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We establish that the maximal operator and the Littlewood–Paley g-function
associated with the heat semigroup defined by multidimensional Bessel operators are
of weak type (1, 1). We also prove that Riesz transforms in the multidimensional
Bessel setting are of strong type (p, p), for every 1 < p < ∞, and of weak type (1, 1).

1. Introduction

Muckenhoupt and Stein [14] made an in-depth study about harmonic analysis in
the one-dimensional ultraspherical and Bessel settings. In this paper we are inter-
ested in the Lp-boundedness properties for the maximal operator and Littlewood–
Paley g-function associated with the heat semigroup for the multidimensional Bessel
operators and the Riesz transforms in the multidimensional Bessel context. As
far as we know, harmonic analysis operators in the Bessel settings have always
been studied in the one-dimensional case; only recently have the authors consid-
ered multipliers of Laplace transform type in this n-dimensional Bessel context [9].
Following the publication of [14], both Andersen and Kerman [1, 2, 10, 11] estab-
lished Lp-weighted inequalities for the Bessel–Riesz transforms. Stempak [18] stud-
ied Littlewood–Paley g-functions and Mihlin–Hörmander multipliers in the Bessel
setting, and, together with Nowak [16], established transplantation theorems for
Hankel transforms. Recently, in [3–8], the one-dimensional harmonic analysis in the
Bessel context has been completed by investigating properties of g-functions and
Riesz transforms of every order and maximal operators associated with Poisson and
heat semigroups.

We now present some notational conventions that will allow us to simplify the
presentation of our results. We denote by x = (x1, . . . , xn) and y = (y1, . . . , yn)
elements of (0,∞)n or R

n and we represent by u and v positive or real numbers.
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By λ = (λ1, . . . , λn) we denote an element of (− 1
2 ,∞)n (n-dimensional index)

and we consider always α ∈ (− 1
2 ,∞) (one-dimensional index). Also, we write x̄ =

(x2, . . . , xn) ∈ R
n−1 and λ̄ = (λ2, . . . , λn) ∈ (− 1

2 ,∞)n−1 when x ∈ R
n or λ ∈

(− 1
2 ,∞)n. If x ∈ R

n is a vector,

|x| =
√

x2
1 + · · · + x2

n

represents its Euclidean norm, while |λ| = λ1 + · · · + λn is the length of the multi-
index λ ∈ (− 1

2 ,∞)n. Suppose that we have a function g(u, v, α, t), t, u, v ∈ (0,∞)
and α ∈ (− 1

2 ,∞). We define

g(x, y, λ, t) =
n∏

j=1

g(xj , yj , λj , t), t ∈ (0,∞), x, y ∈ (0,∞)n, λ ∈ (− 1
2 ,∞)n.

For instance, we shall use the function

(
y

x

)λ

=
n∏

j=1

(
yj

xj

)λj

, x, y ∈ (0,∞)n, λ ∈ (− 1
2 ,∞)n.

We think this notation does not produce any confusion.
By dµλ(x) we represent the product measure

n∏
j=1

x2λj dxj on (0,∞)n.

We consider the n-dimensional Bessel operator ∆λ defined by

∆λ =
n∑

j=1

∆λj ,xj ,

where

∆λj ,xj
= −x

−2λj

j

∂

∂xj

(
x

2λj

j

∂

∂xj

)
for every j = 1, . . . , n, n � 2.

The heat semigroup generated by −∆λ is represented by {Wλ
t }t>0. This semigroup

is a symmetric diffusion semigroup in the sense of [17] with respect to the measure
dµλ. Then, according to [17, p. 73] the maximal operator

Wλ
∗ (f) = sup

t>0
|Wλ

t (f)|

is bounded from Lp((0,∞)n, dµλ) into itself, for every 1 < p � ∞. Inspired by the
ideas developed by Nowak and Sjögren in [15], we establish that Wλ

∗ is of weak
type (1, 1) with respect to the measure dµλ.

Theorem 1.1. Let λ ∈ (− 1
2 ,∞)n. The maximal operator Wλ

∗ is bounded from
L1((0,∞)n, dµλ) into L1,∞((0,∞)n, dµλ).
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Since, for every f ∈ C∞
c ((0,∞)n) (the space of C∞-functions on (0,∞)n that

have compact support),

lim
t→0+

Wλ
t (f)(x) = f(x), x ∈ (0,∞)n,

and C∞
c ((0,∞)n) is a dense subspace of Lp((0,∞)n, dµλ) for every 1 � p < ∞,

standard arguments give the following result.

Corollary 1.2. Let

λ ∈ (− 1
2 ,∞)n and 1 � p < ∞.

For every f ∈ Lp((0,∞)n, dµλ),

lim
t→0+

Wλ
t (f)(x) = f(x) a.e. x ∈ (0,∞)n.

According to [17, p. 67], the semigroup {Wλ
t }t>0 admits an analytic extension

to Ω = {t ∈ C : |arg(t)| < 1
2π(1 − |2/p − 1|)} in Lp((0,∞)n, dµλ), 1 < p < ∞. The

Littlewood–Paley g-function of the first order associated with {Wλ
t }t>0 is defined

by

gλ(f)(x) =
{ ∫ ∞

0

∣∣∣∣t ∂

∂t
Wλ

t (f)(x)
∣∣∣∣
2 dt

t

}1/2

, x ∈ (0,∞)n.

By [17, p. 111], gλ defines a bounded operator from Lp((0,∞)n, dµλ) into itself for
every 1 < p < ∞. We complete this result by analysing the behaviour of gλ on
L1((0,∞)n, dµλ).

Theorem 1.3. Let λ ∈ (− 1
2 ,∞)n. Then gλ is bounded from L1((0,∞)n, dµλ) into

L1,∞((0,∞)n, dµλ).

The Bessel operator ∆α can be factorized as follows:

∆α = −x−2α d
dx

(
x2α d

dx

)
= D∗D,

where D = d/dx and D∗ denotes the formal adjoint of D in L2((0,∞), dµα).
According to [14, § 16] and [17], we define, for every i = 1, . . . , n, the ith Riesz
transform Rλ

i associated with ∆λ by

Rλ
i f =

∂

∂xi
∆−1/2

λ f, f ∈ C∞
c ((0,∞)n).

Here ∆−1/2
λ represents the negative square root of ∆λ, whose definition will be

specified later (see § 4). Lp-boundedness properties of the Riesz transforms Rλ
i ,

i = 1, . . . , n, are established in the following.

Theorem 1.4. Let λ ∈ (− 1
2 ,∞)n and i = 1, . . . , n. For every f ∈ C∞

c ((0,∞)n),
∆−1/2

λ f admits a derivative with respect to xi on almost all (0,∞)n and

∂

∂xi
∆−1/2

λ f(x) = lim
ε→0+

∫
|x−y|>ε

Rλ
i (x, y)f(y) dµλ(y) a.e. x ∈ (0,∞)n,
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where

Rλ
i (x, y) =

1√
π

∫ ∞

0

∂

∂xi
Wλ

t (x, y)
dt√

t
, x, y ∈ (0,∞)n, (1.1)

and Wλ
t (x, y) represents the kernel of the operator Wλ

t for every t > 0 (see (1.3)
for definitions).

Moreover, the maximal operator Rλ
i,∗ defined by

Rλ
i,∗(f)(x) = sup

ε>0

∣∣∣∣
∫

|x−y|>ε

Rλ
i (x, y)f(y) dµλ(y)

∣∣∣∣, x ∈ (0,∞)n,

is bounded from Lp((0,∞)n, dµλ) into itself, for every 1 < p < ∞, and from
L1((0,∞)n, dµλ) into L1,∞((0,∞)n, dµλ). The Riesz transform Rλ

i can be extended
to Lp((0,∞)n, dµλ) by

Rλ
i (f)(x) = lim

ε→0+

∫
|x−y|>ε

Rλ
i (x, y)f(y) dµλ(y) a.e. x ∈ (0,∞)n

for every f ∈ Lp((0,∞)n, dµλ), 1 � p < ∞, that is a bounded operator from
Lp((0,∞)n, dµλ) into itself, for 1 < p < ∞, and from L1((0,∞)n, dµλ) into
L1,∞((0,∞)n, dµλ).

We now recall some definitions and properties that will be useful in the following.
If Jν denotes the Bessel function of the first kind and order ν > −1, we have that,
when α > − 1

2 ,

∆α,u((uv)−α+1/2Jα−1/2(uv)) = v2(uv)−α+1/2Jα−1/2(uv), u, v ∈ (0,∞).

Then, the heat semigroup {Wα
t }t>0 generated by −∆α is given by

Wα
t (f)(u) =

∫ ∞

0
Wα

t (u, v)f(v)v2α dv,

where

Wα
t (u, v) =

∫ ∞

0
e−tz2

(uz)−α+1/2Jα−1/2(uz)(vz)−α+1/2Jα−1/2(vz)z2α dz,

t, u, v ∈ (0,∞).

Moreover, according to [20, p. 395], we can write

Wα
t (u, v) =

(uv)−α+1/2

2t
Iα−1/2

(
uv

2t

)
e−(u2+v2)/4t, t, u, v ∈ (0,∞), (1.2)

where Iν represents the modified Bessel function of the first kind and order ν > −1.
The heat semigroup {Wλ

t }t>0 generated by the multidimensional Bessel operator
−∆λ is defined by

Wλ
t (f)(x) =

∫
(0,∞)n

Wλ
t (x, y)f(y) dµλ(y),
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where, according to our notational convention,

Wλ
t (x, y) =

n∏
j=1

W
λj

t (xj , yj), x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ (0,∞)n. (1.3)

Asymptotic expansion of Iν (see (3.3)) allows us to connect the operators (max-
imal operators, g-functions and Riesz transforms) associated with ∆λ with the
corresponding operators in the classical Euclidean setting in a local region defined
by

L = {(x, y) ∈ (0,∞)n × (0,∞)n : 1
2xj < yj < 2xj , j = 1, . . . , n}.

Note that L contains the diagonal of (0,∞)n×(0,∞)n. This is a crucial point in the
proof of our theorems because in that diagonal are the singularities of the kernels
of the operators under consideration. We describe in § 2 in a quite general way
the procedure that we use to prove the Lp-boundedness properties of the treated
operators. In § 3 we present some auxiliary results that will be very useful in the
proof of theorem 1.4. The proofs of theorems 1.3 and 1.4 are more involved than that
of theorem 1.1 because the maximal operator Wλ

∗ is positive, while the Littlewood–
Paley g-function and Riesz transforms are not positive operators. For brevity, we
present only a complete proof of theorem 1.4 (see § 4). By using the ideas developed
in the proof of theorem 1.4 and applying our general procedure, the interested reader
will thus be able to prove theorems 1.1 and 1.3.

It is remarkable that, as can be observed in § 4, the proof of the results in the
n-dimensional setting cannot be made by iterating one-dimensional results, and
much more work is needed.

Throughout this paper we shall use repeatedly without further mention the fact
that, for every k � 0, there exists Ck > 0 such that zke−z � Ck, z > 0. By C we
denote a suitable positive constant that can change from one line to another.

2. A general procedure

In this section we describe a general procedure that can be used to show theo-
rems 1.1, 1.3 and 1.4.

Suppose now that P is a monomial in R
n and A is a linear space of continuous

functions on (0,∞) such that P (∂x1 , . . . , ∂xn)Wλ
t (x, y) ∈ A, x, y ∈ (0,∞)n, x �= y,

and P (∂x1 , . . . , ∂xn)Wt(x, y) ∈ A, x, y ∈ R
n, x �= y, where Wt(x, y) represents the

classical heat kernel defined by

Wt(x, y) =
e−|x−y|2/4t

(4πt)n/2 , x, y ∈ R
n, t > 0.

Assume that B is a Banach space and L is a linear mapping from A into B. We
define

Kλ(x, y) = L{P (∂x1 , . . . , ∂xn)Wλ
t (x, y)}, x, y ∈ (0,∞)n, x �= y,

and

K(x, y) = L{P (∂x1 , . . . , ∂xn
)Wt(x, y)}, x, y ∈ R

n, x �= y.
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Assume also that the functions

Kλ(x, ·) : (0,∞)n \ {x} → B, x ∈ (0,∞)n,

and

K(x, ·) : R
n × \{x} → B, x ∈ R

n,

are strongly measurable, and that, for every f ∈ C∞
c ((0,∞)n) (respectively, f ∈

C∞
c (Rn)), the limit

lim
ε→0+

∫
|x−y|>ε

K(x, y)f(y) dy

exists, for almost all x ∈ (0,∞)n, with respect to the Lebesgue measure on (0,∞)n

(respectively, R
n), where K = Kλ (respectively, K = K). Here, the integral and the

limit are understood in the B-Bochner sense and in B, respectively.
We consider the operators Tλ and T defined by

Tλ(f)(x) = lim
ε→0+

∫
|x−y|>ε

Kλ(x, y)f(y) dµλ(y)

a.e. x ∈ (0,∞)n, f ∈ C∞
c ((0,∞)n),

and

T(f)(x) = lim
ε→0+

∫
|x−y|>ε

K(x, y)f(y) dy a.e. x ∈ R
n, f ∈ C∞

c (Rn), (2.1)

and the corresponding local operators given by

Tλ
loc(f)(x) = lim

ε→0+

∫
|x−y|>ε,y∈L(x)

Kλ(x, y)f(y) dµλ(y)

a.e. x ∈ (0,∞)n, f ∈ C∞
c ((0,∞)n),

and

T
λ
loc(f)(x) = lim

ε→0+

∫
|x−y|>ε,y∈L(x)

K(x, y)
(

y

x

)λ

f(y) dy

a.e. x ∈ (0,∞)n, f ∈ C∞
c ((0,∞)n), (2.2)

where, for every x ∈ (0,∞)n, the local region L(x) is defined by

L(x) = {y ∈ (0,∞)n : 1
2xj < yj < 2xj , j = 1, . . . , n}.

We apply the general procedure described in this section to study Lp-boundedness
properties for maximal operators and Littlewood–Paley g-functions associated with
the heat semigroup and the Riesz transforms in the Bessel setting. In each case it
is not hard to identify the Banach space B, the linear space A, the linear mapping
L and the monomial P . Although some of these operators can be only defined as
a pointwise principal value limit and not as a principal value limit in the corre-
sponding Banach spaces, the procedure still works. We describe the procedure in
this general setting looking for a unified presentation.
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We denote by Lp
B
(Ω, dω), 1 � p < ∞, and L1,∞

B
(Ω, dω) the B-valued Bochner–

Lebesgue Lp-space, 1 � p < ∞, and the B-valued weak L1-space, respectively.
Our objective is to obtain Lp-boundedness properties for the operator Tλ from

the corresponding Lp-boundedness properties for T. Hence, we need to know these
properties for the operator T. In many cases (Riesz transforms, Littlewood–Paley g-
functions and the maximal operator for the heat semigroup, in the classical setting)
the boundedness properties that we need are known.

In the following result we prove that boundedness of the operator T implies the
boundedness of the local operator T

λ
loc provided that

‖K(x, y)‖B � C

|x − y|n , x, y ∈ R
n, x �= y. (2.3)

Proposition 2.1. Let B be a Banach space. We consider the operators T and T
λ
loc

defined by (2.1) and (2.2), respectively, where K satisfies (2.3). If 1 < p < ∞
and T can be extended to Lp(Rn, dx) as a bounded operator from Lp(Rn, dx) into
Lp

B
(Rn, dx), then T

λ
loc can be extended to Lp((0,∞)n, dµλ) as a bounded opera-

tor from Lp((0,∞)n, dµλ) into Lp
B
((0,∞)n, dµλ). Also, if T can be extended to

L1(Rn, dx) as a bounded operator from L1(Rn, dx) into L1,∞
B

(Rn, dx), then T
λ
loc

can be extended to L1((0,∞)n, dµλ) as a bounded operator from L1((0,∞)n, dµλ)
into L1,∞

B
((0,∞)n, dµλ).

Proof. Let m = (m1, . . . , mn) ∈ Z
n. We consider

Qm = {y ∈ (0,∞)n : 2mj � yj � 2mj+1, j = 1, . . . , n}

and

Q̃m = {y ∈ (0,∞)n : 2mj−1 � yj � 2mj+2, j = 1, . . . , n}.

Note that if x ∈ Qm and y ∈ L(x), then y ∈ Q̃m.
We define the operator

Yλ
m(f)(x) = χQm(x)T(χQ̃m

(y)f(y)(y/x)λ)(x), f ∈ C∞
c ((0,∞)n).

We then assume that T can be extended to Lp(Rn, dx) as a bounded operator from
Lp(Rn, dx) into Lp

B
(Rn, dx), where 1 < p < ∞. Let f ∈ C∞

c ((0,∞)n). We can write∥∥∥∥
∑

m∈Zn

Yλ
m(f)

∥∥∥∥
p

Lp
B
((0,∞)n,dµλ)

=
∑

m∈Zn

∫
Qm

‖T(χQ̃m
(y)f(y)(y/x)λ)(x)‖p

B
dµλ(x)

� C
∑

m∈Zn

2(2−p)mλ

∫
Rn

‖T(χQ̃m
(y)f(y)yλ)(x)‖p

B
dx

� C
∑

m∈Zn

2(2−p)mλ

∫
Q̃m

|f(y)yλ|p dy

� C
∑

m∈Zn

∫
Q̃m

|f(y)|p dµλ(y)

� C‖f‖p
Lp((0,∞)n,dµλ),

where mλ =
∑n

j=1 mjλj .
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We now analyse the difference operator

τλ =
∑

m∈Zn

Yλ
m − T

λ
loc.

Fix m = (m1, . . . , mn) ∈ Z
n. We have that

Q̃m \ L(x) =
n⋃

�=1

(B�(x) ∪ C�(x)),

where, for every 
 = 1, . . . , n,

B�(x) = {y ∈ (0,∞)n : 2mj−1 � yj � 2mj+2,

j = 1, . . . , n, j �= 
; 2m�−1 � y� < 1
2x�}

and

C�(x) = {y ∈ (0,∞)n : 2mj−1 � yj � 2mj+2,

j = 1, . . . , n, j �= 
; 2x� < y� � 2m�+2}.

We can write, for each x ∈ Qm,

‖(Yλ
m − T

λ
loc)(f)(x)‖B

= ‖T(χQ̃m\L(x)(y)f(y)(y/x)λ)(x)‖B

� C

n∑
�=1

( ∫
B�(x)

|f(y)|
(

y

x

)λ 1
|x − y|n dy +

∫
C�(x)

|f(y)|
(

y

x

)λ 1
|x − y|n dy

)
.

(2.4)

We estimate only the integral on B1(x). The other integrals can be analysed simi-
larly. Let x ∈ Qm. Since |x1−y1| = x1−y1 > 1

2x1 > 2m1−1 when 2m1−1 � y1 < 1
2x1,

we get

∫
B1(x)

|f(y)|
(

y

x

)λ 1
|x − y|n dy � C

∫
B1(x)

|f(y)|
(22m1−2 +

∑n
j=2(xj − yj)2)n/2

(
y

x

)λ

dy

� C

∫
Q̃m

|f(y)|
(22m1−2 +

∑n
j=2(xj − yj)2)n/2 dy

� C

∫
Rn−1

f̃m(ȳ)
(22m1−2 + |x̄ − ȳ|2)n/2 dȳ, (2.5)

where

f̃m(ȳ) = χ∏n
j=2[2

mj−1,2mj+2](ȳ)
∫ 2m1+2

2m1−1
|f(y1, ȳ)| dy1, ȳ ∈ R

n−1.
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Then, by standard arguments, we get, for every x̄ ∈ R
n−1,

∫
B1(x)

|f(y)|
(

y

x

)λ 1
|x − y|n dy � C

∞∑
k=0

1
2(m1+k)n

∫
|x̄−ȳ|<2k+m1

f̃m(ȳ) dȳ

� C2−m1Mn−1(f̃m)(x̄),

where Mn−1 denotes the Hardy–Littlewood maximal function on R
n−1.

Since the maximal function Mn−1 is bounded from Lp(Rn−1, dx̄) into itself, it
follows, by using Jensen’s inequality, that

∫
Qm

∣∣∣∣
∫

B1(x)
|f(y)|

(
y

x

)λ 1
|x − y|n dy

∣∣∣∣
p

dµλ(x)

� C22mλ

∫ 2m1+1

2m1

2−m1p

∫
Rn−1

|Mn−1(f̃m)(x̄)|p dx̄dx1

� C22mλ+m1(1−p)
∫

∏n
j=2[2

mj−1,2mj+2]

( ∫ 2m1+2

2m1−1
|f(y1, ȳ)| dy1

)p

dȳ

� C22mλ

∫
Q̃m

|f(y)|p dy

� C

∫
Q̃m

|f(y)|p dµλ(y).

By combining the above estimates we obtain∫
(0,∞)n

‖τλ(f)(x)‖p
B

dµλ(x) =
∑

m∈Zn

∫
Qm

‖(Yλ
m − T

λ
loc)(f)(x)‖p

B
dµλ(x)

� C
∑

m∈Zn

∫
Q̃m

|f(y)|p dµλ(y)

� C‖f‖p
Lp((0,∞)n,dµλ).

Hence, we conclude that T
λ
loc can be extended to Lp((0,∞)n, dµλ) as a bounded

operator from Lp((0,∞)n, dµλ) into Lp
B
((0,∞)n, dµλ).

Suppose now that T can be extended to L1(Rn, dx) as a bounded operator from
L1(Rn, dx) into L1,∞

B
(Rn, dx). Let f ∈ C∞

c ((0,∞)n) and γ > 0. We have that

µλ({x ∈ (0,∞)n : ‖T
λ
loc(f)(x)‖B > γ})

� µλ

({
x ∈ (0,∞)n :

∥∥∥∥T
λ
loc(f)(x) −

∑
m∈Zn

Yλ
m(f)(x)

∥∥∥∥
B

> 1
2γ

})

+ µλ

({
x ∈ (0,∞)n :

∥∥∥∥
∑

m∈Zn

Yλ
m(f)(x)

∥∥∥∥
B

> 1
2γ

})

� µλ({x ∈ (0,∞)n : ‖τλ(x)‖B > 1
2γ})

+
∑

m∈Zn

µλ({x ∈ Qm : ‖Yλ
m(f)(x)‖B > 1

2γ}).
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Moreover, for every m ∈ Z
n, we get

µλ({x ∈ Qm : ‖Yλ
m(f)(x)‖B > 1

2γ})

� C22mλµ
(n)
0 ({x ∈ R

n : ‖T(χQ̃m
(y)f(y)yλ)(x)‖B > 2mλ 1

2γ})

� C
2mλ

γ

∫
Q̃m

|f(y)|yλ dy � C

γ

∫
Q̃m

|f(y)| dµλ(y).

Henceforth, µ
(�)
0 represents the Lebesgue measure on R

�, 1 � 
 � n.
Hence,

∑
m∈Zn

µλ({x ∈ Qm : ‖Yλ
m(f)(x)‖B > 1

2γ}) � C

γ
‖f‖L1((0,∞)n,dµλ).

Also, since Mn−1 is bounded from L1(Rn−1, dx̄) into L1,∞(Rn−1, dx̄), we obtain,
for every m ∈ Z

n,

µλ

({
x ∈ Qm :

∫
B1(x)

|f(y)|
(

y

x

)λ 1
|x − y|n dy > γ

})

� µλ({x ∈ Qm : Mn−1(f̃m)(x̄) > γ2m1M})

� 22mλµ
(n)
0 ({x ∈ Qm : Mn−1(f̃m)(x̄) > γ2m1M})

� 22mλ+m1µ
(n−1)
0 ({x̄ ∈ R

n−1 : Mn−1(f̃m)(x̄) > γ2m1M})

� C

γ
22mλ‖f̃m‖L1(Rn−1,dx̄)

� C

γ
22mλ

∫
Q̃m

|f(y)| dy

� C

γ

∫
Q̃m

|f(y)| dµλ(y).

Here C, M > 0 are constants that do not depend on m ∈ Z
n.

Hence, we can deduce from (2.4) that

µλ({x ∈ (0,∞) : ‖τλ(f)(x)‖B > γ}) � C

γ

∑
m∈Zn

∫
Q̃m

|f(y)| dµλ(y)

� C

γ
‖f‖L1((0,∞)n,dµλ).

Combining the above estimates, it is possible to extend T
λ
loc to L1((0,∞)n, dµλ)

as a bounded operator from L1((0,∞)n, dµλ) into L1,∞
B

((0,∞)n, dµλ).

The key point of our procedure is to show the Lp-boundedness properties for the
operator Sλ defined by

Sλ(f) = Tλ(f) − T
λ
loc(f), f ∈ C∞

c ((0,∞)n).

https://doi.org/10.1017/S0308210511000643 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210511000643


Harmonic analysis and Bessel operators 955

We write P (x1, . . . , xn) = xk1
1 · · ·xkn

n , x ∈ R
n and k = (k1, . . . , kn) ∈ N

n. Let
f ∈ C∞

c ((0,∞)n). We have that

Sλ(f) =
n∑

�=1

Sλ
� (f),

where

Sλ
� (f)(x) = lim

ε→0+

∫
|x−y|>ε

Sλ
� (x, y)f(y) dµλ(y) a.e. x ∈ (0,∞)n, 
 = 1, . . . , n,

and

Sλ
� (x, y)

= L
{ �−1∏

j=1

χLj(x)(yj)(xjyj)−λj
∂kj

∂x
kj

j

Wt(xj , yj)

×
(

∂k�

∂xk�

�

Wλ�
t (x�, y�) − χL�(x)(y�)(x�y�)−λ�

∂k�

∂xk�

�

Wt(x�, y�)
)

×
n∏

j=�+1

∂kj

∂x
kj

j

W
λj

t (xj , yj)
}

,

x, y ∈ (0,∞)n, x �= y, 
 = 1, . . . , n.

Here, Lj(x) = {v ∈ (0,∞) : 1
2xj < v < 2xj} denotes the one-dimensional local

region with respect to the jth variable, j = 1, . . . , n.
Let 
 ∈ {1, . . . , n}. We consider the positive operator Hλ

� given by

Hλ
� (f)(x) =

∫
(0,∞)n

‖Sλ
� (x, y)‖Bf(y) dµλ(y) a.e. x ∈ (0,∞)n.

According to the properties of the Bessel function Iν established in § 3, in order to
analyse the operator Hλ

� we split the integral over (0,∞)n into a sum of integrals
as follows. We define, for every u > 0, the sets

A1(u) = {v ∈ (0,∞) : 0 < v � 1
2u},

A2(u) = {v ∈ (0,∞) : 1
2u < v < 2u},

A3(u) = {v ∈ (0,∞) : 2u � v < ∞},

and, for every x ∈ (0,∞)n and s ∈ {1, 2, 3}n,

As(x) = {y ∈ (0,∞)n : yi ∈ Asi
(xi), i = 1, . . . , n}.

We can write
Hλ

� (f) =
∑

s∈{1,2,3}n

Hλ
�,s(f),

where

Hλ
�,s(f)(x) =

∫
As(x)

‖Sλ
� (x, y)‖Bf(y) dµλ(y) a.e. x ∈ (0,∞)n, s ∈ {1, 2, 3}n.
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We must now establish the Lp-boundedness properties of the operators Hλ
�,s,

s ∈ {1, 2, 3}n. To make this we use estimations of the Bessel function Iν (see § 3)
adapted to the operator Tλ considered, that is, to the linear mapping L and the
monomial P . Note that if 1 � p < ∞, the composition operator H1◦H2 is not always
of weak type (p, p) when H1 is of strong type (p, p) and H2 is of weak type (p, p). This
fact means that the Lp-boundedness properties of the operator Hλ

�,s, s ∈ {1, 2, 3}n,
cannot be obtained by iteration of one-dimensional type operators. More involved
manipulations are needed to control our operators by others whose Lp-boundedness
properties can be established. In § 3 we present some of the auxiliary operators that
will be used in the proof of theorem 1.4.

3. Some auxiliary results

In this section we present Lp-boundedness properties for some operators that will
be very useful in the following. We also establish some properties of Bessel functions
that will be needed in the proof of our results.

3.1. Auxiliary operators

The Hardy-type operator H∞ defined by

H∞(g)(u) =
∫ ∞

u

g(v)
v

dv, u ∈ (0,∞),

is bounded from L1((0,∞), u2α du) into itself when α > − 1
2 (see [13]). Then, for

every k ∈ N, the operator

Hk
∞(g)(x) =

∫ ∞

x1

· · ·
∫ ∞

xk

g(y1, . . . , yk)
y1 · · · yk

dy1 · · ·dyk, x ∈ (0,∞)k,

is bounded from L1((0,∞)k, dµβ) into itself, provided that β ∈ (− 1
2 ,∞)k.

If β ∈ R
k, with k ∈ N, we define the local Hardy-type operator Hβ

loc by

Hβ
loc(g)(x) =

1
x2β+1

∫ 2x1

x1/2
· · ·

∫ 2xk

xk/2
g(y) dµβ(y), x ∈ (0,∞)k.

It is not hard to see that Hβ
loc is bounded from L1((0,∞)k, dµβ) into itself.

Also, we consider, for every 1 � 
 � k, 
, k ∈ N and β ∈ (− 1
2 ,∞)k, the operator

Hβ
�,k(g)(x) =

∫ x1/2

0
· · ·

∫ x�/2

0

∫ 2x�+1

x�+1/2
· · ·

∫ 2xk

xk/2

k∏
j=�+1

(xjyj)−βj
g(y)

|x − y|2ε
dµβ(y),

x ∈ (0,∞)k,

where

ε =
�∑

j=1

1
2 (βj + 1

2 ) + (k − 
).

We can prove that Hβ
�,k is bounded from L1((0,∞)k, dµβ) into L1,∞((0,∞)k, dµβ)

by proceeding as in [15, case 3].
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Lemma 3.1. Let k ∈ N and β ∈ (− 1
2 ,∞)k. The operator Lβ defined by

Lβ(g)(x) =
( k∑

j=1

xj

)−2|β|−k ∫ x1

0
· · ·

∫ xk

0
g(y) dµβ(y), x ∈ (0,∞)k,

is bounded from L1((0,∞)k, dµβ) into L1,∞((0,∞)k, dµβ).

Proof. Let g ∈ L1((0,∞)k, dµβ) and γ > 0. We have that

µβ({x ∈ (0,∞)k : |Lβ(g)(x)| > γ})

� µβ

({
x ∈ (0,∞)k :

( k∑
j=1

xj

)−2|β|−k

‖g‖L1((0,∞)k,dµβ) > γ

})

= µβ

({
x ∈ (0,∞)k :

k∑
j=1

xj <

(
1
γ

‖g‖L1((0,∞)k,dµβ)

)1/(2|β|+k)})

� µβ(Q),

where

Q =
[
0,

(
1
γ

‖g‖L1((0,∞)k,dµβ)

)1/(2|β|+k)]k

.

Since,

µβ(Q) � C

γ
‖g‖L1((0,∞)k,dµβ),

it follows that

µβ({x ∈ (0,∞)k : |Lβ(g)(x)| > γ}) � C

γ
‖g‖L1((0,∞)k,dµβ).

Thus, the proof is finished.

3.2. Properties of the Bessel function Iν

The modified Bessel function Iν , ν > −1, admits the following series representa-
tion:

Iν(z) =
∞∑

k=0

( 1
2z)2k+ν

Γ (k + 1)Γ (ν + k + 1)
, z ∈ (0,∞). (3.1)

Then,

Iν(z) ∼ 1
2νΓ (ν + 1)

zν as z → 0+. (3.2)

Also, according to [12, p. 123] we have that

Iν(z) =
ez

√
2πz

( m∑
k=0

(−1)k[ν, k](2z)−k + O
(

1
zm+1

))
, m ∈ N, z ∈ (0,∞), (3.3)

where [ν, 0] = 1 and

[ν, k] =
(4ν2 − 1)(4ν2 − 32) · · · (4ν2 − (2k − 1)2)

22kΓ (k + 1)
, k = 1, 2, . . . .
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From (3.1) it is easy to deduce that

d
dz

(z−νIν(z)) = z−νIν+1(z), z ∈ (0,∞). (3.4)

In the following we establish some properties of the heat kernel for the Bessel
operator that will be useful in the proof of our results.

Lemma 3.2. Let λ ∈ (− 1
2 ,∞)n. Then

Wλ
t (x, y) = (xy)−λ

Wt(x, y)
(

1 +
∑

k∈{0,1,...,n}n

k �=(0,...,0)

ckt|k|(xy)−k + gn(x, y, t)
)

, (3.5)

where ck ∈ R and gn ∈ C∞((0,∞)n × (0,∞)n × (0,∞)) satisfy the condition that,
for every compact set K ⊂ (0,∞)n and a > 0, there exists C > 0 for which

|gn(x, y, t)| � Ctn+1, t ∈ (0, a) and x, y ∈ K,

and, for every j = 1, . . . , n,∣∣∣∣ ∂

∂xj
gn(x, y, t)

∣∣∣∣ � Ctn+1, t ∈ (0, a) and x, y ∈ K. (3.6)

Proof. According to (1.2), (1.3) and (3.3), we have, for every x, y ∈ (0,∞)n and
t > 0,

Wλ
t (x, y) =

(xy)−λ

(2t)n/2

(
xy

2t

)1/2

Iλ−1/2

(
xy

2t

)
e−(|x|2+|y|2)/4t

= (xy)−λ
Wt(x, y)

( n∑
kj=0

(−1)kj [λj − 1
2 , kj ]

(
t

xjyj

)kj

+ fλj−1/2
n

(
xjyj

2t

))
,

where, for every ν > −1, fν
n is a C∞(0,∞)-function and fν

n(z) = O(z−(n+1)), as
z → ∞. Then, (3.5) holds, where gn ∈ C∞((0,∞)n × (0,∞)n × (0,∞)) and, for
every a > 0 and every compact set K ⊂ (0,∞)n there exists C > 0 such that

|gn(x, y, t)| � Ctn+1, t ∈ (0, a) and x, y ∈ K.

We now verify that gn satisfies (3.6). Let ν > −1. By (3.3) and (3.4) we obtain, for
each z ∈ (0,∞),

d
dz

(e−zz−νIν(z))

= e−zz−ν−1/2(
√

zIν+1 −
√

zIν(z))

=
z−ν−1/2

√
2π

( n+1∑
k=0

(−1)k([ν + 1, k] − [ν, k])(2z)−k + fν+1
n+1(z) − fν

n+1(z)
)

= −z−ν−1/2
√

2π

( n∑
k=0

(−1)k([ν + 1, k + 1] − [ν, k + 1])(2z)−k−1 + fν+1
n+1(z) − fν

n+1(z)
)

(3.7)
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and

d
dz

(e−zz−νIν(z))

=
d
dz

(
z−ν−1/2

√
2π

( n∑
k=0

(−1)k[ν, k](2z)−k + fν
n(z)

))

= −z−ν−1/2
√

2π

( n∑
k=0

(−1)k[ν, k](2ν + 2k + 1)(2z)−k−1 +
ν + 1

2

z
fν

n(z) − d
dz

fν
n(z)

)
.

(3.8)

Moreover,

[ν + 1, k + 1] − [ν, k + 1] = [ν, k](2ν + 2k + 1) for k ∈ N.

Indeed, let k � 1. We have that

[ν + 1, k + 1] − [ν, k + 1]

=
1

22k+2Γ (k + 2)

{ k∏
j=0

(4(ν + 1)2 − (2j + 1)2) −
k∏

j=0

(4ν2 − (2j + 1)2)
}

=
1

22k+2Γ (k + 2)

{ k∏
j=0

(2ν + 2(j + 1) + 1)(2ν − 2(j − 1) − 1)

−
k∏

j=0

(2ν + 2j + 1)(2ν − 2j − 1)
}

=
(2ν + 2k + 3) − (2ν − 2k − 1)

4(k + 1)22kΓ (k + 1)

×
{ k−1∏

j=0

(2ν + 2j + 1)(2ν − 2j − 1)
}

(2ν + 2k + 1)

= [ν, k](2ν + 2k + 1).

Then, from (3.7) and (3.8) we deduce that

d
dz

fν
n =

ν + 1
2

z
fν

n − fν+1
n+1 + fν

n+1.

Hence,

d
dz

fν
n(z) = O

(
1

zn+2

)
as z → ∞,

and we conclude that if a > 0 and K is a compact subset of (0,∞)n, there exists
C > 0 such that, for every j = 1, . . . , n,∣∣∣∣ ∂

∂xj
gn(x, y, t)

∣∣∣∣ � Ctn+1, t ∈ (0, a) and x, y ∈ K.
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Let α > − 1
2 . According to (3.2) and (3.3) we obtain

0 � Wα
t (u, v) � C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−(u2+v2)/4t

tα+1/2 , uv � t,

(uv)−α

√
t

e−(u−v)2/4t, uv � t.

(3.9)

From (3.9) it follows that

0 � Wα
t (u, v) � C

(
(uv)−α

√
t

e−(u−v)2/4t +
1

u2α+1

)
, t, u, v ∈ (0,∞). (3.10)

Also, (3.9) implies that

0 � Wα
t (u, v) � C

(uv)−α−1/2
√

t
ue−u2/16t � C

e−u2/32t

tα+1/2 ,

provided that 0 < v < 1
2u < ∞, 0 < t � uv and

0 � Wα
t (u, v) � C

e−u2/4t

tα+1/2 ,

when u, v ∈ (0,∞), t � uv. Then, we conclude that

0 � Wα
t (u, v) � C

e−u2/32t

tα+1/2 , 0 < v < 1
2u and t > 0. (3.11)

On the other hand, according to (3.2), (3.3) again, and (3.9), we obtain

|Wα
t (u, v) − (uv)−α

Wt(u, v)| � C

⎧⎪⎨
⎪⎩

(
1

tα+1/2 +
(uv)−α

√
t

)
e−(u−v)2/4t, uv � t,

(uv)−α−1
√

te−(u−v)2/4t, uv � t.

(3.12)
By using (3.2)–(3.4) we can prove that∣∣∣∣Wα

t (u, v) − t−α−1/2

22αΓ (α + 1
2 )

∣∣∣∣ � u2 + v2

tα+3/2

(
uv

t
+ 1

)
, t, u, v ∈ (0,∞). (3.13)

Indeed, we have that∣∣∣∣Wα
t (u, v) − t−α−1/2

22αΓ (α + 1
2 )

∣∣∣∣

=
∣∣∣∣ 1
(2t)α+1/2

(
uv

2t

)−α+1/2

Iα−1/2

(
uv

2t

)
e−(u2+v2)/4t − t−α−1/2

22αΓ (α + 1
2 )

∣∣∣∣

� 1
(2t)α+1/2 e−(u2+v2)/4t

∣∣∣∣
(

uv

2t

)−α+1/2

Iα−1/2

(
uv

2t

)
− 1

2α−1/2Γ (α + 1
2 )

∣∣∣∣
+

t−α−1/2

22αΓ (α + 1
2 )

|e−(u2+v2)/4t − 1|
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� uv

(2t)α+3/2 e−(u2+v2)/4t sup
z∈(0,uv/2t)

∣∣∣∣ d
dz

(z−α+1/2Iα−1/2(z))
∣∣∣∣ + C

u2 + v2

tα+3/2

� C

(
(uv)2

tα+5/2 +
u2 + v2

tα+3/2

)
� C

u2 + v2

tα+3/2

(
uv

t
+ 1

)
, t, u, v ∈ (0,∞).

By (3.9) and (3.13) it follows that, for every compact set K ⊂ (0,∞)n, b > 0 and
λ ∈ (− 1

2 ,∞)n,

1√
t

∣∣∣∣Wλ
t (x, y) − t−|λ|−n/2

22λΓ (λ + 1
2 )

− (xy)−λ
Wt(x, y)

∣∣∣∣

�
n∑

i=1

1√
t

i−1∏
j=1

W
λj

t (xj , yj)
∣∣∣∣Wλi

t (xi, yi) − t−λi−1/2

22λiΓ (λi + 1
2 )

∣∣∣∣

×
n∏

j=i+1

t−λj−1/2

22λj Γ (λj + 1
2 )

+
C

t(n+1)/2

� C(t−|λ|−n/2−3/2 + t−(n+1)/2), b < t < ∞, x, y ∈ K. (3.14)

Now we estimate some derivatives of the heat Bessel kernel. By combining (3.1)–
(3.3), we obtain

∣∣∣∣ ∂

∂u
Wα

t (u, v)
∣∣∣∣ � C

⎧⎪⎪⎨
⎪⎪⎩

u + v

tα+3/2 e−(u2+v2)/4t, uv � t,

(uv)−α

t
e−(u−v)2/8t, uv � t.

(3.15)

Inequality (3.15) leads to

∣∣∣∣ ∂

∂u
Wα

t (u, v)
∣∣∣∣ � C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−u2/32t

tα+1 , 0 < v < 1
2u,

e−v2/32t

tα+1 , 2u < v < ∞.

(3.16)

According to (3.4) we have that

∂

∂x1

(
Wλ

t (x, y) − t−|λ|−n/2

22λΓ (λ + 1
2 )

− (xy)−λ
Wt(x, y)

)

=
n∏

j=2

W
λj

t (xj , yj)
e−(x2

1+y2
1)/4t

(2t)λ1+1/2

×
[(

x1y1

2t

)−λ1+1/2

Iλ1+1/2

(
x1y1

2t

)
y1

2t
− x1

2t

(
x1y1

2t

)−λ1+1/2

Iλ1−1/2

(
x1y1

2t

)]

+
λ1

x1
(xy)−λ

Wt(x, y) +
x1 − y1

2t
(xy)−λ

Wt(x, y), t > 0, x, y ∈ (0,∞)n.
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Then, (3.2) and (3.9) lead to
∣∣∣∣ ∂

∂x1

(
Wλ

t (x, y) − t−|λ|−n/2

22λΓ (λ + 1
2 )

− (xy)−λ
Wt(x, y)

)∣∣∣∣ � C(t−|λ|−n/2−1 + t−n/2)

(3.17)
for every t > b and x, y ∈ K; where b > 0 and K is a compact subset of (0,∞)n.
Here

22λΓ (λ + 1
2 ) =

n∏
j=1

22λj Γ (λj + 1
2 ).

Finally, we recall the following properties established in [8, lemma 4.3]:

∫ ∞

0

∣∣∣∣ ∂

∂u
Wα

t (u, v)
∣∣∣∣ dt√

t
� C

⎧⎪⎪⎨
⎪⎪⎩

1
u2α+1 , 0 < v < 1

2u,

u

v2α+2 , 2u < v < ∞,

(3.18)

and also, from [8, proposition 4.2], we have that
∣∣∣∣ ∂

∂u
Wα

t (u, v) − (uv)−α ∂

∂u
Wt(u, v)

∣∣∣∣ � C
(uv)−α−1/2

√
t

e−(u−v)2/4t, uv � t > 0.

(3.19)

4. Proof of theorem 1.4

In this section we prove that the Riesz transforms Rλ
i , i = 1, . . . , n, associated with

the Bessel operator ∆λ are bounded from Lp((0,∞)n, dµλ) into itself for every
1 < p < ∞, and from L1((0,∞)n, dµλ) into L1,∞((0,∞)n, dµλ).

For every λ ∈ (− 1
2 ,∞)n and i = 1, . . . , n, the Riesz transform Rλ

i is formally
defined by

Rλ
i =

∂

∂xi
∆−1/2

λ , (4.1)

where ∆−1/2
λ denotes the negative square root of the operator ∆λ. We shall now

make precise the definition (4.1).
Assume that 0 < β < |λ| + 1

2n + 1. We define the negative power ∆−β
λ on

C∞
c ((0,∞)n) as follows:

∆−β
λ f(x)

=
1

Γ (β)

∫ ∞

0

(
Wλ

t (f)(x) − χ(1,∞)(t)
t−|λ|−n/2

22λΓ (λ + 1
2 )

∫
(0,∞)n

f(y) dµλ(y)
)

tβ−1 dt,

(4.2)

where f ∈ C∞
c ((0,∞)n).

Let f ∈ C∞
c ((0,∞)n). We can write

∆−β
λ f(x) =

∫
(0,∞)n

f(y)Kλ
β (x, y) dµλ(y), x ∈ (0,∞)n, (4.3)
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where, for each x, y ∈ (0,∞)n, x �= y,

Kλ
β (x, y) =

1
Γ (β)

∫ ∞

0

(
Wλ

t (x, y) − χ(1,∞)(t)
t−|λ|−n/2

22λΓ (λ + 1
2 )

)
tβ−1 dt.

In order to prove the integral representation (4.3) for ∆−β
λ , it is sufficient to show

that, for every x ∈ (0,∞)n,
∫

(0,∞)n

|f(y)|
∫ ∞

0

∣∣∣∣Wλ
t (x, y) − χ(1,∞)(t)

t−|λ|−n/2

22λΓ (λ + 1
2 )

∣∣∣∣tβ−1 dt dµλ(y) < ∞.

Indeed, let x ∈ (0,∞)n. According to (3.9) and defining K = supp(f), we have that
∫

(0,∞)n

|f(y)|
∫ 1

0
Wλ

t (x, y)tβ−1 dt dµλ(y) � C

∫
K

∫ 1

0
tβ−1−n/2e−|x−y|2/4t dt dy

� C

∫
K

1
|x − y|n−2β

dy

< ∞,

because β > 0. In the last inequality we have used [19, lemma 1.1].
On the other hand, by (3.9) and (3.13) we get

∫
(0,∞)n

|f(y)|
∫ ∞

1

∣∣∣∣Wλ
t (x, y) − t−|λ|−n/2

22λΓ (λ + 1
2 )

∣∣∣∣tβ−1 dt dµλ(y)

� C

n∑
i=1

∫
K

∫ ∞

1

i−1∏
j=1

t−(λj+1/2)

22λj Γ (λj + 1
2 )

∣∣∣∣Wλi
t (xi, yi) − t−(λi+1/2)

22λiΓ (λi + 1
2 )

∣∣∣∣

×
n∏

j=i+1

W
λj

t (xj , yj)tβ−1 dt dy

� C

∫
K

∫ ∞

1
t−|λ|−n/2−2+β dt dy

< ∞,

because β < |λ| + 1
2n + 1.

Remark 4.1. Note that if 0 < β < |λ| + 1
2n for every f ∈ C∞

c ((0,∞)n),∫
(0,∞)n

|f(y)|
∫ ∞

0
Wλ

t (x, y)tβ−1 dt dµλ(y) < ∞, x ∈ (0,∞)n,

and we can define the function

(∆λ)−βf(x) =
1

Γ (β)

∫
(0,∞)n

f(y)
∫ ∞

0
Wλ

t (x, y)tβ−1 dt dµλ(y), x ∈ (0,∞)n,

(4.4)
when f ∈ C∞

c ((0,∞)n). Then, if 0 < β < |λ| + 1
2n and f ∈ C∞

c ((0,∞)n), for each
x ∈ (0,∞)n,

∆−β
λ f(x) − (∆λ)−βf(x) =

−1
Γ (β)

∫
(0,∞)n

f(y)
∫ ∞

1

t−|λ|−n/2

22λΓ (λ + 1
2 )

tβ−1 dt dµλ(y)
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and, for every i = 1, . . . , n,

∂

∂xi
∆−β

λ f(x) =
∂

∂xi
(∆λ)−βf(x), (4.5)

provided that these derivatives exist. Equation (4.5) tells us that once we have
taken derivatives, it is irrelevant to consider definition (4.2) or (4.4). However, we
are interested in the particular case β = 1

2 , and when λ is very close to (− 1
2 , . . . ,− 1

2 )
the integrals in (4.4) are not convergent.

For every 0 < β < 1
2n, the fractional power ∆−β is defined on C∞

c (Rn) by

∆−βf(x) =
∫

Rn

f(y)Kβ(x, y) dy, x ∈ R
n,

where, for every x, y ∈ R
n, x �= y,

Kβ(x, y) =
1

Γ (β)

∫ ∞

0
Wt(x, y)tβ−1 dt =

Γ ( 1
2n − β)

πn/24βΓ (β)
1

|x − y|n−2β
. (4.6)

In particular, since n > 1, we have that, for every f ∈ C∞
c (Rn),

∆−1/2f(x) =
1

2nπ(n+1)/2

∫
Rn

f(y)
∫ ∞

0

e−|x−y|2/4t

t(n+1)/2 dt dy, x ∈ R
n.

A crucial result to prove theorem 1.4 is the following.

Proposition 4.2. Let f ∈ C∞
c ((0,∞)n). Assume that λ ∈ (− 1

2 ,∞)n. Then, for
every i = 1, . . . , n,
∂

∂xi
(∆−1/2

λ f(x) − x−λ∆−1/2(yλf)(x))

=
∫

(0,∞)n

f(y)
(

Rλ
i (x, y) − ∂

∂xi
((xy)−λ

K1/2(x, y))
)

dµλ(y) a.e. x ∈ (0,∞)n,

(4.7)

where Rλ
i is defined in (1.1). Moreover, the integral in (4.7) is absolutely convergent.

Proof. We shall prove (4.7) for i = 1. Suppose that Ω is a compact subset of
(0,∞)n. There exist 0 < a < 1 and b > 1 such that, for every y ∈ supp(f) and
x ∈ Ω, xjyj/t � 1 when 0 < t < a, and xjyj/t � 1 when b < t < ∞ for every
j = 1, . . . , n. We can write, for each x, y ∈ (0,∞)n,

Kλ
1/2(x, y) − (xy)−λ

K1/2(x, y)

=
1√
π

{ ∫ a

0
(Wλ

t (x, y) − (xy)−λ
Wt(x, y))

dt√
t

+
∫ 1

a

(Wλ
t (x, y) − (xy)−λ

Wt(x, y))
dt√

t

+
∫ b

1

(
Wλ

t (x, y) − t−|λ|−n/2

22λΓ (λ + 1
2 )

− (xy)−λ
Wt(x, y)

)
dt√

t

+
∫ ∞

b

(
Wλ

t (x, y) − t−|λ|−n/2

22λΓ (λ + 1
2 )

− (xy)−λ
Wt(x, y)

)
dt√

t

}
. (4.8)
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If r ∈ N, according to [19, lemma 1.1] we get, for every x, y ∈ (0,∞)n, x �= y,

∫ a

0
e−|x−y|2/4ttr−(n+1)/2 dt � C

∫ a

0
e−|x−y|2/4tt−(n+1)/2 dt

� C

|x − y|n−1 . (4.9)

Suppose that k ∈ {0, 1, . . . , n}n and k �= (0, . . . , 0). From (4.9) we deduce that
the functions

hk(z) =
∫ a

0

e−|z|2/4t

t(n+1)/2−|k| dt, Hk(z) =
∫ a

0

e−|z|2/4t

tn/2+1−|k| dt, z ∈ R
n \ {0},

are in L1(Λ) for every compact subset Λ ⊂ R
n. Moreover,

∂

∂x1
hk(x) =

∫ a

0

∂

∂x1
e−|x|2/4tt−(n+1)/2+|k| dt, x ∈ R

n \ {0}.

Since f ∈ C∞
c ((0,∞)n), by defining f(y) = 0, y ∈ R

n \ (0,∞)n, the function

Gk(x) =
∫

Rn

(xy)−λ−kf(y)hk(x − y) dµλ(y), x ∈ (0,∞)n,

is derivable with respect to x1 on (0,∞)n, and

∂

∂x1
Gk(x)

= −λ1 + k1

x1

∫
Rn

(xy)−λ−kf(y)hk(x − y) dµλ(y)

−
∫

Rn−1
x−λ−k(x̄ − ȳ)λ̄−k̄

∫ ∞

−∞

∂

∂y1
[(x1 − y1)λ1−k1f(x − y)]hk(y) dy

= −λ1 + k1

x1

∫
Rn

(xy)−λ−kf(y)hk(x − y) dµλ(y)

+
∫

Rn−1
lim
ε→0

{
− [(x1 − y1)λ1−k1f(x − y)hk(y)]∞x1+ε

− [(x1 − y1)λ1−k1f(x − y)hk(y)]x1−ε
−∞

+
∫

R\(x1−ε,x1+ε)
(x1 − y1)λ1−k1f(x − y)

∂

∂y1
hk(y) dy1

}

× x−λ−k(x̄ − ȳ)λ̄−k̄ dȳ

= −λ1 + k1

x1

∫
Rn

(xy)−λ−kf(y)hk(x − y) dµλ(y)

+
∫

Rn

x−λ−k(x − y)λ−kf(x − y)
∂

∂y1
hk(y) dy
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= −λ1 + k1

x1

∫
Rn

(xy)−λ−kf(y)hk(x − y) dµλ(y)

+
∫

Rn

(xy)−λ−kf(y)
∂

∂x1
hk(x − y) dµλ(y)

=
∫

Rn

∂

∂x1
[(xy)−λ−khk(x − y)]f(y) dµλ(y), x ∈ (0,∞)n.

Hence, we obtain, for each x ∈ (0,∞)n,

∂

∂x1

( ∫
(0,∞)n

f(y)
∫ a

0
(xy)−λ

Wt(x, y)
∑

k∈{0,1,...,n}n

k �=(0,...,0)

ck(xy)−kt|k| dt√
t
dµλ(y)

)

=
∫

(0,∞)n

f(y)
∫ a

0

∂

∂x1

(
(xy)−λ

Wt(x, y)
∑

k∈{0,1,...,n}n

k �=(0,...,0)

ck(xy)−kt|k|
)

dt√
t
dµλ(y).

(4.10)

Also, by using (3.6) we can see that

∂

∂x1

∫
(0,∞)n

f(y)
∫ a

0
(xy)−λ

Wt(x, y)gn(x, y, t)
dt√

t
dµλ(y)

=
∫

(0,∞)n

f(y)
∫ a

0

∂

∂x1
((xy)−λ

Wt(x, y)gn(x, y, t))
dt√

t
dµλ(y), x ∈ (0,∞)n.

(4.11)

From (3.5), (4.10) and (4.11) we deduce that

∂

∂x1

∫
(0,∞)

f(y)
∫ a

0
(Wλ

t (x, y) − (xy)−λ
Wt(x, y))

dt√
t
dµλ(y)

=
∫

(0,∞)n

f(y)
∫ a

0

∂

∂x1
(Wλ

t (x, y) − (xy)−λ
Wt(x, y))

dt√
t
dµλ(y), x ∈ (0,∞)n.

(4.12)

By taking into account (3.14) and (3.17), for each x ∈ (0,∞)n, we can differen-
tiate under the integral sign, obtaining

∂

∂x1

∫
(0,∞)n

f(y)
∫ ∞

b

(
Wλ

t (x, y) − t−|λ|−n/2

22λΓ (λ + 1
2 )

− (xy)−λ
Wt(x, y)

)
dt√

t
dy

=
∫

(0,∞)n

f(y)
∫ ∞

b

∂

∂x1

(
Wλ

t (x, y) − t−|λ|−n/2

22λΓ (λ + 1
2 )

− (xy)−λ
Wt(x, y)

)
dt√

t
dµλ(y).

(4.13)
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Finally, it is not hard to see that

∂

∂x1

∫
(0,∞)n

f(y)
( ∫ b

a

(Wλ
t (x, y) − (xy)−λ

Wt(x, y))
dt√

t

−
∫ b

1

t−|λ|−n/2

22λΓ (λ + 1
2 )

dt√
t

)
dµλ(y)

=
∫

(0,∞)n

f(y)
∫ b

a

∂

∂x1
(Wλ

t (x, y) − (xy)−λ
Wt(x, y))

dt√
t
dµλ(y), x ∈ (0,∞)n.

(4.14)

By combining (4.8) and (4.12)–(4.14) we prove (4.7). Moreover, the estimations
that we have established show the absolute convergence of the integral in (4.7).

Thus, the proof of proposition 4.2 is finished.

Proposition 4.2 allows us to define the Riesz transforms Rλ
i , i = 1, . . . , n, on

C∞
c ((0,∞)n).

Proposition 4.3. Let

f ∈ C∞
c ((0,∞)n) and λ ∈ (− 1

2 ,∞)n.

Then, for every i = 1, . . . , n, the function ∆−1/2
λ f admits derivative ∂∆−1/2

λ f/∂xi

with respect to xi on almost all (0,∞)n, and

∂

∂xi
∆−1/2

λ f(x) = lim
ε→0+

∫
|x−y|>ε

Rλ
i (x, y)f(y) dµλ(y) a.e. x ∈ (0,∞)n.

Proof. Let i = 1, . . . , n. As is well known, for every g ∈ C∞
c (Rn), ∆−1/2g admits

derivative ∂∆−1/2g/∂xi with respect to xi on almost all R
n and

∂

∂xi
∆−1/2g(x) = lim

ε→0+

∫
|x−y|>ε

g(y)Ri(x, y) dy a.e. x ∈ (0,∞)n,

where Ri represents the kernel of the classical Riesz transform

Ri(x, y) =
1√
π

∫ ∞

0

∂

∂xi
Wt(x, y)

dt√
t
, x, y ∈ R

n, x �= y.

Moreover, for every x ∈ (0,∞)n, it follows that, by (4.6),
∫

(0,∞)n

|f(y)|K1/2(x, y)yλ dy � C

∫
supp(f)

|f(y)|
|x − y|n−1 yλ dy < ∞.

Then,

∂

∂xi
(x−λ∆−1/2(yλf)(x))

= lim
ε→0+

∫
|x−y|>ε

f(y)
∂

∂xi
(x−λ

K1/2(x, y))yλ dy a.e. x ∈ (0,∞)n.
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Hence, from proposition 4.2 we conclude that ∆−1/2
λ f admits derivative ∂∆−1/2

λ /∂xi

with respect to xi on almost all (0,∞)n and

∂

∂xi
∆−1/2

λ f(x) =
∂

∂xi
(∆−1/2

λ f(x) − x−λ∆−1/2(yλf)(x))+
∂

∂xi
(x−λ∆−1/2(yλf)(x))

= lim
ε→0+

∫
|x−y|>ε

f(y)
(

Rλ
i (x, y) − ∂

∂xi
((xy)−λ

K1/2(x, y))
)

dµλ(y)

+ lim
ε→0+

∫
|x−y|>ε

f(y)
∂

∂xi
((xy)−λ

K1/2(x, y)) dµλ(y)

= lim
ε→0+

∫
|x−y|>ε

f(y)Rλ
i (x, y) dµλ(y) a.e. x ∈ (0,∞)n.

We now prove that, for every f ∈ Lp((0,∞)n, dµλ(y)), 1 � p < ∞, there exists
the limit

lim
ε→0+

∫
|x−y|>ε

Rλ
i (x, y)f(y) dµλ(y) a.e x ∈ (0,∞)n,

with i = 1, . . . , n. In order to show this we consider, for every i = 1, . . . , n, the
maximal operator Rλ

i,∗ defined by

Rλ
i,∗(f)(x) = sup

ε>0

∣∣∣∣
∫

|x−y|>ε

Rλ
i (x, y)f(y) dµλ(y)

∣∣∣∣.
Proposition 4.4. Let λ ∈ (− 1

2 ,∞)n and i = 1, . . . , n. The maximal operator Rλ
i,∗

is bounded from Lp((0,∞)n, dµλ) into itself, 1 < p < ∞, and from L1((0,∞)n, dµλ)
into L1,∞((0,∞)n, dµλ).

Proof. We consider i = 1. For other values of i we can proceed analogously. We can
write

Rλ
1 (x, y) = (Rλ

1 (x, y) − χL(x)(y)(xy)−λ
R1(x, y)) + χL(x)(y)(xy)−λ

R1(x, y)

=
1√
π

∫ ∞

0

(
∂

∂x1
Wλ1

t (x1, y1) − χL1(x)(y1)(x1y1)−λ1
∂

∂x1
Wt(x1, y1)

)

× W λ̄
t (x̄, ȳ)

dt√
t

+
n∑

�=2

1√
π

∫ ∞

0
χL1(x)(y1)(x1y1)−λ1

∂

∂x1
Wt(x1, y1)

×
�−1∏
j=2

χLj(x)(yj)(xjyj)−λj Wt(xj , yj)

× (Wλ�
t (x�, y�) − χL�(x)(y�)(x�y�)−λ�Wt(x�, y�))

×
n∏

j=�+1

W
λj

t (xj , yj)
dt√

t
+ χL(x)(y)(xy)−λ

R1(x, y)

=
n+1∑
�=1

Rλ
1,�(x, y), x, y ∈ (0,∞)n.

https://doi.org/10.1017/S0308210511000643 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210511000643


Harmonic analysis and Bessel operators 969

We now study the maximal operator Rλ
1,�,∗ associated with Rλ

1,� in the usual
way. First, we consider Rλ

1,1,∗. In the forthcoming analysis we follow the general
procedure described in § 2. We distinguish three situations: 0 < y1 < 1

2x1, 1
2x1 <

y1 < 2x1 and 2x1 < y1 < ∞.
Assume first that 0 < y1 < 1

2x1 and 1 � 
 � m � n. According to (3.10), (3.11)
and (3.16), we get

Sλ,1
�,m(f)(x)

=
∫ x1/2

0
· · ·

∫ x�/2

0

∫ 2x�+1

x�+1/2
· · ·

∫ 2xm

xm/2

∫ ∞

2xm+1

· · ·
∫ ∞

2xn

|Rλ
1,1(x, y)||f(y)| dµλ(y)

� C

∫ x1/2

0
· · ·

∫ x�/2

0

∫ 2x�+1

x�+1/2
· · ·

∫ 2xm

xm/2

∫ ∞

2xm+1

· · ·
∫ ∞

2xn

n∏
j=m+1

1

y
2λj+1
j

|f(y)|

×
∫ ∞

0

exp(−(
∑�

j=1 x2
j )/32t)

t
∑�

j=1(λj+1/2)+1

×
m∏

j=�+1

(
(xjyj)−λj

√
t

e−(xj−yj)2/4t +
1

x
2λj+1
j

)
dt dµλ(y).

Since Hk
∞ and Hβ

loc are bounded from L1((0,∞)k, dµβ) into itself for every k ∈ N

and β ∈ (− 1
2 ,∞)k (see § 3.1), the operator Sλ,1

�,m is bounded from L1((0,∞)n, dµλ)
into L1,∞((0,∞)n, dµλ), provided that, for every r, k ∈ N, 1 � r � k and β ∈
(− 1

2 ,∞)k, the operator

T β,1
r (g)(x)

=
∫ x1/2

0
· · ·

∫ xr/2

0

∫ 2xr+1

xr+1/2
· · ·

∫ 2xk

xk/2
|g(y)|

∫ ∞

0

1
t
∑r

j=1(βj+1/2)+1+(k−r)/2

× exp
(

− 1
32t

( r∑
j=1

x2
j +

k∑
j=r+1

(xj − yj)2
))

×
k∏

j=r+1

(xjyj)−βj dt dµβ(y)

� C

∫ x1/2

0
· · ·

∫ xr/2

0

∫ 2xr+1

xr+1/2
· · ·

∫ 2xk

xk/2
|g(y)|

∏k
j=r+1(xjyj)−βj

(
∑r

j=1 x2
j +

∑k
j=r+1(xj − yj)2)

∑r
j=1(βj+1/2)+(k−r)/2

dµβ(y)

is bounded from L1((0,∞)k, dµβ) into L1,∞((0,∞)k, dµβ). This last property is
true because the operators Hβ

r,k (see § 3.1) and Lβ (see lemma 3.1) are bounded
from L1((0,∞)k, dµβ) into L1,∞((0,∞)k, dµβ), when β ∈ (− 1

2 ,∞)k and 1 � r � k,
r, k ∈ N.
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According to (3.18), we have, for every x ∈ (0,∞)n,

Sλ,1
�,m(f)(x) � C

∫ x1/2

0

∫ ∞

0

∣∣∣∣ ∂

∂x1
Wλ1

t (x1, y1)
∣∣∣∣ dt√

t

×
(

sup
t>0

∫
(0,∞)n−1

W λ̄
t (x̄, ȳ)|f(y1, ȳ)| dµλ̄(ȳ)

)
dµλ1(y1)

� C

x2λ1+1
1

∫ x1/2

0

(
sup
t>0

∫
(0,∞)n−1

W λ̄
t (x̄, ȳ)|f(y1, ȳ)| dµλ̄(ȳ)

)
dµλ1(y1).

The Hardy-type operator Lλ1 is bounded from Lp((0,∞), dµλ1) into itself [13] and
W λ̄

∗ is bounded from Lp((0,∞)n−1, dµλ̄) into itself. Hence, Sλ,1
�,m is bounded from

Lp((0,∞)n, dµλ) into itself for every 1 < p < ∞.
Suppose now 2x1 < y1 < ∞ and 1 � 
 � m � n. By (3.10), (3.11) and (3.16),

for each x ∈ (0,∞)n, it follows that

Sλ,3
�,m(f)(x) =

∫ ∞

2x1

· · ·
∫ ∞

2x�

∫ 2x�+1

x�+1/2
· · ·

∫ 2xm

xm/2

∫ xm+1/2

0
· · ·

∫ xn/2

0
|Rλ

1,1(x, y)||f(y)| dµλ(y)

� C

∫ ∞

2x1

· · ·
∫ ∞

2x�

∫ 2x�+1

x�+1/2
· · ·

∫ 2xm

xm/2

∫ xm+1/2

0
· · ·

∫ xn/2

0
|f(y)|

∫ ∞

0

1

t
∑�

j=1(λj+1/2)+
∑n

j=m+1(λj+1/2)+1

× exp
(

− 1
32t

( �∑
j=1

y2
j +

n∑
j=m+1

x2
j

))

×
m∏

j=�+1

(
(xjyj)−λj

√
t

e−(xj−yj)2/4t +
1

x
2λj+1
j

)
dt dµλ(y).

Since the operator Hβ
loc (see § 3.1) is bounded from L1((0,∞)k, dµβ) into itself,

provided that β ∈ (− 1
2 ,∞)k, in order to see that the operator Sλ,3

�,m is bounded
from L1((0,∞)n, dµλ) into L1,∞((0,∞)n, dµλ) it is sufficient to show that, for every
β ∈ (− 1

2 ,∞)k and 1 � s � r � k, s, r, k ∈ N, the operator

T β,3
s,r (g)(x)

=
∫ ∞

2x1

· · ·
∫ ∞

2xs

∫ 2xs+1

xs+1/2
· · ·

∫ 2xr

xr/2

∫ xr+1/2

0
· · ·

∫ xk/2

0
dµβ(y) |g(y)|

r∏
j=s+1

(xjyj)−βj

×
( s∑

j=1

y2
j +

r∑
j=s+1

(xj − yj)2+
k∑

j=r+1

x2
j

)−1/(
∑s

j=1(βj+1/2)+
∑k

j=r+1(βj+1/2)+(r−s)/2)

for x ∈ (0,∞)k

is bounded from L1((0,∞)k, dµβ) into L1,∞((0,∞)k, dµβ). Let β ∈ (− 1
2 ,∞)k and

1 � s � r � k. By proceeding as in the proof of [15, case 3] we can prove that
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the operator T β,3
s,r is bounded from L1((0,∞)k, dµβ) into L1,∞((0,∞)k, dµβ) when

s < r. Also, the operator T β,3
s,s is of weak type (1, 1) with respect to the measure

dµβ , because

T β,3
s,s (g)(x) � C

(
∑k

j=s+1 x2
j )

∑k
j=s+1(βj+1/2)

∫ xs+1/2

0
· · ·

∫ xk/2

0

∫ ∞

2x1

· · ·
∫ ∞

2xs

|g(y)|
y1 · · · ys

×
k∏

j=s+1

y
2βj

j dy, x ∈ (0,∞)k,

and Hs
∞ is bounded from L1((0,∞)s,

∏s
j=1 x

2βj

j dx) into itself and, by lemma 3.1,
Lβs+1,...,βk

is bounded from

L1
(

(0,∞)k−s,

k∏
j=s+1

x
2βj

j dx

)
into L1,∞

(
(0,∞)k−s,

k∏
j=s+1

x
2βj

j dx

)
.

Then, the operator Sλ,3
�,m is bounded from L1((0,∞)n, dµλ) into L1,∞((0,∞)n, dµλ).

By using (3.18), for each x ∈ (0,∞)n,

Sλ,3
�,m(f)(x) � C

∫ ∞

2x1

1
y1

(
sup
t>0

∫
(0,∞)n−1

W λ̄
t (x̄, ȳ)|f(y1, ȳ)| dµλ̄(ȳ)

)
dy1.

Since H1
∞ is bounded from Lp((0,∞), dµλ1) into itself and W λ̄

∗ is bounded from
Lp((0,∞)n−1, dµλ̄) into itself, Sλ,3

�,m is bounded from Lp((0,∞)n, dµλ) into itself for
every 1 < p < ∞.

Finally, we consider the case x1/2 < y1 < 2x1. By using (3.15) and (3.19) we
obtain that, for every 1 � 
 � m � n,

Sλ,2
�,m(f)(x)

=
∫ 2x1

x1/2
· · ·

∫ 2x�

x�/2

∫ x�+1/2

0
· · ·

∫ xm/2

0

∫ ∞

2xm+1

· · ·
∫ ∞

2xn

|Rλ
1,1(x, y)||f(y)| dµλ(y)

� C

∫ 2x1

x1/2
· · ·

∫ 2x�

x�/2

∫ x�+1/2

0
· · ·

∫ xm/2

0

∫ ∞

2xm+1

· · ·
∫ ∞

2xn

|f(y)|
[ ∫ x1y1

0

(x1y1)−λ1−1/2

t
e−(x1−y1)2/4tW λ̄

t (x̄, ȳ) dt

+
∫ ∞

x1y1

(
e−x2

1/8t

tλ1+3/2 +
(x1y1)−λ1

t3/2 e−(x1−y1)2/8t

)
W λ̄

t (x̄, ȳ) dt

]
dµλ(y)

� C

[ ∫ 2x2
1

0

dt√
t
sup
t>0

∫ 2x1

x1/2

∫
(0,∞)n−1

(x1y1)−λ1−1/2
√

t

× exp
(

− (x1 − y1)2

4t

)
W λ̄

t (x̄, ȳ)|f(y)| dµλ(y)

+
(

x−2λ1
1

∫ ∞

x2
1/2

dt

t3/2 +
∫ ∞

x2
1/2

dt

tλ1+3/2

)

× sup
t>0

∫ 2x1

x1/2

∫
(0,∞)n−1

W λ̄
t (x̄, ȳ)|f(y)| dµλ(y)

]
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� C

[
sup
t>0

∫ 2x1

x1/2

∫
(0,∞)n−1

(x1y1)−λ1

√
t

exp
(

− (x1 − y1)2

4t

)
W λ̄

t (x̄, ȳ)|f(y)| dµλ(y)

+ sup
t>0

∫
(0,∞)n−1

W λ̄
t (x̄, ȳ)

1
x2λ1+1

1

∫ 2x1

x1/2
|f(y)| dµλ1(y1) dµλ̄(ȳ)

]
.

The operator Hλ1
loc is bounded from L1((0,∞), dµλ1) into itself, and the maximal

operator W λ̄
∗ is bounded from L1((0,∞)n−1, dµλ̄) into L1,∞((0,∞)n−1, dµλ̄) (the-

orem 1.1). By splitting (0,∞)n−1 into global and local regions and using the argu-
ments developed above, we can show that the maximal operator,

Wλ
∗ (f)(x) = sup

t>0

∫ 2x1

x1/2

∫
(0,∞)n−1

(x1y1)−λ1

√
t

e−(x1−y1)2/4tW λ̄
t (x̄, ȳ)f(y) dµλ(y),

is bounded from L1((0,∞)n, dµλ) into L1,∞((0,∞)n, dµλ) for each x ∈ (0,∞)n.
We conclude that Sλ,2

�,m is bounded from L1((0,∞)n, dµλ) into L1,∞((0,∞)n, dµλ).
Moreover, since, for each p ∈ (1,∞), Hλ1

loc, W λ̄
∗ and Wλ

∗ are bounded from
Lp((0,∞), dµλ1) into itself, Lp((0,∞)n−1, dµλ̄) into itself and Lp((0,∞)n, dµλ)
into itself, respectively, Sλ,2

�,m is bounded from Lp((0,∞)n, dµλ) into itself for every
1 < p < ∞.

Hence, we have proved that the operator Rλ
1,1 defined by

Rλ
1,1(f)(x) =

∫
(0,∞)n

|Rλ
1,1(x, y)f(y)| dµλ(y), x ∈ (0,∞)n,

is bounded from L1((0,∞)n, dµλ) into L1,∞((0,∞)n, dµλ) and from Lp((0,∞)n,
dµλ) into itself for every 1 < p < ∞. Since

Rλ
1,1,∗(f)(x) = sup

ε>0

∣∣∣∣
∫

|x−y|>ε

Rλ
1,1(x, y)f(y) dµλ(y)

∣∣∣∣ � Rλ
1,1(f)(x), x ∈ (0,∞)n,

Rλ
1,1,∗ is bounded from

L1((0,∞)n, dµλ) into L1,∞((0,∞)n, dµλ)

and from Lp((0,∞)n, dµλ) into itself, for every 1 < p < ∞.
In order to study the maximal operators Rλ

1,�,∗, 
 = 2, . . . , n, we can proceed as
for Rλ

1,1,∗ by taking into account (3.12).
Finally, the Lp-boundedness properties of the maximal operator defined by

Rλ
1,n+1,∗(f)(x) = sup

ε>0

∣∣∣∣
∫

|x−y|>ε,y∈L(x)
R1(x, y)

(
y

x

)λ

f(y) dy

∣∣∣∣, x ∈ (0,∞)n,

are a consequence of proposition 2.1.
Thus, the proof of proposition 4.4 is finished.

According to propositions 4.3 and 4.4 standard arguments allow us to conclude
that, for every f ∈ Lp((0,∞)n, dµλ), 1 � p < ∞, and i = 1, . . . , n, there exists the
limit

lim
ε→0+

∫
|x−y|>ε

Rλ
i (x, y)f(y) dµλ(y) a.e. x ∈ (0,∞)n.
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We define, for every f ∈ Lp((0,∞)n, dµλ), 1 � p < ∞ and i = 1, . . . , n, the Riesz
transform Rλ

i (f) of f by

Rλ
i (f)(x) = lim

ε→0+

∫
|x−y|>ε

Rλ
i (x, y)f(y) dµλ(y) a.e. x ∈ (0,∞)n.

Note that, by proposition 4.3, for every i = 1, . . . , n, this definition extends the
initial definition of the Riesz transform Rλ

i from C∞
c ((0,∞)n) to Lp((0,∞)n, dµλ),

1 � p < ∞.
Finally, from proposition 4.4 we infer the desired Lp-boundedness properties for

the Riesz transform Rλ
i , i = 1, . . . , n, and the proof of theorem 1.4 is complete.
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