
J. Fluid Mech. (2021), vol. 908, A31. © The Author(s), 2020.
Published by Cambridge University Press

908 A31-1

doi:10.1017/jfm.2020.913

Reynolds number dependence of turbulence
induced by the Richtmyer–Meshkov instability

using direct numerical simulations

M. Groom1,† and B. Thornber1

1School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney,
Sydney, NSW 2006, Australia

(Received 3 March 2020; revised 11 October 2020; accepted 19 October 2020)

This paper investigates the Reynolds number dependence of a turbulent mixing layer
evolving from the Richtmyer–Meshkov instability using a series of direct numerical
simulations of a well-defined narrowband initial condition for a range of different
Reynolds numbers. The growth rate exponent θ of the integral width and mixed mass
is shown to marginally depend on the initial Reynolds number Re0, as does the minimum
value of the molecular mixing fractionΘ . The decay rates of turbulent kinetic energy and
its dissipation rate are shown to decrease with increasing Re0, while the spatial distribution
of these quantities is biased towards the spike side of the layer. The normalised dissipation
rate Cε and scalar dissipation rate Cχ are calculated and are observed to be approaching a
high Reynolds number limit. By fitting an appropriate functional form, the asymptotic
values of these two quantities are estimated as Cε = 1.54 and Cχ = 0.66. Finally, an
evaluation of the mixing transition criterion for unsteady flows is performed, showing
that, even for the highest Re0 case, the turbulence in the flow is not yet fully developed.
This is despite the observation of a narrow inertial range in the turbulent kinetic energy
spectra, with a scaling close to k−3/2, where k is the radial wavenumber.
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1. Introduction

This paper is concerned with the effects of Reynolds number on the development
of a turbulent mixing layer induced by Richtmyer–Meshkov instability (RMI). RMI
occurs when an interface separating two materials of differing densities is accelerated
impulsively, usually by an incident shock wave (Richtmyer 1960; Meshkov 1969). The
instability evolves due to the misalignment of density gradients across the interface and
pressure gradients across the shock (typically due to surface perturbations on the interface
or a non-uniform/inclined shock wave), which results in a deposition of baroclinic
vorticity. This leads to the growth of perturbations on the interface and the development of
secondary shear layer instabilities, which drive the transition to a turbulent mixing layer.
Unlike the closely related Rayleigh–Taylor instability (RTI), RMI can be induced for both
light to heavy and heavy to light configurations. In both cases the initial growth of the
interface is linear in time and can be described by analytical expressions. However, as the
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amplitudes of modes in the perturbation become large with respect to their wavelengths
the growth becomes nonlinear, whereby numerical simulation is required to calculate the
subsequent evolution of the mixing layer. For a comprehensive and up-to-date review of
the literature on RMI, the reader is referred to Zhou (2017a,b).

The understanding of mixing due to RMI is of great importance in areas such as
inertial confinement fusion (ICF) (Lindl et al. 2014), where a spherical capsule containing
thermonuclear fuel is imploded using powerful lasers with the aim of compressing the
contents to sufficient pressures and temperatures so as to initiate nuclear fusion. The
compression is performed using a series of strong shocks, which trigger hydrodynamic
instabilities at the ablation front due to capsule defects and drive asymmetries (Clark et al.
2016). The subsequent mixing of ablator material and fuel that ensues can dilute and cool
the hotspot, which reduces the overall efficiency of the implosion. Hence, it is important
that the mechanism by which this occurs be well understood. It has also been shown that
the hotspot is very viscous due to the high temperatures involved (Weber et al. 2014a), with
Reynolds numbers in the range of 10–100 and therefore the possibility that ablator material
is spread through the hotspot via molecular diffusion. Further evidence for diffusive
mixing in the hotspot is given in Weber et al. (2020), who estimate the Reynolds number of
the fill-tube jet that enters the hotspot to be 240 and therefore far lower than the conditions
that give rise to fully developed turbulence. As a contrast to ICF, in high speed combustion
such as in a scramjet or rotating detonation engine, RMI due to weak shocks improves the
mixing of fuel and oxidiser leading to more efficient combustion (Yang, Chang & Bao
2014). An understanding of mixing due to RMI is also important for many astrophysical
phenomena such as supernovae and the dynamics of interstellar media (Zhou 2017a). In
all of these applications, quantitative experimental data are difficult to obtain, therefore
gaining an understanding of the underlying physics relies to a considerable extent upon
the use of numerical simulation. Furthermore, given the broad range of scales involved
in these phenomena, as well as the fact that often other physics must be considered
such as radiation or chemical/nuclear reactions, it is currently necessary to model the
effects of mixing and turbulence to some degree in order to maintain computational
tractability.

This motivates the use of high-fidelity simulation techniques such as large eddy
simulation (LES) and direct numerical simulation (DNS) for fundamental problems
with the purpose of increasing the understanding of turbulent mixing and guiding
the development of reduced-order modelling techniques and subgrid models. Previous
numerical studies of this instability have demonstrated the ability of LES and implicit
LES (ILES) algorithms to predict mixing at late time due to turbulent stirring in the
high Reynolds number limit (see Youngs 1994; Hill, Pantano & Pullin 2006; Schilling
& Latini 2010; Thornber et al. 2010; Lombardini, Pullin & Meiron 2012; Tritschler et al.
2014a; Oggian et al. 2015; Soulard et al. 2018). In the largest such study to date (known
as the θ -group collaboration), Thornber et al. (2017) showed that good agreement is
obtained for various integral measures such as the mixing layer width, mixedness and
total fluctuating kinetic energy across eight independent algorithms. In a follow-up paper,
Thornber et al. (2019) computed the transport equation budgets for the mean momentum,
mean heavy fluid mass fraction, heavy fluid mass fraction variance and specific turbulent
kinetic energy to provide useful benchmark data for the development of closure models for
these quantities. There is still a lack of understanding with regards to the behaviour of the
mixing layer during the transitional period between linear growth and fully developed
turbulence, however. In this regime the use of LES, with either implicit or modelled
subgrid terms, is not necessarily well justified and indeed this is where the algorithms in
the θ -group collaboration showed the greatest disagreement. In Groom & Thornber (2019),
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Reynolds number dependence of Richtmyer–Meshkov instability 908 A31-3

the feasibility of performing direct numerical simulations of RMI was assessed for the
purpose of investigating this transitional regime. Using the methodology described in
that paper, the current work presents a comprehensive study of the Reynolds number
dependence of many key quantities of interest in the early time evolution and transition
to turbulence of an RMI-induced mixing layer.

The transition to fully developed turbulence of a turbulent mixing layer evolving
from RMI was investigated in shock tube experiments by Weber et al. (2014b), using
a broadband initial condition imposed on an interface between helium and argon and
either a M = 1.6 or M = 2.2 shock Mach number. In that study the authors found
an approximate k−5/3 inertial range in the scalar variance spectra (k being the radial
wavenumber) as well as sufficient separation in the Batchelor and Taylor length scales and
final outer-scale Reynolds numbers of 5.7 × 104 and 7.2 × 104 respectively. This suggests
that the turbulence had reached a fully developed state by the latest time considered.
Mohaghar et al. (2017) also performed shock tube experiments using nitrogen and carbon
dioxide with both single-mode and broadband initial conditions and a M = 1.55 shock.
For both initial conditions the outer-scale Reynolds number was found to be greater than
1 × 104 and the ratio of Liepmann–Taylor to inner-viscous length scales to be greater
than 1, which is a sufficient criterion for fully developed turbulence in stationary flows
(Dimotakis 2000). A scaling of close to k−5/3 was also found in the inertial range of the
turbulent kinetic energy spectra. In Mohaghar et al. (2019), results for a second shock
Mach number of M = 1.9 were added and the time-dependent mixing transition criterion
of Zhou, Robey & Buckingham (2003) was evaluated, showing that the ratio of diffusion
layer to inner-viscous length scales was greater than 1 only after reshock had occurred in
the M = 1.55 case and just prior to reshock in the M = 1.9 case. The (stationary) mixing
transition criterion was also investigated for a shock-driven gas curtain at three different
incident Mach numbers by Orlicz et al. (2015), who proposed that an outer-scale Reynolds
number based on the turbulent kinetic energy rather than the mixing width gives better
agreement with the measured Taylor microscales.

So far the majority of experimental and numerical studies focused on transition to
fully developed turbulence due to RMI have explored the effects of Mach number on the
temporal development of the flow. For example, Lombardini et al. (2012) investigated
the Mach number dependence of transition to fully developed turbulence in RMI by
performing large eddy simulations with shock Mach numbers ranging from M = 1.05 to
M = 5. For these simulations the effects of the unresolved scales of motion were explicitly
modelled using the stretched-vortex model of Misra & Pullin (1997). A deterministic
initial condition was used with a radial power spectrum consisting of a Gaussian profile
in wavenumber space. Tritschler et al. (2014b) also examined RMI induced turbulence
for a range of different shock Mach numbers, in this case from M = 1.05 to M = 1.5,
using direct numerical simulations and determined the critical Taylor microscale Reynolds
number Reλ for fully developed turbulence to be somewhere in the range of 35 ≤ Reλ ≤
80, substantially lower than previous estimates. A deterministic initial condition was also
used, consisting of a dominant single-mode perturbation with a multimode perturbation
imposed on top of this whose coefficients approximately obey a Gaussian distribution.
Outside of the effects of compressibility, however, the variation in time-dependent
transitional behaviour of the mixing layer is actually due to the variation in Reynolds
number, hence it is valuable to explore this parameter space directly as has been done
previously for homogeneous turbulence. Direct numerical simulation is the ideal tool for
this, as it allows for unparalleled levels of insight into the behaviour of quantities that are
typically quite hard to obtain experimentally. This is the main focus of the present study;
to explore the Reynolds number dependence of turbulent mixing induced by RMI using
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direct numerical simulations, with the aim of using the results to infer the behaviour at
higher Reynolds numbers.

A key idea introduced by Dimotakis (2000) to quantify the transition to fully developed
turbulence, known as the mixing transition, is to refine the bounds on the second similarity
hypothesis of Kolmogorov (1941). This may be stated as the requirement that

η � l � δ, (1.1)

for some intermediate scale l in order for the dynamics in the range of scales of size l to
be uncoupled from that of the large scales, the largest of which is the outer-scale δ, while
also evolving independently of the scales at which viscous effects dominate, characterised
by the Kolmogorov scale η. By considering the thickness of a laminar vorticity layer
growing over spatial extent δ and using an estimate of kη ≈ 1/8 for the beginning of the
dissipation range in various high Reynolds number flows, (Saddoughi & Veeravalli 1994)
and Dimotakis (2000) refined the criterion given in (1.1) to be

η < λV < l < λL < δ. (1.2)

Here, λV ≈ 50η is referred to as the inner-viscous scale while λL = Clamλ is the
Liepmann–Taylor scale, with Clam ≈ 5 a weakly flow-dependent constant and λ the Taylor
microscale. An important conclusion of this analysis is that by requiring λL/λV ≥ 1,
the critical outer-scale Reynolds number for fully developed turbulence must be Reδ �
104, which is in good agreement with the critical values of 1–2 × 104 observed in
experiments. Crucially, however, this criterion is only strictly valid for stationary flows.
For time-dependent flows, Zhou et al. (2003) showed that an additional length scale
λD characterising the growth rate of shear-generated vorticity must be considered. The
temporal development of such a scale, referred to as the diffusion layer scale, is given by

λD = Clam(νt)1/2, (1.3)

where Clam is the Liepmann–Taylor growth constant. Following Zhou et al. (2003), the
lower bound of the energy-containing scales in an unsteady flow is given by the minimum
of λD and λL, therefore the condition for fully developed turbulence becomes

min(λL, λD) > λV . (1.4)

In addition, flows just satisfying the time-dependent mixing transition criterion will not
necessarily capture all of the physics of the energy-containing scales that are present at
higher Reynolds numbers as there is still some interaction with the dissipation range. Zhou
(2007) showed that in order for there to be complete decoupling of the energy-containing
and dissipation scales the mode with wavenumber kZ = 2kL, where kL is the wavenumber
of the Liepmann–Taylor scale, must lie within the inertial range. This argument is then
used to define the minimum state Reynolds number as the lowest Reynolds number for
which the dynamics of the energy-containing scales is completely independent of the
dissipation mechanism in the flow and which requires that kV = kZ = 2kL (where kV is
the wavenumber of the inner-viscous scale). This definition, along with the definitions
for λL and λV given previously, is used to determine that the Reynolds number of the
minimum state should be Re∗ = 1.6 × 105, approximately an order of magnitude higher
than the criterion of Dimotakis (2000). At this point the energy-containing scales may be
considered to evolve completely independent of the specific value of the Reynolds number.

One aspect of the simulations presented here that make them particularly challenging, at
least from the point of view of achieving a sustained level of turbulence, is the fact that the
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Reynolds number dependence of Richtmyer–Meshkov instability 908 A31-5

Reynolds number decreases with time. This challenge also applies to RMI experiments and
is due to the dependence of the growth rate exponent θ on initial conditions (Thornber et al.
2010). As was illustrated in Groom & Thornber (2019), if the layer width grows as ∼ tθ
then the Reynolds number based on this width evolves as ∼ t2θ−1. For the class of initial
conditions presented here, it is expected that θ ≤ 1/3 (Elbaz & Shvarts 2018) and hence
the Reynolds number decreases with time. This is contrasted with simulations/experiments
of the Rayleigh–Taylor instability where the layer width grows as ∼ t2 and hence the
associated Reynolds number grows as ∼ t3, which makes it easier to obtain fully developed
turbulence. A similar discussion has also been given previously in Zhou et al. (2019).

The paper is organised as follows. In § 2, an overview of the governing equations and
numerical methods employed to solve these equations is given, as well as a description of
the computational set-up. Section 3 details statistics of the velocity and scalar fields as well
as the evolution of key length scales and Reynolds numbers. These are used to evaluate the
mixing transition criterion for unsteady flows and assess how close the turbulence in the
flow is to becoming fully developed. Finally, § 4 gives a conclusion of the main findings,
as well as the direction of future work on this problem.

2. Computational approach

2.1. Governing equations
The computations presented here solve the three-dimensional, compressible,
multicomponent Navier–Stokes equations, which govern the behaviour of mixtures of
miscible gases. These equations can be written in strong conservation form as follows:

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1a)

∂ρu
∂t

+ ∇ · (ρuut + pδ) = −∇ · σ , (2.1b)

∂E
∂t

+ ∇ · [
(E + p)u

] = −∇ · (σ · u + qc + qd), (2.1c)

∂ρYn

∂t
+ ∇ · (ρYnu) = −∇ · (J n). (2.1d)

In (2.1), ρ is the mass density, u = [u, v,w]t is the mass-weighted velocity vector, p is the
pressure, δ is the Kronecker delta and Yn is the mass fraction of species n = 1, . . . ,N, with
N the total number of species; e = E/ρ = ei + ek is the total energy per unit mass, where
ek = (u · u)/2 is the kinetic energy and the internal energy ei is given by the equation of
state. All computations are performed using the ideal gas equation of state,

ei(ρ, p,Y1, . . . ,YN) = p
ρ(γ̄ − 1)

, (2.2)

where γ̄ is the ratio of specific heats of the mixture. The viscous stress tensor σ for a
Newtonian fluid is

σ = −μ̄ [∇u + (∇u)t
] + 2

3 μ̄(∇ · u)δ, (2.3)

where μ̄ is the dynamic viscosity of the mixture. Note that in (2.3) the bulk viscosity is
assumed to be zero according to Stokes’ hypothesis. The conductive heat flux is given by
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Fourier’s law,
qc = −κ̄∇T, (2.4)

where κ̄ is the thermal conductivity of the mixture, and T is the temperature. The thermal
conductivity of species n is calculated using kinetic theory as κn = μn((5/4)(R/Wn)+
cp,n), R and Wn being the universal gas constant and the molecular weight of species
n, while the thermal conductivity of the mixture is calculated using Wilke’s rule. The
enthalpy flux arising from changes in internal energy due to mass diffusion is given by

qd =
N∑

n=1

hnJ n, (2.5)

where hn = cp,nT is the enthalpy of species n and cp,n the specific heat at constant pressure.
The mass diffusion flux J n for species n is

J n = −ρDn∇Yn + Yn

N∑
n=1

ρDn∇Yn, (2.6)

which is Fick’s law plus a correction velocity to ensure mass conservation when more than
two species are present. The effective binary diffusivity Dn for species n is given by

Dn = μ̄

ρScn
, (2.7)

where Scn is the Schmidt number of species n. In all of the simulations presented here,
μ̄ = μ1 = μ2 and γ̄ = γ1 = γ2. Setting Sc1 = Sc2 = 1 therefore gives D1 = D2 = D = ν.
Such an approximation is common when performing DNS of canonical problems such as
RTI (Cook & Dimotakis 2001) and related flows.

2.2. Numerical method
The governing equations presented in § 2.1 are solved using the University of Sydney code
FLAMENCO, which employs a method of lines discretisation approach in a structured
multiblock framework. Spatial discretisation is performed using a Godunov-type
finite-volume method, which is integrated in time via a second-order total variation
diminishing (TVD) Runge–Kutta method. Spatial reconstruction of the inviscid terms is
done using a fifth-order Monotonic Upstream-centered Scheme for Conservation Laws
(MUSCL) (Kim & Kim 2005), which is augmented by a modification to the reconstruction
procedure to ensure the correct scaling of pressure, density and velocity fluctuations in the
low Mach number limit (Thornber et al. 2008). The inviscid flux component is calculated
using the Harten–Lax–van Leer-Contact (HLLC) Riemann solver (Toro, Spruce & Speares
1994), while the viscous and diffusive fluxes are calculated using second-order central
differences. This numerical algorithm has been extensively demonstrated to be an effective
approach for solving shock-induced turbulent mixing problems (see Thornber et al. 2010;
Thornber 2016; Walchli & Thornber 2017; Groom & Thornber 2019).

2.3. Problem description
The initial condition used for all simulations here is identical to that of the θ -group
collaboration by Thornber et al. (2017). Two test cases were utilised in that study,
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Reynolds number dependence of Richtmyer–Meshkov instability 908 A31-7

referred to as the standard problem and the quarter-scale problem, which used the same
computational domain size but with the initial length scales reduced by a factor of four.
This allowed for simulations to be run to much later dimensionless times while still being
able to obtain grid converged results for the various integral measures of interest. Since
the focus of the present study is on the Reynolds number dependence at relatively early
dimensionless times, the starting point for the current set-up is the standard test case from
Thornber et al. (2017). This maximises the Reynolds numbers at which grid converged
DNS solutions may be obtained while still allowing for the simulations to be run up
until the onset of late-time behaviour. A summary of how grid convergence is assessed
in direct numerical simulations of this initial condition can be found in appendix A, while
full details are given in Groom & Thornber (2019). Using the methodology presented in
that study, the results for all simulations given here may be considered to be sufficiently
converged and independent of the grid resolution used.

A brief description of the initial condition will now be given. The set-up consists of
two quiescent gases separated by a material interface and with a shock wave initialised
in the heavy gas travelling towards the interface. The material interface is given a surface
perturbation, defined in Fourier space as a power spectrum of the form

P(k) =
{

C, kmin < k < kmax ,

0, otherwise,
(2.8)

where k =
√

k2
y + k2

z is the radial wavenumber. The specific perturbation used in this study
is a narrowband perturbation with kmin = 4 and kmax = 8, in other words containing length
scales ranging from λmin = L/8 to λmax = L/4 where L = 2π m is the cross-section of the
computational domain. Setting C = λmin/10 ensures that all modes are initially growing
in the linear regime. The amplitudes and phases of each mode are defined using a set of
random numbers that are constant across all grid resolutions and cases, thus allowing for a
grid convergence study to be performed for each case. The interface is also initially diffuse
for this same reason, with the profile given by an error function with characteristic initial
thickness δ = L/32. The volume fractions f1 and f2 = 1 − f1 are computed as

f1(x, y, z) = 1
2

erfc

{√
π

[
x − S( y, z)

]
δ

}
, (2.9)

where S( y, z) = x0 + A( y, z), with A( y, z) being the amplitude perturbation satisfying
the specified power spectrum and x0 the mean position of the interface. For the purposes
of this study it is sufficient to state that A( y, z) is given by

A( y, z) =
N∑

m,n=0

[
amn cos(mk0 y) cos(nk0z)+ bmn cos(mk0 y) sin(nk0z)

+ cmn sin(mk0 y) cos(nk0z)+ dmn sin(mk0 y) sin(nk0z)
]
, (2.10)

where N = kmax L/(2π), k0 = 2π/L and amn . . . dmn are selected from a Gaussian
distribution and scaled such that the overall standard deviation of the perturbation is
0.1λmin . For full details on the derivation of the surface perturbation see Thornber et al.
(2010, 2017) and Groom & Thornber (2020). A visualisation of the initial perturbation is
shown in figure 1.

A Cartesian domain of dimensions x × y × z = 2.8π × 2π × 2π m3 is used for all
simulations presented here. Periodic boundary conditions are used in the y and z
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Y Z

X

FIGURE 1. Isosurface of volume fraction f1 = 0.5 at time τ = 0.

directions, while in the x direction outflow boundary conditions are imposed very far away
from the test section so as to minimise spurious reflections from outgoing waves impacting
the flow field. The initial mean positions of the shock wave and the interface are xs = 3.0 m
and x0 = 3.5 m respectively and the initial pressure of both (unshocked) fluids is p =
1.0 × 105 Pa. The shock Mach number is 1.8439, equivalent to a fourfold pressure increase,
the initial densities of the heavy and light fluids are ρ1 = 3.0 kg m−3 and ρ2 = 1.0 kg m−3

and the post-shock densities are ρ+
1 = 5.22 kg m−3 and ρ+

2 = 1.80 kg m−3 respectively.
This gives a post-shock Atwood number of At+ = (ρ+

2 − ρ+
1 )/(ρ

+
2 + ρ+

1 ) = 0.487 (which
coincidentally is quite similar to the value of 0.49 used is the gas curtain experiments of
Orlicz et al. 2015). The variation in density ρ and mass fraction Y1 across the interface is
computed using ρ = ρ1 f1 + ρ2(1 − f1) and ρY1 = ρ1 f1 with f1 given by (2.9).

The evolution of the interface is solved in the post-shock frame of reference by applying
a factor of �u = −291.575 m s−1 to the initial velocities of the shocked and unshocked
fluids. In order to be suitable for DNS, the velocity field must be modified so as to include
an initial diffusion velocity at the interface (Reckinger, Livescu & Vasilyev 2016). This
is performed by considering the incompressible limit of a binary mixture (Livescu 2013),
which specifies that

∇ · u = −∇ ·
(

D
ρ

∇ρ
)
. (2.11)

To improve the quality of the initial condition, three-point Gaussian quadrature is used
in each direction to accurately compute the cell averages required by the finite-volume
algorithm. The dynamic viscosity μ is used to set the initial Reynolds number Re0,
described in § 3 below, while all other thermodynamic properties of both fluids are given
in table 1.

3. Results & discussion

3.1. Non-dimensionalisation
All of the quantities presented in the following sections are non-dimensionalised as
follows. All velocities are normalised by the initial growth rate of integral width Ẇ0, given
by linear theory. By relating the integral width to the initial variance of the perturbation,
Thornber et al. (2017) showed that the estimated initial growth rate is given by

Ẇ0 = 0.564k̄At+σ+
0 �u, (3.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

91
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.913


Reynolds number dependence of Richtmyer–Meshkov instability 908 A31-9

Property Heavy fluid Light fluid

Wn (g mol−1) 90 30
cp,n (J kg−1 K−1) 231 693
γn 5/3 5/3
Prn 1.0 1.0
Scn 1.0 1.0

TABLE 1. The molecular weight W, ratio of specific heats γ and Prandtl and Schmidt numbers
of fluid 1 (heavy) and fluid 2 (light).

where k̄ is a weighted average wavenumber and σ+
0 is the post-shock standard deviation of

the perturbation, given by

k̄ =

√∫ ∞

0
k2P(k) dk√∫ ∞

0
P(k) dk

, (3.2a)

σ+
0 =

(
1 − �u

Us

)√∫ ∞

0
P(k) dk. (3.2b)

For the current problem, k̄ = √
7/12kmax and the shock velocity is Us = 434.61 m s−1.

Following Youngs & Thornber (2020), to account for the initial diffuse interface a
correction factor ψ is applied to (3.1) of the form

ψ = 1 +
√

2
π

k̄δ+, (3.3)

where δ+ = C̄δ− is the post-shock characteristic thickness of the interface, δ− is the
pre-shock thickness and C̄ = (ρ−

1 + ρ−
2 )/(ρ

+
1 + ρ+

2 ) is the mean compression. For the
present set of DNS cases, δ− will be slightly larger than the initial characteristic thickness
δ0 due to diffusion prior to shock arrival. To account for this, δ− is calculated assuming
the diffusion occurs purely in x-direction, i.e.

δ− =
√

4Dts + δ2
0, (3.4)

where ts = 0.0011 s is the time taken for the shock to reach the interface and δ0 =
λmin/(4

√
π). Therefore the initial growth rate Ẇ0 = 0.564k̄At+σ+

0 �u/ψ ranges from
9.468 m s−1 to 9.665 m s−1 for all cases considered here.

All length scales are non-dimensionalised by λ̄ = 2π/k̄ = 1.0283 m, while the mean
post-shock density ρ+ = 3.51 kg m−3 is used to non-dimensionalise mass in all relevant
quantities. For example, the dimensionless time is defined as τ = tẆ0/λ̄. Based on these
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Re0 Ẇ0 (m s−1) Simulation time (s) Domain size (m3) Maximum grid resolution

43 9.468 0.5 2.8π × 2π × 2π 360 × 2562

57 9.517 0.5 2.8π × 2π × 2π 360 × 2562

86 9.567 0.5 2.8π × 2π × 2π 360 × 2562

115 9.593 0.5 2.8π × 2π × 2π 360 × 2562

174 9.617 0.5 2.8π × 2π × 2π 720 × 5122

348 9.645 0.5 2.8π × 2π × 2π 720 × 5122

697 9.659 0.5 2.8π × 2π × 2π 1440 × 10242

1395 9.665 0.1 1.4π × 2π × 2π 1440 × 20482

TABLE 2. The initial impulse, total simulation time, domain size and maximum grid resolution
employed for each initial Reynolds number.

reference values, the initial Reynolds number of each case is defined as

Re0 = ρ+Ẇ0λ̄

μ̄
. (3.5)

Using the initial condition described in § 2.3, a series of simulations are performed, each
with a different value of μ̄ and hence Re0. The values of μ̄ used are μ̄ = 0.8, 0.6, 0.4,
0.3, 0.2, 0.1 and 0.05 Pa s, which correspond to initial Reynolds numbers Re0 = 43, 57,
86, 115, 174, 348 and 697. While these viscosities are much higher than would typically
occur experimentally, they are equivalent to using much smaller values of λ̄ to obtain
the same Reynolds number due to the various simplifications employed in the governing
equations, such as no variation in viscosities with temperature. For a value of μ̄ = 4.25 ×
10−5 Pa s (based on a gas combination of argon and xenon that gives a similar density ratio
to the one employed here), the equivalent values of λ̄ would range from 1.93 × 10−4 m to
3.06 × 10−3 m respectively. For each simulation, grid convergence is assessed using the
methodology outlined in Groom & Thornber (2019). For example, the Re0 = 174, Re0 =
348 and Re0 = 697 cases are found to be suitably converged on grids of 360 × 2562, 720 ×
5122 and 1440 × 10242 cells respectively. All simulations are calculated to a final time of
t = 0.5 s, at which point effects due to the finite box size begin to impact the solution
(Thornber 2016). An additional simulation with Re0 = 1395 is also performed to a final
time of t = 0.1 s, using a domain of size 1.4π × 2π × 2π and grids of up to 1440 × 20482

cells. The complete set of simulations is summarised in table 2.
Figure 2 shows visualisations of the solution at τ = 0.94 for the Re0 = 174 and Re0 =

697 cases. Bubbles of light fluid can be seen flowing into the heavy fluid on the upper side
of the mixing layer, while heavy spikes are penetrating into the light fluid on the lower side.
When comparing between the two cases, it can be observed that the effects of Reynolds
number are more apparent at the spike side than the bubble side of the mixing layer.
Whereas the structure of the bubble front is largely the same between the two cases, there
is substantially more fine scale detail in the spikes for the Re0 = 697 case. Thus it can be
hypothesised that the transition to fully developed turbulence begins preferentially on the
spike side, likely due to the higher velocity and stronger gradients of the spikes feeding
the growth of secondary shear layer instabilities at a faster rate. The following sections
will explore this transitional behaviour further through an analysis of the variation with
Reynolds number in the velocity and scalar fields.
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(b)(a)

FIGURE 2. Contours of volume fraction f1 for (a) Re0 = 174 and (b) Re0 = 697 at time
τ = 0.94, bounded by the isosurfaces f1 = 0.1 (black) and f1 = 0.9 (white).

3.2. Mixing measures & growth rates
It is reasonably well established that multimode RMI will evolve into a turbulent mixing
layer whose width is proportional to tθ , however, there are still differences in the exact
value of θ reported in the literature (Zhou 2017a). Thornber et al. (2010) showed that
these discrepancies can be at least partially explained by dependence on initial conditions,
and for narrowband perturbations where the instability growth is due to nonlinear
coupling/backscatter from the energetic modes a value of θ = 0.26 was obtained from
numerical simulations. This was found to be in good agreement with the experimental
measurements of Dimonte & Schneider (2000) which gave θ = 0.25 ± 0.05. However,
Thornber (2016) showed that the value of θ is sensitive to the length of dimensionless time
a simulation (or experiment) is run for and gave an updated value of θ = 0.275. Similarly,
in the recent θ -group collaboration using eight independent algorithms (Thornber et al.
2017), a value of θ = 0.219 was obtained for the standard narrowband case (the same
initial condition considered in the present study) while the quarter-scale version of that
case that was run to much later dimensionless time gave θ = 0.291.

Elbaz & Shvarts (2018) gave a theoretical argument that for incompressible and
immiscible fluids, the bubble front should reach a self-similar state once at least 3–4
mode coupling generations have occurred, with θb = 1/3. Soulard et al. (2018) applied
an Eddy Damped Quasi-Normal Markovian (EDQNM) closure to RMI turbulence in
the low Atwood number limit and also obtained θb = 1/3 for narrowband perturbations
with a constant initial power spectrum. This is quite close to the results of Reese et al.
(2018), who found θ = 0.34 ± 0.01 in vertical shock tube experiments (after adjusting the
concentration field to remove large-scale structures from the mixing layer). Experiments
in air and sulphur hexafluoride conducted by Prasad et al. (2000) examining late-time
behaviour for a nominally single-mode perturbation found 0.26 ≤ θ ≤ 0.33, roughly
spanning the range of different values from simulations of narrowband perturbations.
Recently, Youngs & Thornber (2020) modified a buoyancy–drag model based on results
from the θ -group study to account for initial conditions. This analysis also provided
a new method for estimating the asymptotic value of θ at late time and found that
0.32 ≤ θ ≤ 0.36, in excellent agreement with the theoretical and experimental results
mentioned above.

One area in which little data have been published concerns the effects of Reynolds
number on θ , which can be discerned using data taken from the present set of DNS
results. A caveat must first be made; the results presented here are for comparatively
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FIGURE 3. Temporal evolution of (a) integral width and (b) mixed mass. Shown are data for
Re0 = 43 (dotted black lines), Re0 = 86 (dashed black lines), Re0 = 174 (white diamonds),
Re0 = 348 (grey squares), Re0 = 697 (black circles) and Re0 = 1395 (dash-dot grey lines).

early dimensionless times and should not be interpreted as representative of any late-time
self-similar state. A commonly used quantity for estimating θ is the integral width, given
by

W =
∫

〈 f1〉〈 f2〉 dx, (3.6)

where 〈. . .〉 denotes a plane average over the statistically homogeneous directions (in this
case y and z). Another quantity that may be considered to be a more direct measure of the
mixing layer evolution is the mixed mass (Zhou, Cabot & Thornber 2016), which is given
by

M =
∫

〈ρY1Y2〉 dx . (3.7)

An important feature of the mixed mass is that it is a conserved quantity. Figure 3 shows the
evolution in time of W and M, with both quantities exhibiting a non-trivial variation with
Reynolds number. At the latest time considered, W is smallest for the Re0 = 43 case and
largest for the Re0 = 174 case. This ordering can be explained by the variation that occurs
in dissipation of kinetic energy due to viscous action and dissipation due to turbulence
as the Reynolds number is increased. For low Reynolds numbers, such as Re0 = 43 and
Re0 = 57 (not shown), the growth in W is damped by viscous dissipation, in other words
the largest scales are evolving under the influence of viscosity. Significant Schmidt number
effects are also expected at sufficiently low Reynolds numbers, since in the limit of Re0 →
0 (and with Sc = 1) the growth in W becomes dominated by the diffusion velocity (and
hence grows as ∼ t1/2). For high Reynolds numbers W grows independently of viscous
effects, and the growth rate is instead damped by turbulent dissipation. This is beginning to
occur in the two highest Re0 cases, where comparisons with the ILES data from Thornber
et al. (2017) show that W is tending towards the high Reynolds number limit (Groom &
Thornber 2019). The Re0 = 174 case is representative of an intermediate regime where
damping due to viscous dissipation has reduced but the amount of turbulence in the flow
is still relatively low, thus the damping on the growth of W is lowest.

A different variation with Reynolds number is observed for M, where at the latest
time considered the Re0 = 43 case has the lowest amount of mixed mass, followed by the
Re0 = 697 case, while the Re0 = 86 case has the highest amount of mixed mass. At early
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times M decreases with increasing Re0, which can be explained in terms of increasing
levels of molecular diffusion leading to greater mixing. As the simulations progress,
however, the amount of mixed mass in the Re0 = 43 case is eventually overtaken by that in
the Re0 = 86 case, which in turn is overtaken by the Re0 = 115 case (not shown). This is
most likely due to a combination of two factors that influence the rate at which molecular
mixing occurs; the steepness of gradients across the interface and the interfacial surface
area. As mixing progresses in the lowest Re0 cases, the gradients across the interface
(which control the rate of molecular diffusion) are reduced and hence the mixing rate
slows. When combined with the fact that there is less interfacial surface area (i.e. the area
across which molecular diffusion can occur) due to inhibition of turbulence, this explains
why the amount of mixed mass in these cases is eventually overtaken by that in the higher
Reynolds number cases. Indeed, this trend is expected to continue if the simulations were
run to later times, where eventually the highest Re0 case would obtain the highest amount
of mixed mass.

Using nonlinear regression to fit a function of the form W = β(τ − τ0)
θ allows the

exponent θ to be obtained for each case, with the fit performed from τ − τs = 2.2 to τ −
τs = 4.6. This fitting window is chosen based on the period over which the instantaneous
value of θ obtained from a buoyancy–drag model is constant (Groom & Thornber
2020). In order of ascending Re0, the calculated values are θ = 0.172 ± 1.78 × 10−4, θ =
0.163 ± 2.58 × 10−5, θ = 0.178 ± 6.99 × 10−6, θ = 0.197 ± 1.40 × 10−5, θ = 0.215 ±
4.74 × 10−5, θ = 0.214 ± 5.60 × 10−5 and θ = 0.214 ± 1.85 × 10−4. These values should
be compared to the value of θ = 0.219 that was obtained from ILES simulations of the
same initial condition (Thornber et al. 2017). Note that the error bounds are merely a
measure of how well the assumed functional form can explain the variation in the data,
they are not indicative of the uncertainty in the data themselves (which would require
multiple realisations to be run in order to estimate). There is a clear trend of increasing
values of θ with increasing Re0 at low Reynolds numbers, although the variation is
only 25 % at most, while at the highest Reynolds numbers considered θ is becoming
independent of Re0. There is still a clear dependence on initial conditions over this range
of dimensionless times, however, since θ < 1/3 indicates that the growth in W is not yet
self-similar (Elbaz & Shvarts 2018). The same procedure is also preformed for the mixed
mass M, for which the corresponding values of θ are θ = 0.189 ± 3.40 × 10−5, θ =
0.186 ± 1.00 × 10−4, θ = 0.195 ± 1.42 × 10−4, θ = 0.198 ± 1.48 × 10−4, θ = 0.204 ±
1.82 × 10−4, θ = 0.219 ± 2.54 × 10−4 and θ = 0.214 ± 2.58 × 10−4. These values are
not substantially different from those calculated using W, except at the lowest Reynolds
numbers considered. At even lower Reynolds numbers than those in the present study (and
Sc = 1), it is likely that the calculated values of θ using W and M would begin to differ
more substantially.

The degree of how effectively the two fluids are mixed may be quantified by the (global)
molecular mixing fraction, given by

Θ =

∫
〈 f1 f2〉 dx∫

〈 f1〉〈 f2〉 dx
. (3.8)

Here,Θ can take values anywhere between 0 and 1, withΘ = 0 corresponding to complete
heterogeneity and Θ = 1 corresponding to complete homogeneity of mixing. A similar
measure may also be defined based on the mixed mass, known as the normalised mixed
mass Ψ (Zhou et al. 2016). Figure 4 shows the evolution in time of Θ , which displays
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FIGURE 4. (a) Temporal evolution of molecular mixing fraction at the mixing layer centre
plane. Shown are data for Re0 = 43 (dotted black lines), Re0 = 86 (dashed black lines), Re0 =
174 (white diamonds), Re0 = 348 (grey squares), Re0 = 697 (black circles) and Re0 = 1395
(dash-dot grey lines). (b) Minimum value of molecular mixing fraction vs. initial Reynolds
number, including curve fits to the data (dashed lines).

a clear trend toward a more heterogeneous mixture with increasing Reynolds number.
Note that results for Ψ are not shown as the behaviour is almost identical to that of Θ .
After the initial compression by the shock, at which point the mixing layer is highly
homogeneous, the interface is rapidly stretched by instability growth due to the impulsive
acceleration. This stretching of the interface, combined with the increasing amplitude of
each mode, leads to a rapid increase in the heterogeneity of the mixing layer. This is soon
balanced by the onset of secondary instabilities, as well as (in the low Reynolds number
limit) molecular diffusion due to steepening gradients across the interface, leading to a
minimum inΘ (and Ψ ). The value of this minimum varies between 0.449 and 0.161 as Re0
is increased and thus the value, and to a lesser degree the temporal location, is observed
to depend on the initial Reynolds number. There is also evidence that a high Reynolds
number limit exists, for example the distance between the Re0 = 1395 and Re0 = 697
minima is less than that between the Re0 = 697 and Re0 = 348 minima. The variation
of the minimum values of Θ with initial Reynolds number Re0 is also shown in figure 4,
along with the curve of best fit to the data, obtained using nonlinear regression with a
functional form of

f = A +
√

B/(Re0 − C). (3.9)

The optimal parameters are A = 0.10, B = 5.34 and C = −0.60 for Θmin . Although
the correct behaviour as Re0 → 0 is not captured by the assumed functional form, the
high Reynolds number limit for both quantities may be estimated and is given by the
coefficient A.

Beyond the point of minimum mix, Θ (and Ψ ) starts to increase and by the end
of the simulation is close to obtaining an asymptotic value, which is also observed to
be a function of the initial Reynolds number. A simple Richardson extrapolation of
the end time values of Θ for the Re0 = 174, Re0 = 348 and Re0 = 697 cases gives an
estimate of 0.765 for the high Reynolds number limit. This is slightly lower than the
value obtained with ILES for this problem (Groom & Thornber 2019). At much later
dimensionless times,Θ has been shown to gradually decay as self-similarity is approached
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(Thornber et al. 2017), however, this phenomenon may only occur for sufficiently high
Reynolds number turbulence.

3.3. Reynolds number effects

3.3.1. Velocity field
The observed Reynolds number dependence in § 3.2 motivates a systematic study

of Reynolds number effects in both the velocity and scalar fields. The first quantity
considered is the turbulent kinetic energy, defined as

Ẽ′′
k = 1

2 ũ′′
i u′′

i , (3.10)

where ψ ′′ = ψ − ψ̃ indicates a fluctuating quantity and ψ̃ = ¯ρψ/ρ̄ is a Favre average.
A plane average taken over the statistically homogeneous directions (i.e. y–z planes) is
used to calculate the ensemble average ψ̄ of a quantity ψ . The dissipation rate of the
Favre-averaged turbulent kinetic energy is given by

ε̃ ′′ = 2μ̄
ρ̄

(
s̃′′

ij s
′′
ij − 1

3
θ̃ ′′2

)
, (3.11)

where s′′
ij = (∂u′′

i /∂xj + ∂u′′
j /∂xi)/2 is the fluctuating strain rate tensor and θ ′′ = ∂u′′

l /∂xl

(Chassaing et al. 2002). Figure 5 shows the evolution in time of Ẽ′′
k and ε̃ ′′ at the mixing

layer centre plane xc, which is defined as the x position of equal mixed volumes (Walchli
& Thornber 2017), given by ∫ xc

−∞
〈 f2〉 dx =

∫ ∞

xc

〈 f1〉 dx . (3.12)

Both quantities exhibit a decay in time as the kinetic energy initially deposited by the
shock wave is converted into internal energy by irreversible processes. The initial amount
of turbulent kinetic energy is also essentially the same for all cases, with only very
small differences observed due to slightly different values of δ−. The dissipation rate
is initially highest for the Re0 = 43 case and lowest for the Re0 = 1395 case, and at all
times considered there is more turbulent kinetic energy in the flow for increasing Re0. The
turbulent kinetic energy is also monotonically decreasing in time for all cases, as is the
dissipation rate in all cases except for the Re0 = 1395 case, which exhibits a maximum at
time τ − τs = 0.224. At late times the dissipation rate increases with increasing Re0 due to
the presence of more turbulent structures in the mixing layer. Beyond the initial transient
stage, the turbulent kinetic energy decays as Ẽ′′

k ∼ t−n . Using linear regression, the decay
rate n is found to be 2.20, 2.00 1.83, 1.76, 1.68, 1.59 and 1.51 in order of lowest to highest
initial Reynolds number (excluding Re0 = 1395). All of these decay rates are steeper than
the t−10/7 or t−6/5 decay typical of homogeneous turbulence with a Batchelor or Saffman
spectrum. Similarly, the dissipation rate is expected to decay as ε̃ ′′ ∼ t−(n+1) with the actual
decay rates found to be 3.24, 2.97, 2.80, 2.73, 2.66, 2.67 and 2.40, in good agreement
with the measured values of n. In Groom & Thornber (2019), the total fluctuating kinetic
energy of the mixing layer was found to scale as ∼ t−1.41 for the Re0 = 348 case. Following
the dimensional arguments given in Thornber et al. (2010), the total fluctuating kinetic
energy is proportional to the mixing layer width multiplied by the mean kinetic energy
and should therefore scale as tθ t−n = tθ−n . For the Re0 = 348 case, this gives a value of
θ − n = −1.38 which is reasonably close, while the decay rates for the other cases may
be related to their bulk values in a similar manner.
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FIGURE 5. Temporal evolution of (a) turbulent kinetic energy and (b) dissipation rate at the
mixing layer centre plane. Shown are data for Re0 = 43 (dotted black lines), Re0 = 86 (dashed
black lines), Re0 = 174 (white diamonds), Re0 = 348 (grey squares), Re0 = 697 (black circles)
and Re0 = 1395 (dash-dot grey lines).

Figures 6 and 7 show the spatial distribution across the layer of Ẽ′′
k and ε̃ ′′ at three

different points in time. The x-coordinate is normalised by the integral width W and is
centred about xc. To give some context to the figures, the locations at which 〈 f1〉 = 0.99
and 〈 f1〉 = 0.01 (i.e. the 99 % bubble and spike heights) range between (x − xc)/W =
−2.8 to −3.0 and (x − xc)/W = 4.9 to 5.1 respectively throughout the simulation. At the
earliest time shown, the turbulent kinetic energy profile is biased towards the spike side of
the layer, with the peak occurring at a distance of about two integral widths from the layer
centre in all cases. This is also observed for the dissipation rate. As time progresses, the
profiles become more symmetric about xc, although there is a persistent bias towards the
spike side, indicating that more turbulent fluctuations are occurring there. The difference
between the profiles of the highest and lowest Re0 cases also increases throughout the
simulation, particularly at the very fringes of the spike side of the layer. Indeed, at the latest
time considered, there is a substantially higher amount of turbulent kinetic energy (as well
as a larger dissipation rate) in this region for the Re0 = 348 and Re0 = 697 cases than in
any of the lower Reynolds number cases. This suggests that there are spikes penetrating
deep into the light fluid at these Reynolds numbers, and which break down more rapidly
at lower Reynolds numbers. In fact, the spikes in the Re0 = 348 case actually penetrate
further. This is because of a lower amount of turbulent dissipation inhibiting their growth,
as was previously mentioned in § 3.2 for the integral width. A similar phenomenon can
also be observed in Thornber et al. (2017) for the ILES codes with greater numerical
dissipation.

The distribution of turbulent kinetic energy is also examined in spectral space. Radial
power spectra for each component of the turbulent kinetic energy per unit volume are
calculated at the mixing layer centre plane as

E(v)i (k) = ψ̂i
†
ψ̂i, (3.13)

whereψi = √
ρu′′

i , k = √
ky + kz is the radial wavenumber in the y–z plane at x = xc, (̂. . .)

denotes the 2D Fourier transform taken over this plane and (̂. . .)
†

is the complex conjugate
of this transform (Cook & Zhou 2002). As isotropy is expected in the homogeneous
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FIGURE 6. Spatial distribution of turbulent kinetic energy in the x-direction for times
(a) τ = 0.187, (b) τ = 0.939 and (c) τ = 4.70. Shown are data for Re0 = 43 (dotted black
lines), Re0 = 86 (dashed black lines), Re0 = 174 (white diamonds), Re0 = 348 (grey squares),
Re0 = 697 (black circles) and Re0 = 1395 (dash-dot grey lines).
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FIGURE 7. Spatial distribution of dissipation rate in the x-direction for times (a) τ = 0.187,
(b) τ = 0.939 and (c) τ = 4.70. Shown are data for Re0 = 43 (dotted black lines), Re0 = 86
(dashed black lines), Re0 = 174 (white diamonds), Re0 = 348 (grey squares), Re0 = 697 (black
circles) and Re0 = 1395 (dash-dot grey lines).

directions, the spectra E(v)y and E(v)z are averaged to give a single transverse spectrum E(v)yz .
This spectrum (compensated by the Kolmogorov k5/3 scaling) is shown in figure 8 for each
case at three different times, while the compensated spectra of the normal component E(v)x
is shown in figure 9. There is an extremely similar distribution of energy at the large
scales across all cases at time τ = 0.187, particularly for the normal component. This is
in agreement with the observations made for figure 5 at early time. Substantially more
energy is contained at the small scales as Re0 is increased, however, this represents a small
fraction of the total turbulent kinetic energy in the flow. By the end of the simulation there
are much greater differences in the energy contained in the large scales between cases,
while the differences at the small scales are even greater than at earlier times.

The k5/3E(v)yz spectra at time τ = 0.187 indicate the presence of a power law scaling
of the intermediate wavenumbers for the higher Re0 cases, spanning approximately half
a decade. The slope is close to a Kolmogorov k−5/3 scaling, with the (uncompensated)
spectra for the Re0 = 697 and Re0 = 1395 cases observed to scale as k−1.78 and k−1.65
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FIGURE 8. Compensated power spectra of the average transverse turbulent kinetic energy per
unit volume taken at the mixing layer centre plane for times (a) τ = 0.187, (b) τ = 0.939 and
(c) τ = 4.70. Shown are data for Re0 = 43 (dotted black lines), Re0 = 86 (dashed black lines),
Re0 = 174 (white diamonds), Re0 = 348 (grey squares), Re0 = 697 (black circles) and Re0 =
1395 (dash-dot grey lines).
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FIGURE 9. Compensated power spectra of the normal turbulent kinetic energy per unit volume
taken at the mixing layer centre plane for times (a) τ = 0.187, (b) τ = 0.939 and (c) τ =
4.70. Shown are data for Re0 = 43 (dotted black lines), Re0 = 86 (dashed black lines), Re0 =
174 (white diamonds), Re0 = 348 (grey squares), Re0 = 697 (black circles) and Re0 = 1395
(dash-dot grey lines).

respectively when measured over the range of wavenumbers 8 ≤ k ≤ 30. Similar scalings
are also observed in the k5/3E(v)x spectra at times τ = 0.939 and τ = 4.70. Tritschler
et al. (2014b) also observed a power law scaling in the turbulent kinetic energy spectra
from their DNS at early time (shortly after shock passage) over a similar span of
wavenumbers with a scaling close to k−5/3. It is hypothesised that there may be a
substantial influence from acoustic waves on the spectra at early time. To investigate
this, the vector field ψ yz = √

ρ[v′′,w′′]t = √
ρu′′

yz is decomposed into its solenoidal and
dilatational components as

ψ yz = ∇φ + ∇ × ξ. (3.14)

A further distinction is made between dilatation due to compressibility effects and
dilatation due to variable-density mixing in the incompressible limit. This is performed
by using the relation in (2.11) to calculate the divergence of ψ yz in the incompressible
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FIGURE 10. Decomposition of the compensated average transverse turbulent kinetic energy per
unit volume (black circles) in the Re0 = 697 case into solenoidal (white circles), total dilatational
(solid grey lines) and compressible (dashed black lines) components for times (a) τ = 0.187,
(b) τ = 0.939 and (c) τ = 4.70.

limit as

∇ · ψ yz = D√
ρ

(∇ρ · ∇ρ
ρ

− ∇2ρ

)
+ 1

2
√
ρ

∇ρ · u′′
yz = g, (3.15)

and further decomposing φ into φ = ζ + α where ∇2α = g. In spectral space, the Fourier
transform of the total dilatational component ∇φ is calculated as

F{∇φ} = k · ψ̂ yz

|k|2 k, (3.16)

which gives the solenoidal component F{∇ × ξ} = ψ̂ yz − F{∇φ}. The compressible
component is calculated as

F{∇ζ } = k · ψ̂ yz + iĝ
|k|2 k. (3.17)

These components are used to calculate the solenoidal, total dilatational and compressible
turbulent kinetic energy, denoted as E(s)yz , E(d)yz and E(c)yz respectively. The compensated
solenoidal, total dilatational and compressible turbulent kinetic energy for the Re0 = 697
case are plotted in figure 10 (results for the Re0 = 1395 case are shown later in figure 20),
alongside the compensated total transverse turbulent kinetic energy k5/3E(v)yz . At time
τ = 0.187 it can be seen that there is a significant contribution from the total dilatational
component to the overall energy spectrum in the intermediate wavenumber range, which
is almost entirely due to compressibility effects. At later times the spectrum is dominated
by the solenoidal component at all but the lowest wavenumbers. This shows that care must
be taken when interpreting spectra at early times in RMI flows, as there are significant
acoustic effects that are present in the energy-containing scales and to a lesser degree the
inertial scales too. These effects are the dominant source of dilatation in the flow, except at
the highest wavenumbers, and can significantly alter the shape of the spectrum compared
to a fully incompressible flow. In particular, they can lead to the appearance of an inertial
range when in fact one does not exist. The procedure detailed in § 3.4 shows how to give
more precise estimates of the scaling of any inertial range that may form in the energy
spectra, as well as when it is appropriate to do so.
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FIGURE 11. Temporal evolution of (a) scalar variance and (b) scalar dissipation rate at the
mixing layer centre plane. Shown are data for Re0 = 43 (dotted black lines), Re0 = 86 (dashed
black lines), Re0 = 174 (white diamonds), Re0 = 348 (grey squares), Re0 = 697 (black circles)
and Re0 = 1395 (dash-dot grey lines).

3.3.2. Scalar field
The variance of the heavy fluid mass fraction is denoted by Ỹ ′′2

1 , with its corresponding
dissipation rate given by

χ̃ ′′ = D̄
(̃
∂Y ′′

1

∂xj

)2

. (3.18)

Figure 11 shows the evolution in time of Ỹ ′′2
1 and χ̃ ′′ at the mixing layer centre plane.

A maximum in the scalar variance is observed for all cases and occurs at approximately
the same time as the minimum in the mixing measures Θ and Ψ (see figure 4). The value
of this maximum also increases as Re0 is increased, indeed at all points in time a higher
value of Re0 corresponds to a higher scalar variance. A maximum in the scalar dissipation
rate is also observed, however, the relation between this maximum and the maximum in
scalar variance changes as Re0 is varied. For low Re0, the maximum in scalar dissipation
rate occurs prior to the maximum in scalar variance, with these cases having the greatest
scalar dissipation rate at early time. As Re0 is increased, the location of the maximum
scalar dissipation rate shifts later and later in time so that for the higher Re0 cases this
maximum occurs later than the maximum scalar variance. In the Re0 = 1395 case, the
maximum in χ̃ ′′ occurs slightly later than the maximum in ε̃ ′′ (see figure 5), at a time of
τ − τs = 0.326. It also appears that a high Reynolds number limit should exist in the value
and location of this maximum, although it is not able to be estimated from the current data
as no clear pattern of convergence is present.

Figures 12 and 13 show the spatial distribution of Ỹ ′′2
1 and χ̃ ′′ across the layer. Similar

trends to those observed for the spatial distribution of turbulent kinetic energy and
dissipation rate are also seen here. The peaks in scalar variance and scalar dissipation rate
are also biased towards the spike side of the layer, however, they occur closer to the mixing
layer centre. There is also less variation in the data, particularly for the scalar dissipation
rate at later times. Very little scalar variance/dissipation rate is located at the fringes of the
spike side of the layer at late time.
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FIGURE 12. Spatial distribution of scalar variance in the x-direction for times (a) τ = 0.187,
(b) τ = 0.939 and (c) τ = 4.70. Shown are data for Re0 = 43 (dotted black lines), Re0 = 86
(dashed black lines), Re0 = 174 (white diamonds), Re0 = 348 (grey squares), Re0 = 697 (black
circles) and Re0 = 1395 (dash-dot grey lines).
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FIGURE 13. Spatial distribution of scalar dissipation rate in the x-direction for times
(a) τ = 0.187, (b) τ = 0.939 and (c) τ = 4.70. Shown are data for Re0 = 43 (dotted black
lines), Re0 = 86 (dashed black lines), Re0 = 174 (white diamonds), Re0 = 348 (grey squares),
Re0 = 697 (black circles) and Re0 = 1395 (dash-dot grey lines).

3.3.3. Normalised dissipation rates
To conclude this section, the normalised dissipation rate Cε and normalised scalar

dissipation rate Cχ are examined to assess the degree to which they are independent of
the Reynolds number of the flow. Following Donzis, Sreenivasan & Yeung (2005), the
normalised dissipation rates are defined as

Cε = 〈ε〉Lu

u′3 , Cχ = 〈χ〉Lu

〈φ′2〉u′ . (3.19a,b)

Here, the dissipation rates ε̃ ′′ and χ̃ ′′, evaluated at the mixing layer centre plane, are used
in place of 〈ε〉 and 〈χ〉. The root mean square velocity u′ is calculated from the turbulent
kinetic energy at the mixing layer centre as

u′2 = 2
3 Ẽ′′

k , (3.20)

while the scalar variance 〈φ′2〉 is given by that of the heavy fluid mass fraction Ỹ ′′2
1 . Finally

the integral length Λ, calculated using the radial power spectrum of turbulent kinetic
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FIGURE 14. Temporal evolution of (a) normalised dissipation rate and (b) normalised scalar
dissipation rate at the mixing layer centre plane. Shown are data for Re0 = 43 (dotted black
lines), Re0 = 86 (dashed black lines), Re0 = 174 (white diamonds), Re0 = 348 (grey squares),
Re0 = 697 (black circles) and Re0 = 1395 (dash-dot grey lines).

energy per unit volume (taken at the mixing layer centre), is used for the characteristic
length scale Lu. This is calculated as

Λ = 3π

4

∫ ∞

0

E(v)

k
dk∫ ∞

0
E(v) dk

. (3.21)

Note that if the power spectrum of turbulent kinetic energy per unit mass is used instead,
the resulting integral length is very similar for this flow (Thornber 2016). Figure 14 shows
the evolution in time of both Cε and Cχ at the mixing layer centre plane. As the current
flow under investigation is unsteady, it is not surprising that both quantities are varying
with time, especially while the flow is still in the relatively early stages of development.
That both quantities are increasing with time is also in agreement with the fact that the
outer-scale Reynolds number decreases with time, as shown in § 3.4.1. Of interest is
whether this variation becomes independent of Reynolds number at any point in time,
a necessary (but not sufficient) criterion for a flow to be classified as fully turbulent.
Examining figure 14 it can be seen that a high Reynolds number limit is being approached
with each increase in Re0 for the time scale considered, but has not yet been reached.
The data are slightly closer to collapsing for the normalised scalar dissipation rate; at the
latest time considered there is a 22 % difference between Re0 = 348 and Re0 = 697 for
Cχ compared to a 32 % difference for Cε . For the higher Re0 cases the curves of both Cε

and Cχ are becoming constant. This behaviour at late time was also observed by Yoffe
& McComb (2018) for Cε in simulations of decaying homogeneous isotropic turbulence
(HIT), as well as by Zhou & Cabot (2019) in DNS of RTI. Note that in the latter study, Cε

is decreasing with time since the Reynolds number is increasing.
The variation with Reynolds number is shown more precisely in figure 15, which

plots Cε and Cχ against the transverse Taylor microscale Reynolds number Reλ (given
by (3.26)) for each simulation at four different times. The resulting curves at each time
instant follow the same functional form as those produced by isotropic turbulence, but
their asymptotic value increases as the simulation progresses. By late time the curves
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FIGURE 15. Transverse Taylor microscale Reynolds number vs. (a) normalised dissipation rate
and (b) normalised scalar dissipation rate at the mixing layer centre plane. Shown are data for
times τ = 0.187 (dotted lines), τ = 0.939 (dashed lines), τ = 3.76 (grey dashed lines) and τ =
4.70 (solid lines).

have nearly collapsed, indicating that their high Reynolds number asymptote is also close
to becoming independent of time. Nonlinear regression can be used to fit the expected
functional form of Cε and Cχ to the data and extract this asymptotic value. Following
Donzis et al. (2005), a function is used of the form

f = A(1 +
√

1 + (B/Reλ)2). (3.22)

Fitting this function to the τ = 4.70 data gives A = 0.77, B = 27 for Cε and A = 0.33,
B = 20 for Cχ . The lower value of B in the curve fit to the normalised scalar dissipation
rate data indicates that the asymptotic value of Cχ is attained faster than that of Cε . This
is in agreement with the observations made in § 3.3.2, as well as those for homogeneous
passive scalar turbulence at Sc = 1 (Donzis et al. 2005). The asymptotic values of Cε and
Cχ are equal to 2A, implying that the high Reynolds number limit of these quantities is 1.54
and 0.66 respectively. For the case of the RTI, Zhou & Cabot (2019) split Cε into normal
and transverse components and found values in the range 0.3–0.4 and 0.5–0.6 respectively
at the latest time considered, both of which are substantially lower than the estimate of
the high Reynolds number limit given here for RMI. This is analogous to the difference
in asymptotic value observed between forced and freely decaying HIT (Bos, Shao &
Bertoglio 2007). Yoffe & McComb (2018) showed that this difference can be rectified
by using values of Cε at a specified onset time, taken to be either the time of maximum
dissipation rate (if it exists) or the time of maximum inertial transfer rate. This onset time
typically occurs much earlier than the point at which Cε becomes time independent, and
estimates of the high Reynolds number limit using this criterion were virtually identical
to those obtained in the forced, stationary case. Using the time of maximum dissipation
rate in the Re0 = 1395 case as an approximation of the onset time criterion for all cases,
the high Reynolds number limit at this time (τ − τ0 = 0.224) is found to be 0.28, which
is a plausible asymptotic value for the normal component of Cε in RTI. This may also be
compared with the asymptotic value of 0.4 for forced homogeneous turbulence (Donzis
et al. 2005). A more rigorous comparison would involve performing the same split of Cε

(and other key quantities) into normal and transverse components as in Zhou & Cabot
(2019), which will be performed in future work.
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3.4. Mixing transition
All of the results presented in the previous sections have been calculated from simulations
which are, in reality, at quite modest Reynolds numbers compared to the actual flows
observed in experiments or nature. Given this fact it is natural to ask, particularly for those
quantities that do not depend predominantly on the large scales, how representative are
these results compared to those that would be obtained at higher Reynolds numbers? In
particular, it is useful to know when extrapolating results to higher Reynolds numbers
whether the amount of turbulence present in the flow is approaching levels that would
be considered fully developed in the sense proposed by Zhou (2007). This is helpful for
determining how close the current results are to any high Reynolds number limits that
exist for quantities that are known/expected to exhibit universal, asymptotic behaviour
once turbulence has fully developed. This section investigates the evolution of various
key length scales and Reynolds numbers that are commonly used to characterise turbulent
flows. The Re0 = 174, Re0 = 348 and Re0 = 697 cases are used for the analysis in this
section, along with the additional Re0 = 1395 case that was run up until time τ = 0.939.

3.4.1. Length scales and Reynolds numbers
In turbulent flows, a number of statistics are used to characterise the typical spatial

scales at which energy is generated, transferred and dissipated in the flow. The largest of
these is the outer length scale δ, which for RMI and RTI induced flows is identified as the
visual width h (Cook & Dimotakis 2001), given by

h = x (〈 f1〉 = 0.01)− x (〈 f1〉 = 0.99) . (3.23)

This is representative of the largest dynamical motions in the flow. Note that integral
definitions have also been presented in the literature (Cook, Cabot & Miller 2004). Given
the definition of h, an outer-scale Reynolds number may also be defined,

Reh = hḣ
ν̄
, (3.24)

where ḣ is the time derivative of the outer length scale and ν̄ is the average kinematic
viscosity across the layer (from x(〈 f1〉 = 0.99) to x(〈 f1〉 = 0.01)). The next largest
length scale to consider is the integral length Λ, already defined in (3.21), which
characterises the distance over which the fluctuating velocity field is correlated. Related
to Λ is the Taylor microscale λ, which is obtained from the curvature of the fluctuating
velocity autocorrelation, or equivalently from the variance of fluctuating velocity and its
derivatives. This length scale may be considered to be representative of scales located in
some part of the inertial range for fully developed turbulence. To account for anisotropy,
directional Taylor microscales may be defined for direction i as

λi =
[ 〈u′′2

i 〉
〈(∂u′′

i /∂xi)2〉
]1/2

, (3.25)

where plane averages are taken at the mixing layer centre plane. Since isotropy is expected
in the transverse directions, a single transverse Taylor microscale is defined as λyz = (λy +
λz)/2 (Cook & Dimotakis 2001). Similarly, a transverse Taylor-scale Reynolds number is
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FIGURE 16. Evolution of length scales for Re0 = 174 (a), Re0 = 348 (b) and Re0 = 697
(c). Plotted are the outer scale h (circles), the integral length Λ (squares), the Taylor
microscales λx (upward triangles) and λyz (downward triangles) and the Kolmogorov microscale
η (diamonds).

defined at the mixing layer centre plane as Reλyz = (Reλy + Reλz)/2, where

Reλi = 〈u′′2
i 〉

〈ν〉
√

〈(∂u′′
i /∂xi)2〉

. (3.26)

Finally, the Kolmogorov microscale η characterises the scale at which motions in the flow
are dominated by viscosity and is given by

η =
( 〈ν〉3

〈ε ′′〉
)1/4

. (3.27)

The temporal evolution of the visual width, integral length and Taylor and Kolmogorov
microscales is shown in figure 16, from which a clear trend of increasing scale separation
with increasing Re0 can be observed. Comparing results across the three simulations, there
is only a small difference in the outer scale (mostly at late time), whereas the integral
length, Taylor microscales and Kolmogorov microscale all decrease uniformly in time with
increasing Re0. In addition to this observed decrease in each of these individual length
scales, the relative distance between each length scale for a given Re0 is also increasing.
This is consistent with the notion that the mixing layer is becoming progressively more
turbulent as the damping of fine-scale motions due to viscosity is reduced, as observed in
figure 2. Tritschler et al. (2014b) also observed a similar increase in the separation of scales
but by varying the initial Mach number M0 of the problem rather than the initial Reynolds
number. This is because, for a fixed initial perturbation, decreasing the viscosity ν and
increasing the interface velocity jump�u (through increasing M0) have approximately the
same effect on the level of turbulence that subsequently develops. In Groom & Thornber
(2019) it was shown that the highest Mach number case of Tritschler et al. (2014b)
corresponds to an initial Reynolds number Re0 = 739 (ignoring any correction factor for
the initial diffuse interface).

Figure 17 shows the temporal evolution of the outer-scale and Taylor-scale Reynolds
numbers. Dimotakis (2000) proposed, based on experimental evidence, that fully
developed stationary turbulent flow requires Reδ ≥ 1–2 × 104, or equivalently Reλ ≥
100–140, in order for it to be sustained. Hence both Reynolds numbers are important
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FIGURE 17. Evolution of Reynolds numbers for Re0 = 174 (a), Re0 = 348 (b) and Re0 = 697
(c). Plotted are the outer-scale Reynolds number Reh (circles) and the Taylor-scale Reynolds
numbers Reλx (upward triangles) and Reλyz (downward triangles).

parameters for assessing the transition to fully developed turbulence. From figure 17
it can be seen that for the Re0 = 697 case a peak outer-scale Reynolds number of
Reh = 6.57 × 103 is obtained shortly after shock passage, before decaying to a value of
Reh = 926 at the latest time. It is worth noting that, for a compressible simulation, the
visual width h is easily contaminated by small acoustic waves and imperfect boundary
conditions. Hence when calculating Reh, which requires the derivative of h, these small
fluctuations get amplified and result in a rather noisy signal. For the transverse Taylor-scale
Reynolds number, a peak value of Reλ = 121 is observed in the Re0 = 697 case, at an
earlier time than the peak in Reh. This is very similar to the value of Reλ that Tritschler
et al. (2014b) observed shortly after shock passage for their M0 = 1.5 case. By the end of
the simulation Reλ has decayed to a value of 27.6 in the Re0 = 913 case, which is very close
to the value of 26 obtained by Tritschler et al. (2014b) at the end of the estimated period
of uncoupled length scales for the M0 = 1.5 case. It is important to note that the drop in
Taylor microscale Reynolds numbers occurs very rapidly across all three cases, at around
the same time that the peak in outer-scale Reynolds number occurs. Thus the peak value
of Reλ is not sustained for very long, but conversely the subsequent decay is quite gradual.
The ratio of Taylor microscale Reynolds numbers also indicates significant anisotropy is
present in the velocity field, which has been documented previously in Groom & Thornber
(2018). This anisotropy is persistent at the latest time considered and also appears to be
decreasing with increasing Re0.

Therefore, in the Re0 = 697 case, the requirement of Reδ ≥ 1–2×104 for fully developed
stationary turbulence is not met at any point of the simulation, while the equivalent
requirement that Reλ ≥100–140 is met only very briefly. In the lower Re0 cases, neither
requirements are met at any point. However, given that there is little change in h between
simulations, the additional Re0 = 1395 case should achieve Reh ≥ 104 for at least a small
fraction of time. This is confirmed in figure 18, which shows the evolution of both the
length scales and Reynolds numbers up until a time of τ = 0.939 for this additional case.
Between approximately τ − τs = 0.1 and τ − τs = 0.4 the outer-scale Reynolds number
for this case is greater than 1 × 104, while the transverse Taylor-scale Reynolds number is
also greater than 100 up until a time of about τ − τs = 0.5. This indicates that there may
be significant levels of turbulence within the mixing layer at this time, even if it is not yet
fully developed.
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FIGURE 18. Evolution of length scales (a) and Reynolds numbers (b) for Re0 = 1385. Plotted
are the outer scale h and associated Reynolds number Reh (circles), the integral length Λ
(squares), the Taylor microscales λx (upward triangles) and λyz (downward triangles) and
associated Reynolds numbers Reλx and Reλyz and the Kolmogorov microscale η (diamonds).

3.4.2. Mixing transition criterion
Qualitatively the mixing transition criterion for unsteady flows, presented in § 1, may

be expressed as saying that an additional amount of time is required in the presence
of a sufficient Reynolds number in order to generate the range of scales that produces
a mixing transition. In particular, the hypothesis is that uncoupled fluctuations develop
within laminar boundary layers created by viscous diffusion at locations of significant
shear. Therefore transition to turbulence occurs once these viscous layers grow for a long
enough time such that their extent exceeds the inner-viscous scale. It is important to note
that (1.3) only describes the late-time behaviour of the diffusion layer scale; the virtual
time origin has been neglected (Zhou et al. 2019), which implies λD = 0 at t = 0. This
may be rectified by providing an estimate for the virtual time origin, or equivalently the
initial momentum thickness of the shear layer. Here the post-shock integral width W+

0 is
used as an estimate for the initial momentum thickness, which gives

λD = Clam(ν t̄)1/2 + W+
0 , (3.28)

where t̄ = t − ts (ts being the shock arrival time). The temporal evolution of the
Liepmann–Taylor and inner-viscous scales at the mixing layer centre plane for the four
highest Re0 cases is shown in figure 19, along with the diffusion layer length scale for
the Re0 = 1395 case. Since λD is trivial to calculate, it has been plotted up until the end
time of τ = 4.70 for the rest of the simulations. The Liepmann–Taylor scale is almost
independent of Re0 at early time, due to each case having the same amount of kinetic
energy imparted by the shock. Subsequent differences in λL are due to the fact that as Re0
is increased, the fluctuating velocity gradients increase at a faster rate than the turbulent
kinetic energy. Meanwhile for each successive doubling of Re0, the inner-viscous scale is
reduced by a factor of close to 1.4 at early time. In the high Reynolds number limit this
factor is expected to approach 23/4 ≈ 1.7 according to (3.27), assuming that the dissipation
rate becomes independent of ν.

Figure 19 shows that for Re0 = 348 there exists a period of time from the beginning
of the simulation to approximately τ − τs = 2.5 during which λL ≥ λV , due to the
observations given above. For the Re0 = 697 case this period has extended to the end time
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FIGURE 19. Liepmann–Taylor (black lines, white symbols) and inner-viscous (grey lines, black
symbols) length scales vs. time. Results are shown for Re0 = 174 (upward triangles), Re0 =
348 (downward triangles), Re0 = 697 (diamonds) and Re0 = 1395 (squares). Also shown is the
estimated diffusion layer length scale (white circles) for the Re0 = 1395 case.
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FIGURE 20. Decomposition of the compensated average transverse turbulent kinetic energy
per unit volume (solid black lines) in the Re0 = 1395 case into solenoidal (white circles),
total dilatational (solid grey lines) and compressible (dashed black lines) components for times
(a) τ = 0.187 and (b) τ = 0.939. Also shown are the wavenumbers corresponding to the
Liepmann–Taylor (right triangles) and inner-viscous (left triangles) length scales.

of the simulation and the separation of scales has increased, while for the Re0 = 1395
case the two scales have separated even further. However, it can also be seen that λD < λV
for the entirety of the simulation, from which it can be concluded that the turbulence
in the flow has not yet passed the mixing transition. Figure 20 shows the turbulent kinetic
energy spectra, compensated by a factor of k3/2, for the Re0 = 1395 case at times τ = 0.187
and τ = 0.939, annotated with the wavenumbers corresponding to the Liepmann–Taylor
and inner-viscous length scales. These scales are intended to represent the smallest of
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FIGURE 21. (a) Liepmann–Taylor (black squares), inner-viscous (grey diamonds) and diffusion
layer (white circles) length scales vs. Taylor-scale Reynolds number at the mixing layer centre
plane for time τ = 0.939 (τ − τs = 0.929). Also shown is the ratio of the inner-viscous to
diffusion layer length scales vs. Taylor-scale Reynolds number (triangles) including the line of
best fit (dashed lines). (b) Critical Taylor-scale Reynolds number vs. time.

the energy-containing scales and the largest of the dissipative scales respectively, and
qualitatively this appears to be true when examining the spectrum. The slope of the narrow
inertial range that is formed between these two scales is also measured; at τ = 0.187 the
(uncompensated) turbulent kinetic energy scales as k−1.59 while at τ = 0.939 the scaling
is k−1.47. As was the case for the lower Reynolds number cases, care must be taken when
interpreting the early-time spectra, which contain a significant acoustic component that
influences the slope. If the slope is measured purely from the solenoidal component, the
resulting scaling is k−0.93 instead. At the later time of τ = 0.939, the contribution from
the acoustic component to the overall kinetic energy has substantially diminished; the
scaling measured from the solenoidal spectra is k−1.44. This scaling of the inertial range
is very close to the k−3/2 scaling that has been observed in ILES computations of this
case (Groom & Thornber 2019) and which is predicted by the theoretical analysis of Zhou
(2001), rather than the k−5/3 scaling for canonical turbulence. Admittedly the slope has
only been measured over a small number of data points, therefore higher Reynolds number
cases that have passed the mixing transition would be needed to verify these findings.

While the present set of simulations does not allow for an explicit evaluation of the
Reynolds number at which the mixing transition will occur, it can still be used to infer this
by considering the variation in length scales with Reλ at a given time. This is shown in
figure 21 for a time of τ = 0.939, from which it can be seen that the inner-viscous scale
is smaller than the Liepmann–Taylor scale for Reλ � 25 and is approaching the diffusion
layer length scale as Reλ is further increased. The ratio of λV/λD is also shown in figure 21
at time τ = 0.939. By using a curve-fitting procedure similar to the one performed for
Cε and Cχ , the Reynolds number at which this ratio equals one can be estimated. The
choice of an appropriate functional form is guided by considering how λV and λD vary
with Reynolds number. Both λV and λD can be related to the outer-scale Reynolds number
by

λV ≈ 50η ∝ Re−3/4
δ , (3.29a)

λD = Clam(ν t̄)1/2 ∝ Re−1/2
δ , (3.29b)
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which can be combined with the relation Reδ = 3/20Re2
λ for isotropic turbulence to derive

that λV/λD ∝ Re−1/2
λ . Thus the curve that is fit to the data is chosen to be of the form

f =
√

B
Reλ + C

. (3.30)

The curve of best fit is also shown in figure 21, for which the parameters are B = 364,
C = 4.90. Therefore the critical Taylor-scale Reynolds number at which λV/λD = 1 is
estimated to be Reλ = 359 at time τ = 0.939.

The curve-fitting procedure is repeated for a range of times between τ = 0.187 and τ =
4.70, with the estimated critical Taylor-scale Reynolds number at each time also plotted in
figure 21. It can be seen that at very early times the required Taylor-scale Reynolds number
that satisfies the mixing transition is very high, for example at τ = 0.187 it is estimated
to be Reλ = 1068. A caveat must be made here; it is expected that Reλ → ∞ for some
time τ > τs since a finite amount of time is required for the initial energy injected at the
driving scales to pass down to smaller and smaller scales via nonlinear transfer and form
an inertial range. This process is not explicitly represented in (1.4), therefore the estimated
critical Taylor-scale Reynolds number may not be accurate as τ → τs. Nonetheless it will
still be extremely large, which is sufficient for the purposes of this study. Of much greater
interest is the behaviour at late time; at the latest time considered it is estimated that flows
with Reλ = 225 or greater will pass the mixing transition. This is significantly greater
than the estimate of 35 ≤ Reλ ≤ 80 given by Tritschler et al. (2014b). The corresponding
critical outer-scale Reynolds number is approximately 8× that of the Re0 = 697 case at
this time (derived using the relation Reδ = 3/20Re2

λ), which suggests that a case with
Re0 = 5576 would begin to pass the mixing transition (but not necessarily obtain the
minimum state). Such a case is also likely currently achievable using a substantial portion
of the computational resources on one of the world’s top supercomputers. The critical
Taylor-scale Reynolds number curve also has an approximate t−1 dependence (based on
a curve fit to the data) and asymptotically approaches of value of Reλ = 174 as t → ∞,
which is approaching the Reλ ≥100–140 requirement for stationary flows. Furthermore, as
was observed in figure 17, the outer-scale and Taylor-scale Reynolds numbers also decrease
in time, beyond some initial peak shortly after shock passage, implying that the mixing
transition criterion may only be satisfied temporarily. Such a phenomenon does not occur
in turbulence induced by the Rayleigh–Taylor instability, for which the Reynolds number
increases as Reh ∝ t3, and reflects a fundamental difficulty in attaining sufficiently high
Reynolds numbers for universal behaviour to be observed in experiments or simulations
of the Richtmyer–Meshkov instability.

4. Conclusions

This paper has investigated the effects of initial Reynolds number Re0 on a turbulent
mixing layer induced by Richtmyer–Meshkov instability evolving from narrowband initial
conditions using a series of direct numerical simulations. After the initial shock passage
the turbulence in the layer is freely decaying, with the outer-scale Reynolds number
obtaining its maximum value at very early time, after which it continually decreases for
each of the simulations. An analysis of various mixing measures showed that there was
little variation in the integral width for the range of Re0 considered here, while lower Re0
cases have more mixed mass at early times. At later times the amount of mixed mass in
these cases is overtaken by that of higher Re0 cases due to a larger interfacial surface area
and steeper gradients. A clear trend of increasing growth rate exponent θ was also observed
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with increasing Re0, although the overall variation was only 25 %. The molecular mixing
fraction showed a dependence on Re0, in particular the point of minimum mix which was
estimated to beΘmin = 0.10. The late time asymptotic value also varied with Re0, with the
data observed to be approaching a high Reynolds number limit of 0.765.

A detailed analysis of the Reynolds number dependence of various statistics of the
velocity and scalar fields was also presented. The decay rates of turbulent kinetic energy
and its dissipation rate were shown to decrease with increasing Re0. The spatial distribution
of both of these quantities was also shown to be biased towards the spike side of the layer.
An analysis of the turbulent kinetic energy spectra showed that the distribution of energy
at the largest scales was extremely similar across all cases, while substantially more energy
is contained in the small scales as Re0 is increased. The spectra were also decomposed into
solenoidal, total dilatational and purely compressible components, which showed that at
early time the energy at low to intermediate wavenumbers is dominated by compressible
modes. At later times the solenoidal component begins to dominate the overall energy
spectrum, indicating that the mixing layer is approaching incompressible flow. For the
scalar variance and scalar dissipation rate, similar trends to the turbulent kinetic energy
and dissipation rate were observed. There was found to be less variation with Re0, however,
particularly for the scalar dissipation rate at later times.

The Reynolds number dependence of the normalised dissipation rate Cε and scalar
dissipation rate Cχ was assessed, showing that a high Reynolds number limit is being
approached. At early times the asymptotic values of Cε and Cχ vs. Reynolds number
vary significantly as the flow continues to develop, while at late times the curves have
collapsed. Fitting an appropriate functional form to the data showed that the asymptotic
value of Cχ is attained faster than that of Cε , in agreement with similar observations
made for homogeneous passive scalar turbulence at Sc = 1. Finally, an evaluation of the
mixing transition was performed, showing that although the highest Re0 case satisfies the
criteria of Dimotakis (2000) for fully developed stationary turbulence, it does not meet
the additional requirement of Zhou et al. (2003) for unsteady flows and therefore cannot
be considered fully turbulent. By considering the ratio between the inner-viscous and
diffusion layer length scales, the critical Reynolds number at which the mixing transition
criterion is satisfied was able to be estimated, which translates to an initial Reynolds
number around 4× larger than the current highest Re0 case. This case also exhibited a
narrow inertial range in the turbulent kinetic energy spectra with a scaling close to k−3/2

(as predicted by Zhou (2001)), which shows that such an observation is insufficient for
assessing whether the turbulence is fully developed.

As was mentioned in the introduction, if the layer width grows as ∼ tθ then the
outer-scale Reynolds number grows/decays as ∼ t2θ−1. For narrowband initial conditions
this means that the Reynolds number decreases in time, however, if θ > 0.5 then the
Reynolds number will increase in time. For broadband perturbations with an initial power
spectrum P(k) ∝ km and m < −1, the results of Groom & Thornber (2020) show that this
will indeed be the case, at least while the layer is growing in the self-similar regime. These
perturbations are also more representative of RMI flows encountered in reality, thus future
work will involve performing DNS of RMI-induced turbulence evolving from broadband
perturbations while the layer is growing self-similarly. Another area for extending the
current work is to evaluate the Reynolds number dependence of various quantities such
as spectra, length scales and normalised dissipation rates at different planes in the mixing
layer. Presently these are only evaluated at the mixing layer centre plane, however, the
spatial distributions of many of the quantities analysed in this paper show that this is not
necessarily the location of peak turbulent activity. Finally, it would be useful to extend the
current set of simulations to include a much larger parameter sweep of different Schmidt,
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Atwood and Mach numbers. This would allow for interaction effects between different
parameters to be captured that have not been explored in the present study.
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Appendix A

This appendix summarises how grid convergence is assessed in the current set of direct
numerical simulations. Full details can be found in Groom & Thornber (2019). Following
Olson & Greenough (2014), the instantaneous enstrophy Ω and scalar dissipation rate
χ are computed and compared for successively increasing grid resolutions, as these
quantities are dependent on the small scales and therefore are more difficult to demonstrate
convergence for than statistics such as integral width or turbulent kinetic energy. Domain
integrated values of Ω and χ are calculated as

Ω =
∫
ρ ||ω||2 dx dy dz, (A 1a)

χ =
∫

D∇Y1 · ∇Y1 dx dy dz, (A 1b)

where ω = ∇ × u is the vorticity. Radial power spectra are also calculated, in an
analogous manner to (3.13). Figure 22 shows the temporal evolution of domain integrated
enstrophy and scalar dissipation rate for the Re0 = 697 case computed on various grid
resolutions. The solutions for both of these quantities are clearly converging with each
successive doubling of the grid resolution, with a sufficiently small difference observed
between the 720 × 5122 and 1440 × 10242 grids. The differences between the solutions
obtained on the two finest grids are greatest at early time when the layer is being thinned
and stretched, resulting in large gradients across the interface (Groom & Thornber 2019).

Power spectra of Ω and χ are presented in figure 23, taken at time τ = 0.470
corresponding to the peak scalar dissipation rate. There is excellent agreement across
all grid resolutions for the low wavenumber end of the spectra (k ≤ 10), while for the
two highest grid resolutions the results are converged up to at least k ≤ 128 for the
enstrophy spectra and k ≤ 100 for the scalar dissipation rate spectra. This represents the
least converged region of the entire solution; for later times the scalar dissipation rate
spectra are converged up to at least k ≤ 128 also. These results should be compared with
similar ones presented in Olson & Greenough (2014) and Tritschler et al. (2014b) for DNS
of Richtmyer–Meshkov flows.
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FIGURE 22. Temporal evolution of enstrophy (a) and scalar dissipation rate (b) for the Re0 =
697 case. Results are shown for grid resolutions of 180 × 1282 (dotted lines), 360 × 2562 (dashed
lines), 720 × 5122 (solid lines) and 1440 × 10242 (circles).
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FIGURE 23. Power spectra of enstrophy (a) and scalar dissipation rate (b) at time τ = 0.470.
Results are shown for grid resolutions of 180 × 1282 (dotted lines), 360 × 2562 (dashed lines),
720 × 5122 (solid lines) and 1440 × 10242 (circles).
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