the ATM specified height and must continue at that value. However,
occasional step climbs of ΔFL + 20 (≈2,000 ft) may be requested and, depending on the
circumstances, may be permitted. Therefore, in current operations, the closest approximation
to the ideal cruise climb trajectory begins with the aircraft at the ideal initial cruise altitude.
This is maintained until the aircraft weight is such that the ideal cruise altitude is 1,000 ft
higher (ΔFL+ 10). At this point, the aircraft performs a ‘step climb’ of 2,000 ft to an altitude
of 1,000 ft above the current ideal cruise value. The flight continues at this new FL until the
aircraft is once again 1,000 ft below the ideal level when the step climb of 2,000 ft is repeated.
This process continues until the aircraft reaches the end of the cruise. By following this
procedure, the aircraft is never more than 1,000 ft from the ideal value. However, whilst this
is a good approximation to the ideal climb profile, there is still a fuel penalty.

6.0 FUEL REQUIREMENTS
If an aircraft is kept at the IFL as given by Equation (54), the trip fuel requirement is that
given by Equation (36). However, in general, whilst this will be a low fuel journey, it will not
be the minimum fuel journey. In order to determine the minimum fuel journey, it is con-
venient to define a reference trip fuel, (TFM)ref. Here the aircraft flies at the maximum range
cruise Mach number, MMRC, there are no air traffic imposed deviations from the great circle
route and the lost fuel during the climb and descent phases is minimised by flying optimum
speed versus height profiles. This being the case, if an aircraft, operating a given route, is to
carry a specified disposable mass, i.e. Xt and the landing mass are fixed, then, from Equations
(36), (38) and (42),

TFMð Þref
LM

� 1�EXP � Xt

� �
ref

� �� �
EXP � Xt

� �
ref

� � : …(56)
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with

Xt

� �
ref = εcdð Þmin +

Xt

1�Wavg

� � : …(57)

where Wavg is the headwind at the IFL averaged along the great circle track. This is the
baseline against which the trip fuel requirement for all other trajectories should be judged and
so, for a given value of Xt,

TFM� TFMð Þref
TFMð Þref

� EXP Xt� Xt

� �
ref

� ��1

1�EXP � Xt

� �
ref

� � : …(58)

As a first step in determining the minimum fuel requirement, it is useful to determine the
sensitivity of fuel requirement to variations in the average wind and to those quantities that
are controlled by ATM. This is found by differentiating Equation (56), which gives

d TFMð Þ
TFMð Þref

= f1
d εcdð Þ
εcdð Þmin

+ f2
d Rð Þ
Rt

� d nð Þ
nð Þmax

+
Wavg

1�Wavg
� � d Wavg

� �
Wavg

 !
; …(59)

where, with some manipulation and approximation,

f1 � εcdð Þmin

2
1 +

2 1�Wavg
� �

εcdð Þmin 1�Wavg
� �

+Xt

 !
; …(60)

and

f2 � Xt

2 1�Wavg
� � 1 +

2 1�Wavg
� �

εcdð Þmin 1�Wavg
� �

+Xt

 !
: …(61)

The cruise fuel consumed is obtained by integrating Equation (4) from the initial to the final
cruise positions and, as explained in Appendix C, if the normalised headwind and the flight
Mach number are constant, n is given by

n=
ηoL =Dð Þavg
ηoL =Dð Þopt

=
Xfc�Xicð Þ

ηoL =Dð Þopt
Ð Xfc

Xic
ηoL =Dð Þ�1dX

: …(62)

When the aircraft cruise-climbs at the IFL, CL is always equal to (CL)ηLDm and, from
Equation (16), (ηoL/D) is constant and equal to the maximum value for the chosen cruise
speed. For Mach numbers between the maximum range and the high-speed cruise values, n is
given by Equation (24). Therefore, if the flight Mach number exceeds Mopt by ΔM, the
resulting reduction in n relative to its maximum value (= unity) is approximately

d nð Þ
nð Þmax

= d nð Þ � �233
ΔM1
Mopt

� �3

: …(63)

Since typical operating speeds lie somewhere between the maximum range and the long-
range cruise values, n normally lies between 1 and 0.99.
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Now consider an aircraft at the beginning of the cruise and flying at Mopt. If the flight level
is the ideal value, (ηoL/D) will have the optimum value. However, if the aircraft begins the
cruise at a higher flight level, differing from the ideal value by an amount ΔFLic, then

FL
IFL

� �
ic

= 1 +
ΔFL
IFL

� �
ic

: …(64)

It follows from Equations (26) and (28) that

CLð Þic
CLð Þopt

� FL
IFL

� � 1
0:61

ic

= 1 +
1

0:61

� �
ΔFL
IFL

� �
ic

+
0:195
0:612

� �
ΔFL
IFL

� �2

ic

+ � � � …(65)

If the aircraft subsequently cruise-climbs with the lift coefficient held constant at (CL)ic, the
reduction in n resulting from beginning the cruise at a non-IFL is obtained from Equation (16)
and may be expressed approximately as

d nð Þ � � 3:60
ΔFL
IFL

� �2

ic

+ 4:3
ΔFL
IFL

� �3

ic

 !
: …(66)

Ignoring products of small quantities, the change in n due to a combination of non-optimum
Mach number and non-ideal initial altitude are given by the sum of Equations (63) and (66).
Hence, for the cruise-climb, Equations (59), (61), (63) and (66) can be used to assess the
impact of route deviations and changes in speed and altitude on the required trip fuel.
However, since the current ATM environment requires aircraft to cruise at a constant flight
level, with the possibility of an occasional step climb to a higher altitude, it is important to
examine fuel usage in this situation.

If an aircraft maintains a constant speed and a constant flight level then, as it gets lighter,
the lift coefficient decreases such that

CL

CLð ÞηLDm
=

CL

CLð Þic
CLð Þic

CLð ÞηLDm
=

CLð Þic
CLð ÞηLDm

m

mic

� �
: …(67)

This being the case, the determination of n (Equation (62)) involves the numerical solution of
an implicit, integral equation. However, as demonstrated in Appendix C, an approximate
explicit solution can be developed. The full, analytic, version is rather complex, but, for short
cruise distances and small deviations from the optimum values for speed and altitude, the
power series form given in Equation (C.21) of Appendix C can be used. Hence, in general,
the additional change to n that occurs when the aircraft cruises at a fixed, non-IFL is given by

d nð Þ � � 3:60 ΔFL
IFL

� �2
ic + 4:3

ΔFL
IFL

� �3
ic

� �
+ 2:19 ΔFL

IFL

� �
ic 1 + 2:81 ΔFL

IFL

� �
ic + 10:13

ΔFL
IFL

� �2
ic + � � �

� �
X�Xic
1�Wavg

� �
�0:446 1 + 6:615 ΔFL

IFL

� �
ic + 39:60

ΔFL
IFL

� �2
ic + � � �

� �
X�Xic
1�Wavg

� �2
+ 0:450 1 + 11:89 ΔFL

IFL

� �
ic + 68:31

ΔFL
IFL

� �2
ic + � � �

� �
X�Xic
1�Wavg

� �3
+ � � � ;

…(68)

where the coefficients A and B have been evaluated at Mopt and products of all small
quantities have been neglected.

This relation reveals the complex nature of the constant altitude cruise compared to the
simple cruise climb. When the altitude is held constant, n not only depends on Mach number
and any initial deviation from the IFL but also on the distance travelled and the headwind. If
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an aircraft is to maintain a flight level at, or below, the initial IFL, the fuel burn rate will
increase steadily relative to the initial value as the flight progresses. However, if the flight
level is above the initial IFL, the fuel burn rate initially decreases as distance flown increases,
eventually passing through a minimum. The total change in n due to Mach number variations
and a fixed altitude cruise is given by the sum of Equations (63) and (68).

The functions f1 and f2 are always positive. Hence, any increase in εcd will increase the fuel
requirement above the reference value. However, if

d Rð Þ
Rt

� d nð Þ
nð Þmax

+
Wavg

1�Wavg
� � d Wavg

� �
Wavg

 !
< 0; …(69)

the fuel requirement will be less than the reference value. This may be the case if the wind
speed variations in either the vertical, or horizontal, planes are sufficiently large that the
advantage of a moving to a position where the benefits of a more favourable wind outweigh
the penalties of flying higher, or lower, or expending the length of the ground track.
Therefore, the minimum fuel flight profile will be the one that minimises Equation (69)

7.0 DISCUSSION
In the previous section, relations were derived that permit the accurate estimation of the IFL
for any aircraft, irrespective of its take-off mass, at any point in the cruise, the trip fuel used
and the additional fuel burnt when an aircraft is not following the ideal trajectory for any
reason. In this section, these relations are used to obtain initial estimates of the fuel penalty
resulting from normal operations and from potential contrail avoidance schemes.

Assuming that for a given aircraft type, (ηoL/D)opt, (CL)opt and Mopt
7 are available from

published sources then, for a given route, Rt is known and, hence, from Equation (37), Xt is
also known. On any given day, assuming that the meteorology is available, either the
operator, or the ATM provider, will set the cruise Mach number and, hence, both M∞ and
Wavg are known. Therefore, in order to complete the picture, n, i.e. the ratio of (ηoL/D)avg for
the trip to (ηoL/D)opt, the net climb and descent lost fuel index, εcd, and any extra distance to
be flown relative to the great circle route, ΔR, must be either specified, or estimated.

For a flight at constant Mach number and altitude, the average value of ηoL/D is a function
of the flight level, the length of the cruise, the headwind and the cruise Mach number. Of
these, the flight level, like the cruise Mach number, is controlled by the ATM system and,
once specified, n can be estimated in the way described in the previous section and a set of
results is given in Fig. 10.

When the flight level exceeds the ideal value, the effects of distance travelled and wind are
relatively low. However, the maximum altitude at which an aircraft can operate depends upon
the engines’ maximum climb rating and this, in turn, depends upon the ambient air tem-
perature – see Appendix B. Typically, the maximum cruise FL is about +20 more than the
ideal value. If the ambient air temperature at a given altitude is higher than the ISA value, the
aircraft may not even be able to reach the IFL, although, in practise, this is likely to be a rare
occurrence. Conversely, if the ambient air temperature is lower than ISA, the aircraft may be
able to go much higher than IFL, in which case the maximum altitude will be limited by
proximity to the buffet boundary. As the cruise FL is reduced below the ideal value, the

7 Many sources give only the long range cruise Mach number. However, from Equation (22), Mopt (=MMRC) is
seen to be approximately 97% of MLRC.
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sensitivity to both distance travelled and the headwind becomes progressively more impor-
tant. As already noted, low values of n can be avoided by carrying out the occasional step
climb of +20, or more, to get closer to the optimum condition.

Accurate information on aircraft operations is difficult to obtain and rarely appears in the open
literature. However, Randle et al.(20) present lost and recovered fuel index data for a range of
current Boeing (757, 767 and 777) and Airbus (320, 330 and 340) aircraft. These have been
determined by analysis of flight data recorder information and, consequently, they are believed to
be accurate. However, as would be expected for real-world operations, there are wide variations.
Nevertheless, when it comes to the lowest values for the climb, (εcl)min is found to be about the
same for all the aircraft considered, with an average value of 0.0122± 0.0013. Whilst the lowest
value for the climb lost fuel index is a fundamental characteristic of the aircraft and engine
combination, there are no physical constraints that limit the largest value and, hence, the
observed maximum values are a direct reflection of the efficiency of the ATM system. These
upper values are found to be 0.018 ± 0.002, whilst the average value, as reported byRandle et al.
is 0.015. For the descent phase, the maximum recovered fuel index, (εdl)max,

8 also exhibits a
reasonably consistent value, being 0.0055 ± 0.0015. In this case, it is the higher value that is the
aircraft characteristic and, as might be expected, the smallest values are subject to much greater
variation, being − 0.0038 ± 0.0032, whilst Randle et al. quote an average value of + 0.001.
When climb and descent are combined, (εcd)min is found to be 0.0067± 0.0026, whilst (εcd)avg is
close to 0.014. Therefore, the average operational value is more than twice the minimum and the
data indicate that the operational worst case could be over four times the minimum.

Normal operations generally involve significant deviations from the great circle track. Once
again public domain data are extremely limited, however, in Ref. 25, Reynolds uses real-
world data to provide a comprehensive description of the situation at the global level in 2005.
Specifically, in Europe and the United States, the extra distance flown in the departure area
can be up to 30 nautical miles (55 km) with the average being around 9 nm (17 km). In the
arrival area, this rises to a maximum of about 75 nm (140 km), with the average being 28 nm
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Figure 10. The variation of n with total trip distance and wind strength for a range of initial flight levels. Solid
lines correspond to a W of 0.3 and dashed lines to a W of −0.3. The Mach number is Mopt.

8 In Ref. 23, εdl is based on the take-off mass rather than the mass at the end of cruise. However, the consequence of
this difference is small.
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(50 km). En route deviations are typically between 0% and 10% of the distance flown in the
cruise, with an average of about 3.5%. Within Europe, all internal flights, and within the
United States, most internal flights, are short haul, i.e. less than about 1,500 nm (2,800 km)
and, according to Reynolds, en-route deviations may be represented by a fixed distance plus a
fraction of the en-route distance flown. In Europe, on average, this is about 12 nm plus
0.020Rt, whilst in the United States, it is 22 nm plus 0.029Rt. For Trans-Atlantic, long-haul
flights the numbers are slightly larger, being 28 nm and 0.033. This is the result of the
operation of the North Atlantic Track System, which adds extra distance to the route to
guarantee safe separation in regions beyond radar and VHF communication range. However,
as indicated in Equation (69), some of this en-route track deviation can, and is, used to move
the aircraft to a position where the wind is more favourable.

Whilst these results are based on data collected over 10 years ago, more recent studies, e.g.
Ref. 26, have shown that en-route lateral inefficiency, in both Europe and the United States,
was effectively constant between 2008 and 2015. This is not surprising since growth in the
number of flights per year and increasingly strict noise restrictions around airports both make
improvements in lateral efficiency difficult.

With all the information now available, the parameter Xt can be obtained from Equations
(37) and (38) and, hence, from Equations (36) and (42), the trip fuel per unit landing mass is

TFM
LM

� 1�EXP �Xt

� �� �
EXP �Xt

� � : …(70)

The initial Ideal Flight Level, IFLic, follows immediately from Equation (49) and, hence, the
complete ideal cruise trajectory (Equation (54)). Using the estimate for (εcd)min, the baseline
value for the trip fuel, (TFM)ref is obtained from Equations (56) and (57), and the sensitivity
functions f1 and f2 can be evaluated using Equations (60) and (61).

The variation of f1 with non-dimensional flight length and headwind is shown in Fig. 11.
A range of normalised headwind is considered. The extremes chosen are based on the work of
Randle et al.(20) who found that, for the routes they considered, W could take values anywhere
between + 0.3 and −0.3. As expected, the trip fuel sensitivity to the net lost fuel is the greatest
for short flights and diminishes rapidly as the flight length increases. However, within the
normal operating parameter range, the sensitivity is always significant. Interestingly, whilst
headwind does not have a particularly large effect, the sensitivity to lost fuel reduces as
headwind increases. This is because, as the headwind increases, the fraction of the total trip
distance covered in the climb and descent decreases and the influence of these phases reduces.

The variation of f2 with trip length and headwind is shown in Fig. 12. Here the sensitivity
increases with both increasing route length and increasing headwind and, for the longer
flights, f2 exceeds unity. Once again, the influence of headwind is limited.

An estimate of the percentage fuel penalty incurred by average, operational departures from
the optimal values of cruise Mach number, lost fuel index and route deviation as a function of
route length and headwind is obtained by combining the data from Refs 20 and 25 with the
functions f1 and f2. The results are presented in Fig. 13, where the trajectories being compared
are both cruise-climb at the IFL and so the fuel penalty shown is the minimum possible for the
given deviations.

The effect of flying at a higher than optimum Mach number is small, being of the order 1%.
Route deviation amounts to about 5%, but this increases as the distance flown decreases.
However, this may be reduced slightly if en-route deviations take advantage of better wind
conditions. Excess lost fuel has a very large impact for short trips and is still significant for the
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longest routes. The effect of wind, through f1 and f2, is generally small, and the wastage is
greater for the tailwind situation. Approximate boundaries between short haul (<2,800 km),
medium haul and long haul (>5,500 km) are also shown. These highlight the fact that the fuel
penalty due to route deviation and poor climb and descent profiles is greater than 15% for all
short-haul flights and greater than 10% for most long-haul flights.

When the aircraft is operating at flight levels that differ from the ideal values, additional
fuel is used. For the case where the aircraft cruises at constant flight level, estimates are made
by combining Equations (59), (61) and (68). Results for a range of initial flight levels and
wind conditions are presented in Fig. 14. For compatibility with Fig. 13, the data are
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presented as a function of total non-dimensional distance, where the difference between the
total distance flown and the length of the cruise segment is estimated using the relations given
in Appendix D.

In this case, the amount of extra fuel used is very sensitive to the wind and is greater for a
headwind. However, if the cruise is conducted at, or above, the IFLic the penalty is quite small
with impact on short-haul flights being less than 1%. As the altitude decreases relative to the
ideal value, the penalty becomes a stronger and stronger function of the range and the impact
can be significant even for short-haul flights. However, it is also clear that large penalties can
be avoided if the aircraft performs regular step climbs. Therefore, in normal operations, flying
at a fixed altitude with the occasional step to a higher level should limit the excess to just a
few percent.

Information on the distribution of the percentage of global fuel usage with route length, as
it was in 2,000, is available from Ref. 27. This indicates the fraction of the total traffic that
uses the various routes and, as such, will probably not have changed much in the past 18
years, even though the total traffic itself has increased considerably. If these data are com-
bined with those of Fig. 13, plus an additional allowance of 2.5%9 to cover additional fuel due
to flying at constant altitude, a picture of the distribution of the fuel penalty at the global level
is revealed. This is given in Fig. 15. The total global penalty is the area under the curve and
this is found to be about 20%. The distribution is heavily skewed towards short flights and
half of the total is generated by flights of less than 1,200 km. In round figures, short-haul
operations account for 75% of the total, medium haul accounts for just 7.5% and long-haul’s
share is 17.5%. It is interesting to note that in Ref. 1, the IPCC suggested that ATM
improvements could reduce fuel burn by between 6% and 12%, although it is unclear where
this figure came from. Nevertheless, recognising that safety considerations are unlikely to
ever allow the complete elimination of extra distance being flown, the present analysis
suggests that a 15% reduction is neither unrealistic, nor unreasonable.

Finally, from the results presented, it is clear that, in order to minimise fuel burn, all aircraft
should cruise in a narrow altitude band ranging from about FL 320 to FL 390. Unfortunately,
in the northern latitudes, this is exactly where the ice supersaturated regions of air that are
essential for the formation of persistent contrails tend to form, see for example Ref. 5. This
makes encounters between aircraft and ISSRs both inevitable and frequent. Consequently,
consideration has been given to schemes for the avoidance of contrails by circumventing
ISSRs either by changing altitude (up or down), or by manoeuvring around them in the
horizontal plane. Clearly, in order to minimise the net environmental impact, the method that
gives the least additional fuel burn should be used.

In Ref. 5, it is shown that the majority of ISSRs are less than 1,500m deep. Therefore,
should an aircraft find itself in an ISSR, an FL change of ±30 would take it clear. At present,
the lateral extent and the overall shape of the ISSRs are not firmly established. However,
Gierens and Spichtinger(4) reported that aircraft flying through ISSRs find, on an average, the
immersion length in the horizontal plane to be in the region of 150 km, with a standard
deviation of about 250 km. It follows that the distance flown through an individual ISSR is
unlikely to exceed 1,000 km, i.e. Xissr is always less than 0.035. This being the case, as can be
seen in Fig. 10, n is controlled primarily by the altitude change, with the distance flown and
the wind having little impact. Hence, if the aircraft is at a typical mid-cruise IFL of 350 when
it encounters an ISSR, Equation (66) shows that increasing the flight level by 30 reduces n by

9 Unlike the results in Fig. 13, this is an estimate, based on the assumption that this issue is well understood and
actively managed.
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0.029, whilst decreasing it by the same amount reduces n by 0.023. Therefore, the smaller fuel
penalty is associated with a decrease in altitude, the difference being due to the decrease in the
lift coefficient, which, in turn, reduces the wave drag component. This is doubly helpful
because, whilst an aircraft can always descend to a lower flight level, its ability to climb is
limited and an FL increase of +30 may not always be possible.10 Furthermore, since the
traversing of the ISSR constitutes a segment of the cruise, Equation (C.6) in Appendix C
shows that, over a short distance, the increase in fuel consumption following a small per-
centage reduction in n is equal to that required to extend the distance flown by the same
percentage. Therefore, neglecting the very small amount of ‘lost’ fuel involved in the initial
descent and subsequent climb back to the original altitude, in terms of additional fuel used,
reducing n by 0.023 is equivalent to increasing the distance flown within the ISSR by 2.3%.

In general, the ISSRs do not have any characteristic, or particular, shape in the horizontal
plane. However, by way of a simple example, consider an encounter between an aircraft and a
circular ISSR. Since the aircraft’s track is a secant, a contrail will be avoided if, between the
intersection points of the secant and the circle, the aircraft follows the circumference rather
than the chord. This involves flying extra horizontal distance and it is easily shown that this
will exceed 2.3% of the chord length when the shortest distance between the secant and the
centre is less than 47% of the diameter. Clearly, if the shortest distance to the centre is 50% of
the diameter, the secant becomes a tangent and no contrails are formed. Therefore, in this
simplified example, the majority of the encounters would require the aircraft to fly an
additional distance that is considerably more than 2.3% of the chord.

If the aircraft relies on crew observations, or on-board instrumentation, to determine when
it is inside an ISSR, the shape and extent of the ISSR in the horizontal plane will not be
known and circumnavigation is not an option. However, if the meteorological service could
predict the position, shape and size of ISSRs lying along the intended flight path, both vertical
and horizontal avoidance schemes would be possible. Again, the vertical option would be to
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Figure 15. The distribution of extra fuel burned due to ATM restrictions at the global level as a function of
trip length.

10 If the aircraft is cruising at a flight level lower than the ideal value when the ISSR is encountered, climbing to a
higher altitude may be the lower fuel option, see Fig. 10. However, in that case, there would be an additional trip fuel
penalty for not cruising at the IFL.

POLL RELATIONSHIP BETWEEN NON-OPTIMUM OPERATIONS AND FUEL REQUIREMENT… 1857

https://doi.org/10.1017/aer.2018.121 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2018.121


descend, fly beneath the ISSR and then the climb back to the original altitude. For the
horizontal option, the avoidance path can be approximated by a triangle whose base is Y times
the diameter of the ISSR and, in the worst case, the lateral deviation is half the ISSR diameter.
The earlier the avoiding course correction is made the smaller the extra distance incurred and,
if Y is large, the additional distance is approximately (0.25/Y) times the ISSR diameter. Hence,
to use less fuel than the short descent method, the course correction must begin at a distance
greater than 11 ISSR diameters. Based on current knowledge of the typical ISSR size, this
would be more than 2,000 km. This means that horizontal avoidance on short-haul and
medium-haul routes, including trans-Atlantic flights, would always use considerably more
fuel than vertical avoidance.

Finally, if the flight passes through a number of ISSRs and the sum total of the distance
flown in these is Rissr, then, for the vertical avoidance scheme, the extra trip fuel required
follows from Equations (57) and (59), i.e.

d TFMð Þ
TFMð Þmin

= 0:023f2
Xissr

Xt

� �
: …(71)

By way of example, if a trans-Atlantic flight (Xt≈0.18) encounters ISSRs for 20% of the route
and the average wind speed is zero, the trip fuel required increases by about 0.5%. However,
as shown in Fig. 13, the typical, operational fuel penalty for this flight is currently about 12%
and so this additional fuel requirement is almost negligible by comparison. Consequently,
additional fuel burn has no real weight as an argument against the introduction of proactive
contrail management schemes.

8.0 CONCLUSIONS
A novel method has been developed for the estimation of fuel use in the cruise. It captures the
variation of the product of engine overall efficiency and airframe lift-to-drag ratio, (ηo L/D),
with Mach number and lift coefficient, which is the key relationship governing fuel con-
sumption. By using physically based arguments and normalisation, it is proposed, and
demonstrated, that the governing variables are linked by a set of near universal relationships.
This simplifies the analysis considerably, reducing the required input data to just three
quantities, namely the optimum value of (ηo L/D) and the lift coefficient and the Mach
number at which it occurs. Estimates are found to be within 2% of the known values for a
range of aircraft.

The method has been extended to include the take-off and climb, and descent and landing
phases. This is also near exact and not only gives accurate estimates of the trip fuel, but also
provides a complete framework for the accurate ‘fuel based’ analysis of operational ineffi-
ciencies. Themethod includes the effects ofwind and the inefficiencies considered are additional
‘lost fuel’ during climb and descent, extra distance flown relative to the great circle route and
flight at non-optimum, constant Mach number and constant altitude. In this latter case, an
approximate, accurate, analytic solution is developed in both closed algebraic and series
expansion form. This provides a major simplification, as well as a substantial improvement in
accuracy, over previous attempts to solve this challenging problem from first principles.

In addition to fuel usage, the model reveals that, for speeds between the maximum range
and the long-range cruise Mach numbers, there is a single flight level at which (ηo L/D)
always has its maximum value. Aircraft operating at this ‘Ideal’ flight level have the lowest
fuel burn rate for the chosen speed. Furthermore, at the end of cruise, the IFL is found to be
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approximately the same for all aircraft (≈FL 390), irrespective of their take-off masses. At the
beginning of the cruise, the IFL depends, primarily, upon the ratio of TFM to take-off mass,
i.e. the longer the flight, the lower the initial cruise altitude. This quantity is a function of the
optimum value of (ηo L/D), the route length, the headwind and the other operational ineffi-
ciencies. Therefore, the IFL has very little dependence on the size of the aircraft, or its take-
off mass.

In the context of operational inefficiency, it has been shown that the sensitivity of fuel
requirement to changes in all the operational parameters is governed by just two simple
relations that depend, primarily, on the length of the route, the average headwind and the
aircraft’s optimum (ηo L/D). These have been combined with published data on route lateral
inefficiency and climb and descent inefficiency to show how excess fuel usage varies with
distance flown. It is found that, for short-haul flights, the excess fuel is greater than 15% and
this can rise to much higher values for the very shortest flights, with the contributions from
extra distance flown and sub-optimum climb and descent profiles being roughly the same. For
long-haul flights, the excess is generally greater than 10%, with the contributions from the
two main inefficiencies still being roughly equal. It has also been shown that at the global
level, ATM for safety, noise abatement, etc., increases the fuel usage by about 20%, with half
of the total being generated on flights of less than 1,200 km.

Finally, the method has been used to investigate the potential fuel penalties associated with
the prevention of contrail formation by completely avoiding those regions of the atmosphere
that are supersaturated with respect to ice. The findings relating to optimum cruise altitudes
confirm that, in the northern latitudes, encounters with ISSRs are expected to be routine and
frequent. However, it is shown that, from a fuel (≡ CO2) perspective, if an aircraft is at its
IFL, the best evasive action is to reduce altitude, fly under the supersaturated region and then
return to the optimum altitude as soon as possible. In this case, even if ISSR encounters are
frequent, the increase in trip fuel is generally less than 0.5%, which is very small compared to
the penalties resulting from other operational inefficiencies.
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APPENDIX A. AIR DATA, SPEEDS AND ALTITUDES
The aircraft air data system measures three parameters: ambient static pressure, p∞, total
temperature, To, and total pressure, po. Total, or stagnation, pressure is usually measured with
a Pitot tube and, consequently, it is often referred to as Pitot pressure.

Assuming air to be a perfect gas and the flow in the Pitot tube to be one dimensional,
adiabatic and isentropic, the total pressure is related to M∞ and p∞ by

po
p1

= 1 +
γ�1ð Þ
2

M2
1

� � γ
γ�1ð Þ; …(A.1)

where γ is the ratio of the specific heats for air. Furthermore, the total temperature, To is
related to M∞ and the ambient static temperature, T∞, by

To
T1

= 1 +
γ�1ð Þ
2

M2
1

� �
: …(A.2)

Hence, the ratio of po to p∞ can be used to evaluate M∞ and To and M∞ can be used to
evaluate T∞. A knowledge of the ambient static temperature can be used to evaluate the local
speed of sound, since, for a perfect gas,

a1 = γ<T1ð Þ1 = 2; …(A.3)

where ℜ is the gas constant for air. Finally, the perfect gas equation of state can be used to
obtain the ambient density, ρ∞,

ρ1 =
p

<T
� �

1
: …(A.4)

The Mach number and sound speed can be combined to obtain the true airspeed (TAS), V∞.
This is clearly important for navigation. However, from the point of view of controlling the
aircraft speed, there are two flight modes that are particularly easy to fly both manually and
automatically. The first involves keeping the ratio of total pressure to ambient static pressure
constant. In this case, from Equation (A.1), the Mach number will be constant, even if
the altitude is varying. The second is to hold the difference between the total pressure and the
ambient static pressure, sometimes called the ‘impact’ pressure, constant. In operations man-
uals, there is frequent reference to the Calibrated Air Speed (CAS), Vcas. This is based on the
measured impact pressure and is defined as the speed at sea level in the International Standard
Atmosphere (ISA – see Ref. 22) that would produce this value, i.e. again using Equation (A.1),

po�p1 = p1 1 + γ�1ð Þ
2 M2

1
� � γ

γ�1ð Þ�1

� �

= pSL 1 + γ�1ð Þ
2

Vcas
aSL

� �2� � γ
γ�1ð Þ

�1

 !
:

…(A.5)

It is immediately apparent that, with the CAS held constant, M∞ and TAS will vary if the
altitude varies. Furthermore, if the Mach numbers are always less than one, by using series
expansion techniques and neglecting quantities that are small in comparison to one, it can be
shown that

V1
Vcas

� ρSL
ρ1

� �0:5

1� 0:5ρSLV2
cas

4γpSL
pSL
p1

�1

� �� �
: …(A.6)
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The aircraft lift and drag coefficients depend on the dynamic pressure, q∞ . This is defined as

q1 =
1
2
ρ1V2

1 =
1
2
ρSLV

2
eas =

γ

2
p1M2

1; …(A.7)

where Veas is the equivalent air speed (EAS), being defined as the speed at sea level in the ISA
that gives the same dynamic pressure. Hence,

Veas

Vcas
� 1� 0:5ρSLV2

cas

4γpSL
pSL
p1

�1

� �� �
; …(A.8)

whilst

q1 � 1� 0:5ρSLV2
cas

2γpSL
pSL
p1

�1

� �� �
0:5ρSLV

2
cas …(A.9)

and

M1 � 1� 0:5ρSLV2
cas

4γpSL
pSL
p1

�1

� �� �
pSL
p1

� �0:5 Vcas

aSL

� �
: …(A.10)

During a climb at constant calibrated air speed, the true airspeed and the Mach number
increase, whilst the equivalent air speed and the dynamic pressure decrease.

The indicated air speed (IAS) is defined as the speed at ISA sea level that is equivalent to
the instrument’s indicated impact pressure. If the instrument is ‘perfect’ the indicated air
speed will be equal to the calibrated air speed. However, for a variety of practical reasons,
there is usually as small difference between these two quantities. This is variously described
as position error, instrument correction or antenna error.

Altitude is determined by the altimeter for which the inputs are the local static pressure, p∞ and
a reference pressure, pref, that is specified by ATM. The instrument provides an estimate using a
calibration of altitude versus p∞/pref based on conditions prevailing in the International Standard
Atmosphere (Ref. 22). For take-off and landing, pref is set at the local airport pressure (theQFE) so
that indicated altitude (IA), sometimes called the ‘pressure’ altitude, is measured relative to the
runway.At anATM-specified height above the airport, pref is set to the actual pressure atmean sea
level (theQNHor ‘regional’ pressure) and, consequently, the IA is relative to sea level. Finally, as
the aircraft passes through theATMdetermined ‘transition’ altitude, pref is set to the ISA sea level
pressure (1.01325 bars= 1,013.25 hPa) and the IA is the height above sea level that the aircraft
would have in the ISA. Since the vertical variation of ambient pressure and temperature on any
particular day is unlikely to be the same as in the ISA, the indicated altitude will probably not be
the true geometric value.When the aircraft is some 6miles above the Earth’s surface, errors from
this mismatch are unimportant. However, a safe, accurate and robust estimate of the vertical
separation between aircraft is required and the universal use of the measured p∞ with the ISA
variation of pressure with altitude guarantees this. Above the transition altitude, flight levels (FL)
are used, where these are defined as the indicated altitude, rounded to the nearest 500 ft and
divided by 100. Hence, if p∞ is greater than 0.2263 bars, the indicated altitude is

IAðftÞ= 145; 442 1�0:9975p0:19031
� �

…(A.11)

otherwise

IAðftÞ= 5; 175:9 1�4:0198ln p1ð Þð Þ …(A.12)

1862 THE AERONAUTICAL JOURNAL DECEMBER 2018

https://doi.org/10.1017/aer.2018.121 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2018.121


and the corresponding FL is

FL= 5 ´ INT
IAðftÞ
500

+ 0:5
� �

: …(A.13)

APPENDIX B. ENGINE PERFORMANCE
If an aircraft is flying at a constant speed, V∞, the engines are producing a combined constant
net thrust, Fn, and air is passing through the intakes at a steady rate, _mair, the gross thrust, FG,
is given by

FG =Fn + _mairV1 …(B.1)

As shown in Ref. 28, Chapter 8, all gas turbine engines are subject to a set of dynamic scaling
laws, which may be expressed as

FG + p1Ae

Ae poð Þ1
= f1

Toð ÞTE
Toð Þ1

;
po
p

� �
1

� �
; …(B.2)

_mair

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cp Toð Þ1

p
Ae poð Þ1

= f2
Toð ÞTE
Toð Þ1

;
po
p

� �
1

� �
…(B.3)

and, if _mf is the total fuel flow rate to the engines,

_mfLCV

Ae poð Þ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cp Toð Þ1

p = f3
Toð ÞTE
Toð Þ1

;
po
p

� �
1

� �
…(B.4)

where Ae is the sum of the core and by-pass jet exit cross-sectional areas, multiplied by the
number of engines, Cp is the specific heat at constant pressure for air, (To)TE is the turbine
entry total temperature, LCV is the lower calorific value of the fuel, (po)∞ and (To)∞ are the
freestream total pressure and the total temperature, respectively, and p∞ is the ambient
freestream static pressure.

The functions f1, f2 and f3 are governed by the same pair of independent variables and they
are characteristic of the engine being considered, i.e. their form varies from type to type.

It follows that the net thrust is

Fn

Ae poð Þ1
= f1�f2M1 γ�1ð Þ T

To

� �
1

� �1 = 2

� p

po

� �
1

…(B.5)

and the engine overall efficiency, ηo, as defined in Equation (1), is

ηo = f1
f 3

M1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ�1ð Þ T

To

� �
1

r� �
�1

f3
M1 p

p0

� �
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ�1ð Þ T

T0

� �
1

r� �
�f2

f3
M2

1 γ�1ð Þ T
To

� �
1

� �
:

…(B-6)

Noting that the ratio of freestream total to freestream static pressure is a function of Mach
number only (see Equation (A.1)), Equation (B.5) may be written as

Fn

Aep1
= f4

Toð ÞTE
Toð Þ1

;M1

� �
…(B.7)
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or, in terms of a thrust coefficient, Ct,

Ct =
Fn

γ = 2ð Þp1M21Ae
= f5

Toð ÞTE
Toð Þ1

;M1

� �
: …(B.8)

Therefore, the thrust depends on the ratio of (To)TE to (To)∞, the Mach number, the ambient
static pressure and the exit cross-sectional area only. Similarly, Equation (B.6) becomes

ηo = f6
Toð ÞTE
Toð Þ1

;M1

� �
= f7 Ct;M1ð Þ: …(B-9)

By way of example, the function f7 for a turbofan engine, with a bypass ratio of about 4.5, is
given in Fig. B1.

Since the turbine entry to freestream total temperature ratio can be varied by simply
changing the engine ‘throttle setting’, the ambient temperature does not appear explicitly.
However, in order to prolong its service life, an engine’s performance in different phases of
flight, e.g. maximum continuous cruise thrust and maximum climb thrust, is constrained by
the imposition of specific upper limits on the turbine entry temperature itself. Consequently,
the operating thrust maxima are ambient temperature dependent, i.e.

Toð ÞTE
Toð Þ1

� �
lim

=
Toð ÞTE

� �
lim

T1
1 +

γ�1ð Þ
2

M2
1

� ��1

: …(B.10)

In straight and level flight at constant speed, engine thrust is equal to airframe drag and drag is
a function of the lift and the Mach number. Therefore, the required ‘throttle setting’ is

Toð ÞTE
Toð Þ1

= f7 Cd;M1ð Þ= f8 CL;M1ð Þ: …(B.11)
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Figure B1. The variation of engine overall efficiency with thrust coefficient and Mach number for a typical
turbofan engine – derived from data presented in Fig. 8.2 of Ref. 28.

1864 THE AERONAUTICAL JOURNAL DECEMBER 2018

https://doi.org/10.1017/aer.2018.121 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2018.121


Hence,

Fn

Aep1
= f9 CL;M1ð Þ …(B.12)

and

ηo = f10 CL;M1ð Þ: …(B.13)

APPENDIX C. CRUISE FUEL CONSUMPTION
An aircraft in the cruise, having travelled a distance S1 from the departure point, as measured
along the ground track, has an instantaneous total mass, m1. Beyond this point, the instan-
taneous total mass is given by the integral of Equation (4) in the main text, i.e. when the
aircraft reaches point S2

m2

m1
=EXP � g

LCV

ðS2
S1

ηoL =Dð Þ 1�Wð Þð Þ�1dS

� �
: …(C.1)

Therefore, if normalised headwind is constant

m2

m1
=EXP � g S2�S1ð Þ

LCV ηoL =Dð Þopt 1�Wavg
� �

n

 !
; …(C.2)

where

n=
ηoL =Dð Þavg
ηoL =Dð Þopt

=
S2�S1ð Þ

ηoL =Dð Þopt
Ð S2
S1

ηoL =Dð Þ�1dS
: …(C.3)

In general, the ground track will not be a great circle. However, if R1 is the great circle
distance measured from the departure point to S1, then

S2�S1 = R2�R1ð Þ 1 +
ΔR21

R2�R1ð Þ
� �

= R2�R1ð Þ 1 +Γð Þ; …(C.4)

where ΔR12 is the additional distance flown when the ground track deviates from the great
circle. The great circle distance may be conveniently expressed in non-dimensional form as

X =
gR

ηoL =Dð ÞoptLCV
; …(C.5)

and, if the additional distance flown per unit great circle distance travelled, Γ, is also constant,

m2

m1
=EXP � 1 +Γð Þ X2�X1ð Þ

n 1�Wavg
� �

 ! !
; …(C.6)

where

n=
X2�X1ð Þ

ηoL =Dð Þopt
Ð X2

X1
ηoL =Dð Þ�1dX

: …(C.7)
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It follows that the fuel consumed as the aircraft cruises from any point S1 to any point S2 along
the ground track is given by

MFð Þ12
m1

= 1�m2

m1
= 1�EXP � X2 +ΔX21�X1

n 1�Wavg
� �

 ! !
: …(C.8)

When the aircraft follows a cruise climb trajectory, n is constant and, in general,

n=
ηoL =Dð Þmax

ηoL =Dð Þopt
ηoL =Dð Þ

ηoL =Dð Þmax

; …(C.9)

where the first term is a function of Mach number only − see Equations (23) and (24) − and
the second term depends on both Mach number and the lift coefficient – see Equation (16).

When the aircraft cruises along an isobar, i.e. the flight level is constant, the lift coefficient
decreases as the total aircraft mass decreases. Hence,

CLð Þ2
CLð ÞηLDm

=
CLð Þ1

CLð ÞηLDm
m2

m1
: …(C-10)

From Equation (16),

ηoL =Dð Þ1
ηoL =Dð Þmax

� 1 +
A

2
CLð Þ1

CLð ÞηLDm
�1

 !2

+
B

6
CLð Þ1

CLð ÞηLDm
�1

 !3

…(C.11)

and, introducing the dummy variable Ω, where

Ω=
ηoL =Dð Þopt
ηoL =Dð Þ1

1 +Γ
1�Wavg

� �
X�X1ð Þ; …(C.12)

Equation (C.7) becomes

n=
ηoL =Dð Þ1
ηoL =Dð Þopt

Ω
ðΩ
0

ηoL =Dð Þ1
ηoL =Dð Þ dΩ

0
@

1
A

�1
0
B@

1
CA: …(C.13)

By using Taylor’s expansion to obtain an approximate inversion of Equation (13), i.e.

ηoL =Dð Þmax

ηoL =Dð Þ � 1�A

2
CL

CLð ÞηLDm
�1

 !2

�B

6
CL

CLð ÞηLDm
�1

 !3

+
A2

4
CL

CLð ÞηLDm
�1

 !4

;

…(C.14)

Equation (C.13) may be approximated by an implicit, integral equation that can be solved
iteratively by using the cruise climb result as the starting solution, i.e.

m

m1

� �
0

=EXP �Ωð Þ: …(C.15)
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This being the case, the first iteration can be performed analytically and the result is

n=
ηoL =Dð Þ1
ηoL =Dð Þopt

Ω
Ω + δ

� �
� ηoL =Dð Þ1

ηoL =Dð Þopt
1� δ

Ω

� �
; …(C.16)

where

δ = ηoL =Dð Þ1
ηoL =Dð Þmax

CLð Þ1
CLð ÞηLDm

� �
A� B

2�A2
� �

1�Ω�EXP �Ωð Þð Þ
+ ηoL =Dð Þ1

ηoL =Dð Þmax

CLð Þ1
CLð ÞηLDm

� �2
� A

4 + B
4 + 3A2

4

� �
1�2Ω�EXP �2Ωð Þð Þ

+ ηoL =Dð Þ1
ηoL =Dð Þmax

CLð Þ1
CLð ÞηLDm

� �3
� B

18� A2

3

� �
1�3Ω�EXP �3Ωð Þð Þ

+ ηoL =Dð Þ1
ηoL =Dð Þmax

CLð Þ1
CLð ÞηLDm

� �4
A2

16

� �
1�4Ω�EXP �4Ωð Þð Þ:

…(C.17)

Here, δ provides a small correction to the basic cruise climb-result. Experimentation with
typical operational values for the various parameters reveals that this scheme converges rapidly
with the first step accounting for a very large portion of the exact solution. Therefore, subject to
certain limitations, Equation (C.17) can be a good approximation to the exact solution.

A severe test of the validity of the approximate solution is to compare its prediction of the
extra fuel consumed relative to the cruise-climb with the exact, fully converged iterative
solution. It is found that, when

Ω< 1:15� 1:40�0:6
CLð Þ1

CLð ÞηLDm

 !
M1
MMRC

; …(C.18)

the difference is less than 5% and less than 10% if

Ω< 2:0� 2:0�0:5
CLð Þ1

CLð ÞηLDm

 !
M1
MMRC

: …(C.19)

The variation of n for a range of parameters is given in Fig. C1.
Whilst Equation (C.17) is adequate for most situations of practical interest, if necessary, the

accuracy can be improved by adding the second iterative step. Unfortunately, this is a very
complicated exercise. Nevertheless, by exploiting the fact that difference between iterations is
small, using power series expansions up to, and including, terms in Ω4and exploiting the
relatively straight forward form of Equation (C.17), it is possible to develop the result for the
second iteration that is itself a small perturbation of the first iteration. However, the detail of
this process will not be explored here.

Finally, expressing the approximate solution for n as a series in ascending powers of X and
ξ, where

ξ=
CLð Þ1

CLð ÞηLDm
�1; …(C.20)
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the first three terms are

n � ηoL =Dð Þ1
ηoL =Dð Þopt 1� A
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� �3�
:

…(C.21)

APPENDIX D. TRIP FUEL CONSUMPTION
If Ric and Rfc are the great circle distances from the departure point to the beginning and the
end of cruise respectively, then from Equation (C.6)

mfc

mic
=EXP � Xfc +ΔXcr�Xic

n 1�Wavg
� �

 ! !
; …(D.1)

where

n=
ηoL =Dð Þavg
ηoL =Dð Þopt

=
Xfc�Xicð Þ

ηoL =Dð Þopt
Ð Xfc

Xic
ηoL =Dð Þ�1dX

: …(D.2)

During the take-off and climb phase, the aircraft consumes an amount of fuel, MFcl, and
travels a horizontal distance Ric relative to the great circle track, plus, in general, a deviation,
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Figure C1. The variation of n with non-dimensional cruise distance for a range of initial cruise lift coefficient.
Solid lines are for a normalised headwind of 0.3, dashed lines are −0.3. The Mach number is the long-

range cruise value.
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ΔRda, in the vicinity of the departure area. For the purposes of analysis, it is convenient to
split the climb fuel into two elements; one being that required to fly the same horizontal
distance at the cruise conditions and the other being that required to increase the aircraft’s
kinetic and potential energies to the initial cruise values. Hence, the aircraft mass at the initial
cruise condition may be expressed in the form

mic

TOM
= 1� MFcl

TOM
=EXP � Xic +ΔXda

n 1�Wavg
� �

 ! !
�εcl; …(D.3)

where the ‘lost fuel’ index, εcl, is the mass of the fuel required to increase the aircraft’s total
energy divided by the take-off mass. The horizontal air distance travelled depends on the
aircraft and ATM requirements and is determined, primarily, by the initial cruise altitude. If
the average climb gradient, γc, and the headwind are assumed to be constant, the non-
dimensional ground distance, Xic, is approximately

Xic = 1�Wavg
� �

Xicð Þair �
6:95

1; 000; 000

FLic 1�Wavg
� �

tan γcð Þ ηoL =Dð Þopt

 !
: …(D.4)

Combining Equations (D.1) and (D.3) gives the aircraft mass at end of the cruise, Mfc, as

mfc

TOM
= 1�εclEXP

Xic +ΔXda

n 1�Wavg
� �

 ! !
EXP � Xfc +ΔXda +ΔXcr

n 1�Wavg
� �

 ! !
: …(D.5)

Similarly, for the descent, if Rdl is the great circle distance from the end of cruise to the
destination, ΔRaa is the deviation from the great circle track around the arrival area and εdl is
the fuel ‘recovered’ as the aircraft’s potential and kinetic energy reduce during descent and
landing divided by Mfc, then

LM
mfc

=EXP � Xdl +ΔXaa

n 1�Wavg
� �

 ! !
+ εdl: …(D.6)

The distance travelled through the air during the descent depends on the altitude at the end of
cruise, the average descent gradient, γd, and the headwind. Hence,

Xdl = 1�Wavg

� �
Xdlð Þair �

6:95
1; 000; 000

FLfc 1�Wavg
� �

tan γdð Þ ηoL =Dð Þopt

 !
: …(D.7)

It follows that, for a given route on a given day, if Rt is the great circle distance from the
departure point to the destination,

Xcr =Xfc�Xic =Xt� Xic +Xdlð Þ: …(D.8)

Combining Equations (D.5), (D.6) and (D.8) gives

LM
TOM = 1�εclEXP Xic +ΔXda

n 1�Wavgð Þ
� �� �

1 + εdlEXP Xdl +ΔXaa

n 1�Wavgð Þ
� �� �

�EXP � Xt +ΔXda +ΔXcr +ΔXaa

n 1�Wavgð Þ
� �� � …(D.9)
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and, subject to the stated assumptions, this is an exact result. However, in practise, Xic,
Xdl, ΔXda, ΔXaa, εcl and εdl are always very small compared to unity and, with a little algebraic
manipulation and approximation, a convenient reduced form is found to be

LM
TOM

� EXP � Xt + εtð Þð Þ; …(D.10)

where

Xt + εt � εcd +
Xt +ΔX

n 1�Wavg
� �

 !
; …(D.11)

εcd = εcl�εdl; …(D.12)

and

ΔX =ΔXda +ΔXcr +ΔXaa: …(D.13)

This expression differs from Equation (D.9) by less than 1% for all cases of practical interest.
The function εt captures the net ‘lost fuel’ for the whole trip, i.e. the fuel wasted by not
cruising at the optimum speed and height, fuel used to fly extra distance due to route
deviations and fuel lost, or saved, because of the wind.

It follows that that the trip fuel mass, TFM, is given by

TFM
TOM

� 1�EXP � Xt + εtð Þð Þ: …(D.14)

Similarly, the mass of the fuel, MF, required to reach a general point in the cruise is given by

MF
TOM

= 1�EXP � X + εcrð Þð Þ; …(D.15)

where

X + εcr � εcl +
X +ΔXda +ΔXcr

n 1�Wavg
� �

 !
: …(D-16)
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