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ABSTRACT

This paper studies the optimal insurance design from the perspective of an
insured when there is possibility for the insurer to default on its promised
indemnity. Default of the insurer leads to limited liability, and the promised
indemnity is only partially recovered in case of a default. To alleviate the
potential ex post moral hazard, an incentive compatibility condition is added
to restrict the permissible indemnity function. Assuming that the premium
is determined as a function of the expected coverage and under the mean–
variance preference of the insured, we derive the explicit structure of the
optimal indemnity function through the marginal indemnity function formu-
lation of the problem. It is shown that the optimal indemnity function depends
on the first and second order expectations of the random recovery rate con-
ditioned on the realized insurable loss. The methodology and results in this
article complement the literature regarding the optimal insurance subject to
the default risk and provide new insights on problems of similar types.
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1. INTRODUCTION

Insurance is an efficient and popular risk hedging tool. An insurance contract
is usually composed of an indemnity function and a premium, where the pre-
mium needs to be paid ex ante by the insured to the insurer while the insurance
indemnity is provided ex post from the insurer to the insured. Traditional
indemnity functions include, for example, the stop-loss and proportional
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functions. Other forms of indemnity function are also possible and their opti-
mality has been studied since the seminal works of Borch (1960) and Arrow
(1973). Under various objective functions and premium principles and taking
into account of more sophisticated economic factors, considerable advance-
ments have been achieved in the literature. We refer to Chi and Tan (2011),
Chi (2012), Cheung et al. (2019), Ghossoub (2019b), Boonen and Ghossoub
(2019) for recent developments.

It is realistic that in addition to the insurable loss, the insured is also exposed
to uninsurable risk such as inflation or catastrophe risk. These risk classes are
jointly denoted as background risk and have received considerable attention
since the work of Doherty and Schlesinger (1983). They show that the pres-
ence of background risk may affect the insured’s demand of insurance, which
is particularly the case if the background risk is correlated with the insurable
loss. Several directions of introducing background risk in the optimal insur-
ance problem have been proposed in the literature. One direction is on additive
background risk, where the insured’s total risk is the sum of insurable risk
and background risk. In this way, Gollier (1996) shows that when the unin-
surable loss increases with respect to the insurable loss, the optimal indemnity
function is of disappearing deductible form. Dana and Scarsini (2007) study
the Pareto-optimal insurance contract in the presence of background risk,
where the qualitative properties of the optimal contract were derived under the
assumption of stochastic increasingness. Chi and Wei (2018) investigate the
optimal insurance under background risk and with higher order risk attitude.
They also establish the optimality of the stop-loss insurance under specific
dependence structures between the insurable risk and background risk. An
extension is given by Chi and Wei (2020) for general dependence structures
where the authors impose a constraint to avoid the moral hazard and present a
very general result for the optimal insurance. Although the general solution to
their model is implicit, many specific cases are analyzed and the corresponding
optimal indemnity functions are derived. The aforementioned studies are all
within the expected utility framework. Recently, Chi and Tan (2021) extend
the study into the mean–variance framework. Their methodology allows the
derivation of the optimal indemnity function for a very general dependence
structure between the insurable risk and background risk.

The main focus of this article is on multiplicative background risk. To gain
a comprehensive view of this type of problem, we refer the interested readers
to Franke et al. (2006). Multiplicative background risk may arise from the
possibility of the insurer to default. The coverage is then the product of the
promised indemnity and some random variable distributed on [0,1]. This type
of background risk is then interpreted as counterparty risk or default risk.

To model counterparty risk, there are roughly two streams in the litera-
ture. First, if there is only one insured in the market, default of the insurer
can be modelled explicitly as a function of the indemnity function. In this
way, optimal indemnities are derived by Cai et al. (2014), and the pricing
is studied by Filipović et al. (2015). The latter study is extended by Boonen
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(2019) to the case with multiple policyholders, but under the assumption of
exchangeable multivariate risk. Second, one assumes that the market with pol-
icyholders is “large”, so that individual insurance transactions do not impact
the likelihood of default. This assumption is imposed by Cummins and Mahul
(2003), Bernard and Ludkovski (2012), and Li and Li (2018), and in this paper
we also impose this assumption. Cummins and Mahul (2003) study the opti-
mal insurance problem when the insurer has a positive probability to default
and the insured and insurer have divergent beliefs about this probability. Their
study is probably closest to Bernard and Ludkovski (2012), who investigate the
impact of counterparty risk on optimal insurance when the insurer’s default
probability depends on the loss incurred by the insured. The optimal indem-
nity function is derived in an implicit way for the case where the insurer is risk
neutral. Finally, Li and Li (2018) derive the optimal indemnity function in a
Pareto-optimal insurance problem when the loss and recovery rate are nega-
tively correlated for the cases where the information is symmetric and where
the information is asymmetric. All these papers focus primarily on expected
utility preferences of the insured, while our focus is on a mean–variance
objective of the insured.

In this article, we explicitly focus on the set of indemnity functions that are
incentive compatible, which plays key role in alleviating the ex postmoral haz-
ard. For example, if the slope of indemnity function is larger than 1 at some
point or the indemnity function has a discontinuous upward jump, the insured
would be incentivized to create an increase in the insurable loss. Such behavior
is called moral hazard. To remove the moral hazard issue, Ghossoub (2019a)
introduces a state-verification cost such that the insurer could verify the state
of real world by paying to a third party some extra cost. Another popular way
to mitigate the moral hazard issue, as proposed by Huberman et al. (1983), is
by requiring both the insured and insurer to pay more when the loss becomes
larger. This is also named as the no-sabotage condition by Carlier and Dana
(2003). Note that such condition is also considered by Chi and Wei (2020) and
Chi and Tan (2021) where the additive background risk is the focus.

We summarize the main contributions of this article as follows:

• First, to the authors’ best knowledge, this article is the first one
that studies the counterparty-risk-based optimal insurance problem
under mean–variance preferences of the insured and the incentive-
compatibility condition. Through the marginal indemnity function for-
mulation, we present a general result which characterizes the optimal
indemnity function implicitly to the problem under counterparty risk
within a mean–variance framework. It is shown that the optimal indem-
nity function depends on the first and second order expectations of the
counterparty risk conditioned on the realized insurable loss.

• Second, without assuming any specific dependence structure between
the counterparty risk and the insurable loss, we derive the explicit
structure of the optimal indemnity function based on the element-wise

https://doi.org/10.1017/asb.2021.36 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.36


648 MEAN-VARIANCE INSURANCE DESIGN

minimizer to our problem under some mild assumptions on the counter-
party risk. We point out that the problem in Chi and Tan (2021) could
also be solved using the marginal indemnity function approach, which
provides an alternative approach to study the additive background risk
model within the mean–variance framework.

The rest of this article is structured as follows. Section 2 sets up the problem.
Section 3 first characterizes the solution to the main problem in an implicit
way, and then unveils the explicit structure of the optimal indemnity function
based on its implicit characterization. Section 4 studies two special cases of
the main problem. Section 5 presents some numerical examples illustrating the
main result of this paper. Section 6 concludes the paper and gives directions
for future research. All the proofs are delegated to Appendix A.

2. PROBLEM FORMULATION

We confine ourselves to a one-period economy. Suppose there is a deci-
sion maker (DM, also called insured) who is faced with a non-negative,
bounded random loss X whose support is [0,M] (i.e., the set of numbers
which have non-zero probability densities). The cumulative distribution func-
tion and density function of X are given by F(x) and f (x), respectively.
The DM would like to purchase an insurance contract (I , π) where I is the
indemnity function and π(I) is the premium principle that is used by the
insurer.

There exists counterparty risk in the sense that the insurer may fail to pay its
promised indemnity as per the contract at the end of period. We assume that
the coverage received by the DM is given by I(X ) ·Y , where Y is a random
variable distributed over [0,1] and may be correlated with X . In this paper,
we follow Cummins and Mahul (2003) and Bernard and Ludkovski (2012) by
assuming that the default event is exogenous in the sense that it is not affected
by the DM’s transactions. To avoid some trivial cases of the default event, we
adopt the following assumption throughout the paper.

Assumption 1

(i) P(Y = 1)< 1.
(ii) P(Y = 0|X = x)< 1 for all x ∈ [0,M].

Assumption 1(ii) states that regardless of the DM’s loss, the probability
of that the insurer recovers some partial liability (e.g., through selling its
remaining assets) is positive. Under this setting, the end-of-period loss of the
DM is

L(I , π)=X − I(X ) ·Y + π(I). (2.1)
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In insurance or reinsurance, some policies provide the DM an incentive to
misreport the loss. For example, a franchise deductible indemnity function,
that is I(x)= x · 1[d,∞)(x) for some d ≥ 0, may incentivize the DM to over-
report the loss or create an increment in the loss; a truncated excess-of-loss
indemnity function, that is I(x)= (x− d1)+ · 1[0,d2](x) for some d2 ≥ d1 ≥ 0,
may incentivize the DM to under-report the loss if it exceeds d2. Such behavior
is called ex post moral hazard and should be seriously treated. A popular way
in the literature to handle this issue is to restrict the indemnity functions to the
following class:

I =
{
I : [0,M] �→ [0,M]

∣∣∣ I(0)= 0, 0≤ I(x2)− I(x1)≤ x2 − x1,

∀ 0≤ x1 ≤ x2 ≤M
}
.

The indemnity functions belonging to the set I are said to satisfy the incentive-
compatibility or no-sabotage condition (Huberman et al. 1983; Carlier and
Dana, 2003). The advantages of limiting the indemnity function to the class
I are twofold. First, the indemnity function is always non-decreasing, that
is I ′(x)≥ 0, and satisfies 0≤ I(x)≤ x. That means, the indemnity is increas-
ing with respect to the loss and can never be negative nor exceed the loss x
generated by the DM’s loss. Second, one unit increment of loss cannot be
compensated by more than one unit of indemnity. For any I ∈ I, I(X ) and
X − I(X ) are comonotonic with respect to the loss X . In particular, if the
insurable loss X increases, then both the indemnity I(X ) and the retained loss
X − I(X ) increase.

For the premium, we assume that it is based on the coverage I(X ) ·Y rather
than the promised indemnity I(X ). We further assume that the premium is
determined as a function of the expected coverage:

π(I)= h(E[I(X ) ·Y ]), (2.2)

where h(·) is some differentiable function satisfying h(0)= 0 and h′(x)> 1 for
x≥ 0. A special case of h is h(x)= (1+ θ)x with θ > 0, which leads to the
expectation premium principle.

We follow Chi and Tan (2021) and study the optimal insurance prob-
lem within a mean-variance framework. We focus on the following general
problem with counterparty risk.

Problem 1 (Main problem)

min
I∈I M (E[L(I , π)],Var(L(I , π))) ,

whereM(z1, z2) is increasing with respect to both z1 and z2.
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Problem 1 accommodates a wide range of mean-variance problems. For
example, if let M(z1, z2)= z1 + B

2 z2 for some B ≥ 0, the traditional mean-
variance criterion is recovered, where B measures the DM’s aversion towards
volatility.

We remark that the optimal indemnity function within the mean–variance
framework for additive background risk model has been derived by Chi
and Tan (2021) through a constructive approach with stochastic ordering
techniques. The marginal indemnity function formulation, which is obtained
through the calculus of variations, not only helps us to solve the multiplicative
background risk (or counterparty risk) model but also provides an alternative
way to solve the additive background risk model.

3. OPTIMAL INDEMNITY FUNCTION

Solving Problem 1 usually takes a two-step procedure. In the first step, we fix
the mean (i.e., the first argument of M(·, ·)) and minimize the variance (i.e.,
the second argument ofM(·, ·)):

min
I∈I Var(L(I , π)), s.t. E[L(I , π)]= c, (3.1)

where c is a constant. As problem (3.1) depends on c, we denote its solution by
Ic. In the second step, we search for the optimal c such thatM(c, Var(L(Ic, π)))
reaches its minimum. The second step is a one-dimensional problem, and can
be solved using standard techniques. The first step plays a vital role as it iden-
tifies the optimal indemnity function with c as its parameter. In the sequel, we
focus on this first step, and thus on the problem (3.1).

Let ψ1(x)=E[Y |X = x] and ψ2(x)=E[Y2|X = x]. Under Assumption 1, it
follows that ψ1(x)> 0 and ψ2(x)> 0 for all x ∈ [0,M]. Apply the conditional
variance formula to the objective function of (3.1) gives

Var(L(I , π))=E
[
Var(L(I , π)

∣∣X )
]+Var

(
E[L(I , π)

∣∣X ]
)

=E[I(X )2 ·Var(Y ∣∣X )]+Var(X − I(X ) ·E[Y ∣∣X ])

=E[I(X )2 ·ψ2(X )]−E[I(X )2 ·ψ1(X )2]+E

[
(X − I(X ) ·ψ1(X ))2

]
− (E[X − I(X ) ·ψ1(X )])2

=E[I(X )2 ·ψ2(X )]−E[I(X )2 ·ψ1(X )2]+E[X2]

− 2E[X · I(X ) ·ψ1(X )]+E[I(X )2 ·ψ1(X )2]−E[X ]2

+ 2E[X ] ·E[I(X ) ·ψ1(X )]−E[I(X ) ·ψ1(X )]2

=E[I(X )2 ·ψ2(X )]− 2E[X · I(X ) ·ψ1(X )]+Var(X )

+ 2E[X ] ·E[I(X ) ·ψ1(X )]−E[I(X ) ·ψ1(X )]2.

https://doi.org/10.1017/asb.2021.36 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.36


T. J. BOONEN AND W. JIANG 651

The constraint of (3.1) reduces to

E[X − I(X ) ·Y + π ]=E[X ]−E[I(X ) ·Y ]+ π = c
=⇒ h(E[I(X ) ·Y ])−E[I(X ) ·Y ]= c−E[X ]
=⇒ h(E[I(X ) ·ψ1(X )])−E[I(X ) ·ψ1(X )]= c−E[X ].

Since (h(x)− x) ′ = h′(x)− 1> 0 and h(0)= 0, for any c≥E[X ], the equation
h(x)− x= c−E[X ] has only one solution, which is denoted as x∗. Based on
the above simplifications, problem (3.1) reduces to

min
I∈I E[I(X )2 ·ψ2(X )]− 2E[X · I(X ) ·ψ1(X )]

s.t. E[I(X ) ·ψ1(X )]= x∗.
(3.2)

Solving problem (3.2) is equivalent to solving its Lagrangian dual problem:

min
I∈I E[I(X )2 ·ψ2(X )]− 2E[X · I(X ) ·ψ1(X )]+ λ ·E[I(X ) ·ψ1(X )] (3.3)

where λ ∈R is the Lagrangian coefficient.
The following lemma characterizes the optimal indemnity function to prob-

lem (3.3). In this lemma, 1A(t) is defined as the indicator function: 1A(t)= 1 if
t ∈A and 1A(t)= 0 otherwise.

Lemma 3.1 Let Assumption 1 hold, and

L(t;I∗, λ)=
∫ M

t
ψ2(x) ·

(
I∗(x)− ψ1(x)

ψ2(x)

(
x− λ

2

))
dFX (x).

Then, I∗(x)= ∫ x
0 η

∗(t)dt is an optimal solution to problem (3.3) if and only if

η∗(t)= 1Dλ(t)+ ξ (t) · 1Eλ(t),
where

Dλ = {
t :L(t;I∗, λ)< 0

}
, Eλ = {

t :L(t;I∗, λ)= 0
}
,

and ξ (t) ∈ [0, 1] is such that I∗ ∈ I.
Lemma 3.1 characterizes the optimal marginal indemnity functions.

However, the optimal indemnity functions given by Lemma 3.1 are implicit
since I∗ also appears in L(t;I∗, λ). Nevertheless, Lemma 3.1 provides insights
about the explicit structure of I∗, which will be derived in detail in the rest of
this section. We remark that in deriving the above result, the calculus of vari-
ations plays important role. In recent years, such technique has been widely
applied to obtain an implicit characterization of the optimal indemnity func-
tion under other preference functionals. See, for example, Chi and Wei (2020)
and Chi and Zhuang (2020).

For now, let λ be fixed and

φλ(x)= ψ1(x)
ψ2(x)

(
x− λ

2

)
.
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It is easy to verify that φλ(x) is the element-wise minimizer to problem (3.3).1

The following assumption is needed to proceed.

Assumption 2 The mapping x �→ ψ1(x)
ψ2(x)

is continuously differentiable.

Under Assumption 2, φλ(x) is also continuously differentiable over [0,M].
As such, the whole domain [0,M] could be partitioned as per the first order
derivative of φλ(x) such that

[0,M]=
m⋃
i=1

Si,ji , (3.4)

where

ji =
⎧⎨
⎩
1, if φ′

λ(x) ∈ (1,∞),
2, if φ′

λ(x) ∈ [0, 1],
3, if φ′

λ(x) ∈ (− ∞, 0),
(3.5)

andm is the smallest positive integer required for such a partition. Throughout
the rest of this paper, m is assumed to be finite. Under this parti-
tion rule, we have ji+1 
= ji and |ji+1 − ji| = 1 for i= 1, 2, . . . ,m− 1. Let
xi−1 = inf

{
x : x ∈ Si,ji

}
for i= 1, 2, . . . ,m, we have 0= x0 ≤ x1 ≤ · · · ≤ xm−1 ≤

xm =M. Intuitively, xi = sup
{
x : x ∈ Si,ji

}
for i= 1, 2, . . . ,m. These points

{xi}i=1,2,...,m−1 are referred to as the change points (see also Chi and Tan, 2021).
Our goal is to obtain the explicit structure of the optimal indemnity function
over each piece Si,ji . For the ease of presentation, the following layer-type
indemnity function is defined:

I(a,b](x)= (x− a)+ − (x− b)+ where 0≤ a≤ b≤M.

The following theorem gives the optimal parametric indemnity function over
each Si,ji for i= 1, 2, . . . ,m.

Theorem 3.1 Let Assumptions 1 and 2 hold. For problem (3.3), the optimal
indemnity function is given by I∗(x) such that, for x ∈ Sm,jm ,

(1). if jm = 1, then I∗(x)= I∗(xm−1)+ (x− γm,1)+ for some γm,1 ∈ [xm−1,M],
(2). if jm = 2, then I∗(x)=min {max {φλ(x), I∗(xm−1)} , I∗(xm−1)+ x− xm−1},
(3). if jm = 3, then I∗(x)= I∗(xm−1)+ I(xm−1,γm,3](x) for some γm,3 ∈

[xm−1,M],
and for x ∈ Si,ji , i= 1, 2, . . . ,m− 1,

(4). if ji = 1, then I∗(x)= I∗(xi−1)+ I(γi,1,γi,1+I∗(xi)−I∗(xi−1)](x) for some γi,1 ∈
[xi−1, xi],

(5). if ji = 2, then I∗(x)=min{max{φλ(x), I∗(xi)+ x− xi, I∗(xi−1)},
I∗(xi−1)+ x− xi−1, I∗(xi)}

(6). if ji =3, then I∗(x)=I∗(xi−1)+x−xi−1−I(γi,3,γi,3+xi−xi−1−(I∗(xi)−I∗(xi−1))](x)
for some γi,3 ∈ [xi−1, xi].
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FIGURE 1: An illustration of an indemnity function I∗ that solves problem (3.3), when m= 3, j1 = 3, j2 = 2
and j3 = 1.

An illustration of the optimal indemnity function I∗ is shown in Figure 1,
where the red line denotes I∗ and the green dashed line denotes the element-
wise minimizer φλ to problem (3.3). We can see that φλ does not satisfy the
incentive compatibility condition, so the optimal indemnity function I∗ is
obtained based on the slope of φλ. In Figure 1, there are two change points,
that is x1 and x2, and the domain of loss is partitioned into three pieces. We
obtain the parametric form of the optimal indemnity function on each piece by
using Theorem 3.1.

• Over [0, x1], φ′
λ(x)< 0, so j1 = 3, and

I∗(x)= x− I(γ1,3,γ1,3+x1−I∗(x1)](x).

• Over [x1, x2], 0≤ φ′
λ(x)≤ 1, so j2 = 2, and

I∗(x)=min
{
max

{
φλ(x), I∗(x2)+ x− x2, I∗(x1)

}
, I∗(x1)+ x− x1, I∗(x2)

}
.

• Over [x2,M], φ′
λ(x)> 1, so j3 = 1, and

I∗(x)= I∗(x2)+ (x− γ3,1)+.

Theorem 3.1 shows the applicability of Lemma 3.1 in practice and gives the
explicit structure of the optimal indemnity function. It reduces the dimension
of the original optimization problem from ∞ to at most 2m− 1 (i.e., I∗(xi) for
i= 1, 2, . . . ,m− 1, γi,1 and γi,3 for i= 1, 2, . . . ,m, and λ).

We remark that the partition (3.4) varies with respect to the Lagrangian
coefficient λ, which is a key parameter pertaining to the premium π . Therefore,
if the number of change points (i.e., m− 1) is large, numerically optimizing
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the parameters in Theorem 3.1 is still computationally expensive. To slightly
simplify the computation, the following proposition is given.

Proposition 3.1 Let Assumption 1 hold. If λ> 0, then for problem (3.3) the
optimal indemnity function over [0, λ2 ] is given by

I∗(x)= (x− d)+

for some d ∈ [0, λ2 ].

Proposition 3.1 shows that the optimal indemnity function is of the stop-
loss form in a neighborhood of 0 if λ> 0. To derive the general solution, only
the interval [λ2 ,M] needs to be partitioned as per (3.4) and (3.5).

Remark 3.1 The marginal indemnity function approach applied in this paper is
also applicable to the additive-background-risk-based optimal insurance problem
within the mean-variance framework. The only difference is that for the additive-
background-risk-based problem the partition does not rely on the Lagrangian
coefficient. In Chi and Tan (2021), a constructive approach, together with some
stochastic ordering technique, was applied to identify the parametric form of
the optimal indemnity function on each piece of the domain, which yields dif-
ferent Lagrangian coefficients to be optimized over different pieces. Through
Theorem 3.1, we are able to show that at the optimum all the Lagrangian
coefficients in their result are equal, which is a supplementary finding to their
study.

4. TWO SPECIAL DEPENDENCE STRUCTURES

In this section, we study two special cases of our problem, that is when the
counterparty risk Y is independent of X and when Y is a decreasing function
of X . In both special cases, we will derive a much simpler solution.

4.1. Y is independent of X

In this section, we study the indemnity function for the case where Y is inde-
pendent of X . This happens when the DM’s loss does not affect the solvency
status of the insurer. In such a case, ψ1(x)

ψ2(x)
= E[Y |X=x]

E[Y2|X=x] = E[Y ]
E[Y2]

is a constant.

Then φ′
λ(x)= E[Y ]

E[Y2]
> 1 for any x ∈ [0,M]. This implies that m= 1 and there is

no change point. Applying Theorem 3.1 leads to the following corollary.

Corollary 4.1 If Y is independent of X, then the optimal indemnity function to
Problem 1 is given by

I∗(x)= (x− d)+

for some d ≥ 0.
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The optimality of stop-loss indemnity function is also verified in the
expected utility framework. For example, Cummins and Mahul (2003) show
the optimality of a stop-loss function in a situation where the recovery rate can
only take 1 or 0 and both the DM and insurer have the same belief about
the default probability. Bernard and Ludkovski (2012) extend the result of
Cummins and Mahul (2003) by considering a budget constraint, where the
stop-loss function is proved to be optimal again. In the above-mentioned
works, the recovery rate does not need to be independent of the insurable loss.

4.2. Y is a decreasing function of X

In the literature, the recovery rate Y is generally assumed to be negatively
correlated with X (see Bernard and Ludkovski 2012; Li and Li 2018). This is
intuitive, as a larger loss would make the insurer more likely to default, which
results in a smaller recovery rate. In this section, we analyze a special case
where Y is a decreasing function X , that is Y = g(X ) where g is a decreasing
function.2

To simplify our discussion, we focus on the following situation.

Assumption 3

(i) there exists an x1 ∈ [0,M] such that g(x)= 1 for all x ∈ (0, x1], and g(x)<
1 for all x ∈ (x1,M];

(ii) g(M)> 0.

Assumption 3(i) states that the insurer will not default when the DM’s loss is
less than some threshold. In the rare case where the realized loss is the largest,
the insurer may default, but is able to sell its remaining assets and recover part
of the indemnity to the DM. This leads Assumption 3(ii) to hold. Assumption
3 is for instance related to the model of Cai et al. (2014), when the insurer sells
an insurance contract to only one DM. In such case, default happens if and
only if the insurable loss exceeds a certain threshold.

Note that ψ1(x)
ψ2(x)

= E[g(X )|X=x]
E[g(X )2|X=x] = g(x)

g(x)2
= 1

g(x) . Thus, under Assumption 3

φλ(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x− λ

2
, x ∈ [0, x1],

x− λ
2

g(x)
, x ∈ (x1,M].

For x>max
{
x1, λ2

}
, we have

φ′
λ(x)=

(
x− λ

2

g(x)

)′
= − g′(x)

g(x)2

(
x− λ

2

)
+ 1
g(x)

≥ 1
g(x)

> 1.

Depending on the value of λ, we have the following two sub-cases.
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• Case 1: λ≤ 2x1
In this case, we have φ′

λ(x)= 1 for x ∈ [0, x1] and φ′
λ(x)> 1 for x ∈

(x1,M]. Therefore, x1 is the only change point. Applying Theorem 3.1
and Proposition 3.1 gives

I∗(x)= ( min {x, d2} − d1)+ + (x− d3)+,
where 0≤ d1 ≤ λ

2 ≤ d2 ≤ x1 ≤ d2 ≤M.

• Case 2: λ> 2x1
In this case, as per Proposition 3.1, for any x ∈ [0, λ2 ] we have I∗(x)=
(x− d1)+ for some d1 ∈ [0, λ2 ]. For x ∈ (λ2 ,M], applying Theorem 3.1
leads to I∗(x)= I∗(λ2 )+ (x− d2)+ for some d2 ∈ [λ2 ,M]. In conclusion,
the optimal indemnity function for this case is given by

I∗(x)= ( min
{
x,
λ

2

}
− d1)+ + (x− d2)+,

where 0≤ d1 ≤ λ
2 ≤ d2.

Note that the solutions for Case 1 and 2 are of similar formats. The above
discussions are summarized in the next corollary.

Corollary 4.2 If Y is a decreasing function of X, under Assumption 3, the optimal
indemnity function to Problem 1 is given by

I∗(x)= ( min {x, a2} − a1)+ + (x− a3)+,
where 0≤ a1 ≤ a2 ≤ a3 ≤M.

5. NUMERICAL ILLUSTRATIONS

In this section, we present a numerical example illustrating the main result of
this paper. For the ease of discussion, we assume that the DM uses the tradi-
tional mean–variance criterion: M(z1, z2)= z1 + B

2 z2. The premium is deter-
mined by the expectation premium principle, that is π(I)= (1+ θ)E[I(X )Y ]
for some θ > 0. Moreover, we assume the following structure of Y |X = x to
depict the dependence between the recovery rate and loss:{

Y = 1, with probability p(x)
Y ∼U(0, 1), with probability 1− p(x),

(5.1)

where x is the realization of X and U(0,1) denotes the uniform distribution
over [0,1). In this case, the random variable Y |Y < 1 is independent of X .
Such structure is inspired by Bernard and Ludkovski (2012), who study the
case where Y takes one out of two values: Y ∈ {y0, 1} for some y0 ∈ [0, 1]. As
Y is usually negatively correlated with X , p(·) is usually a decreasing func-
tion. Then, the larger the loss is, the smaller is the probability of full recovery.
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Moreover, for any increasing function g, it holds that

E[g(Y )|X = x]= g(1)p(x)+ (1− p(x))
∫ 1

0
g(y)dy

=
∫ 1

0
g(y)dy+ p(x)(g(1)−

∫ 1

0
g(y)dy),

which is decreasing with respect to x. This implies that Y is stochastically
decreasing with respect to X . For simplicity, we assume that p(x) is subject
to exponential decay, that is p(x)= e−ax for some a> 0.

Under these assumptions, we can easily get

ψ1(x)=E[Y |X = x]= 1
2

+ 1
2
p(x), ψ2(x)=E[Y2|X = x]= 1

3
+ 2

3
p(x).

Furthermore, (
ψ1(x)
ψ2(x)

)′
= 3

2
· ae−ax

(1+ 2e−ax)2
> 0.

Therefore ψ1(x)
ψ2(x)

≥ ψ1(0)
ψ2(0)

= 1.
Based on the value of λ, we have the following cases.

• If λ> 0, applying Proposition 3.1 leads to

I∗(x)= (x− d1)+
on [0, λ2 ] for some d1 ∈ [0, λ2 ]. When x> λ

2 ,

φ′
λ(x)=

(
ψ1(x)
ψ2(x)

)′ (
x− λ

2

)
+ ψ1(x)
ψ2(x)

> 1.

Applying Theorem 3.1 leads to

I∗(x)= I∗
(
λ

2

)
+ (x− d2)+

for some d2 ≥ λ
2 .

• If λ≤ 0, then since φ′
λ(x)> 1 on [0,M], applying Theorem 3.1 leads to

I∗(x)= (x− d3)+
over the whole domain, where d3 ∈ [0,M].

Summarizing the above discussions leads to the general solution

I∗(x)= Ia1,a2,a3 (x) := (min {x, a2} − a1)+ + (x− a3)+,

where 0≤ a1 ≤ a2 ≤ a3 ≤M. Note that if a1 = a2 or a2 = a3, this solution
reduces to a stop-loss function. An illustrative I∗ is given by Figure 2.
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FIGURE 2: Illustrative I∗.

Under the traditional mean-variance criterion, our goal is to minimize

M(E[L(I , π)], Var(L(I , π)))

=E[X ]+ θE[I(X )Y ]+ B
2

{
E[(X − I(X )Y )2]− (E[X − I(X )Y ])2

}

=E[X ]+ θE[I(X )ψ1(X )]+ B
2

{
Var(X )− 2E[XI(X )ψ1(X )]+E[I(X )2ψ2(X )]

+2E[X ]E[I(X )ψ1(X )]−E[I(X )ψ1(X )]2
}
.

With the optimal indemnity function Ia1,a2,a3 , the above problem reduces to

min
0≤a1≤a2≤a3≤M

θE[Ia1,a2,a3(X )ψ1(X )]+ B
2

{
E[I2a1,a2,a3 (X )ψ2(X )]

+2E[X ]E[Ia1,a2,a3 (X )ψ1(X )]− 2E[XIa1,a2,a3 (X )ψ1(X )]

−E[Ia1,a2,a3(X )ψ1(X )]2
}
. (5.2)

To optimize a1, a2 and a3, we use the “fmincon” or “patternsearch” func-
tion in MATLAB. Under different loss distributions and volatility aversion
parameters, the optimal a1, a2 and a3 are presented in Tables 1 and 2.

Interestingly, in most of the cases in Tables 1 and 2, we get either a1 = a2
or a2 = a3. This implies that the optimal indemnity function for the considered
model settings are of the stop-loss type. For the sensitivity of the retention
point with respect to model parameters (e.g., the mean loss, B, θ and a), we
have the following observations.

• The retention point increases with respect to the mean loss. Usually a
larger mean loss results in a larger premium. The DM may choose to
increase the retention point to keep the premium affordable.
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TABLE 1

THE EFFECTS OF THE MEAN LOSS AND B ON (a1, a2, a3) FOR EXPONENTIALLY DISTRIBUTED LOSS,
θ = 0.01 AND a= 0.001.

μ= 250 μ= 500 μ= 750 μ= 1000

B = 0.001 (115.3, 334.2, 334.2) (218.3, 218.3, 223.9) (137.5, 137.5, 324.0) (120.0, 120.0, 416.9)
B = 0.005 (98.5, 342.1, 342.1) (208.8, 227.8, 227.8) (143.7, 143.7, 310.8) (116.4, 116.4, 404.5)
B = 0.01 (96.3, 342.4, 342.4) (206.9, 227.1, 227.1) (114.9, 114.9, 309.3) (116.8, 116.8, 402.9)
B = 0.02 (95.2, 342.5, 342.5) (205.7, 226.7, 226.7) (144.1, 144.1, 308.6) (114.9, 114.9, 402.2)
B = 0.04 (94.7, 342.8, 342.8) (205.6, 225.6, 225.6) (142.2, 142.2, 308.2) (115.2, 115.2, 401.5)

TABLE 2

THE EFFECTS OF θ AND a ON (a1, a2, a3) FOR EXPONENTIALLY DISTRIBUTED LOSS WITH MEAN 500
AND B = 0.005.

θ = 0.01 θ = 0.02 θ = 0.05 θ = 0.1

a= 0.001 (208.8, 227.8, 227.8) (212.5, 226.2, 226.2) (221.6, 222.0, 223.4) (212.1, 212.1, 240.2)
a= 0.002 (203.7, 229.7, 229.7) (206.9, 227.9, 227.9) (216.0, 222.4, 222.4) (213.9, 213.9, 230.9)
a= 0.003 (192.8, 234.4, 234.4) (195.9, 233.9, 233.9) (205.6, 228.2, 228.2) (218.3, 220.9, 221.2)
a= 0.005 (176.5, 247.5, 247.5) (179.2, 242.8, 242.8) (187.6, 238.7, 238.7) (201.5, 232.7, 232.7)
a= 0.01 (158.8, 244.9, 244.9) (161.6, 243.0, 243.0) (170.2, 237.5, 237.5) (184.7, 241.2, 241.2)

• A larger volatility aversion level leads to a smaller retention point.
This is as expected since a smaller retention point implies that the DM
cedes more risk to the insurer so that its retained risk is subject to less
uncertainty.

• A larger safety loading parameter leads to a larger retention point.
Relatively speaking, a larger safety loading parameter corresponds to
a smaller volatility aversion level by looking at problem (5.2). Then as
per the second bullet point, a smaller volatility aversion level leads to a
larger retention point. From the perspective of premium, larger safety
loading increases the premium. So the DM increases the retention point
to maintain the affordable premium.

• A larger a leads to a smaller retention point. It is straightforward that a
larger a leads to a smaller expected recovery rate, then the DM tends to
cede out more risk to reduce the uncertainty of its retained risk.

6. CONCLUSIONS AND FUTURE RESEARCH

In this article, we re-visit the optimal insurance problem from an insured’s
perspective under counterparty risk but within a mean–variance framework.
Compared with the existing literature on this topic, the incentive compatibility
is imposed in this article to alleviate the possible ex post moral hazard issue.
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We assume that the insured is informative of the risk. As such the premium
is calculated based on the coverage instead of the promised indemnity. Under
incentive compatibility, the problem could be re-formulated as the one in terms
of the marginal indemnity function. By applying the calculus of variations, the
optimal marginal indemnity function, or the optimal indemnity function, could
be characterized in an implicit manner. It is shown that the optimal indemnity
function depends on both the first and second-order conditional expectations
of the random recovery rate. To make the implicit characterization applica-
ble in practice, we deeply analyze the format of representation and unveil the
explicit structure of optimal indemnity function implied by it. Two special
cases are studied in detail: the case that the recovery rate is independent of
the underlying loss and the case that the recovery rate is a decreasing function
of the insurable loss. For both cases, we derive the optimal indemnity functions
explicitly.

However, a major drawback of our main result is that the computation cost
may be very high if the number of change points is large. This situation may
happen when the dependence structure between the counterparty risk Y and
the insurable risk X becomes rather complex. Future research is needed to
further reduce the complexity of the optimization.

Our study could be extended by replacing the mean–variance criterion with
other preference measures, such as expected utility or distortion risk measures.
However, switching to the expected utility framework would make the implicit
characterization of the optimal indemnity function more complicated, which
brings non-trivial technical difficulties to the derivation of the explicit optimal
indemnity function. In view of this, we decide to leave such extension for future
research.

Besides the specific cases studied in this article, another realistic case is that
the default of insurer is driven by a portfolio of policies, and the decisionmaker
in this paper is one of the claimants. In such a case, the recovery rate Y can be
modelled via an ex post proportional bankruptcy rule (Ibragimov et al. 2010;
Boonen, 2019). The recovery rate Y then depends on the indemnity functions
of all policyholders. In this article, we assume that Y is independent of the
indemnity function, and so we do not study this case. We leave this problem as
a suggestion for future research.
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NOTES

1. The objective function of (3.3) could be written as∫ M

0

{
I(x)2ψ2(x)− 2x · I(x) ·ψ1(x)+ λI(x) ·ψ1(x)

}
dF(x).

An element-wise minimizer Ĩ(x) is such that

Ĩ(x)= arg minz∈R Q(z) := z2ψ2(x)− 2x · z ·ψ1(x)+ λz ·ψ1(x).

AsQ(z) is a convex function, it is easy to derive from the first-order condition that Ĩ(x)= φλ(x)=
ψ1(x)
ψ2(x)

(
x− λ

2

)
.

2. In this article, we do not distinguish between “decreasing” and “non-increasing” here.
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A. PROOFS OF THE MAIN RESULTS

A.1 PROOF OF LEMMA 3.1

The function I ∈ I is 1-Lipschitz continuous, and thus admits the following
integral representation

I(x)=
∫ x

0
η(t)dt, x ∈ [0,M],

where η is called the marginal indemnity function (MIF) as per, for example,
Assa (2015) and Zhuang et al. (2016). It is easily seen that seeking an optimal
I within I is equivalent to seeking an optimal η within the class

Ĩ =
{
η : [0, 1] �→ [0, 1]

∣∣∣ 0≤ η(x)≤ 1 for any x ∈ [0,M]
}
.
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Denote by J(I) the objective function of problem (3.3). If I∗ is an opti-
mal indemnity function, then given any I ∈ I, we have εI∗ + (1− ε)I ∈ I for
any ε ∈ [0, 1]. The first and second order derivatives of J(εI∗ + (1− ε)I) with
respect to ε are

dJ(εI∗ + (1− ε)I)
ε

=2E[(εI∗(X )+ (1− ε)I(X )) · (I∗(X )− I(X )) ·ψ2(X )]

− 2E[X · (I∗(X )− I(X )) ·ψ1(X )]+ λ ·E[(I∗(X )
− I(X )) ·ψ1(X )],

d2J(εI∗ + (1− ε)I)
dε2

= 2E[(I∗(X )− I(X ))2 ·ψ2(X )]≥ 0.

Therefore, J(εI∗ + (1− ε)I) is convex with respect to ε. It reaches its minimum
at ε = 1, and thus

dJ(εI∗ + (1− ε)I)
dε

∣∣∣
ε=1

≤ 0

=⇒ 2E[I∗(X ) · (I∗(X )− I(X )
) ·ψ2(X )]− 2E[X · (I∗(X )− I(X )) ·ψ1(X )]

+ λ ·E[(I∗(X )− I(X )) ·ψ1(X )]≤ 0

=⇒ 2E[I∗(X )2ψ2(X )]− 2E[X · I∗(X ) ·ψ1(X )]+ λE[I∗(X ) ·ψ1(X )]

≤ 2E[I∗(X ) · I(X ) ·ψ2(X )]− 2E[X · I(X ) ·ψ1(X )]+ λE[I(X ) ·ψ1(X )].

This implies

I∗ = arg min
I∈I

2E[I∗(X ) · I(X ) ·ψ2(X )]− 2E[X · I(X ) ·ψ1(X )]

+ λE[I(X ) ·ψ1(X )].

Note that

2E[I∗(X ) · I(X ) ·ψ2(X )]− 2E[X · I(X ) ·ψ1(X )]+ λE[I(X ) ·ψ1(X )]

=
∫ M

0

(
2I∗(x)ψ2(x)− 2xψ1(x)+ λψ1(x)

)
I(x)dF(x)

=
∫ M

0

(
2I∗(x)ψ2(x)− 2xψ1(x)+ λψ1(x)

) (∫ x

0
η(t)dt

)
dF(x)

=
∫ M

0

{∫ M

t

(
2I∗(x)ψ2(x)− 2xψ1(x)+ λψ1(x)

)
dF(x)

}
η(t)dt

=
∫ M

0

{∫ M

t
2ψ2(x)

(
I∗(x)− ψ1(x)

ψ2(x)
(x− λ

2
)
)
dF(x)

}
η(t)dt, (A1)
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where the third equation holds due to the Fubini’s theorem. Now let

L(t ; I∗, λ)=
∫ M

t
ψ2(x)

(
I∗(x)− ψ1(x)

ψ2(x)
(x− λ

2
)
)
dF(x),

it is straightforward that (A.1) gets minimized if its integrand function
2L(t ; I∗, λ)η(t) gets minimized for each t ∈ [0,M]. Since I ∈ I ⇐⇒ η ∈ Ĩ, we
have

η∗(t)=

⎧⎪⎪⎨
⎪⎪⎩
1, if L(t ; I∗, λ)< 0,

ξ (t), if L(t ; I∗, λ)= 0,

0, if L(t ; I∗, λ)> 0,

where ξ (t) ∈ [0, 1] such that η∗ ∈ Ĩ. This ends the proof.

A.2 PROOF OF THEOREM 3.1

To prove (1), we first show by contradiction that there does not exist a point
t∗ ∈ Sm,jm such that L(t∗;I∗, λ)> 0 and L′(t∗;I∗, λ)≥ 0. Note that

L′(t;I∗, λ)= −ψ2(t)(I∗(t)− φλ(t))f (t),

and thus L′(t∗;I∗, λ)≥ 0 is equivalent to I∗(t∗)− φλ(t∗)≤ 0. Since φ′
λ(x)> 1

over Sm,jm if jm = 1 and I∗′(x) is always bounded by 0 and 1, I∗′(t)− φ′
λ(t)< 0.

Therefore I∗(t)− φλ(t)≤ 0 for all t ∈ [t∗,M], which implies that L′(t;I∗, λ)≥ 0
over [t∗,M]. However, this also implies that

L(t∗;I∗, λ)=L(M;I∗, λ)−
∫ M

t∗
L′(x;I∗, λ)dx=

∫ M

t∗
−L′(x;I∗, λ)dx≤ 0,

which contradicts with L(t∗;I∗, λ)> 0. Therefore, such t∗ does not exist.
This implies that L(t;I∗, λ) cannot up-cross the t-axis on Sm,jm . Furthermore,
L(t;I∗, λ)= 0 cannot hold over any subintervals of Sm,jm as otherwise

L′(t;I∗, λ)= 0 =⇒ I∗(x)= φλ(x)

over these subintervals. However, this contradicts with I∗′(x) ∈ [0, 1] since
φ′
λ(x)> 1. Now define t0 = inf

{
t ∈ Sm,jm :L(t;I∗, λ)≤ 0

}
, we have L(t;I∗, λ)> 0

for t ∈ [xm−1, t0) and L(t;I∗, λ)≤ 0 for t ∈ [t0,M]. As per Lemma 3.1, we get
η∗(x)= 1[t0,M](x). The optimal indemnity function over Sm,jm in this case is
given by

I∗(x)= I∗(xm−1)+
∫ x

xm−1

η∗(t)dt= I∗(xm−1)+ (x− t0)+.

To prove (2), we show by contradiction that there does not exist points
t∗, t∗∗ ∈ Sm,jm such that

L(t∗;I∗, λ)> 0 and L′(t∗;I∗, λ)≥ 0,
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L(t∗∗;I∗, λ)< 0 and L′(t∗∗;I∗, λ)≤ 0.

If such t∗ exists, then from L′(t∗;I∗, λ)≥ 0 we get I∗(t∗)− φλ(t∗)≤ 0. since
L(t∗;I∗, λ)> 0, I∗′(t∗)= 0 as per Lemma 3.1. As such, I∗′(t∗)− φ′

λ(t∗)≤ 0. This
implies that I∗(t)− φλ(t)≤ 0 for any t ∈ [t∗,M]. Therefore L′(t;I∗, λ)≥ 0 for
any t ∈ [t∗,M]. This leads to

L(t∗;I∗, λ)=
∫ M

t∗
−L′(x;I∗, λ)dx≤ 0,

which contradicts with L(t∗;I∗, λ)> 0.
Similarly, if such t∗∗ exists, then from L(t∗∗;I∗, λ)≤ 0 we get I∗(t∗∗)−

φλ(t∗∗)≥ 0. Since L(t∗∗;I∗, λ)< 0, I∗′(t∗∗)= 1 as per Lemma 3.1. As such,
I∗′(t∗∗)− φ′

λ(t∗∗)≥ 0. This implies that I∗(t)− φλ(t)≥ 0 for any t ∈ [t∗∗,M].
Therefore L′(t;I∗, λ)≤ 0 for any t ∈ [t∗∗,M]. This leads to

L(t∗∗;I∗, λ)=
∫ M

t∗∗
−L′(x;I∗, λ)dx≥ 0,

which contradicts with L(t∗∗;I∗, λ)< 0.
Based on the above findings, L(t;I∗, λ) cannot cross the t-axis on Sm,jm . Note

that when L(t;I∗, λ)= 0 over any sub-intervals of Sm,jm , we have I
∗(x)= φλ(x)

over those intervals. Now define t1 = inf
{
t ∈ Sm,jm :L(t;I∗, λ)= 0

}
, then we

have the following situations:

(i) L(t;I∗, λ)> 0 over [xm−1, t1) and L(t;I∗, λ)= 0 over [t1,M]. This leads
to η∗(x)= φ′

λ(x)1[t1,M](x).
(ii) L(t;I∗, λ)< 0 over [xm−1, t1) and L(t;I∗, λ)= 0 over [t1,M]. This leads

to η∗(x)= 1[xm−1,t1)(x)+ φ′
λ(x)1[t1,M](x).

Applying the basic formula I∗(x)= I∗(xm−1)+
∫ x
xm−1

η∗(t)dt leads to the
result in (2).

To prove (3), we can show similarly that does not exist a point t∗∗ ∈
Sm,jm such that L(t∗∗;I∗, λ)< 0 and L′(t∗∗;I∗, λ)≤ 0. As such, L(t;I∗, λ) can-
not down-cross the t-axis on Sm,jm . Furthermore, L(t;I∗, λ)= 0 cannot hold on
any subintervals of Sm,jm as otherwise I∗(x)= φλ(x) on those intervals, which
is a contradiction since I∗′(x) ∈ [0, 1] but φ′

λ(x)< 0 in this case. Now define
t2 = inf

{
t ∈ Sm,jm :L(t;I∗, λ)≥ 0

}
, we have L(t;I∗, λ)< 0 for t ∈ [xm−1, t2) and

L(t;I∗, λ)≥ 0 for t ∈ [t2,M]. According to Lemma 3.1, we have η∗(x)=
1[xm−1,t2)(x), for which the corresponding I∗ is given by (3).

To prove (4), we note that for any t ∈ [xi−1, xi]

L(t;I∗, λ)=
∫ xi

t
−L′(x;I∗, λ)dx+L(xi;I∗, λ),

where L′(t;I∗, λ)= −ψ2(t)(I∗(t)− φλ(t))f (t). If ji = 1, then for any t ∈ [xi−1, xi],
I∗′(t)− φ′

λ(t)< 0. We next focus on the case where the root of I∗(t)= φλ(t)
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exists on (xi−1, xi). Other cases could be studied in a similar way and are thus
omitted.

Denote by tr1 the root of I∗(t)= φλ(t) on (xi−1, xi), then L′(t;I∗, λ)< 0 for
t ∈ [xi−1, tr1) and L

′(t;I∗, λ)> 0 for t ∈ (tr1 , xi]. That means, L(t;I∗, λ) can cross
the t-axis at most twice and on (xi−1, tr1) and (tr1 , xi) respectively. Let

t2 = inf
{
t ∈ [xi−1, xi] :L(t;I∗, λ)≤ 0

}
t3 = inf

{
t ∈ [t2, xi] :L(t;I∗, λ)≥ 0

}
,

then L(t;I∗, λ)> 0 over [xi−1, t2), L(t;I∗, λ)< 0 over (t2, t3) and L(t;I∗, λ)> 0
over (t3, xi]. According to Lemma 3.1, we have η∗(x)= 1(t2,t3)(x). Applying the
equation I∗(x)= I∗(xi−1)+

∫ x
xi−1

η∗(t)dt leads to the result in (4).
To prove (5), we show by contradiction that there cannot exist two or more

than two sub-intervals of [xi−1, xi] such that L(t;I∗, λ)= 0. If there exist two
sub-intervals, for example [a,b] and [c,d] where xi−1 ≤ a< b< c≤ xi, such that
L(t;I∗, λ)= 0 for t ∈ [a, b]∪ [c, d], then there must exist a point t∗ or t∗∗ in (b,c)
as described in the proof of (2). However, if t∗ exists, then similar to the proof
of (2) we get L′(t;I∗, λ)≥ 0 over [t∗, xi]. As such L(t;I∗, λ)> 0 for t ∈ [t∗, xi],
which contradicts with L(t;I∗, λ)= 0 over [c, d]⊆ [t∗, xi]. If t∗∗ exists, then sim-
ilar to the proof of (2) we get L′(t;I∗, λ)≤ 0 over [t∗∗, xi]. As such L(t;I∗, λ)< 0
for t ∈ [t∗∗, xi], which also contradicts with L(t;I∗, λ)= 0 over [c, d]⊆ [t∗∗, xi].
Therefore, there exists at most one subinterval, for example [t4, t5]⊆ [xi−1, xi],
on which L(t;I∗, λ)= 0. We have four situations based on the sign of L(t;I∗, λ)
on [xi−1, t4) and (t5, xi]:

(i) L(t;I∗, λ)> 0 over [xi−1, t4) and L(t;I∗, λ)> 0 over (t5, xi]. This leads to
η∗(x)= φ′

λ(x)1[t4,t5](x).
(ii) L(t;I∗, λ)< 0 over [xi−1, t4) and L(t;I∗, λ)> 0 over (t5, xi]. This leads to

η∗(x)= 1[xi−1,t4)(x)+ φ′
λ(x)1[t4,t5](x).

(iii) L(t;I∗, λ)> 0 over [xi−1, t4) and L(t;I∗, λ)< 0 over (t5, xi]. This leads to
η∗(x)= φ′

λ(x)1[t4,t5](x)+ 1(t5,xi](x).
(iv) L(t;I∗, λ)< 0 over [xi−1, t4) and L(t;I∗, λ)< 0 over (t5, xi]. This leads to

η∗(x)= 1[xi−1,t4)(x)+ φ′
λ(x)1[t4,t5](x)+ 1(t5,xi](x).

Applying the formula, I∗(x)= I∗(xi−1)+
∫ x
xi−1

η∗(t)dt leads to the result
in (5).

To prove (6), we note that I∗′(t)− φ′
λ(t)> 0 in this case. We next focus on

the case where the root of I∗(t)= φλ(t) exists on (xi−1, xi). Other cases could be
studied in a similar way and are thus omitted.

Denote by tr2 the root of I∗(t)= φλ(t) on (xi−1, xi), then L′(t;I∗, λ)> 0 for
t ∈ [xi−1, tr2) and L

′(t;I∗, λ)< 0 for t ∈ (tr2 , xi]. That means L(t;I∗, λ) can cross
the t-axis at most twice and on (xi−1, tr2 ) and (tr2 , xi) respectively. Similar to
the proof of (4), let

t6 = inf
{
t ∈ [xi−1, xi] :L(t;I∗, λ)≥ 0

}
, t7 = inf

{
t ∈ [t6, xi] :L(t;I∗, λ)≤ 0

}
,
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then L(t;I∗, λ)< 0 over [xi−1, t6), L(t;I∗, λ)> 0 over (t6, t7) and L(t;I∗, λ)< 0
over (t7, xi]. According to Lemma 3.1, we have η∗(x)= 1[xi−1,t6)(x)+ 1(t7,xi](x).
Applying the basic formula I∗(x)= I∗(xi−1)+

∫ x
xi−1

η∗(t)dt leads to the result
in (6). This ends the proof.

A.3 PROOF OF PROPOSITION 3.1

Under the conditions of this proposition, for any t ∈ [0, λ2 ),

I∗(t)− ψ1(t)
ψ2(t)

(
t− λ

2

)
> 0.

As such, for t ∈ [0, λ2 ),

L′(t;I∗, λ)= −ψ2(t)
(
I∗(t)− ψ1(t)

ψ2(t)
(t− λ

2
)
)
fX (t)< 0.

Let t1 = inf
{
t ∈ [0, λ2 ] :L(t;I

∗, λ)≤ 0
}
, then as per the monotonicity of

L(t;I∗, λ) over [0, λ2 ), we have L(t;I∗, λ)> 0 for t ∈ [0, t1) and L(t;I∗, λ)< 0
for t ∈ (t1, λ2 ). Applying Lemma 3.1 gives I∗′(x)= 1(t1,

λ
2 )
(x). As such, for any

x ∈ [0, λ2 ]

I∗(x)=
∫ x

0
I∗′(t)dt= (x− t1)+.

This finishes the proof.
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