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In this paper, we establish a Kantorovich duality for unbalanced optimal total
variation transport problems. As consequences, we recover a version of duality
formula for partial optimal transports established by Caffarelli and McCann; and we
also get another proof of Kantorovich–Rubinstein theorem for generalized

Wasserstein distance W̃ a,b
1 proved before by Piccoli and Rossi. Then we apply our

duality formula to study generalized Wasserstein barycenters. We show the existence
of these barycenters for measures with compact supports. Finally, we prove the
consistency of our barycenters.
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1. Introduction

In the 2010s, various generalizations of classical optimal transport problems and
Wasserstein distances have been introduced and investigated by numerous authors
[2, 4, 6, 7, 13, 17, 18, 20, 21]. Recently, in 2021 we introduced unbalanced optimal
entropy problems [10] which cover both optimal entropy transport problems in [18]
and weak optimal transport problems in [13]. In [10], under certain conditions of
entropy functionals we establish a Kantorovich duality for our unbalanced optimal
transport problem. Before stating our first main result, let us review our unbalanced
optimal entropy problems.

Given a metric space X, we denote by M(X) and P(X) the spaces of all
Borel non-negative finite measures and probability measures on X, respectively.
Let X1,X2 be Polish metric spaces and let C : X1 × P(X2) → [0,∞] be a lower
semi-continuous function satisfying that C(x1, ·) is convex for every x1 ∈ X1. For
every γ ∈ M(X1 ×X2), we denote (γx1)x1∈X1 its disintegration with respect to its
first marginal. Let Fi : [0,∞) → [0,∞], i = 1, 2 be convex, lower semi-continuous
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Unbalanced optimal total variation transport problems 675

entropy functions with their recession constants (Fi)′∞ := lims→∞ Fi(s)/s. Given
μ1 ∈ M(X1), μ2 ∈ M(X2) and γ ∈ M(X1 ×X2), we define

Fi(γi|μi) : =
∫
Xi

Fi(fi(xi)) dμi(xi) + (Fi)′∞γ
⊥
i (X),

E(γ|μ1, μ2) : =
2∑
i=1

Fi(γi|μi) +
∫
X1

C(x1, γx1) dγ1(x1),

where γ1, γ2 are the first and second marginals of γ, and γi = fiμ+ γ⊥i is the
Lebesgue decomposition of γi with respect to μi.

Our unbalanced optimal entropy-transport problem is defined as

E(μ1, μ2) := inf
γ∈M(X1×X2)

E(γ|μ1, μ2). (1.1)

Similarly to optimal entropy-transport problems in [18], to handle with problem
(1.1) we often assume that Fi is superlinear, i.e. (Fi)′∞ = +∞ for i = 1, 2. This
assumption makes the problems easier as we can get rid of the part (Fi)′∞γ

⊥
i (Xi)

in the expression of Fi.
In the first part of the paper, we investigate problem (1.1) for a special case

that Fi is not superlinear, i = 1, 2. Given a, b > 0, we consider the total variation
entropy function Fi(s) := a|s− 1|, i = 1, 2 and the cost function b · C. In this case,
problem (1.1) will become

Ea,b(μ1, μ2) := inf
γ∈M(X1×X2)

Ea,b(γ|μ1, μ2), (1.2)

where Ea,b(γ|μ1, μ2) := a |μ1 − γ1| + a |μ2 − γ2| + b
∫
X1
C(x1, γx1)dγ1(x1).

As Fi is not superlinear, to deal with problem (1.2) we need new techniques being
different from [10, 18]. We define

ΦI :=
{

(ϕ1, ϕ2) ∈ Cb(X1) × Cb(X2) : ϕ1(x1), ϕ2(x2)

� −a for every xi ∈ Xi, i = 1, 2 and ϕ1(x1)

+ q(ϕ2) � b · C(x1, q) for every x1 ∈ X1, q ∈ P(X2)
}
. (1.3)

Next, we define the functional J : R → (−∞,+∞] by

J(φ) = sup
s>0

φ− a|1 − s|
s

=

⎧⎪⎨⎪⎩
+∞ if φ > a,

φ if − a � φ � a,

−a otherwise.
(1.4)
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Then we define

ΦJ :=
{

(ϕ1, ϕ2) ∈ Cb(X1) × Cb(X2) : ϕ1(x1), ϕ2(x2)

� a for every xi ∈ Xi, i = 1, 2 and J(ϕ1(x1))

+ q(J(ϕ2)) � b · C(x1, q) for every x1 ∈ X1, q ∈ P(X2)
}
. (1.5)

Our main result for the first part is a Kantorovich duality of problem (1.2).

Theorem 1.1. Let X1,X2 be locally compact, Polish metric spaces. Let C : X1 ×
P(X2) → [0,∞] be a lower semi-continuous function such that C(x1, ·) is convex
for every x1 ∈ X1. Then for every μi ∈ M(Xi), i = 1, 2 we have

Ea,b(μ1, μ2) = sup
(ϕ1,ϕ2)∈ΦI

2∑
i=1

∫
Xi

I(ϕi(xi)) dμi(xi)

= sup
(ϕ1,ϕ2)∈ΦJ

2∑
i=1

∫
Xi

ϕi(xi) dμi(xi),

where

I(ϕ) := inf
s�0

(sϕ+ a|1 − s|) =

⎧⎪⎨⎪⎩
a if ϕ > a

ϕ if − a � ϕ � a.

−∞ otherwise
(1.6)

We need the local compactness assumption on theorem 1.1 because in our proof
we use Riesz representation theorem stating that Ms(X), the space of all signed
Borel measures with finite masses on X, is the dual space of C0(X), and it is only
true for locally compact spaces. However, as the duality results for optimal entropy
transport problems in [18] were proved for general Polish spaces by a different
method, we expect that theorem 1.1 would still hold for these general spaces.

Now we present consequences of theorem 1.1. The first one is that we can get a
version of [6, corollary 2.6]. Let X1 = X2 = X be a Polish space, μ1, μ2 ∈ M(X),
a, b > 0 and c1 : X ×X → [0,+∞] be a lower semi-continuous function. We define
X̂ := X ∪ {∞̂} by attaching an isolated point ∞̂ to X. We endow X̂ with the
topology induced from the topology of X and the isolated point ∞̂. We extend the
cost function

ĉ1(x, y) :=

⎧⎨⎩
b · c1(x, y) if x �= ∞̂ and y �= ∞̂,

a if x ∈ X, y = ∞̂ or x = ∞̂, y ∈ X,
0 otherwise,

(1.7)
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and measures μ1, μ2 to X̂ by adding a Dirac measure at infinity: μ̂1 := μ1 + |μ2|δ∞̂,
μ̂2 := μ2 + |μ1|δ∞̂. Then the measures μ̂1 and μ̂2 have the same masses. We define

Γ(μ̂1, μ̂2) :=
{

γ̂ ∈ M(X̂ × X̂) : γ̂(A× X̂) = μ̂1(A), γ̂(X̂ ×A)

= μ̂2(A) for Borel A ⊂ X̂

}
.

Then we will get a version of [6, corollary 2.6] as follows.

Corollary 1.2. Given a locally compact, Polish metric space X, μ1, μ2 ∈ M(X),
a, b > 0, and a lower semi-continuous function c1 : X ×X → [0,+∞]. Then

sup
(ϕ̂1,ϕ̂2)∈L1(μ̂1)×L1(μ̂2)
ϕ̂1(x)+ϕ̂2(y)�ĉ1(x,y)

2∑
i=1

∫
X̂

ϕ̂i(x) dμ̂i(x) = inf
γ̂∈Γ(μ̂1,μ̂2)

∫
X̂×X̂

ĉ1(x, y) dγ̂(x, y).

Another consequence of theorem 1.1 is that we establish a Kantorovich duality
for generalized Wasserstein distance W̃ a,b

p , and a version of Kantorovich–Rubinstein
theorem for generalized Wasserstein distance W̃ a,b

1 .
Let (X, d) be a metric space. For a function f : X → R, we denote

‖f‖Lip := sup
x,y∈X,x�=y

|f(x) − f(y)|
d(x, y)

.

Corollary 1.3. Let (X, d) be a locally compact and Polish metric space. Then for
every a, b > 0, μ, ν ∈ M(X) and p � 1 we have

1. W̃ a,b
p (μ, ν)p = sup

(ϕ1,ϕ2)∈ΦW

{∫
X
I(ϕ1(x))dμ(x) +

∫
X
I(ϕ2(x))dν(x)

}
, where

ΦW := {(ϕ1, ϕ2) ∈ Cb(X) × Cb(X) | ϕ1(x) + ϕ2(y) � (b · d(x, y))p and

ϕ1(x), ϕ2(y) � −a, ∀x, y ∈ X}.

2. W̃ a,b
1 (μ, ν) = sup

{∫
X
fd(μ− ν) : f ∈ F

}
, where

F :=
{
f ∈ Cb(X), ‖f‖∞ � a, ‖f‖Lip � b

}
.

Note that corollary 1.3 (1) is proved for the case p = 1 in [9], and corollary 1.3
(2) is a main result of [21] proved by a different method there. In the second part
of the paper, we apply corollary 1.3 to study barycenters of generalized Wasserstein
distances. In 2002, Sturm investigated barycenters in non-positive curvature spaces
as he showed the existence, uniqueness and contraction of barycenters in such spaces
[24]. Because Wassertein spaces are not in the framework of non-positive curvature
spaces, to study the existence, uniqueness and properties of Wasserstein barycenters
over R

n, Agueh and Carlier introduced dual problems of the primal barycenter
problem and used convex analysis to handle them [1]. Recently, barycenters in
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Hellinger–Kantorovich spaces, siblings of Wasserstein spaces, have been investigated
in [8, 12].

On the other hand, in 2014, Piccoli and Rossi introduced generalized Wasserstein
distances [20] and established a duality Kantorovich–Rubinstein formula and a gen-
eralized Benamou–Breiner formula for them [21]. Combining corollary 1.3 with the
streamline of Agueh and Carlier’s work [1], we study the existence and consistency
of generalized Wasserstein barycenters.

More precisely, first we show the existence of generalized Wasserstein barycen-
ters whenever starting measures have compact supports. Second, we introduce and
investigate a dual problem of the barycenter problem. Although our barycenters
are not unique, we still can establish their consistency as Boissard, Le Gouic and
Loubes did in the Wasserstein case [5].

Our paper is organized as follows. In § 2, we review basic notations and general-
ized Wasserstein distances W̃ a,b

p . In § 3, we prove theorem 1.1, corollaries 1.2 and
1.3. In § 4, we study our primal barycenter problem and its dual problems. We also
show the existence and consistency of generalized Wasserstein barycenters in this
last section.

2. Preliminaries

Let (X, d) be a metric space. We denote by M(X) and P(X) the sets of all
non-negative Borel measures with finite mass and all probability Borel measures,
respectively.

Given a Borel measure μ, we denote its mass by |μ| := μ(X). In the general case, if
μ = μ+ − μ− is a signed Borel measure then |μ| := |μ+| + |μ−|. A setM ⊂ M(X) is
bounded if supμ∈M |μ| <∞, and it is tight if for every ε > 0, there exists a compact
subset Kε of X such that for all μ ∈M , we have μ(X\Kε) � ε.

For every μ1, μ2 ∈ M(X), we say that μ1 is absolutely continuous with respect
to μ2 and write μ1 
 μ2 if μ2(A) = 0 yields μ1(A) = 0 for every Borel subset A of
X. We call that μ1 and μ2 are mutually singular and write μ1 ⊥ μ2 if there exists
a Borel subset B of X such that μ1(B) = μ2(X\B) = 0. We write μ1 � μ2 if for all
Borel subset A of X we have μ1(A) � μ2(A).

For every p � 1, we denote by Mp(X) (reps. Pp(X)) the space of all measures
μ ∈ M(X) (reps. P(X)) with finite p-moment, i.e. there is some (and therefore
any) x0 ∈ X such that

∫
X
dp(x, x0)dμ(x) <∞.

For every measures μ1, μ2 ∈ M(X), a Borel probability measure π on X ×X is
called a transference plan between μ1 and μ2 if

|μ1|π(A×X) = μ1(A) and |μ2|π(X ×B) = μ2(B),

for every Borel subsets A,B ofX. We denote the set of all transference plan between
μ1 and μ2 by Π(μ1, μ2).

Given measures μ1, μ2 ∈ Mp(X) with the same mass, i.e. |μ1| = |μ2|. The
Wasserstein distance between μ1 and μ2 is defined by

Wp(μ1, μ2) :=
(
|μ1| inf

π∈Π(μ1,μ2)

∫
X×X

dp(x, y) dπ(x, y)
)1/p

.
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For each μ1, μ2 ∈ M(X) with |μ1| = |μ2|, we denote by Optp(μ1, μ2) the set of
all π ∈ Π(μ1, μ2) such that W p

p (μ1, μ2) = |μ1|
∫
X×X d

p(x, y)dπ(x, y). If (X, d) is
a Polish metric space, i.e. (X, d) is complete and separable then Optp(μ1, μ2) is
non-empty [25, theorem 1.3].

Theorem 2.1 (Prokhorov’s theorem). If (X, d) is a Polish metric space then a
subset M ⊂ M(X) is bounded and tight if and only if M is relatively compact
under the weak*-topology.

We now review the definitions of the generalized Wasserstein distances. They
were introduced by Piccoli and Rossi in [20, 21]. For convenience to establish
Kantorovich duality formulas for the generalized Wasserstein distances, we adapt
slightly the original ones.

Definition 2.2. Let X be a Polish metric space and let a, b > 0, p � 1. For every
μ1, μ2 ∈ M(X), the generalized Wasserstein distance W̃ a,b

p between μ1 and μ2 is
defined by

W̃ a,b
p (μ1, μ2) := (inf {C (μ̃1, μ̃2) | μ̃1, μ̃2 ∈ Mp(X), |μ̃1| = |μ̃2|})1/p ,

where C(μ̃1, μ̃2) = a |μ1 − μ̃1| + a |μ2 − μ̃2| + bpW p
p (μ̃1, μ̃2).

The following results can be adapted from the proofs of [20, proposition 1 and
theorem 3].

Proposition 2.3 [20, proposition 1]. If X is a Polish metric space then
(M(X), W̃ a,b

p ) is a metric space. Moreover, there exist μ̃1, μ̃2 ∈ Mp(X) such that
|μ̃1| = |μ̃2|, μ̃1 � μ1, μ̃2 � μ2, and W̃ a,b

p (μ1, μ2)p = C(μ̃1, μ̃2).

If measures μ̃1, μ̃2 ∈ Mp(X) have the same mass such that W̃ a,b
p (μ1, μ2)p =

C(μ̃1, μ̃2) then we say that (μ̃1, μ̃2) is an optimal for W̃ a,b
p (μ1, μ2).

Let X1,X2 be Polish metric spaces. For every γ ∈ M(X1 ×X2), we denote its
disintegration with respect to its first marginal by (γx1)x1∈X1 . We also denote by
γ1 and γ2 the first and second marginals of γ, i.e.

γ1(B1) = γ(B1 ×X2) and γ2(B2) = γ(X1 ×B2) for Borel sets Bi ⊂ Xi.

3. Unbalanced optimal total variation transport problems

Let C : X1 × P(X2) → [0,∞] be a lower semi-continuous function such that for
every x1 ∈ X1 we have

C(x1, tq1 + (1 − t)q2) � tC(x1, q1) + (1 − t)C(x1, q2),

for every t ∈ [0, 1], q1, q2 ∈ P(X2).
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For every a, b > 0, μi ∈ M(Xi), i = 1, 2 and every γ ∈ M(X1 ×X2), we recall

Ea,b (γ|μ1, μ2) := a |μ1 − γ1| + a |μ2 − γ2| + b

∫
X1

C(x1, γx1) dγ1(x1)

Then for every μi ∈ M(Xi), i = 1, 2 we have

Ea,b(μ1, μ2) := inf
γ∈M(X1×X2)

Ea,b(γ|μ1, μ2) = inf
γ∈M

Ea,b(γ|μ1, μ2),

where M := {γ ∈ M(X1 ×X2)|
∫
X
C(x1, γx1)dγ1(x1) <∞}.

Lemma 3.1. Let X1,X2 be Polish metric spaces and a, b > 0. For every μ1 ∈
M(X1) and μ2 ∈ M(X2) we have

Ea,b(μ1, μ2) = inf
γ∈M

Ea,b(γ|μ1, μ2) = inf
γ∈M�(μ1,μ2)

Ea,b(γ|μ1, μ2),

where M�(μ1, μ2) := {γ ∈M |γi � μi, i = 1, 2}.
Proof. It is clear that we only need to prove that

inf
γ∈M

Ea,b (γ|μ1, μ2) � inf
γ∈M�(μ1,μ2)

Ea,b (γ|μ1, μ2) .

For any α ∈M , let α1, α2 be the first and second marginals of α. Suppose that
α1 = fμ1 + μ⊥

1 is the Lebesgue decomposition of α1 with respect to μ1. We define
α1 := min{f, 1}μ1. Then α1 � μ1 and α1 � α1. By the Radon–Nikodym theorem
we get that there exists a measurable function g : X1 → [0,∞) such that α1 = gα1

and g � 1 α1-a.e.
Next, for every Borel subsets Ai of Xi, i = 1, 2, we define

α(A1 ×A2) :=
∫
A1×A2

g(x1) dα(x1, x2).

Then α(A1 ×X2) =
∫
A1
g(x1)dα1(x1) = α1(A1) for every Borel subset A1 of X1.

For any Borel subset A2 of X2, we define α2(A2) :=
∫
X1×A2

g(x1)dα(x1, x2).
Then α2(A2) = α(X1 ×A2). This means that α1 and α2 are the first and sec-
ond marginals of α. Since g � 1 α1-a.e one has α � α. Moreover, for every Borel
function h : X1 ×X2 → [0,+∞] we have∫

X1×X2

h(x1, x2) dα(x1, x2) =
∫
X1×X2

h(x1, x2)g(x1) dα(x1, x2)

=
∫
X1

(∫
X2

h(x1, x2)g(x1) dαx1(x2)
)

dα1(x1)

=
∫
X1

(∫
X2

h(x1, x2) dαx1(x2)
)

dα1(x1).

Therefore, by the uniqueness of disintegration we get that αx1 = αx1 α1-a.e. Then,∫
X1

C(x1, αx1) dα1(x1) �
∫
X1

C(x1, αx1) dα1(x1).

Notice that as α � α, we have α2 � α2.
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On the other hand, putting D := {x1 ∈ X1 : f(x1) � 1} then we get that

|μ1 − α1| =
∫
X1

|1 − f(x1)| dμ1 + μ⊥
1 (X1)

=
∫
D

(1 − f(x1)) dμ1 +
∫
X1\D

(f(x1) − 1) dμ1 + μ⊥
1 (X1)

=
∫
D

dμ1 −
∫
D

dα1 +
∫
X1\D

f(x1) dμ1 −
∫
X1\D

dα1 + μ⊥
1 (X1)

=
∫
D

dμ1 −
∫
D

dα1 +
∫
X1\D

dα1 −
∫
X1\D

dα1 − μ⊥
1 (X1\D) + μ⊥

1 (X1)

=
∫
D

dμ1 −
∫
D

dα1 +
∫
X1\D

dα1 −
∫
X1\D

dα1 +
∫
D

dα1 −
∫
D

fdμ1

= |μ1 − α1| +
∫
X1\D

dα1 −
∫
X1\D

dα1 +
∫
D

dα1 −
∫
D

dα1

= |μ1 − α1| + |α1 − α1| .

Observe that |α1 − α1| = |α2 − α2|, one gets

|μ1 − α1| + |μ2 − α2| = |μ1 − α1| − |α2 − α2| + |μ2 − α2| � |μ1 − α1| + |μ2 − α2| .

Hence, we obtain that Ea,b(α|μ1, μ2) � Ea,b(α|μ1, μ2).
Applying this process again for α, we can find a plan α̂ ∈M with its marginals

are α̂1 and α̂2 such that α̂ � α and

Ea,b (α|μ1, μ2) � Ea,b (α̂|μ1, μ2) ;

and α̂2 � μ2, α̂1 � α1 � μ1. Thus, α̂ ∈M�(μ1, μ2). Therefore, we get that

Ea,b (α|μ1, μ2) � E (α|μ1, μ2) � Ea,b (α̂|μ1, μ2) � inf
γ∈M�(μ1,μ2)

Ea,b (γ|μ1, μ2) .

This implies that infγ∈M Ea,b(γ|μ1, μ2) � infγ∈M�(μ1,μ2) Ea,b(γ|μ1, μ2). �

For every a, b > 0 and (μ1, μ2) ∈ M(X1) ×M(X2) we denote by Opta,b(μ1, μ2)
the set of all γ ∈M�(μ1, μ2) such that Ea,b(μ1, μ2) = Ea,b(γ|μ1, μ2).

Lemma 3.2. Let X1,X2 be Polish metric spaces. For every a, b > 0 and μi ∈
M(Xi), i = 1, 2 the set Opta,b(μ1, μ2) is a non-empty subset of M(X1 ×X2).

Proof. From lemma 3.1, we choose a sequence of γn ∈M�(μ1, μ2) such that

lim
n→∞Ea,b(γn|μ1, μ2) = Ea,b(μ1, μ2).

Then γni � μi for i = 1, 2 and every n ∈ N. Since μi ∈ M(Xi) for i = 1, 2, one has
{γn1 }n and {γn2 }n are tight and bounded. By [3, Lemma 5.2.2] one gets that {γn}n∈N
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is also tight and bounded. Thus, by Prokhorov’s theorem, passing to a subse-
quence we can assume that limn→∞ γn = γ under the weak*-topology for some
γ ∈ M(X ×X).

Next, for any Borel subset A1 of X1 we have

γ1(A1) = γ(A1 ×X2)

= inf{γ(V ) : V ⊂ X1 ×X2 open, A1 ×X2 ⊂ V }
� inf{γ(U ×X2) : U ⊂ X1 open, A1 ⊂ U}.

Applying [19, theorem 6.1 page 40] we obtain that γ(U ×X2) � lim infn→∞ γn

(U ×X2) � μ1(U) for every open subset U of X1. This yields, γ1 � μ1. Similarly,
we also have γ2 � μ2. Moreover, using [19, theorem 6.1 page 40] again we also have
that lim supn→∞ |γn| � |γ| � lim infn→∞ |γn|. This implies that limn→∞ |γn| =
|γ|. Hence, limn→∞ |μi − γn1 | = |μi − γi| , for i = 1, 2.

Applying [10, lemma 3.5] we obtain that

lim inf
n→∞

∫
X1

C(x1, γ
n
x1

) dγn1 (x1) �
∫
X1

C(x1, γx1) dγ1(x1).

So, we get that

a |μ1 − γ1| + a |μ2 − γ2| + b

∫
X1

C(x1, γx1) dγ1(x1) � Ea,b (μ1, μ2) .

This implies that Opta,b(μ1, μ2) is non-empty. �

We recall that the functionals I, J are defined as in (1.6), (1.4) and ΦI ,ΦJ are
defined as in (1.3),(1.5), respectively. We also set

Φ0
J := {ϕ = (ϕ1, ϕ2) ∈ C0(X1) × C0(X2) : ϕ ∈ ΦJ}.

Lemma 3.3. For every μ1 ∈ M(X1) and μ2 ∈ M(X2) one has

sup
(ϕ1,ϕ2)∈ΦJ

2∑
i=1

∫
Xi

ϕi(xi) dμi(xi) � sup
(ψ1,ψ2)∈ΦI

2∑
i=1

∫
Xi

I(ψi(xi)) dμi(xi).

Proof. For every (ϕ1, ϕ2) ∈ ΦJ and i ∈ {1, 2} we define ϕi := J(ϕi). Then for every
xi ∈ Xi we have that ϕi(xi) ∈ [−a, a] for i = 1, 2. Thus, from (1.6) one has I(ϕi) =
ϕi. Moreover, by the definition of ΦJ , we also get ϕ1(x1) + q(ϕ2) � b · C(x1, q) for
every x1 ∈ X1, q ∈ P(X2). Since J is continuous on (−∞, a] we get that (ϕ1, ϕ2) ∈
ΦI . As ϕi = J(ϕi) � ϕi for i = 1, 2 we obtain that

2∑
i=1

∫
Xi

ϕi(xi) dμi(xi) �
2∑
i=1

∫
Xi

ϕi(xi)dμi(xi) =
2∑
i=1

∫
Xi

I(ϕi(xi)) dμi(xi).

Hence, we get the result. �
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Lemma 3.4. Suppose that X1,X2 are Polish metric spaces. For every a, b > 0 and
μi ∈ M(Xi), i = 1, 2, we have

Ea,b(μ1, μ2) � sup
(ϕ1,ϕ2)∈ΦI

2∑
i=1

∫
Xi

I (ϕi(xi)) dμi(xi).

Proof. Let μi ∈ M(Xi), i = 1, 2. Thanks to lemma 3.2, let γ ∈ Opta,b(μ1, μ2). Then
γi � μi for i = 1, 2. By Radon–Nikodym theorem, there exists a measurable func-
tion fi : X → [0,∞) such that γi = fiμi and fi � 1 μi-a.e. Therefore, for every
(ϕ1, ϕ2) ∈ ΦI we get that

Ea,b (μ1, μ2) =
2∑
i=1

∫
Xi

a (1 − fi(xi)) dμi(xi) + b

∫
X1

C(x1, γx1) dγ1(x1)

�
2∑
i=1

∫
Xi

a (1 − fi(xi)) dμi(xi) +
∫
X1

(ϕ1(x1) + γx1(ϕ2)) dγ1(x1)

=
2∑
i=1

∫
Xi

a (1 − fi(xi)) dμi(xi) +
∫
X1

ϕ1(x1) dγ1

+
∫
X1

∫
X2

ϕ2(x2) dγx1(x2) dγ1(x1)

=
2∑
i=1

∫
Xi

(a (1 − fi(xi)) + fi(xi)ϕi(xi)) dμi(xi).

Furthermore, for all xi ∈ Xi, since fi(xi) � 0, fi � 1 μi-a.e and (1.6) we get∫
Xi

I(ϕi(xi)) dμi(xi) �
∫
Xi

(fi(xi)ϕi(xi) + a(1 − fi(xi)) dμi(xi), for i = 1, 2.

Hence, we get the result. �

For i = 1, 2, we denote by Ms(Xi) the space of signed Borel measures with a finite
mass on Xi. Then for every a, b > 0 we define the functional ETa,b : Ms(X1) ×
Ms(X2) → [0,+∞] by

ETa,b(μ1, μ2) =

{
infγ∈M Ea,b(γ|μ1, μ2) if (μ1, μ2) ∈ M(X1) ×M(X2),
+∞ otherwise.

Lemma 3.5. Let X1,X2 be Polish metric spaces and a, b > 0. Then

1. ETa,b is convex and satisfies that ETa,b(kμ1, kμ2) = kETa,b(μ1, μ2), for every
μi ∈ Ms(Xi), i = 1, 2 and k > 0.

2. If moreover X1 and X2 are locally compact then ETa,b is lower semi-
continuous under the weak*-topology.
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Proof. (1) Let μi ∈ Ms(Xi), i = 1, 2 and k > 0. If there exists i ∈ {1, 2} such that
μi �∈ M(Xi) then kETa,b(μ1, μ2) = +∞ = ETa,b(kμ1, kμ2). So we only need to
consider (μ1, μ2) ∈ M(X1) ×M(X2). Let γ ∈ Opta,b(kμ1, kμ2) then one has

ETa,b(kμ1, kμ2) = a |kμ1 − γ1| + a |kμ2 − γ2| + b

∫
X1

C(x1, γx1) dγ1(x1)

= k

(
a |μ1 − (γ1/k)| + a |μ2 − (γ2/k)|

+ b

∫
X1

C(x1, γx1) d(γ1(x1)/k)
)

� kETa,b(μ1, μ2).

Similarly, we also have kETa,b(μ1, μ2) � ETa,b(kμ1, kμ2) and thus
ETa,b(kμ1, kμ2) = kETa,b(μ1, μ2).

By this homogeneity property of ETa,b, to show that ETa,b is convex, we only
need to prove that

ETa,b(μ1, μ2) + ETa,b(ν1, ν2) � ETa,b(μ1 + ν1, μ2 + ν2),

for every (μ1, μ2), (ν1, ν2)∈Ms(X1)×Ms(X2). We will consider (μ1, μ2), (ν1, ν2) ∈
M(X1) ×M(X2) (the other cases are trivial). Let γ ∈ Opta,b(μ1, μ2) and γ ∈
Opta,b(ν1, ν2). By the convexity of C(x1, ·) and observe that ((dγ1/d(γ1 + γ1))γx1 +
(dγ1/d(γ1 + γ1))γx1

)x1∈X1 is the disintegration of γ + γ with respect to γ1 + γ1,
we have that∫

X1

C(x1, (γ + γ)x1) d(γ1 + γ1) �
∫
X1

C(x1, γx1) dγ1 +
∫
X1

C(x1, γx1
) dγ1.

This yields,

ETa,b(μ1, μ2) + ETa,b(ν1, ν2) � a
2∑
i=1

|(μi + νi) − (γi + γi)|

+ b

∫
X1

C(x1, γx1) dγ1(x1)

+ b

∫
X1

C(x1, γx1
) dγ1(x1)

� ETa,b(μ1 + ν1, μ2 + ν2).

(2) For i = 1, 2, let {μni } ⊂ M(Xi) such that μni → μi ∈ M(Xi) as n→ ∞ under
the weak*-topology. Then {μni } is relatively compact and by Prokhorov’s
theorem, {μni } is tight and bounded. For each n ∈ N let γn ∈ Opta,b(μn1 , μ

n
2 )

then γni � μni for i = 1, 2. This implies that {γni } is also tight and bounded.
Hence, by Prokhorov’s theorem, passing to a subsequence we can assume
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that limn→∞ γni = γi for γi ∈ M(Xi). Furthermore, for every μ, ν ∈ M(Xi)
by [23, theorem 6.19] we have that

|μ− ν| = sup
{∫

Xi

fd(μ− ν)|f ∈ C0(Xi), ‖f‖∞ � 1
}
.

From this formula, we get that lim infn→∞ |μni − γni | � |μi − γi| for i = 1, 2. By
[10, Lemma 3.5] we get that

∫
X1
C(x1, γx1)dγ1(x1) is lower semi-continuous under

the weak*-topology. Therefore,

lim inf
n→∞ Ea,b(μn1 , μ

n
2 ) � a|μ1 − γ1| + a|μ2 − γ2| + b

∫
X1

C(x1, γx1) dγ1(x1)

� Ea,b(μ1, μ2).

This means that Ea,b is lower semi-continuous. Therefore, ETa,b is also lower semi-
continuous since M(X1) ×M(X2) is closed. �

Proof of theorem 1.1. Denote by (ETa,b)∗ the Fenchel conjugate of ETa,b, i.e.

(ETa,b)∗(ϕ1, ϕ2) := sup
(m1,m2)

{ 2∑
i=1

∫
Xi

ϕi(xi) dmi(xi) − Ea,b(m1,m2)
}
,

where (m1,m2) runs over Ms(X1) ×Ms(X2), for every (ϕ1, ϕ2) ∈ C0(X1) ×
C0(X2). Notice that the dual space of C0(Xi) is Ms(Xi). By lemma 3.5 we get
that

(ETa,b)∗(ϕ1, ϕ2) =
{

0 if (ϕ1, ϕ2) ∈ ΦE ,
+∞ otherwise,

where

ΦE :=
{

(ϕ1, ϕ2) ∈ C0(X1) × C0(X2) :
2∑
i=1

∫
Xi

ϕi(xi) dmi(xi) � ETa,b(m1,m2)

for every (m1,m2) ∈ Ms(X1) ×Ms(X2)
}
.

We now check that ΦE = Φ0
J . Let any (ϕ1, ϕ2) ∈ Φ0

J . Let mi ∈ Ms(Xi), i =
1, 2. If ETa,b(m1,m2) = +∞ then it is clear that

∑2
i=1

∫
Xi
ϕi(xi)dmi(xi) �

ETa,b(m1,m2). Thus, we only consider (m1,m2) ∈ M(X1) ×M(X2). By lemmas
3.3 and 3.4 we get that

2∑
i=1

∫
Xi

ϕidmi � sup
(φ1,φ2)∈ΦI

2∑
i=1

∫
Xi

I(φi) dmi � Ea,b(m1,m2) = ETa,b(m1,m2).

Therefore, (ϕ1, ϕ2) ∈ ΦE and thus Φ0
J ⊂ ΦE .
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Now, let any (ϕ1, ϕ2) ∈ ΦE . We will show that (ϕ1, ϕ2) ∈ Φ0
J . Denote by η the

null measure onX1 ×X2. As (ϕ1, ϕ2) ∈ ΦE , for every (m1,m2) ∈ M(X1) ×M(X2)
one has

2∑
i=1

∫
Xi

ϕi(xi)dmi(xi) � Ea,b(m1,m2) � Ea,b(η|m1,m2) = a(|m1| + |m2|).

For every z ∈ X1, setting m1 := δz and m2 is the null measure on X2, we obtain
that ϕ1(z) � a. Similarly, we also have ϕ2 � a on X2.

On the other hand, for any w ∈ X1 and q ∈ P(X2) putting m1 := δw,m2 := q|B
and γ := δw ⊗ q, where B := {x2 ∈ X2|ϕ2(x2) � −a}. Then

ϕ1(w) +
∫
B

ϕ2dq =
2∑
i=1

∫
Xi

ϕi(xi) dmi(xi) � Ea,b(γ|m1,m2)

= a.q(X2\B) + b · C(w, q).

From (1.4), if ϕ1(w) < −a then

J(ϕ1(w)) + q(J(ϕ2)) � −a+ a = 0 � b · C(w, q),

and if ϕ1(w) � −a then

J(ϕ1(w)) + q(J(ϕ2)) = ϕ1(w) +
∫
B

J(ϕ2) dq +
∫
X2\B

J(ϕ2) dq

= ϕ1(w) +
∫
B

ϕ2dq − a.q(X2\B)

� b · C(w, q).

Therefore, (ϕ1, ϕ2) ∈ Φ0
J and hence ΦE ⊂ Φ0

J . Thus, ΦE = Φ0
J .

Moreover, by lemma 3.5 one has ETa,b is convex and lower semi-continuous.
Hence, applying [11, proposition 3.1, page 14 and proposition 4.1, page 18] we get
that (ETa,b)∗∗ = ETa,b. Therefore,

ETa,b(μ1, μ2) = sup
(ϕ1,ϕ2)∈C0(X1)×C0(X2)

{
2∑
i=1

∫
Xi

ϕi(xi) dμi(xi) − (ETa,b)∗(ϕ1, ϕ2)

}

= sup
(ϕ1,ϕ2)∈Φ0

J

2∑
i=1

∫
Xi

ϕi(xi) dμi(xi)

� sup
(ϕ1,ϕ2)∈ΦJ

2∑
i=1

∫
Xi

ϕi(xi) dμi(xi).

Now, using lemmas 3.3 and 3.4 we get the result. �
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Proof of corollary 1.2. We define the cost function C : X × P(X) → [0,∞] by

C(x, q) :=
∫
X

c1(x, y)dq(y),

for every x ∈ X and q ∈ P(X). We will check that C is lower semi-continuous on
X × P(X). Let (xn, qn) ⊂ X × P(X) such that (xn, qn) → (x0, q0) as n→ ∞. Then
as c1 is lower semi-continuous on X ×X and non-negative, by [10, lemma 4.2] we
get that

lim inf
n→∞ C(xn, qn) = lim inf

n→∞

∫
X

c1(xn, y) dqn(y) �
∫
X

c1(x0, y) dq0(y) = C(x0, q0).

This means that C is lower semi-continuous on X × P(X). Next, a one-to-one
correspondence between γ ∈ M�(μ1, μ2) and γ̂ ∈ Γ(μ̂1, μ̂2) is given by

γ̂ = γ + |1 − f1|μ1 ⊗ δ∞̂ + δ∞̂ ⊗ |1 − f2|μ2 + |γ|δ(∞̂,∞̂),

where fi is the Radon–Nikodym derivative of γi with respect to μi. From this and
theorem 1.1 we obtain that

inf
γ̂∈Γ(μ̂1,μ̂2)

∫
X̂×X̂

ĉ1(x, y) dγ̂(x, y) = Ea,b(μ1, μ2) = sup
(ϕ1,ϕ2)∈ΦJ

2∑
i=1

∫
X

ϕi(x) dμi(x).

Now, for any (ϕ1, ϕ2) ∈ ΦJ we define ϕ̂i(x) = J(ϕi(x)) if x ∈ X and ϕ̂i(x) = 0
if x = ∞̂ for i = 1, 2. Then ϕ̂i ∈ L1(μ̂i) for i = 1, 2. As (ϕ1, ϕ2) ∈ ΦJ , for every
x, y ∈ X we have

J(ϕ1(x)) + J(ϕ2(y)) = J(ϕ1(x)) + δy(J(ϕ2)) � b · C(x, δy) = b · c1(x, y).

Hence ϕ̂1(x) + ϕ̂2(y) � ĉ1(x, y) for every x, y ∈ X̂. Moreover, we also have∫
X̂

ϕ̂1dμ̂1 =
∫
X

ϕ̂1dμ1 + ϕ̂1(∞̂)|μ2| =
∫
X

J(ϕ1) dμ1 �
∫
X

ϕ1dμ1.

Similarly,
∫
X̂
ϕ̂2dμ̂2 �

∫
X
ϕ2dμ2. Therefore,

sup
(ϕ1,ϕ2)∈ΦJ

2∑
i=1

∫
X

ϕi(x) dμi(x) � sup
(ϕ̂1,ϕ̂2)∈L1(μ̂1)×L1(μ̂2)
ϕ̂1(x)+ϕ̂2(y)�ĉ1(x,y)

2∑
i=1

∫
X̂

ϕ̂i(x) dμ̂i(x).

This implies that

inf
γ̂∈Γ(μ̂1,μ̂2)

∫
X̂×X̂

ĉ1(x, y) dγ̂(x, y) � sup
(ϕ̂1,ϕ̂2)∈L1(μ̂1)×L1(μ̂2)
ϕ̂1(x)+ϕ̂2(y)�ĉ1(x,y)

2∑
i=1

∫
X̂

ϕ̂i(x) dμ̂i(x)

� inf
γ̂∈Γ(μ̂1,μ̂2)

∫
X̂×X̂

ĉ1(x, y) dγ̂(x, y).

Hence, we get the result. �
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Proof of corollary 1.3. (1) Applying theorem 1.1 for X1 = X2 = X and C(x, q) =∫
X
c(x, y)dq(y), where c(x, y) = (b · d(x, y))p for every x, y ∈ X then we get the

result.

(2) We use the techniques of the proof of [25, theorem 1.14] to prove (2). For every
(ψ,ϕ) ∈ ΦW , we define ϕd(x) := infy∈X [b · d(x, y) − ϕ(y)] for every x ∈ X.
Then ϕd is b-Lipschitz function and ϕd(x) ∈ [−a, a] for every x ∈ X. There-
fore, ϕd ∈ F. Now we define ϕdd(y) := infx∈X [b · d(x, y) − ϕd(x)] for every
y ∈ X. Then ϕdd is b-Lipschitz and

ϕd(x) + ϕdd(y) � b · d(x, y), for every x, y ∈ X.

As −a � ϕd(x) � a we also get that −a � ϕdd(y) � a for every y ∈ X. Therefore
we have ϕdd ∈ F and (ϕd, ϕdd) ∈ ΦW .

On the other hand, as ψ(x) + ϕ(y) � b · d(x, y) for every x, y ∈ X we get that

ψ(x) � inf
y∈X

[b · d(x, y) − ϕ(y)] = ϕd(x) for every x ∈ X.

Similarly, from the definitions of ϕdd we also have ϕdd(y) � ϕ(y) for every y ∈ Y .
Hence ∫

X

I (ψ) dμ+
∫
X

I (ϕ) dν �
∫
X

I
(
ϕd

)
dμ+

∫
X

I
(
ϕdd

)
dν.

Therefore,

sup
(ψ,ϕ)∈ΦW

{∫
X

I (ψ) dμ+
∫
X

I (ϕ) dν
}

� sup
ϕ∈Cb(X)

{∫
X

I
(
ϕd

)
dμ+

∫
X

I
(
ϕdd

)
dν

}
.

As ϕd is b-Lipschitz we get

−ϕd(x) � inf
y∈X

[b · d(x, y) − ϕd(y)].

On the other hand, infy∈X [b · d(x, y) − ϕd(y)] � −ϕd(x). Hence

ϕdd(x) = inf
y∈X

[b · d(x, y) − ϕd(y)] = −ϕd(x).

Thus

sup
(ψ,ϕ)∈ΦW

{∫
X

I(ψ) dμ+
∫
X

I(ϕ) dν
}

� sup
ϕ∈Cb(X)

{∫
X

I
(
ϕd

)
dμ+

∫
X

I
(
ϕdd

)
dν

}
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= sup
ϕ∈Cb(X)

{∫
X

I
(
ϕd

)
dμ+

∫
X

I
(−ϕd) dν

}
� sup

ϕ∈F

{∫
X

I (ϕ) dμ+
∫
X

I (−ϕ) dν
}

� sup
(ψ,ϕ)∈ΦW

{∫
X

I (ψ) dμ+
∫
X

I (ϕ) dν
}
.

So we must have equality everywhere and get the result. �

Remark 3.6. (1) Corollary 1.3 (2) has been proved in [21, theorem 2] for the case
a = b = 1 and X = R

n by a different method.

(2) [14, 15] Let (X, d) be a Polish metric space. Let M0(X) be the set of all μ ∈
Ms(X) such that μ(X) = 0. For every μ ∈ M0(X), we denote by Ψμ the set of
all non-negative measures γ ∈ M(X ×X) such that γ(X ×A) − γ(A×X)
= μ(A) for every Borel A ⊂ X. Then we define for every μ ∈ M0(X),

‖μ‖0
d := inf

γ∈Ψμ

{∫
X×X

d(x, y)dγ(x, y)
}
.

Now, on the vector space Ms(X) we define an extension Kantorovich–Rubinstein
norm as following

‖μ‖d := inf
ν∈M0(X)

{
‖ν‖0

d + |μ− ν|(X)
}
, for every μ ∈ Ms(X).

Then from [14, theorem 0] (when X is compact) or [15, theorem 1] (when X is a
general Polish metric space), applying Hahn–Banach theorem we get that

‖μ‖d = sup
{∫

X

fd(μ− ν) : f ∈ F

}
,

where F :=
{
f ∈ Cb(X), ‖f‖∞ � 1, ‖f‖Lip � 1

}
. We thank Benedetto Piccoli and

Francesco Rossi for pointing [14] out to us, and we have found [15] after that.

Using corollary 1.3 (2) we get another proof of [22, lemma 5].

Corollary 3.7. Let X be a locally compact, Polish metric space. For every μ, ν, η ∈
M(X) we have

W̃ a,b
1 (μ+ η, ν + η) = W̃ a,b

1 (μ, ν).

4. Barycenter problem and an its dual problem

Let (X, d) be a locally compact, Polish metric space. For every integer k � 2, we
consider k measures μ1, μ2, . . . , μk in M(X) such that supp(μi) is a compact subset
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of X for every i ∈ {1, . . . , k}. Let λ1, λ2, . . . , λk be positive real numbers such that∑k
i=1 λi = 1 and let K =

⋃k
i=1supp(μi), we consider the following problem

(B) inf
supp(μ)⊂K

k∑
i=1

λiW̃
a,b
2 (μi, μ)2 .

Remark 4.1. Let X = R
d. For every m > 0, a, b � 0 and μ1, μ2 ∈ M(X) we define

W̃ a,b
2,m(μ1, μ2) := inf

γi∈M2(X),γi�μi,|γ|=m
a

2∑
i=1

|μi − γi| + b

∫
X×X

|x− y|2dγ(x, y).

In [16] Kitagawa and Pass introduced and investigated the following partial
barycenter problem:

inf
μ∈M(X),|μ|=m

k∑
i=1

W̃ 0,1
2,m(μi, μ)2.

The methods there are different from us as they study their partial barycenters
via multi-marginal optimal transports while we use duality formulations for our
barycenter problems in generalized Wasserstein spaces.

Theorem 4.2. Problem (B) has solutions.

Proof. For every μ ∈ M(X) such that supp(μ) ⊂ K, let J(μ) =
∑k
i=1 λi

W̃ a,b
2 (μi, μ)2. Let {μn}n∈N

be a minimizing sequence of (B). If there exists n0 such
that supp(μn0) = X then X = K, and thus X is compact. Hence, {μn}n∈N

is tight.
Otherwise, for every n ∈ N, let x �∈ supp(μn) then there exists an open neighbor-
hood Ux of x such that μn(Ux) = 0. Since X is separable and {Ux}x∈X\supp(μn) is
an open cover of X\supp(μn), applying Lindelöf theorem there is a countable sub-
cover {Uxi

}i. Therefore, μn(X\supp(μn)) = 0. Moreover, supp(μn) ⊂ K for every
n ∈ N. Thus, for every n ∈ N , μn(X\K) = 0. It implies that {μn}n∈N

is tight.
We now prove that {μn}n∈N

is bounded. For every n ∈ N and every i ∈
{1, 2, . . . , k}, using corollary 1.3 (1) we get that

W̃ a,b
2 (μn, μi)

2 = sup
{∫

X

ϕ1(x)dμn(x) +
∫
X

ϕ2(x)dμi(x)| (ϕ1, ϕ2) ∈ ΦW

}
,

We set ϕ1(x) = a, ϕ2(x) = −a for every x ∈ X then

λi.W̃
a,b
2 (μn, μi)

2 � λiaμ
n(X) − λiaμi(X)

This yields,

|μn| � 1
a
J (μn) +

k∑
i

λi|μi|, for every n ∈ N.

As μi ∈ M(X) for every i ∈ {1, 2, . . . , k} and J(μn) is bounded, we obtain that
{μn}n∈N

is bounded. Therefore, applying Prokhorov’s theorem, passing to a sub-
sequence we can assume that μn → μ as n→ ∞ in the weak*-topology for some
μ ∈ M(X).
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We now show that supp(μ) ⊂ K. As X\K is an open set, applying [19, theorem
6.1] we get that

0 = lim inf
n→∞ μn(X\K) � μ(X\K).

Therefore, X\K ⊂ X\supp(μ). Hence, supp(μ) ⊂ K.
Next, we will check that W̃ a,b

2 (μn, μ) → 0 as n→ ∞. If |μ| = 0 then we are done.
If |μ| > 0 then there exists N > 0 such that |μn| > 0 for all n � N . For each n � N ,
we define νn := |μ|μn/|μn| then |νn| = |μ|. Therefore,

W̃ a,b
2 (μn, μ)2 � a|μn − νn| + b2W 2

2 (νn, μ) = a ||μn| − |μ|| + b2W 2
2 (νn, μ).

Moreover, since μn → μ as n→ ∞ one has νn → μ as n→ ∞. Observe that νn and
μ are concentrated in compact set K, applying [26, definition 6.8 and theorem 6.9]
we obtain that limn→∞W2(νn, μ) = 0. This yields,

lim sup
n→∞

W̃ a,b
2 (μn, μ)2 � a lim

n→∞ ||μn| − |μ|| + lim
n→∞ b2W 2

2 (μn, μ) = 0.

Notice that lim infn→∞ W̃ a,b
2 (μn, μ) � 0. Therefore, limn→∞ W̃ a,b

2 (μn, μ) = 0. This
implies that limn→∞ J(μn) = J(μ). Hence, we get the result. �

Definition 4.3. Let X be a locally compact, Polish metric space. For every
integer k � 2, let μ1, . . . , μk ∈ M(X) such that supp(μi) is compact, for every
i ∈ {1, . . . , k}. Let λ1, . . . , λk > 0 such that

∑k
i=1 λi = 1. We say that μ ∈ M(X)

is a generalized Wasserstein barycenter of (μ1, . . . , μk) with weights (λ1, . . . , λk) if
μ is a solution of (B). We denote by BC((μi, λi)1�i�k) the set of all generalized
Wasserstein barycenters of (μ1, . . . , μk) with weights (λ1, . . . , λk).

In general, barycenters in a generalized Wasserstein space are not unique.

Example 4.4. Let X = R, a = b = 1 and λ1 = λ2 = 1/2. For every x � 0 let μ1 =
δx and μ2 = 3δx. Then we have {μ ∈ M(R)|supp(μ) ⊂ {x}} = {qδx|q � 0}. For
every q � 0, let (μ̃1, μ̃2) be an optimal for W̃ 1,1

2 (δx, qδx). Since |μ̃1| = |μ̃2|, μ̃1 �
δx, μ̃2 � qδx, we must have μ̃1 = μ̃2 = rδx where 0 � r � min{q, 1}. Hence, we get
that

W̃ 1,1
2 (δx, qδx)2 = min{q + 1 − 2r|0 � r � min{q, 1}}.

Similarly, we also get that

W̃ 1,1
2 (3δx, qδx)2 = min{q + 3 − 2s|0 � s � min{q, 3}}.

It is easy to check that

λ1.min{q + 1 − 2r|0 � r � min{q, 1}}
+ λ2.min{q + 3 − 2s|0 � s � min{q, 3}} = 1,

and the minimum is attained when q ∈ [1, 3]. Therefore, BC((μ1, λ1), (μ2, λ2)) =
{qδx|q ∈ [1, 3]}.
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We now prove the consistency of barycenters in generalized Wasserstein spaces
which has been shown in [5, theorem 3.1] for the Wasserstein setting.

Theorem 4.5. Let (X, d) be a locally compact, Polish metric space. For every
integer k � 2, let {μni } ⊂ M(X) be sequences converging in the generalized Wasser-
stein distance to compactly supported measure μi ∈ M(X) for every i ∈ {1, . . . , k}.
Let K =

⋃k
i=1supp(μi) and let sequences λn1 , . . . , λ

n
k > 0 such that

∑k
i=1 λ

n
i = 1 for

every n ∈ N and λni converges to λi > 0 for i = 1, . . . , k. For each n ∈ N, suppose
that supp(μni ) ⊂ K for every i ∈ {1, . . . , k}. Then BC((μni , λ

n
i )1�i�k) is a non-

empty set for every n ∈ N. Moreover, for every n ∈ N, let μnB ∈ BC((μni , λ
n
i )1�i�k)

then the sequence {μnB} is precompact in (M(X), W̃ a,b
2 ) and any its limit point is

a generalized Wasserstein barycenter of (μ1, . . . , μk) with weights (λ1, . . . , λk).

Proof. Since supp(μni ) ⊂ K and K is compact, one has supp(μni ) is compact for
every n ∈ N and every i ∈ {1, . . . , k}. Therefore, BC((μni , λ

n
i )1�i�k) is a non-empty

set for every n ∈ N, this follows from theorem 4.2.
We now prove the second part. Since μnB ∈ BC((μni , λ

n
i )1�i�k), we get that

supp(μnB) ⊂ ⋃k
i=1supp(μni ) ⊂ K, for every n ∈ N. Then μnB(X\K) = 0 for every

n ∈ N. Therefore, {μnB} is tight. Let μB ∈ BC((μi, λi)1�i�k). Since W̃ a,b
2 (μni , μi) →

0 as n→ ∞ for every i ∈ {1, . . . , k} we get that

lim
n→∞ W̃ a,b

2 (μB , μni ) = W̃ a,b
2 (μB , μi) <∞

Therefore, {W̃ a,b
2 (μB , μni )}n is bounded for every i ∈ {1, . . . , k}. Moreover,

k∑
i=1

λni W̃
a,b
2 (μnB , μ

n
i )

2 �
k∑
i=1

λni W̃
a,b
2 (μB , μni )

2
, for every n ∈ N. (4.1)

This yields, W̃ a,b
2 (μnB , μ

n
i ) is bounded for every i ∈ {1, . . . , k}. As μni → μi as n→ ∞

in the weak*-topology, applying [19, theorem 6.1] we get that limn→∞ μni (X) =
μi(X) <∞. Thus, {μni } is bounded for every i ∈ {1, . . . , k}. Therefore, using
corollary 1.3 (1) and by the same arguments as in the proof of theorem 4.2 we
obtain that {μnB} is bounded. Hence, applying Prokhorov’s theorem, passing to a
subsequence we can assume that μnB → μ̂B as n→ ∞ in the weak*-topology for
some μ̂B ∈ M(X). Observe that, from μnB(X\K) = 0 for every n ∈ N and X\K is
an open set, we get that μ̂B(X\K) = 0 and thus supp(μ̂B) ⊂ K. By the same argu-
ments in the proof of theorem 4.2 we also have W̃ a,b

2 (μnB , μ̂B) → 0 as n→ ∞. This
implies that the sequence {μnB} is precompact in generalized Wasserstein topology
and we also get that

lim
n→∞ W̃ a,b

2 (μnB , μ
n
i ) = W̃ a,b

2 (μ̂B , μi) , for every i ∈ {1, . . . , k}.
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Hence, since (4.1) we get that

k∑
i=1

λiW̃
a,b
2 (μ̂B , μi)

2 = lim
n→∞

k∑
i=1

λni W̃
a,b
2 (μnB , μ

n
i )

2

� lim
n→∞

k∑
i=1

λni W̃
a,b
2 (μB , μni )

2

=
k∑
i=1

λiW̃
a,b
2 (μB , μi)

2
.

Therefore, μ̂B ∈ BC((μi, λi)1�i�k). �

Next, we will study the a dual problem of problem (B). For every λ > 0 and every
function f ∈ Cb(K) such that f(x) � λa for every x ∈ K where K =

⋃k
i=1supp(μi),

we define Sλf(x) := infy∈K
{
λb2d2(x, y) − f(y)

}
and Sλf(x) := min {Sλf(x), λa}.

For every integer k � 2 and for each i ∈ {1, 2, . . . , k} we define function Hi :
Cb(K) → R by

Hi(f) :=

⎧⎨⎩−
∫
K

Sλi
f(x)dμi(x) if f ∈ Fλi

+∞ otherwise,

where Fλi
:= {f ∈ Cb(K)|f(x) � λia,∀x ∈ K}. Then Hi is convex on Fλi

.
We denote by Ms(K) (resp. Mc(K)) the space of signed (resp. non-negative)

Radon measures μ with a finite mass on X such that μ is concentrated on K, i.e.
μ(X\K) = 0. Then Ms(K) is the dual space of Cb(K), since K is compact. For
every μ ∈ Ms(K), the Legendre–Fenchel transform of Hi is

H∗
i (μ) = sup

{∫
K

f(x) dμ(x) −Hi(f)|f ∈ Cb(K)
}

= sup
{∫

K

f(x) dμ(x) −Hi(f)|f ∈ Fλi

}
= sup

{∫
K

f(x)dμ(x) +
∫
K

Sλi
f(x) dμi(x)|f ∈ Fλi

}
.

We consider the following problem

(B∗) sup

{
k∑
i=1

∫
K

Sλi
fi(x) dμi(x)|fi ∈ Fλi

,

k∑
i=1

fi = 0

}
.

Lemma 4.6. Let X be a locally compact, Polish metric space then inf(B) � sup(B∗).

Proof. For i = 1, 2, . . . , k let any fi ∈ Fλi
such that

∑k
i=1 fi = 0. Then Sλi

fi(x) +
fi(y) � λib

2d2(x, y) for every x, y ∈ K and every i ∈ {1, 2, . . . , k}. For every μ ∈
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Mc(K), let γi ∈M�(μ, μi) be an optimal plan for W̃ a,b
2 (μ, μi). Since μi is

concentrated on K for every i = 1, . . . , k, we get that

W̃ a,b
2 (μ, μi)

2 = a
(
μ− π1


γ
i
)
(K) + a

(
μi − π2


γ
i
)
(K) + b2

∫
K×K

d2(x, y) dγi(x, y).

As γi ∈M�(μ, μi), by Radon–Nikodym theorem there exist measurable functions
ϕ1, ϕ2 : K → [0,+∞) such that π1


γ
i = ϕ1μ, π2


γ
i = ϕ2μi and ϕ1 � 1 μ-a.e, ϕ2 �

1 μi-a.e. Therefore, we get that

W̃ a,b
2 (μ, μi)

2 = a

∫
K

(1 − ϕ1) dμ+ a

∫
K

(1 − ϕ2) dμi + b2
∫
K×K

d2(x, y) dγi(x, y)

� a

∫
K

(1 − ϕ1) dμ+ a

∫
K

(1 − ϕ2) dμi

+
1
λi

∫
K×K

[
fi(x) + Sλi

fi(y)
]
dγi(x, y)

=
∫
K

[
a (1 − ϕ1) +

1
λi
fi.ϕ1

]
dμ+

∫
K

[
a (1 − ϕ2) +

1
λi
Sλi

fi.ϕ2

]
dμi.

Moreover, ϕ1(x), ϕ2(x) � 0 for every x ∈ X and ϕ1 � 1 μ-a.e, ϕ2 � 1 μi-a.e,
fi(x)/λi � a, Sλi

fi(x)/λi � a for every x ∈ K. Therefore, we obtain that

a (1 − ϕ1(x)) + (fi(x)/λi) .ϕi(x) � fi(x)/λi, μ− a.e,

a (1 − ϕ2(x)) +
(
Sλi

fi(x)/λi
)
.ϕ2(x) � Sλi

fi(x)/λi, μi − a.e.

Hence, for every i ∈ {1, 2, . . . , k}, we get that

λiW̃
a,b
2 (μ, μi)

2 �
∫
K

fi(x) dμ(x) +
∫
K

Sλi
fi(x) dμi(x). (4.2)

Thus,

k∑
i=1

λiW̃
a,b
2 (μ, μi)

2 �
k∑
i=1

∫
K

fi(x) dμ(x) +
k∑
i=1

∫
K

Sλi
fi(x) dμi(x)

=
k∑
i=1

∫
K

Sλi
fi(x) dμi(x).

This yields,

inf

{
k∑
i=1

λiW̃
a,b
2 (μ, μi)

2 | supp(μ) ⊂ K

}
�

k∑
i=1

∫
K

Sλi
fi(x) dμi(x).

Hence, we get the result. �

Lemma 4.7. Let X be a locally compact, Polish metric space. Then for every i ∈
{1, 2, . . . , k} we have H∗

i (μ) = λiW̃
a,b
2 (μ, μi)2 if μ ∈ Mc(K) and +∞ otherwise.
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Proof. If μ ∈ Ms(K)\Mc(K) then there exists g ∈ Cb(K), g � 0 such that∫
K
g(x)dμ(x) > 0. For every t ∈ R, t � 0 let f = t.g then f ∈ Fλi

and Sλi
(tf(x)) �

0 for every x ∈ K. Therefore, H∗
i (μ) � supt�0

∫
K
fdμ = +∞.

We now consider μ ∈ Mc(K). Since (4.2), it is clear that λiW̃
a,b
2 (μ, μi)2 � H∗

i (μ).
So we need to prove that λiW̃

a,b
2 (μ, μi)2 � H∗

i (μ). We define

ΦK :=
{
(ϕ1, ϕ2) ∈ Cb(K) × Cb(K) : ϕ1(x) + ϕ2(y) � b2d2(x, y), ϕ1(x), ϕ2(y)

� −a, for every x, y ∈ K
}
.

Let any (ϕ1, ϕ2) ∈ ΦK then λiϕ1(x) + λiϕ2(y) � λib
2d2(x, y) for every x, y ∈ K

and every i = 1, . . . , k. Therefore, λiϕ2(y) � Sλi
(λiϕ1(y)) for every y ∈ K. Observe

that ϕ2(y) ∈ [−a, a] for every y ∈ K, we get that λiϕ2(y) � Sλi
(λiϕ1(y)) for every

y ∈ K. As λiϕ1(x) � λia for every x ∈ K, one has λiϕ1 ∈ Fλi
. Hence, we obtain

that ∫
K

λiϕ1(x) dμ(x) +
∫
K

λiϕ2(y) dμi(y)

�
∫
K

λiϕ1(x) dμ(x) +
∫
K

Sλi
(λiϕ1(y)) dμi(y)

� H∗
i (μ).

Applying corollary 1.3 (1) we get that

W̃ a,b
2 (μ, μi)

2 = sup
(ϕ1,ϕ2)∈ΦK

{∫
K

ϕ1(x) dμ(x) +
∫
K

ϕ2(y) dμi(y)
}

� 1
λi
H∗
i (μ).

Hence, λiW̃
a,b
2 (μ, μi)2 � H∗

i (μ) for every μ ∈ Mc(K) and every i ∈ {1, 2, . . . , k}.
�

Let F := {f ∈ Cb(K)|f(x) � a for every x ∈ K}. We define H : Cb(K) → R by
H(f) = inf

{∑k
i=1Hi(fi)|fi ∈ Fλi

,
∑k
i=1 fi = f

}
if f ∈ F and +∞ otherwise.

Lemma 4.8. H is convex on F and H∗(μ) =
∑k
i=1H

∗
i (μ) for every μ ∈Ms(K).

Proof. For every g1, g2 ∈ F and every t ∈ [0, 1] we will check that H(tg1 +
(1 − t)g2) � tH(g1) + (1 − t)H(g2). Let any f i, f̂i ∈ Fλi

such that
∑k
i=1 f i = g1

and
∑k
i=1 f̂i = g2 then tf i + (1 − t)f̂i ∈ Fλi

and
∑k
i=1[tf i + (1 − t)f̂i] = tg1 + (1 −

t)g2. As Hi is convex on Fλi
for every i = 1, . . . , k, we get that

t
k∑
i=1

Hi

(
f i
)

+ (1 − t)
k∑
i=1

Hi

(
f̂i

)
=

k∑
i=1

[
tHi

(
f i
)

+ (1 − t)Hi

(
f̂i

)]

�
k∑
i=1

Hi

(
tf i + (1 − t)f̂i

)
� H (tg1 + (1 − t)g2) .

Therefore, H(tg1 + (1 − t)g2) � tH(g1) + (1 − t)H(g2). Hence, H is convex on F .
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We now show that H∗(μ) =
∑k
i=1H

∗
i (μ) for every μ ∈Ms(K). For every μ ∈

Ms(K), by definition of the Legendre–Fenchel one has

H∗(μ) = sup
f∈Cb(K)

{∫
K

fdμ−H(f)
}

= sup
f∈F

{∫
K

fdμ−H(f)
}

= sup
f∈F

{∫
K

fdμ− inf

{
k∑
i=1

Hi(fi)|fi ∈ Fλi
,
k∑
i=1

fi = f

}}

= sup
f∈F

{∫
K

fdμ+ sup

{
k∑
i=1

∫
K

Sλi
fidμi|fi ∈ Fλi

,

k∑
i=1

fi = f

}}
.

For every fi ∈ Fλi
let f =

∑k
i=1 fi then f ∈ F . Thus, for every μ ∈ Ms(K) we get

k∑
i=1

(∫
K

fi(x) dμ(x) +
∫
K

Sλi
fi(x) dμi(x)

)

=
∫
K

f(x) dμ(x) +
k∑
i=1

∫
K

Sλi
fi(x) dμi(x)

� H∗(μ).

This yields,

k∑
i=1

H∗
i (μ) =

k∑
i=1

sup
{∫

K

fi(x) dμ(x) +
∫
K

Sλi
fi(x) dμi(x)|fi ∈ Fλi

}

= sup

{
k∑
i=1

(∫
K

fi(x) dμ(x) +
∫
K

Sλi
fi(x) dμi(x)

)
|fi ∈ Fλi

}
� H∗(μ).

Conversely, for every f ∈ F let G :=
{

(f1, . . . , fk)|fi ∈ Fλi
,
∑k
i=1 fi = f

}
. Then,

∫
K

fdμ+ sup
(f1,...,fk)∈G

k∑
i=1

∫
k

Sλi
fidμi

= sup
(f1,...,fk)∈G

{∫
K

fdμ+
k∑
i=1

∫
k

Sλi
fidμi

}
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= sup
(f1,...,fk)∈G

{∫
K

k∑
i=1

fidμ+
k∑
i=1

∫
k

Sλi
fidμi

}

�
k∑
i=1

sup
fi∈Fλi

{∫
K

fidμ+
∫
k

Sλi
fidμi

}

=
k∑
i=1

H∗
i (μ).

Hence, we get the result. �

Inspired by [1, proposition 2.2] we get the following theorem.

Theorem 4.9. Let (X, d) be a locally compact, Polish space then inf(B) = sup(B∗).

Proof. Combining lemmas 4.7 and 4.8 we obtain that

inf(B) = inf
μ∈Mc(K)

k∑
i=1

H∗
i (μ) = −

(
k∑
i=1

H∗
i

)∗

(0) = −H∗∗(0).

Furthermore, we also have sup(B∗) = −H(0). Thus, we only need to prove that
H∗∗(0) = H(0). For every f ∈ F , let fi ∈ Fλi

such that
∑k
i=1 fi = f . As fi(x) � λia

for every x ∈ K and every i = 1, . . . , k, one has

Sλi
fi(x) = inf

y∈K
{
λib

2d2(x, y) − fi(y)
}

� −λia for every x ∈ K.

Therefore, Hi(fi) � λia. Moreover, since Sλi
f(x) � λia for every x ∈ K, we also

have Hi(fi) � −λia. Hence H is bounded on F . Thanks to lemma 4.8, one has
H is convex on F . We denote by F̊ the interior of F , then F̊ is also a convex
set. Applying [11, lemma 2.1] we get that H is continuous in F̊ endowed with the
supremum norm ‖ · ‖∞. Observe that 0 ∈ F̊ , using [11, propositions 3.1 and 4.1]
we obtain that H∗∗(0) = H(0). Hence, we get the result. �

Lemma 4.10. Let (X, d) be a Polish metric space. For every λ > 0, let f ∈ Fλ then
Sλf and (Sλ ◦ Sλ)f are 2λb2D-Lipschitz functions on K, where D = diam(K).

Proof. As K is a compact subset of X then K is bounded and thus D =
diam(K) <∞. Let any x1, x2 ∈ K. For every ε > 0, there exists y0 ∈ K such
that Sλf(x2) � λb2d2(x2, y0) − f(y0) − ε. Moreover, it is clear that Sλf(x1) �
λb2d2(x1, y0) − f(y0). Hence, we get that

Sλf (x1) − Sλf (x2) � λb2
[
d2 (x1, y0) − d2 (x2, y0)

]
+ ε � 2λb2Dd (x1, x2) + ε.

Similarly, Sλf(x2) − Sλf(x1) � 2λb2Dd(x1, x2) + ε. Therefore, Sλf is a 2λb2D-
Lipschitz function. By the same arguments above, we also get that (Sλ ◦ Sλ)f is a
2λb2D-Lipschitz function. �
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Theorem 4.11. Let (X, d) be a Polish metric space then problem (B∗) has
solutions.

Proof. Let fn = (fn1 , . . . , f
n
k ) be a maximizing sequence for (B∗). For each i ∈

{1, . . . , k − 1} we define f̃ni := (Sλi
◦ Sλi

)fni . Then f̃ni is bounded on K for every
i = 1, . . . , k − 1. Since Sλi

fi(x) � −λia for every x ∈ K and every i = 1, . . . , k − 1,
we get f̃ni (x) = infy∈K

{
λib

2d2(x, y) − Sλi
fni (y)

}
� −Sλi

fni (x) � λia for every x ∈
K.

Moreover, it is easy to see that fni � f̃ni on K and Sλi
f̃ni = Sλi

fni for every
i = 1, . . . , k − 1. Hence Sλi

f̃ni = Sλi
fni for every i = 1, . . . , k − 1. For every n ∈ N,

we define f̃nk := −∑k−1
i=1 f̃

n
i . As fni � f̃ni on K, one has f̃nk � −∑k−1

i=1 f
n
i = fnk .

Thus, f̃nk (x) � λka for every x ∈ K and Sλk
f̃nk � Sλk

fnk for every n ∈ N. Thus,
Sλk

f̃nk � Sλk
fnk for every n ∈ N. Therefore, we obtain that

lim sup
n→∞

k∑
i=1

∫
K

Sλi
f̃ni (x) dμi(x) � lim

n→∞

k∑
i=1

∫
K

Sλi
fni (x) dμi(x) = sup(B∗).

Using lemma 4.10 we get that f̃ni is a 2λib2D-Lipschitz function on K for every
i = 1, . . . , k − 1 and every n ∈ N. As f̃nk := −∑k−1

i=1 f̃
n
i and

∑k
i=1 λi = 1, we obtain

that f̃nk is a 2(1 − λk)b2D-Lipschitz function on K. Then applying Ascoli–Arzela
theorem on compact set K and using a standard diagonal argument there exists
a subsequence of f̃n = (f̃n1 , . . . , f̃

n
k ) which we still denote by

{
f̃n

}
such that f̃n

converges uniformly to f̃ = (f̃1, . . . , f̃k). Then f̃i ∈ Fλi
for every i ∈ {1, . . . , k}. As∑k

i=1 f̃
n
i = 0 for every n ∈ N, we get that

∑k
i=1 f̃i = 0. This yields,

k∑
i=1

∫
K

Sλi
f̃i(x) dμi(x) � sup(B∗) �

k∑
i=1

lim sup
n→∞

∫
K

Sλi
f̃ni (x) dμi(x).

Applying Fatou lemma, we obtain that

k∑
i=1

∫
K

Sλi
f̃i(x) dμi(x)

�
k∑
i=1

∫
K

lim sup
n→∞

Sλi
f̃ni (x) dμi(x)

=
k∑
i=1

∫
K

lim sup
n→∞

[
min

{
inf
y∈K

{
λib

2d2(x, y) − f̃ni (y)
}
, λia

}]
dμi(x)

�
k∑
i=1

∫
K

min
{

inf
y∈K

{
lim sup
n→∞

(
λib

2d2(x, y) − f̃ni (y)
)}

, λia

}
dμi(x)
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=
k∑
i=1

∫
K

min
{

inf
y∈K

{
λib

2d2(x, y) − f̃i(y)
}
, λia

}
dμi(x)

=
k∑
i=1

∫
K

Sλi
f̃i(x) dμi(x).

Therefore, we must have equality everywhere. Hence, we get the result. �
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