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Abstract

We focused on the Pirin–Pangeon–Thasos carbonate sequence of the Rhodope thrust system,
combining Sr isotopes from marble with U–Pb dating of detrital zircons from interlayered
schists with outcrop near the villages of Ilindentsi and Petrovo in Bulgaria. The youngest zircon
age at Ilindentsi is 266Ma, i.e. Middle Permian, while the youngest zircon at Petrovo yielded an
age of 290 Ma, i.e. Early Permian. Strontium isotopes range from 0.707420 to 0.707653, and are
consistent with a Middle Permian maximum depositional age. Middle Permian sedimentation
of this carbonate platform most likely occurred along the Eurasian margin rather than the
Gondwana margin.

1. Introduction

The RhodopeMassif is a major tectonic zone of the Alpine orogen in the northern Aegean region of
the eastern Mediterranean (Fig. 1a). A thick marble-dominated succession is interpreted as repre-
senting a carbonate platform involved in the lower Rhodope thrust system of Bulgaria and Greece
(Burg et al. 1996; Fig. 1b). It is known as the Pangeon (Pangaion, Boz Dağ) unit (Jordan, 1969;
Kronberg, 1969; Papanikolaou & Panagopoulos, 1981; Papanikolaou, 1984; Dimadis & Zachos,
1989) or Pirin–Pangaion zone, which includes the Bulgarian Pirin unit and the Greek Pangaion
and Thasos Island units (Zagorčev, 1994). This regional Pirin–Pangeon–Thasos (PPT) composite
unit is considered as a separate crustal terrane in the tectonic framework of the Hellenides (Burg,
2012; Papanikolaou, 2013). It is of critical importance for understanding the organization of the
terranes involved in the Mesozoic tectonic evolution of the region.

There are two contrasting Late Permian palaeogeographic interpretations for the PPT unit.
One interpretation links it as the Drama terrane to the Pelagonia microcontinent derived from
the northern passive margin of Gondwana (Ricou, 1994; Fig. 2a). A second interpretation con-
siders it as a Rhodope unit next to Pelagonia along the Eurasian active margin and associated
north-directed subduction of the Palaeotethys (Ziegler & Stampfli, 2001; Fig. 2b). Both inter-
pretations commonly account for the Neotethys rifting episode along Gondwana’s northern
margin following the Late Palaeozoic Variscan orogeny in Europe. The age of the PPT carbonate
platform is interpreted as Silurian to Carboniferous based on a single coral find (reefal Rugosa
determined by R.Wolfart in Jordan, 1969), or Ordovician to Carboniferous as inferrred from
brachiopod (Atrypida?) remains (Ancirev et al. 1980). Therefore, constraining the protracted
Palaeozoic depositional age of the PPT carbonate platform is critical for a better understanding
of the Rhodope palaeogeography. Furthermore, this carbonate platform, which records the geo-
dynamic evolution of the Tethyan margins in the Aegean region, allows constraining the
Gondwana–Eurasia crustal organization and interaction at the Palaeozoic–Mesozoic transition.

In this paper, we combine U–Pb laser ablation inductively coupled plasma mass spectrom-
etry (LA-ICP-MS) dating of detrital zircons from schist layers interstratified with marble and Sr
isotopic compositions of marble from the Pirin unit in Bulgaria. The aim is to constrain the
deposition of the regional PPT carbonate platform, having in mind its critical position and
its role during the Mesozoic evolution of the Alpine orogen in the Aegean region.

2. Geological background

The Pangeon unit belongs to the metamorphic basement of the Rhodope Massif (Fig. 1b). It
consists of a lower gneiss sequence underlying a marble–gneiss sequence, which is overlain
by a thick marble sequence, and an upper sequence of interlayered two-mica schist, calc-schist
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andmarble (Dimadis & Zachos, 1989). The thickness of themarble
sequence in the Greek Rhodope varies between 700 and 2800 m
and generally becomes thinner to the east (e.g. Dimadis &
Kosmas, 1989). In Bulgaria, the Pirin unit exposes the Pangeon-
type marble sequence, which is c. 1000 m thick in the north,
and c. 1600 m thick in the south (Zagorčev, 1994). On Thasos
Island, the Pangeon-type metamorphic section contains two schist
sequences alternating with twomarble sequences, which altogether
reach a thickness of c. 2000 m (Dimitriadis, 1989).

To the northeast, along the late Alpine SW-directed Nestos
syn-metamorphic ductile thrust, the Pirin–Pangeon unit is over-
lain by the intermediate unit of the Rhodope thrust stack called
the Sideronero unit (Papanikolaou & Panagopoulos, 1981) or
Mesta–Sideronero unit (Burg et al. 1996; Fig. 1). Multiple-phased
isoclinal folding of the Pirin–Pangeon metamorphic section is
associated with inverted metamorphic zones ranging from upper
greenschist facies to the south, to sillimanite-bearing amphibolite
facies to the north, against the Nestos thrust (Kronberg & Raith,
1977; Zachos & Dimadis, 1983; Mposkos & Liati, 1993). Similar
sillimanite-bearing schists have been described in Thasos Island
(Dimitriadis, 1989). The thickness of 7000 m initially proposed
by Kronberg (1969) for the Pangeon unit marble was subsequently
questioned, and attributed to an overestimated section due to fold-
ing and thrusting (Papanikolaou & Panagopoulos, 1981; Zachos &
Dimadis, 1983; Dimadis & Kosmas, 1989). To the SW, the Pirin–
Pangeon unit is bounded by the Strymon thrust (Kockel &
Walther, 1965) reworked by the Cenozoic Strymon extensional
detachment (Dinter, 1998) from the Kerdilion unit of the Serbo-
Macedonian Massif (Kockel et al. 1977). The Strymon detachment
was recently put under question (Brun & Sokoutis, 2018). The
Kerdilion unit is considered as a gneissic complex similar to the
Rhodope Massif and representing its integral crustal component
(Burg et al. 1995; Kydonakis et al. 2015).

U–Pb zircon geochronological studies of the gneissic units of the
Serbo-Macedonian Massif have identified Late Neoproterozoic
meta-granitoids (Himmerkus et al. 2006). They are coeval with the
meta-granitoids of the Carpathian–Balkan units located to the
north (Kounov et al. 2012). They probably also have their age
counterparts in the Rhodope (Arkadakskiy et al. 2003; Fig. 1).
Ordovician–Silurian meta-granitoids (Macheva et al. 2006;
Himmerkus et al. 2009a; Kounov et al. 2012; Bonev et al. 2013)
and voluminous Late Carboniferous – Permian meta-granitoids
(Peytcheva & von Quadt, 1995; Peytcheva et al. 2004; Cornelius,
2008); Turpaud & Reischmann, 2010; Himmerkus et al. 2012) are
common in the Serbo-Macedonian and Rhodope massifs. They pro-
vide the age of the igneous components involved in the continental
build-up of both massifs (Fig. 1b). Early–Middle Triassic meta-
granitoids and gabbroids (Christofides et al. 2007; Himmerkus
et al. 2009b; Peytcheva et al. 2009a; Drakoulis et al. 2013; Bonev
et al. 2019c) in the Serbo-Macedonian and Rhodope massifs record
Triassic rifting during opening of the Neotethys (Fig. 1b). Jurassic –
Early Cretaceous meta-granitoids and granitoids in the Serbo-
Macedonian and Rhodope massifs (c. 163–134 Ma) are attributed
to an arc/back-arc system (not shown in Fig. 1), which subsequently
developed in theNeotethys during itsMesozoic evolution (Turpaud&
Reischmann, 2010; Himmerkus et al. 2012; Bonev et al. 2015a, b).

Further geological components adjacent to the Pirin–Pangeon
unit are Late Cretaceous to Oligocene granitoids (e.g. Marchev
et al. 2013, and references therein) and Eocene to Quaternary
sedimentary rocks (e.g. Zagorchev, 1998, and references therein),
which represent a syn- and post-tectonic Cenozoic cover and mag-
matic units related to the extensional evolution of the Rhodope

Massif in Bulgaria and Greece (e.g. Burg et al. 1996; Bonev et al.
2006; Bonev & Beccaletto, 2007; Burchfiel et al. 2008; Brun &
Sokoutis, 2018 and references therein).

3. Field data, samples and their composition

Thin schist layers are interstratified with marble of the Pirin unit near
the villages of Ilindentsi and Petrovo (Fig. 3; Supplementary Table S1
available online at https://doi.org/10.1017/S0016756819001183).
Their structures were characterized during mapping at a scale of
1:1000 conducted formarble quary exploration (Dabovski et al. 1980).

At Ilindentsi, a 30m thick, weathered biotite schist layer is overlain
by grey massive marble and underlain by impure white mica-rich
marble that passes down-section into a white crystalline marble.
In thin-section, the biotite schist consists of modally decreasing
quartz, biotite, plagioclase and garnet. Grain size of quartz and
plagioclase is variable and is attributed to its detrital origin. Biotite
is strongly chloritized, and epidote replaces the plagioclase. Bothmin-
erals indicate retrogression. Garnet occurs as small unaltered por-
phyroblasts. Zircon and apatite are accessory minerals. A layer of
biotite schist (sample R2) was sampled for U–Pb dating of detrital
zircons (see Fig. 4), and the underlying white fine-grained crystalline
marble (sample R1) was collected to determine its Sr isotopic compo-
sition. The whole-rock chemical composition of sample R1 indicates
that it is a dolomiticmarble (Supplementary Table S1, available online
at https://doi.org/10.1017/S0016756819001183).

At Petrovo, a 10 m thick layer of Fe-rich calc-schist is underlain
by a 10 m thick layer of biotite schist. Both lithologies are inter-
bedded within marble. The schist succession is overlain by white
marble, which contains fine-grained shale laminae. A medium-
grained white massive marble underlies the schist succession. In
thin-section, the Fe-rich calc-schist consists of modally decreasing
quartz, chlorite, hematite, calcite and feldspar. Quartz forms mono-
and polycrystalline grains, while red-brown chlorite defines discon-
tinuous aggregates and nests together with hematite. Raremagnetite
and quartz–feldspar lithic fragments also occur. Accessory minerals
include zircon, apatite and rare white mica flakes. The foliation of
calc-schist is parallel to the primary lamination of the host marble.
We sampled Fe-rich calc-schist (sample R4b) for U–Pb geochronol-
ogy of detrital zircons, and the white overlying marble containing
fine shale laminae (sample R4a) for Sr isotope geochemistry. The
whole-rock chemical composition classifies sample R4b as calcare-
ous Fe-rich shale (e.g. Herron, 1988), while sample R4a is a calcitic
marble (Supplementary Table S1, available online at https://doi.org/
10.1017/S0016756819001183). In addition, sample R6, consisting of
gray calcitic marble, was used for Sr isotope geochemistry (Fig. 1b
for location). The studied marble samples are characterized by low
contents of trace and rare-earth elements (Supplementary Table S1,
available online at https://doi.org/10.1017/S0016756819001183).

4. Results

4.a. U–Pb zircon geochronology

In order to date the marble deposition in the Pirin unit, we have
analysed detrital zircons of the two schist samples R2 and R4b
for U–Pb geochronology (see Fig. 4). The locations of samples
are given in Figures 1 and 3 and Supplementary Table S1 (available
online at https://doi.org/10.1017/S0016756819001183). The sam-
ple preparation and analytical procedures are the same as described
by Bonev et al. (2019a). The analytical data are presented in
Supplementary Table S2 (available online at https://doi.org/10.
1017/S0016756819001183). U–Pb in situ LA-ICP-MS zircon
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dating was performed at the laboratory of the Geological Institute
of the Bulgarian Academy of Sciences using a NewWave UP193FX
LA coupled to a Perkin Elmer ELAN DRC-e quadrupole ICP-MS.

The dated zircons in sample R2 vary in size from 50 μm to
300 μm, with an average aspect ratio of 1.86. They display irregular
or semi-rounded shapes and rarely preserved oscillatory zoning
patterns disturbed by resorption and corrosion, which are charac-
teristic for a magmatic origin (Fig. 4a). Thirty-six concordant zir-
con analyses out of 92 performed in total yieldedNeoproterozoic to
Permian ages (Fig. 4b). Four-grains concordant ages range from
607.7 Ma to 563.5 Ma, corresponding to the Neoproterozoic
(Supplementary Figure S1, available online at https://doi.org/10.
1017/S0016756819001183). The main age cluster of 25 zircons
between 545.6 and 491.2 Ma encompasses the Cambrian, with a
peak around 520 Ma. A further minor age cluster includes five
Ordovician zircons dated between 468.8 Ma and 429 Ma. One
zircon yielded a Carboniferous age of 372.1 ± 7.2Ma. The youngest
zircon yielded an age of 266.4 ± 4.8 Ma, and hence defines
the maximum depositional age in the latest Middle Permian
(Fig. 4c). The Th/U ratios of the dated zircons vary from 0.01 to
0.79, with the majority of zircon grains having a high ratio of

0.12–0.79 (Supplementary Table S2, available online at https://
doi.org/10.1017/S0016756819001183), which is characteristic for
magmatic zircons (Rubatto, 2002; Tiepel et al. 2004).

Zircons from the Fe-rich calc-schist sample R4b show semi-
rounded to rounded shapes, as well as prismatic and pyramidal crys-
tals varying in size from 100 μm to 400 μm (average aspect ratio 1.4),
which have a homogeneous and a strongly obliterated magmatic
oscillatory zoning pattern (Fig. 4d). The 206Pb/238U ages obtained
from 105 analyses range from 359.5Ma to 290.2Ma. Sixty-two con-
cordant zircon grain analyses yielded Carboniferous–Permian
ages from 334.5 Ma to 296.9 Ma. Zircon ages span across the
Carboniferous, with concordant clusters at 333.9 ± 1.5 Ma,
323.98 ± 0.92 Ma, 317.54± 0.68 Ma, 311.6± 1.1 Ma and
305.4± 1.1 Ma (Supplementary Figure S2, available online at
https://doi.org/10.1017/S0016756819001183). The youngest zircon
out of 105 grains provided an age of 290.2± 3.7 Ma, and hence
defines amaximumEarly Permian depositional age. This age is con-
sistent with four more grains, which define a concordia age of
299.5± 1.3 Ma. The Th/U ratios of the zircons in this sample range
from 0.05 to 1.29 (Supplementary Table S2, available online
at https://doi.org/10.1017/S0016756819001183), but the majority
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of these ratios are in the 0.36–1.29 range, which is typical for mag-
matic zircons.

4.b. Sr isotopes

For strontium chemical separation, whole rock samples were pre-
pared in the clean laboratory at the University of Geneva, where Sr
isotopes were also measured on a Thermo Scientific TRITON

Thermal Ionization Mass Spectrometer. 87Sr/86Sr ratios were cor-
rected for internal fractionation using a 88Sr/86Sr ratio of 8.357209
and for external fractionation using a nominal value of SRM 987,
with a 87Sr/86Sr ratio of 0.710248 (McArthur et al. 2001). Analytical
details and procedures can be found in Chiaradia et al.
(2011). The whole-rock Sr isotopic compositions are given in
Supplementary Table S3 (available online at https://doi.org/10.
1017/S0016756819001183).
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Strontium isotopic ratios of the threemarble samples (R1, R4a and
R6) range from 0.707420 to 0.707653 (see Supplementary Table S3,
available online at https://doi.org/10.1017/S0016756819001183).
These values are close to the previously published Sr isotopic compo-
sitions of the Pirin unit marble, with a 87Sr/86Sr ratio between 0.70766
and 0.70776 (Georgiev et al. 2012). In Figure 5, Sr isotopic composi-
tions of the Pirin unit marble samples are plotted against the Sr
isotopic compositions of Phanerozoic sea-water (McArthur et al.
2001). The range of the Sr isotopic compositions of the marble under
study are consistent with a Middle Permian depositional age (Fig. 5).

5. Discussion

The U–Pb detrital zircon geochronological data obtained for the
Pirin unit indicate a latest Middle Permian maximum depositional
age as young as 262.4 Ma (within error) for the biotite schist layer
withinmarble. The Fe-rich calc-schist layer within themarble has a
Lower Permian maximum depositional age of 287.5 Ma (within
error) (Fig. 4). The number of dated zircons from the R2 biotite
schist nearly meets the required amount for statistical criteria,
which is met for the Fe-rich calc-schist (Vermeesch, 2004).
Taken collectively, the number of dated zircons from both schist
samples satisfies and exceeds the statistical confidence at the
95 % level. Thus, the Lower–Middle Permian detrital zircon record
obtained in this study provides an unequivocal depositional age
constraint for the Pirin–Pangeon marble hosting the schist layers.

The predominantly high Th/U ratios of the detrital zircons
reflect mostly amagmatic provenance and a subsidiary provenance
from metamorphic basement rocks. In this sense, the Th/U ratios
and the documented age clusters of detrital zircons correspond to
the same age as the magmatic protoliths of the metamorphic base-
ment of the Rhodope and Serbo-Macedonianmassifs (Fig. 1b). The
detrital zircons age clusters of the studied samples differ spatially in
function of the immediate sedimentary source area, but the clusters
precisely reflect the age of the basement rocks of each source area
location. In particular, biotite schist sample R2 reveals a major
cluster of Neoproterozoic–Cambrian zircons, which corresponds
to the age of the abundant Neoproterozoic–Cambrian orthog-
neisses in the nearby Carpatho-Balkan units (Kounov et al.
2012). The same applies to theminor cluster of Ordovician zircons,
with ages overlapping with those of the exposed Ordovician
meta-magmatic rocks in the Rhodope and Serbo-Macedonian
units (Macheva et al. 2006; Peytcheva et al. 2009b; Kounov et al.

2012; see Fig. 1) adjacent to sample R2, suggesting that the biotite
schist contains sedimentary material coming from a nearby source
area. The Fe-rich calc-schist sample R4b contains a major detrital
component from Carboniferous–Permian magmatic rocks, which
are exposed at the base of the Pirin–Pangeon–Thasos carbonate
unit (Turpaud & Reischmann, 2010; see Fig. 1). As the major detri-
tal zircon age cluster of the Fe-rich calc-schist overlaps with the
ages of the underlying Carboniferous–Permian meta-magmatic
rocks, it suggests that the source area was not far from the depo-
sitional area.

Collectively, the detrital zircon record in both schist samples is
evidence for a provenance of the sedimentary material from the
continental Rhodope–Serbo-Macedonian high-grade basement.
The studied schist samples are devoid of any zircon input from
Triassic magmatic bodies (e.g. Bonev et al. 2019c, and references
therein). This supports a pre-Triassic deposition of the PPT carbon-
ate platform. Our interpretation is consistent with the Sr isotopic
compositions of the Pirin unit marble, pointing to carbonate plat-
form sedimentation during the Middle Permian (Figs 4, 5).

There is evidence of Permian carbonate sedimentation (de Bono
et al. 2001; Ferriere et al. 2016 and this study) on top of the
Rhodope–Serbo-Macedonian and the Pelagonian Proterozoic and
Palaeozoic igneous and metamorphic basements (e.g. Anders
et al. 2006, 2007; Himmerkus et al. 2006, 2009a; Schenker et al.
2014). Furthermore, Permian limestone clasts and blocks were doc-
umented in the Rhodope uppermost metamorphic unit (Bonev,
2005), and Permian sedimentation was also established in the
Sakar–Strandzha Zone (Bonev et al. 2019b) c. 60 km to the NE of
the Rhodope (see Fig. 1a). The Rhodope–Serbo-Macedonian and
the Pelagonian massifs are interpreted as a part of the Eurasian
continental margin, which is supported by biostratigraphic and geo-
chronological evidence for the Permian. However, the Rhodope–
Serbo-Macedonian massifs and the Pelagonian Massif were
separated from each other during Triassic rifting in the Neotethys
in the Aegean region (e.g. Ferriere et al. 2016 and references therein).
Thus, from a palaeogeographic viewpoint, there ismore evidence for
the deposition of the PPT carbonate platformat the Eurasianmargin
than for the deposition along the northern passive margin of
Gondwana.

6. Conclusions

Our study shows that the Pirin–Pangeon–Thasos carbonate plat-
form includes schist layers in which detrital zircon ages constrain
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sedimentation during the Permian. Because the sedimentation
source areas were the Rhodope igneous and metamorphic base-
ment and adjacent basement units, this implies platform deposi-
tion along the Rhodope continental margin of Eurasia, but an
affinity with the northern passive Gondwana margin cannot be
ruled out.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0016756819001183
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