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LINEAR TIME IN HYPERSEQUENT FRAMEWORK

ANDRZEJ INDRZEJCZAK

Abstract. Hypersequent calculus (HC), developed by A. Avron, is one of the most inter-
esting proof systems suitable for nonclassical logics. Although HC has rather simple form, it
increases significantly the expressive power of standard sequent calculi (SC). In particular,
HC proved to be very useful in the field of proof theory of various nonclassical logics. It may
seem surprising that it was not applied to temporal logics so far. In what follows, we discuss
different approaches to formalization of logics of linear frames and provide a cut-free HC
formalization of Kt4.3, the minimal temporal logic of linear frames, and some of its exten-
sions. The novelty of our approach is that hypersequents are defined not as finite (multi)sets
but as finite lists of ordinary sequents. Such a solution allows both linearity of time flow,
and symmetry of past and future, to be incorporated by means of six temporal rules (three
for future-necessity and three dual rules for past-necessity). Extensions of the basic calculus
with simple structural rules cover logics of serial and dense frames. Completeness is proved
by Schütte/Hintikka-style argument using models built from saturated hypersequents.

§1. Introduction. G. Pottinger [41], and independently, A. Avron [1] in-
troduced a generalised form of Gentzen’s sequent calculus (SC) called
hypersequent calculus (HC). The main feature of HC is the application
of hypersequents which are (multi)sets of ordinary sequents. It may be of
interest that at the same time Došen [15] proposed evenmore general frame-
work where one is dealing with a hierarchy of sequents of order n + 1 with
arguments being finite sets of sequents of order n. In particular, sequents
of order 2 consist of finite sets of ordinary sequents (of order 1) on both
sides, where elements of the antecedent are treated conjunctively, and ele-
ments of the succedent disjunctively. Thus one can treat hypersequents as
sequents of order 2 with empty antecedents. Similar ideas based on embed-
ding of sequents inside other sequents were later exploited by Kashima [28],
Stouppa [46], Brünnler [10], Poggiolesi [40], and one may notice that HC
may be interpreted as a restricted version of such approaches.
HCmay be seen also as a special kind of display calculus (DC) introduced
by Belnap [9] (see also [14]). While in DC a family of structural connectives
of fixed arity is introduced, in HC a separator of sequents may be treated as
the only added structural connective of nonfixed arity. One may find results
concerning embedding of HC in DC inWansing [50] and Ramanayake [42].
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122 ANDRZEJ INDRZEJCZAK

It is also easy to establish similar relationship of HC to much stronger
framework of labelled sequent calculi (see Negri [36]).
The above considerations seem to show that HC is rather a weak
generalization of standard sequent calculus. But even this simple and
straightforward modification significantly increases the expressive power of
ordinary Gentzen apparatus by allowing an additional transfer of infor-
mation between different sequents. It proved to be very useful for con-
struction of cut-free formalizations of many nonclassical logics including
many-valued, relevant, paraconsistent, and fuzzy logics (see for example
Avron [2, 3] Baaz, Ciabattoni, and Fermüller [6], Metcalfe, Olivetti, and
Gabbay [35]).
Although HC was originally introduced for modal logics (Pottinger [41]),
after more than 30 years one can find rather limited applications of hyper-
sequent calculi in this field. In fact, there are surprisingly many different
cut-free systems for S5 (Pottinger [41], Avron [2], Restall [44], Poggiolesi
[39], Lahav [32], Kurokawa [31], Bednarska, and Indrzejczak [8]) but for
other modal logics the situation is worse. One can find case studies of some
logics of linear frames; there are HC for S4.3 (Indrzejczak [25], Kurokawa
[31]), later generalised to K4.3, and KD4.3 (Indrzejczak [27]). Kurokawa
[31] provided also HC for K4.2. Recently some more general approaches
were provided. Lahav [32] proposed a uniform treatment of various normal
modal logics based on translation of semantic conditions. Some general
approach of a different character is developed by Lellmann [33]. However,
temporal logics with Priorean operators were not formalised in HC setting
so far.
In what follows, we introduce a variant of HC for the minimal linear time
logic Kt4.3 and some of its extensions. It is based on a different idea than
HC formalizations of monomodal linear logics from Indrzejczak [25, 27],
Kurokawa [31], or Lahav [32]. The solution applied in these systems was
essentialy based onAvron’s [2,4]HC forGödel–Dummett’s logic, the logic of
intuitionistic relational frames with linear accessibility relation. It workswell
for these logics but it is not flexible enough to cover the symmetry of future
and past operators. For instance, Lahav’s HC systems for symmetric modal
logics require some kind of analytic cut. To provide a cut-free HC system
for logics of linear time we decided to treat hypersequents not as (multi)sets
but as finite lists of sequents1. A similar idea of using noncommutative
hypersequents was already exploited by Ciabattoni and Ferrari [12] in the
framework of intermediate logics. In the context of temporal logics such a
solution naturally corresponds to linear order of time points. As a result
we get a syntactic modelling of both forward and backward transmission
of data on the time axis by means of suitably defined rules for temporal
operators.
The basic cut-free calculusHCKt4.3, and its simple extensions with addi-
tional structural rules are investigated rather semantically in this paper.
Thus, we show the completeness by means of Schütte/Hintikka’s style

1The first version of this system was presented in Indrzejczak [26].
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LINEAR TIME IN HYPERSEQUENT FRAMEWORK 123

argument showing how to construct a countermodel for any unprovable
hypersequent. However, the rules for temporal operators are defined with
care for having good syntactic properties. An open question is the existence
of syntactical proof of cut admissibility for it. The problem is that strategies
of proof developed so far for other forms of HC are not suitable for dealing
with hypersequents defined as lists of sequents.

§2. Temporal logic. This section is mainly for reference and to estab-
lish notation; good introductions to the field are provided by Rescher and
Urquhart [43], Goldblatt [18], or van Benthem [49]. Let us first recall a
few basic facts concerning the minimal temporal logic of linear frames
in standard characterization, i.e., as an axiomatic system adequate with
respect to suitable class of relational (Kripke) frames. We will use stan-
dard bimodal language with countable set of propositional variables VAR,
ordinary boolean constants and two Priorean unary temporal operators:
�F (always in the future) and �P (always in the past). Dual operators ♦F
and ♦P are treated as definitional shortcuts. One can axiomatize Kt4.3 by
adding to any Hilbert system for classical propositional logic the following
schemata:

KF �F (ϕ → �)→ (�F ϕ → �F�)
KP �P(ϕ → �)→ (�Pϕ → �P�)
PF ϕ → �P♦F ϕ
FP ϕ → �F♦Pϕ
4 �F ϕ → �F�F ϕ
LF �Pϕ ∧�F ϕ ∧ ϕ → �F�Pϕ
LP �Pϕ ∧�F ϕ ∧ ϕ → �P�F ϕ
The system is closed under MP (modus ponens) and two rules of
necessitation:

� ϕ / � �F ϕ
� ϕ / � �Pϕ

Kt4.3 is adequate with respect to the class of relational frames 〈T,R〉where
acessibility relationR on the nonempty set of time points T is transitive and
satisfies the conditions of future and past linearity (or connectedness):

∀t, t′, t′′(Rtt′ ∧ Rtt′′ → Rt′t′′ ∨Rt′′t′ ∨ t′ = t′′),
∀t, t′, t′′(Rt′t ∧ Rt′′t → Rt′t′′ ∨Rt′′t′ ∨ t′ = t′′).

It may be shown that Kt4.3 is also characterised by the narrower class of
linear structures, where instead of these two conditions it holds the condition
of trichotomy2:

∀t, t′(Rtt′ ∨Rt′t ∨ t = t′).
2In fact, no axioms in standard temporal language correspond to conditions of trichotomy

and dichotomy; see Goldblatt [18] for details. A possible remedy for this problem is provided
by the application of stronger languages, for instance those of hybrid temporal logics; see e.g.
[24]
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124 ANDRZEJ INDRZEJCZAK

We will prove directly the adequacy of our hypersequent calculi with
respect to these narrower class of frames.
Models M are built on frames by the addition of valuation function
v : VAR −→ P(T ). Formulae are evaluated at the points of the model in
the standard way by means of recursively defined satisfaction relation �.
In particular, the clauses for temporal operators are the following:

M, t � �F ϕ iffM, t′ � ϕ for every t′ such that Rtt′
M, t � �Pϕ iffM, t′ � ϕ for every t′ such that Rt′t
M, t � ♦F ϕ iffM, t′ � ϕ for some t′ such that Rtt′
M, t � ♦Pϕ iffM, t′ � ϕ for some t′ such that Rt′t

A formula ϕ is Kt4.3-valid (|= ϕ) iff it is satisfied at every point of every
Kt4.3-Model. A formula is falsifiable if it is nonvalid, i.e.,M, t � ϕ for some
M and t.

We consider also some extensions of Kt4.3 which are obtained by the
addition of any of the following axioms:

FS �F ϕ → ♦F ϕ
PS �Pϕ → ♦Pϕ
D �F�F ϕ → �F ϕ

which correspond to conditions of future seriality (no ending point), past
seriality (no starting point), and density of R, i.e.,:

FS ∀t, ∃t′Rtt′
PS ∀t, ∃t′Rt′t
D ∀t, t′(Rtt′ → ∃t′′(Rtt′′ ∧Rt′′t′))
Since the conditions are independent we obtain 7 different extensions of
Kt4.3 determined by classes of frames with R satisfying at least one of the
above conditions.
We provide a formalization of all these logics in HC setting. In this paper,
we define hypersequents as finite lists of Gentzen’s sequents and apply the
following notation:

• Γ ⇒ Δ or s (usually with subscripts) for sequents; note that Γ,Δ are
finite, possibly empty, multisets of formulae.

• ∧Γ (∨Γ) for the conjunction (disjunction) of all elements of Γ.
• s1 | · · · | sn, G,H,Gi ,Hi stand for hypersequents; in particular G,Gi
will always denote nonempty hypersequent, whereasH,Hi will be used
if we admit that it is empty.

• H1 | s | H2 (or H1 | Γ ⇒ Δ | H2) stand for hypersequents with
displayed sequent s (or Γ ⇒ Δ).

• si < sj means that the occurrence of a sequent si is on the left of the
occurrence of sj in some hypersequent, i.e., a hypersequent is of the
form H1 | si | · · · | sj | H2.
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• Γ ⇒ Δ ⊆ Γ ′ ⇒ Δ′ (or s ⊆ s ′) iff Γ ⊆ Γ ′ and Δ ⊆ Δ′.
• G ⊆ G ′ iff for every occurrence of s in G there is a corresponding
occurrence of s ′ in G ′ such that s ⊆ s ′ and whenever si < sj (or
sj < si) in G , then also s ′i < s

′
j (or s

′
j < s

′
i ) in G

′.

For simplicity we have used in all cases the set-theoretic symbol ⊆
despite the differences in meaning (multisets-, sequent-, and hypersequent-
inclusion). In two last cases we say that s ′ (resp. G ′) is an extension of s
(resp. G) and that s (resp. G) is a reduction of s ′ (resp. G ′). Note that in
case G ⊆ G ′, G ′ may contain additional occurrences of sequents which do
not extend any sequent occurring in G .

§3. How to deal with linearity. So far modal and temporal logics of linear
frames were formalised in the framework of various calculi like natural
deduction, tableaux e.t.c.; also sequent calculi of different sorts were used
for this aim.Very often the proposed solutions are based on the use of several
forms of labelling which encode selected elements of relational semantics3.
Before we present our solution, a brief survey of proposed approaches may
appear helpful. Note however that most of the proposals are suitable only
for monomodal logics like S4.3 and do not admit resources necessary for
dealing with symmetry inherent in temporal logics. Note also that in case
of reflexive R (like in S4.3) conditions of connectedness and trichotomy
may be replaced by their stronger versions with deleted identity of states in
disjunction (hence trichotomy is changed into dichotomy). All the systems
for linear modal logics may be divided roughly according to two criteria:
(a) the shape of the rules and (b) the implicit strategy of linearization (of
attempted falsifying model).
The rules devised to express suitable conditions of connectedness,
dichotomy or trichotomymay be divided into nonbranching and branching.
The former solution is rather rare, one can mention here a labelled tableau
system of Marx, Mikulas, and Reynolds [34] and of Baldoni [7], as well as
a labelled natural deduction system of Indrzejczak [23]. Since construction
of nonbranching rules for (strong) connectedness is based on the following
form of this condition:

∀xyz(Rxy ∧Rxz ∧ ¬Ryz → Rzy),
one must have in the system sufficient resources not only for expressing that
some points are in the relation R but also that some are not, i.e. either the
apparatus of labels must be sufficiently strong (like in Baldoni’s system) or
some forms of (analytic) cut must be involved (in the remaining proposals).
Surprisingly enough, in case of richer language of bimodal temporal logics
of linear frames one can define suitable nonbranching rules for natural
deduction system even without using labels (see Indrzejczak [22]).

3See the 9th chapter of Indrzejczak [24] for a comprehensive survey of different approaches;
Goré [19] provides a description of standard nonlabelled tableau formalizations of respective
logics.
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Most solutions are based on the application of branching rules. In
some systems the number of branches is fixed—two in case of strong
connectedness or dichotomy, and three in case of weak connectedness
(trichotomy). This is obvious since suitable rules are directly modelled on
semantic conditions involving disjunction. One may mention here, e.g., a
display calculus of Wansing [50], labelled sequent calculus of Negri [36],
or nested tableau system of Kashima [28]. This approach is in the most
straightforward way realised in Negri’s calculus since there we have a
direct representation of frame conditions in the syntax by means of rela-
tional formulae. Consider, for example a rule for strong connectedness.
This condition is a special case of a universal implication of the form
∀x1 . . . xi(ϕ1 ∧ · · · ∧ ϕk → �1 ∨ · · · ∨ �n), with all ϕi and �j being atoms.
Since every universal implication is characterised by means of the following
rule-schema:

�1, ϕ1, . . . , ϕk,Γ⇒ Δ, . . . , �n, ϕ1, . . . , ϕk,Γ⇒ Δ
ϕ1, . . . , ϕk, ,Γ⇒ Δ ,

then for strong connectedness we obtain:

yRz, xRy, xRz,Γ⇒ Δ zRy, xRy, xRz,Γ⇒ Δ
xRy, xRz,Γ⇒ Δ .

There is no place for demonstrating here in what ways this strategy is
realised in the framework of display calculus or nested system of Kashima
since this would require the presentation of some technicalities of these
approaches first. The strategy of generating such rules in an uniform fash-
ion in display calculus is discussed at length in Kracht [30] and Ciabattoni
and Ramanayake [13]. Kashima’s solution is closest to that applied for HC
which will be discussed below. Incidentally, it is worth noting that display
calculus is a very natural framework for the development of bimodal tempo-
ral logics because it directly generates the dualities between future and past
operators.
Both nonbranching andfixed-branching approaches realize the local strat-
egy of linearization of attempted falsifyingmodel. It means that we compare
only two states at a time and put them in some order, either disjunctively (by
means of branching rules) or by choosing one possibility if the other ones
are excluded (nonbranching rules). However, there are formal systems for
linear logics which realize global strategy of linearization, i.e., their rules are
defined in such away that all points which are generated at the samemoment
are immediately put in the sequence. This group consists of systems which
use rules with the number of branches not fixed in advance. It depends on the
number of modal formulae which are responsible for creation of new points
in the attempted model. One may distinguish here between solutions which
make it in the decreasing way (Zeman’s sequent calculus [51], Goré tableau
systems [19]) or increasing way (Rescher and Urquhart’s tableau system for
linear temporal logics [43]). In the former approach one is activating all
modal formulae which create new states in one step (see below the schema
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of Zeman’s rule). In the latter, one is activating only one modal formula but
generates all possible ways of locating the new state in an attempted model.
In both approaches, we eventually create all possible sequences of points
(but in a different order) hence the number of branches is exponentially
dependent on the number of state’s creating modal formulae.
Zeman’s approach to linearity, developed by Góre, is of particular interest
from the standpoint of proof-search due to the the property of confluency.
In case of sequent calculus, it means that if a sequent s is provable, then
any proof-tree with this sequent as the root may be extended in such a way
that we obtain a proof of s . Of course, we talk about the application of
rules in the root-first (or backwards) manner characteristic for the process
of proof-search. In practice it means that no matter which choices we have
made during proof-search, we finally obtain a proof, if the input is provable.
On the other hand, if some branch ends with atomic but not axiomatic
sequent, we are done negatively, we know for sure that there is no proof.
That is why confluent systems are very convenient from the point of view of
automated theorem proving.We are not forced at some stage of proof-search
for backtracking to earlier stages, if wemade ‘wrong’ choices. Consequently,
confluent systems are less expensive for the program memory. From the
standpoint of the result, in confluent systems there are no wrong choices
(although our choices may have strong influence on the length of obtained
proof or the time needed for performance).
Unfortunately, it is a well known fact that even cut-free standard sequent
calculi for modal logics usually are not confluent. It is connected with the
fact that before we apply (backwards) suitable rule for the introduction
of � in the succedent we must usually make a choice which formula with
� from the succedent is being dealt with; the remaining ones are deleted
from the succedent of the premiss. Wrong choices may lead to a failure
even if the input-sequent is provable, so we must try with other choices. On
the other hand, to make a falsifying model, we must use all failed proof-
trees constructed during the proof-search. Several techniques were provided
for dealing with such an inconveniency4; in particular, Zeman’s solution
is very natural. In his rule for introduction of � in the succedent, all �-
formulae are activated at the same time, each one leading to one premiss
and with other �-formulae still present in the succedent. Here is the scheme
for S4.3:

(⇒�) Γ
� ⇒ ϕ1,�ϕ2, . . . ,�ϕn . . . Γ� ⇒ �ϕ1, . . . ,�ϕn−1, ϕn

Γ ⇒ Δ,�ϕ1, . . . ,�ϕn ,

where Γ� = {�ϕ : �ϕ ∈ Γ} and Δ has no �-formulae. Clearly in case
n = 1 we get a standard right introduction rule for � in S4.
One should notice here the unquestioned advantage of HC over ordinary
SC in this respect. In the context of HC, the problem of confluency finds a
very natural solution also for other modal logics needing a special treatment
in the setting of SC. The apparatus of hypersequents allows all �-formulae
4See, e.g. chapter 7 of Indrzejczak [24] for more details.
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to be activated at the same time in a parallel fashion for any modal logic.
For example, one can provide for the basic normal modal logic K the
following rule for introduction of � in the succedent:

(⇒�) Γ
� ⇒ ϕ1 | . . . | Γ� ⇒ ϕn | H
Γ ⇒ Δ,�ϕ1, . . . ,�ϕn | H ,

where Γ� = {ϕ : �ϕ ∈ Γ} and Δ has no �-formulae.
This nice feature of HC was unnoticed before Indrzejczak [25] and usu-
ally more standard-looking rules of � introduction into succedent were
provided. In fact, due to external structural rule of contraction, one gen-
erally does not loose confluency in HC, but our format of �-introduction
rule makes it explicit and directly introduces this property into the system.
However, the main point of [25] is that we provided a characterization of
monomodal linear logic S4.3 (later in [27] extended to weaker monomodal
linear logics K4.3 andKD4.3) in terms of HC which closely follows the lines
of Avron’s [4] solution for Gödel–Dummett’s logic. In terms of described
solutions these calculi should be characterised based on fixed-branching
rules realizing local strategy of searching for linear model. In fact, this solu-
tion for linearization of states is similar to that of Kashima [28] but realised
by means of hypersequents instead of nested tableaux or some kind of labels
or structural constants. The characteristic rule for dichotomy in HC for
S4.3 was:

(Dich)
Γ,Π� ⇒ Δ | H Π,Γ� ⇒ Σ | H

Γ ⇒ Δ | Π ⇒ Σ | H ,

where Γ� = {�ϕ : �ϕ ∈ Γ}

whereas for trichotomy (in K4.3 and KD4.3) it was:

(Trich)
Γ,Π� ⇒ Δ | H Π,Γ� ⇒ Σ | H Γ,Π ⇒ Δ,Σ | H

Γ ⇒ Δ | Π ⇒ Σ | H ,

where Γ� = {�ϕ : �ϕ ∈ Γ} ∪ {ϕ : �ϕ ∈ Γ}.

Unfortunately this solution does not work for temporal logics of linear
frames where additionally the symmetry of past and future must be dealt
with. In order to provide a solution in the framework of hypersequents,
it is useful to introduce hypersequents being neither sets nor multisets
of sequents but rather their finite lists. This approach will be developed
below.

§4. Hypersequent calculus. The calculus for Kt4.3 consists of the follow-
ing rules:
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(AX) H1 | ϕ,Γ ⇒ Δ, ϕ | H2

(C⇒) H1 | ϕ, ϕ,Γ ⇒ Δ | H2
H1 | ϕ,Γ ⇒ Δ | H2 (⇒C ) H1 | Γ ⇒ Δ, ϕ, ϕ | H2

H1 | Γ ⇒ Δ, ϕ | H2

(¬⇒) H1 | Γ ⇒ Δ, ϕ | H2
H1 | ¬ϕ,Γ ⇒ Δ | H2 (⇒¬) H1 | ϕ,Γ ⇒ Δ | H2

H1 | Γ ⇒ Δ,¬ϕ | H2

(∧⇒) H1 | ϕ,�,Γ ⇒ Δ | H2
H1 | ϕ ∧ �,Γ ⇒ Δ | H2 (⇒∧) H1 | Γ ⇒ Δ, ϕ | H2 H1 | Γ ⇒ Δ, � | H2

H1 | Γ ⇒ Δ, ϕ ∧ � | H2

(⇒∨) H1 | Γ ⇒ Δ, ϕ, � | H2
H1 | Γ ⇒ Δ, ϕ ∨ � | H2 (∨⇒) H1 | ϕ,Γ ⇒ Δ | H2 H1 | �,Γ ⇒ Δ | H2

H1 | ϕ ∨ �,Γ ⇒ Δ | H2

(⇒→) H1 | ϕ,Γ ⇒ Δ, � | H2
H1 | Γ ⇒ Δ, ϕ → � | H2 (→⇒) H1 | Γ ⇒ Δ, ϕ | H2 H1 | �,Γ ⇒ Δ | H2

H1 | ϕ → �,Γ ⇒ Δ | H2

(⇒�F ) H | Γ ⇒ Δ |⇒ ϕ
H | Γ ⇒ Δ,�F ϕ (�F⇒) H1 | Γ ⇒ Δ | · · · | ϕ,Π ⇒ Σ | H2

H1 | �F ϕ,Γ ⇒ Δ | · · · | Π ⇒ Σ | H2

(⇒�P) ⇒ ϕ | Γ ⇒ Δ | H
Γ ⇒ Δ,�Pϕ | H (�P⇒) H1 | ϕ,Γ ⇒ Δ | · · · | Π ⇒ Σ | H2

H1 | Γ ⇒ Δ | · · · | �Pϕ,Π ⇒ Σ | H2

(⇒�F ′
)
H1 | Γ ⇒ Δ |⇒ ϕ | Π ⇒ Σ | H2 H1 | Γ ⇒ Δ | Π ⇒ Σ, ϕ | H2 H1 | Γ ⇒ Δ | Π ⇒ Σ,�F ϕ | H2

H1 | Γ ⇒ Δ,�F ϕ | Π ⇒ Σ | H2

(⇒�P ′) H1 | Γ ⇒ Δ |⇒ ϕ | Π ⇒ Σ | H2 H1 | Γ ⇒ Δ, ϕ | Π ⇒ Σ | H2 H1 | Γ ⇒ Δ,�Pϕ | Π ⇒ Σ | H2
H1 | Γ ⇒ Δ | Π ⇒ Σ,�Pϕ | H2

Note that:

1. All rules satisfy the subformula property.
2. All rules, except (�F⇒) and (�P⇒), are invertible in the semantic
sense, i.e., if the conclusion of the rule is valid, then all premisses are
also valid (in the sense specified in Definition 5.1 below).

3. Defining hypersequents as finite lists of sequents allows linear time to
be syntactically representable in a direct way. Informally, every sequent
corresponds to some point on the time axis and ifH1 | si | · · · | sj | H2,
then the time point represented by si is earlier than that represented by
sj .

4. One needs two rules of right introduction for each temporal operator.
(⇒�F ) works when �F ϕ is in the succedent of the rightmost sequent,
whereas (⇒�F ′) is applied if there are some other sequents on the
right (for �P we have dual rules). The former rule corresponds to the
situation where�F ϕ is present in the last time point t in the list and all
that we need is to introduce the next time point t′ in which this formula
is fulfilled. The latter corresponds to the situation where the time point
t has some successors, at least one t′. Due to the linearity,�F ϕ must be
fulfilled either in some point t′′ which is between t and t′ or it is fulfilled
in t′ or in some later points. All these eventualities are represented by
three premisses. In fact, these two rules (i.e., (⇒�F ′) and (⇒�P ′))
have recursive character due to the shape of the third premise. �F ϕ is
copied to the next (if any) sequent and the application of suitable rule
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to it is postponed. In terms of described solutions this calculus is also
based on fixed-branching rules realizing the local strategy of searching
for falsifying linear model. Similar solution for modal logics of linear
frames was applied in labelled tableau system of Catach [11].

5. Although the idea underlying the rules of the present system is different
from that of [25] it also provides a confluent system.

The proof of a hypersequent G is defined in the usual way as a tree of
hypersequents with G as the root, axioms as leaves and all other nodes
regulated by the application of rules. Here is the proof of the instance of LF
as an example.

�Pp, p ⇒| p ⇒ p |⇒
(�F ⇒) �Pp,�F p, p ⇒|⇒ p |⇒ �Pp,�F p, p ⇒ p |⇒ �Pp,�F p, p ⇒ �Pp |⇒
(⇒�P′) �Pp,�F p, p ⇒|⇒ �Pp

(⇒ �F )�Pp,�F p, p ⇒ �F�Pp
(∧ ⇒) twice�Pp ∧�F p ∧ p ⇒ �F�Pp
(⇒→)⇒ �Pp ∧�F p ∧ p → �F�Pp

.

In what follows we will denote with HCKt4.3 � G , or with � G simply,
the provability of G in HCKt4.3.

§5. Soundness. Satisfaction of a sequent at a state in a model is defined
as usual by:

M, t � Γ ⇒ Δ iffM, t � ∧Γ → ∨Δ,
and

M, t � Γ ⇒ Δ iffM, t � ∧Γ → ∨Δ.
We extend semantical notions to noncommutative hypersequents in the
following way:

Definition 5.1. For any Kt4.3-modelM and hypersequent G = s1 | · · · |
sn:

• M |= G iff for all states t1, . . . tn ofM:
if t1Rt2R . . .Rtn, then for some i ≤ n,M, ti � si ;

• |= G (G is Kt4.3-valid) iffM |= G for everyM.

Note that in consequence: �|= G iff there isM such thatM �|= G and this
means that there are t1, . . . tn such that t1Rt2R . . .Rtn and t1 � s1, . . . tn � sn.

One can easily prove:

Lemma 5.2 (Validity-preservation). All rules of HCKt4.3 are validity-
preserving.

Proof. We will show by contraposition two cases: (�F⇒) and (⇒�F ′).
(�F⇒). Assume that �|= H1 | �F ϕ,Γ ⇒ Δ | · · · | Π ⇒ Σ | H2. Hence
there is a modelM such thatM, t � �F ϕ,Γ ⇒ Δ andM, t′ � Π ⇒ Σ, for
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some t, t′ such that Rtt′. In particular, M, t � �F ϕ, hence by transitivity
M, t′ � ϕ which means that this model falsifies also H1 | Γ ⇒ Δ | · · · |
ϕ,Π ⇒ Σ | H2.
(⇒�F ′). Assume that �|= H1 | Γ ⇒ Δ,�F ϕ | Π ⇒ Σ | H2. Hence
there is a model M such that M, t � Γ ⇒ Δ,�F ϕ and M, t′ � Π ⇒ Σ,
for some t, t′ such that Rtt′. In particular, M, t � �F ϕ which means that
there is some t′′ such that Rtt′′ and M, t′′ � ϕ. Future linearity implies
Rt′t′′ ∨ Rt′′t′ ∨ t′ = t′′. If we take the first case, then M, t′ � �F ϕ and
the third premiss, i.e. H1 | Γ ⇒ Δ | Π ⇒ Σ,�Fϕ | H2 is falsified by this
model. If we take the second choice, then we can assign t′′ to ⇒ ϕ. This
way we obtain an augmented model with t′′ inserted between t and t′ which
falsifies the first premiss, i.e. H1 | Γ ⇒ Δ |⇒ ϕ | Π ⇒ Σ | H2. The last
choice falsifies the second premiss. i.e.H1 | Γ ⇒ Δ | Π ⇒ Σ, ϕ | H2. Hence
if the conclusion is falsifiable, then at least one of the premisses must be
falsifiable. �
As a consequence we obtain

Theorem 5.3 (Soundness). If HCKt4.3 � G , then |= G .
Now we can also substantiate the claim on invertibility of rules made in
Section 4.

Lemma 5.4 (Invertibility). All logical rules of HCKt4.3 except (�F⇒)
and (�P⇒) are semantically invertible.
Proof. The proof is obvious for rules characterising boolean connectives.
So we provide a proof for (⇒�F ′) as an illustration.
Assume that the conclusion is valid and that the leftmost premise is not.
Hence there is a model M such that M, t � Γ ⇒ Δ, M, t′ � ϕ, and
M, t′′ � Π ⇒ Σ, for some t, t′, t′′ such that Rtt′ and Rt′t′′. But then the
conclusion must be falsifiable as well, because the only way of keeping it
valid in thisM is to haveM, t � �F ϕ. This however contradictsM, t′ � ϕ
since Rtt′. Similarly we demonstrate the result for the remaining premisses
with additional reference to transitivity of R in case of the rightmost
premiss. �

§6. Variations and extensions. Let us point out some possible refinements
of this calculus and introduce some extensions for stronger logics.
The last section ended with a result on invertibility of rules. Note that
one may easily obtain invertibility of all logical rules by changing a bit rules
(�F⇒) and (�P⇒) into:

(�F⇒′)
H1 | �F ϕ,Γ ⇒ Δ | · · · | ϕ,Π ⇒ Σ | H2
H1 | �F ϕ,Γ ⇒ Δ | · · · | Π ⇒ Σ | H2 ,

(�P⇒′)
H1 | ϕ,Γ ⇒ Δ | · · · | �Pϕ,Π ⇒ Σ | H2
H1 | Γ ⇒ Δ | · · · | �Pϕ,Π ⇒ Σ | H2 .

Both rules are easily derivable by original rules and internal contraction.
Since invertibility of rules plays no role in completeness proof fromSection 7,
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we prefer the simpler rules with no repetition of principal formulae in the
premiss.
One may consider the question of structural rules like contraction or
weakening in this framework. In the present calculus, there are two primi-
tive internal contraction rules but no external contraction, and there are no
rules of weakening, neither internal nor external. Concerning contraction,
the internal rules are necessary for completeness. As for the external contrac-
tion it is not even clear what form should have such a rule in this framework.
Note however that in principle we could get rid of internal contraction,
and provide a fully logical calculus, i.e., with no primitive structural rules.
One could instead prove both internal contraction rules as admissible in the
calculus where temporal rules are slightly changed. Namely, both (�F⇒)
and (�P⇒) are replaced with (�F⇒′) and (�P⇒′) introduced above. Sim-
ilarly, for the remaining temporal rules, we must add a principal formula
to the succedents of suitable sequents in all premisses. It is routine to check
validity-preservation of these new rules. For a calculus with such rules, one
can provide a proof of height-preserving admissibility of internal contrac-
tion following the strategy of Dragalin (see e.g. the exposition in Negri and
von Plato [38]). However such a proof presupposes a proof of syntactical
invertibility of all rules5, which in turn presupposes admissibility of weak-
ening rules and axioms restricted to atomic formula on both sides (see e.g.
Poggiolesi [39] for such a solution in hypersequent calculus for S5). Since the
lack of contraction as primitive rule may be important for syntactical proofs
of cut admissibility—an issue which is not dealt with in this paper—but is
not significant for the completeness proof from Section 7, we will omit the
details.
On the other hand, the lack of weakening rules, especially external ones,
may seem defective. For example, it is not possible to show derivability of
both rules of necessitation without introducing an empty sequent by means
of (some special form of?) external weakening. Strictly speaking it is not
necessary since we show only weak completeness of our calculus, however
it is possible to prove that both kinds of weakening are admissible in it. The
proof of height-preserving admissibility of internal weakening is trivial. As
for the external weakening the proof is more involved and we can prove only
its sheer admissibility.

Lemma 6.1 (Admissibility of external weakening). If � H1 | H2, then
� H1 | s | H2, for any s and at least one ofH1, H2 nonempty.
Proof. The proof is by induction on the height of the proof of H1 | H2.
The problem is only with four temporal rules in the succedent. We consider
two of them, for �F ϕ; the proof for the remaining two rules is similar.
Let our H2 be empty and H1 = H ′

1 | Γ ⇒ Δ,�Fϕ obtained by (⇒�F )
from H ′

1 | Γ ⇒ Δ |⇒ ϕ. We must show that the addition of some s to the
right is also provable. This may be provable only via (⇒�F ′), so we must
5Note that semantical invertibility is not enough, in particular, the original four rules for

temporal connectives in succedents are (semantically) invertible, but the syntactical proof of
admissibility of contraction does not hold for them.
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provide proofs of three premisses. (1) H ′
1 | Γ ⇒ Δ |⇒ ϕ | s is obtained

from the premiss by the induction hypothesis. (2) H ′
1 | Γ ⇒ Δ, | s, ϕ,

where s, ϕ is s with ϕ added to the succedent, is provable from the premiss
by (admissible) internal weakening on ⇒ ϕ. Finally, from the premiss we
get H ′

1 | Γ ⇒ Δ | s |⇒ ϕ by the induction hypothesis, and then by
(⇒�F ) we get (3) H ′

1 | Γ ⇒ Δ | s,�F ϕ, where s,�F ϕ is s with �F ϕ
added to the succedent. From (1), (2), (3), H ′

1 | Γ ⇒ Δ,�F ϕ | s follows
by (⇒�F ′).
The case of (⇒�F ′) is also problematic when we want to insert an
additional sequent immediately after active sequent, i.e., if H1 = H ′

1 |
Γ ⇒ Δ,�F ϕ and H2 = Π ⇒ Σ | H ′

2. Now the premisses are: (1)
H ′
1 | Γ ⇒ Δ |⇒ ϕ | Π ⇒ Σ | H ′

2, (2) H
′
1 | Γ ⇒ Δ | Π ⇒ Σ, ϕ | H ′

2
and (3) H ′

1 | Γ ⇒ Δ | Π ⇒ Σ,�F ϕ | H ′
2. By the induction hypothesis we

get (1’) H ′
1 | Γ ⇒ Δ |⇒ ϕ | s | Π ⇒ Σ | H ′

2 and by internal weakening (2’)
H ′
1 | Γ ⇒ Δ | s, ϕ | Π ⇒ Σ | H ′

2; both from the first premiss. It remains
to prove (3’) H ′

1 | Γ ⇒ Δ | s,�F ϕ | Π ⇒ Σ | H ′
2. We again need three

premisses for deducing (3’) by (⇒�F ′
): (1”) H ′

1 | Γ ⇒ Δ | s |⇒ ϕ | Π ⇒
Σ | H ′

2 is from (1). (2”) H
′
1 | Γ ⇒ Δ | s | Π ⇒ Σ, ϕ | H ′

2 is from (2).
(3”) H ′

1 | Γ ⇒ Δ | s | Π ⇒ Σ,�F ϕ | H ′
2 is from (3); all by the induction

hypothesis. �
One can also avoid two different rules for introduction of each temporal
connective in the succedent. We could use instead a pair of rules (⇒�F ′′)
and (⇒�P ′′) of the form:
H | Γ1 ⇒ Δ1 |⇒ ϕ | · · · | Γn ⇒ Δn . . . H | Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn , ϕ H | Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn , |⇒ ϕ

H | Γ1 ⇒ Δ1 ,�F ϕ | · · · | Γn ⇒ Δn

⇒ ϕ | Γn ⇒ Δn | · · · | Γ1 ⇒ Δ1 | H Γn ⇒ Δn , ϕ | · · · | Γ1 ⇒ Δ1 | H . . . Γn ⇒ Δn | · · · |⇒ ϕ | Γ1 ⇒ Δ1 | H
Γn ⇒ Δn | · · · | Γ1 ⇒ Δ1 ,�Pϕ | H .

Both rules are validity-preserving and invertible. However, from the stand-
point of proof theory the new rules are not so elegant as primitive rules
of HCKt4.3. In particular, in (⇒�F ′′) and (⇒�P ′′) the number of pre-
misses depends on the number of sequents to the right, or to the left of
the active sequent in the conclusion. Specifically, we generate 2n − 1 pre-
misses if there is n − 1 sequents to the right (or left) of the active sequent.
One can easily notice that both rules realize in HC framework, the global
strategy of searching for falsifying model due to Rescher and Urquhart
(see Section 3).
However, thanks to their global character, the new rules have some advan-
tages. In fact, (⇒�F ′′) and (⇒�P ′′) are more general in the sense that they
cover all respective rules of HCKt4.3 (in the case of n = 1 they are just
(⇒�F ) and (⇒�P)).
Instead of proving validity-preservation of these new rules we will show
their derivability:

Lemma 6.2 (Derivability). Both (⇒�F ′′) and (⇒�P ′′) are derivable in
HCKt4.3.
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Proof. The derivability of (⇒�F ′′) is schematically demonstrated by the
following figure:

s21 s22

sn1 sn2
sn3 (⇒�F )sn3′
(⇒�F ′)sn−1

...
s23
(⇒�F ′)s1

where from sn3 = H | Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn |⇒ ϕ we derive sn3′ = H |
Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn,�F ϕ by (⇒�F ). sn3′ together with sn1 = H |
Γ1 ⇒ Δ1 | · · · |⇒ ϕ | Γn ⇒ Δn and sn2 = H | Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn, ϕ
yields sn−1 = H | Γ1 ⇒ Δ1 | · · · | Γn−1 ⇒ Δn−1,�F ϕ | Γn ⇒ Δn by
(⇒�F ′). We continue systematically applications of (⇒�F ′

) to remaining
premisses till the end round with s21 = H | Γ1 ⇒ Δ1 |⇒ ϕ | · · · | Γn ⇒ Δn,
s22 = H | Γ1 ⇒ Δ1 | Γ2 ⇒ Δ2, ϕ | · · · | Γn ⇒ Δn, s23 = H | Γ1 ⇒ Δ1 |
Γ2 ⇒ Δ2,�F ϕ | · · · | Γn ⇒ Δn as premisses, and s1 = H | Γ1 ⇒ Δ1,�F ϕ |
· · · | Γn ⇒ Δn as the conclusion.
Similarly we prove the derivability of (⇒�P ′′). �
One can easily extend our calculus to cover serial logics (i.e., with no
starting point or no ending point). It is sufficient to add the following
structural rules for past seriality and future seriality:

(PS)
⇒| G
G

or (FS)
G |⇒
G
.

Also the condition of density may be easily expressed in terms of suitable
structural rule. The corresponding rule is:

(D)
G1 |⇒| G2
G1 | G2 .

These rules are certainly sufficient for cut-free deductions of suitable
axioms, as the reader may easily check. The formalization of linear log-
ics of reflexive frames is easy but requires additional (obvious) rules for
introduction of �F (�P) in the antecedent; it is not clear how to obtain the
same result by means of structural rules. On the other hand, dropping all
rules for �P gives us formalizations of respective monomodal linear logics.
One may easily check that the additional structural rules are validity-
preserving in the corresponding classes of frames. The key observation
needed for all of them is that the sequent with empty antecedent and succe-
dent is read (in a standard way) as � ⇒ ⊥ and so it is falsified at any point.
Thus our soundness theorem may be strengthened:

Theorem 6.3 (Soundness 2). If HCL � G , then |= G in the class of
frames characterising L, whereHCL is one of the extensions ofHCKt4.3 with
any of (FS), (PS), (D).

§7. Completeness. Completeness proofs for cut-free versions of tableau
or sequent calculi are usually basedon the process of (downward) saturation,
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in the sense of Hintikka, of branches of a proof tree. Twomain strategies are
applied for this aim, called by Hodges [20] ‘direct’ and ‘tree’ arguments. The
latter is based on the application of some procedure for construction of a
reduction tree T (s) for any sequent s . Such a tree is built up starting with s
and systematically applying the rules of the calculus in the root-first manner
in all possible ways. This way we are building a, possibly infinite, inductively
defined chain T0(s), T1(s), T2(s), . . . of finite trees with T (s) being its limit.
In case s is provable, we will finish at some stage of construction with finite
T (s) having all the leaves labelled with instances of axioms. Otherwise, by
König’s lemma, there is an infinite branch which allows for the construction
of a countermodel for s . Such method of proof was used, e.g., by Schütte
[45] and Takeuti [48] (see also Negri [37] for modal logics) for SC, it works
well also in the framework of hypersequents6. Note that ‘tree arguments’
(in Hodges’ terminology) are particularly useful when we want to obtain
decidability results as by-products of completeness proofs.
In completeness proofs based on direct method we devise a procedure
for unprovable sequent and, instead of trees, we construct an infinite chain
of sequents constantly extending unprovable input. The most important
thing is to show that each step of the procedure yields unprovable sequent
on the assumption that the preceding step resulted in unprovable sequent
either. Completeness proofs of this kind were offered for tableau systems by
Fitting [16] and Goré [19], for example. In what follows we will provide a
completeness proof also based on this strategy since we do not attempt to
prove decidability and, in general, a description of such procedure is simpler.
In brief, we will show how to construct, for every unprovable hypersequent
G , an infinite chain of hypersequents which evantually delivers a special
(possibly infinite) hypersequent called a linear saturation ofG . The resulting
hypersequent is also unprovable and allows for construction of a falsifying
model for G . We will show that the procedure is fair, i.e., all formulae
must be eventually used, and that each extension step yields an unprovable
hypersequent.
For better readability,we separate the proof into three different procedures
of downward saturation, coherency saturation, and fulfillment.
Let us start with the most basic notion:

Definition 7.1. Γ ⇒ Δ is downward saturated iff the following holds:
(i) ¬ϕ ∈ Γ implies ϕ ∈ Δ,
(ii) ¬ϕ ∈ Δ implies ϕ ∈ Γ,
(iii) ϕ ∧ � ∈ Γ implies ϕ ∈ Γ and � ∈ Γ,
(iv) ϕ ∧ � ∈ Δ implies ϕ ∈ Δ or � ∈ Δ,
(v) ϕ ∨ � ∈ Γ implies ϕ ∈ Γ or � ∈ Γ,
(vi) ϕ ∨ � ∈ Δ implies ϕ ∈ Δ and � ∈ Δ,
(vii) ϕ → � ∈ Γ implies ϕ ∈ Δ or � ∈ Γ,
(viii) ϕ → � ∈ Δ implies ϕ ∈ Γ and � ∈ Δ.
6For example, it was successfully applied in Indrzejczak [25] for proving the completeness

of HCS4.3.
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We will say that:G is saturated iff all its elements are downward saturated;
s ′ is a saturated extension of s iff s ′ is downward saturated and s ⊆ s ′, and
G ′ is a saturated extension of G iff it is saturated and G ⊆ G ′.

Lemma 7.2 (Saturation lemma). For every hypersequentG , if � G , then it
has an unprovable saturated extension G ′.

Proof. Let � G = s1 | · · · | sn, we start with the leftmost sequent and
successively proceed to the right, until we get sn. In each case we check if si is
saturated, if it is, then we move to the next sequent. Otherwise, we perform
the following operations. Let si = Γ ⇒ Δ be not saturated, then some of
the conditions (i)–(viii) do not hold. As an example, we consider the cases
of ∧—we proceed as follows:
Assume that ϕ ∧ � ∈ Γ, but either ϕ /∈ Γ or � /∈ Γ. Then add lacking
formula to Γ. The resulting G ′ containing enriched sequent ϕ,�,Γ ⇒ Δ
cannot be provable, otherwise by (∧⇒) and (C ⇒), G with Γ ⇒ Δ would
be provable as well.
Assume that ϕ ∧ � ∈ Δ but neither ϕ ∈ Δ nor � ∈ Δ. Then add to
Δ, one of the lacking formula, namely this one which yields unprovable
hypersequent G ′. At least one of them must be unprovable because if both
� G ′ with Γ ⇒ Δ, ϕ and � G ′′ with Γ ⇒ Δ, �, then by (⇒∧) and (⇒ C ),
also G with Γ ⇒ Δ would be provable.
Note that each step of the procedure corresponds to root-first applica-
tion of some extensional rule in a contraction-absorbing manner, i.e. with
a duplication of the main formula in premisses. Thus we may treat it as a
(part of a) failed proof search procedure building a proof tree. This may be
defined precisely but we leave the details (see e.g. Negri [37]; the difference
is that here the sequents are saturated, not the branches). By subformula
property, we eventually obtain a finite unprovable hypersequent G ′ which
is by construction a saturated extension of G having the same number of
sequents. �
Definition 7.3. G is coherent iff for any Γi ⇒ Δi ∈ G and Γj ⇒ Δj ∈ G
such that Γi ⇒ Δi < Γj ⇒ Δj:
• If �F ϕ ∈ Γi, then ϕ ∈ Γj,
• If �Pϕ ∈ Γj, then ϕ ∈ Γi.
Lemma 7.4 (Coherency lemma). For every hypersequentG , if � G , then it
has an unprovable coherent extension G ′.

Proof. If G is not coherent, then for some �F ϕ ∈ Γi (or �Pϕ), we have
a sequent Γj ⇒ Δj such that Γi ⇒ Δi < Γj ⇒ Δj and ϕ /∈ Γj. Add ϕ to Γj.
The resulting hypersequent must be unprovable; otherwise, by (�F ⇒) and
(C ⇒) also G would be provable. We repeat this procedure for every case
violating the conditions of coherency. Since there is only a finite number
of such cases, then processing of this procedure must terminate. In order
to keep it evident it may be performed in some fixed order, e.g. start with
the leftmost sequent and move to the rightmost one, adding ϕ for each
�F ϕ in each Γi. Then start with the rightmost sequent and move to the left
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doing the same for every�Pϕ in each Γi. Of course, new temporal formulae
may appear in some antecedents not satisfying the conditions of coherency,
so if necessary we repeat both rounds until coherency conditions will be
satisfied for all temporal formulae. By subformula property the procedure is
terminating. �
Clearly, a saturated hypersequent after the application of the above proce-
dure most probably will become unsaturated, and a coherent hypersequent
after saturation will become incoherent. But, due to subformula property,
by iterating both procedures sufficiently often, we eventually get for every
unprovable hypersequent its finite extension which is both saturated and
coherent.
Now consider some unprovableG and let SF (G) denote the set of all sub-
formulae of formulae in G . We can make a finite list LTF = �1, . . . . , �k of
all temporal formulae in SF (G). Additionaly, for the sake of completeness
proof, we admit the existence of infinite hypersequents. By infinite hyperse-
quent we mean here a countable linear order with elements labelled by finite
sequents7. We will say that an infinite hypersequent is provable iff it is an
extension of some finite provable hypersequent, otherwise it is unprovable
(i.e., all its finite reductions are unprovable). Let us define a special, possibly
infinite, hypersequent LS(G) made of SF (G) which is a linear saturation
of G , namely:

Definition 7.5. LS(G) is a linear saturation of G iff:

(i) LS(G) is unprovable, saturated, and coherent extension of G ;
(ii) for any Γi ⇒ Δi ∈ LS(G):

• if�F ϕ ∈ Δi, then there isΓj ⇒ Δj ∈ LS(G) such that Γi ⇒ Δi <
Γj ⇒ Δj and ϕ ∈ Δj;

• if�Pϕ ∈ Δi, then there is Γj ⇒ Δj ∈ LS(G) such that Γi ⇒ Δi >
Γj ⇒ Δj and ϕ ∈ Δj.

We say that temporal formula occurring in the succedent of at least one
sequent in G is fulfilled in a hypersequent iff all its succedent occurrences in
this hypersequent satisfy the condition (ii).

Lemma 7.6 (LS lemma:). For every hypersequent G , if � G , then it has an
unprovable linear saturation.

Proof. Assume that � G . We build LS(G) in stages each time checking
whether the result is unprovable. Essentially we are building a (possibly
infinite) inductively defined chain of unprovable hypersequents, each one
being an extension of its predecessor. We will do it in stages
S0(G), S1(G), S2(G), . . . , Sk(G), Sk+1(G), . . . , S2k(G), . . . .
The k-series are dictated by the number of formulae in LTF , we will call
each such series (m1 − mk, m ≥ 0) a round. In stage 0, we do not con-
sider any formula from LTF but for each 1 ≤ l ≤ k, we start with taking
7In this respect, our notion is different from the notion of infinite sequent used by Kleene

[29] or Gallier [17], or from that of Tait [47] where infinite formulae are also admitted. Similar
notion of infinte hypersequent is also used by Lahav [32].
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the �l from the list LTF until all of them will be examined in a round,
then we repeat the procedure and make the next round. Repeated consid-
eration of all formulae from LTF is necessary to guarantee fairness of the
procedure.
In stage 0, we transform G into its saturated and coherent extension G0
by repeated application of Lemma 7.2 and 7.4. By construction the output
of S0(G) must be a finite and unprovable hypersequent. In particular, the
application of Lemma 7.4 is required to put all sequents in G0 into linear
order corresponding to their placement from left to right. Clearly, it may be
the case that G is already (trivially) saturated and coherent, e.g., in case of
G being of the form⇒ �F ϕ, then the output of S0(G) is just G and we go
to the next stage.
Suppose we have finished stage n (where n = mk + l for some m ≥ 0
and 0 ≤ l ≤ k) with finite unprovable saturated and coherent hypersequent
Gn, we start construction of stage n + 1 by examining �l+1 from the list
LTF . First, we check if it is applicable. It is nonapplicable if either it has no
occurrence in any succedent of any element of Gn or if all such occurrences
are fulfilled (i.e., satisfy the condition (ii) from the definition of LS(G)).
In case our �l+1 is nonapplicable in Gn we finish stage n + 1 by declaring
Sn+1(G) = Sn(G).
�l+1 is applicable if for some saturated Γi ⇒ Δi and �l+1 = �F ϕ ∈ Δi
(or �l+1 = �Pϕ ∈ Δi) either there is no j such that Γi ⇒ Δi < Γj ⇒ Δj or
for all such j, ϕ /∈ Δj. We take the rightmost of such an occurrence of �F ϕ
in Gn (or the leftmost of �Pϕ) and show that there is a finite unprovable
extension of Gn which fulfills this formula. It is handy to consider this as
a separate claim which we prove by induction on the number of sequents
to the right of Γi ⇒ Δi (to the left of it in case of �Pϕ). In the basis
Γi ⇒ Δi is the rightmost sequent of Gn and we consider Gn |⇒ ϕ. It must
be unprovable, otherwise by (⇒ �F ) and (⇒ C ) we would obtain a proof
of Gn. As the induction hypothesis, we assume that the claim holds for
the case where there are m sequents to the right of Γi ⇒ Δi, and prove it
for the case of m + 1 sequents. We must consider 3 options: (a) Gn with
⇒ ϕ inserted between Γi ⇒ Δi and Γi+1 ⇒ Δi+1 (b) Gn with ϕ added
to Δi+1 and (c) Gn with �F ϕ added to Δi+1. If all three hypersequents
were provable, then Gn would be provable by (⇒�F ′

) and (⇒ C ), hence
at least one of (a), (b), (c) must be unprovable. In cases (a) and (b), our
�l+1 is fulfilled but not in (c), however if (c) is unprovable, then the claim
holds by the induction hypothesis since there are m sequents to the right of
Γi+1 ⇒ Δi+1,�F ϕ. In practice we just continue with this new occurrence
of �l+1 and repeat the procedure until �l+1 is fulfilled8. In any case, we
obtain some G ′

n which is a finite unprovable extension of Gn fulfilling �l+1,
but not necessarily saturated and coherent. We continue Sn+1(G) with it.
By saturation and coherency lemma, any unprovable finite hypersequent
is extendible to a finite unprovable saturated and coherent hypersequent.

8One may observe that in the calculus with (⇒�F ′′), discussed in section 6, we obtain this
result directly in one step.
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Thus repeated application of both lemmata yields some finite hypersequent
Gn+1 of this kind, being the output of Sn+1(G). Note that in case of unprov-
able extension obtained by the addition of a new sequent⇒ ϕ, the process
of saturation and making it coherent assures that if all sequents in Gn were
linearly ordered, then this order is preserved with respect to a new inserted
sequent.
Let us summarize the most important features of our procedure. It pro-
duces a , possibly infinite, chain G ⊆ G0 ⊆ G1 ⊆ · · · of finite unprovable
hypersequents, where each Gn is the output of the corresponding stage
Sn(G). Each stage, except S0(G), starts with fulfillment phase for some �i
fromLTF , and continues with repeated phases of downward and coherency
saturation. As a result each Gn is a finite unprovable, saturated, and coher-
ent extension of every preceding hypersequent in the chain. It implies that
if some s was added in stage Sn(G) for the first time, then it obtains its
downward saturated extension sn in Gn and that we have an ascending
chain s ⊆ sn ⊆ sn+1 ⊆ · · · of corresponding saturated extensions of s for
each Gm such that Gn ⊆ Gm. Conversely, for any Gn and any sn belong-
ing to it we have a finite descending chain of reductions sn ⊇ sn−1 ⊇
· · · ⊇ sk , for some k ≥ 0 where sk was introduced for the first time in
stage Sk(G).
The procedure is fair, since every compound formula is decomposed
and every temporal formula is dealt with infinitely often. This assures
that the conditions of saturation for occurrences of boolean formulae, as
well as that of coherency and fulfillment for occurrences of temporal for-
mulae must be satisfied at some stage. Suppose that at some stage some
boolean formula is not saturated yet, then, by construction, it must be sat-
urated by the end of this stage. Similarly for any temporal formulae in the
antecedents, since the next stage may start only after we got a saturated and
coherent hypersequent. Suppose that some temporal formula �i in some
succedent is not yet fulfilled at some stage, then even if it remains unful-
filled until the end of this round, it must be activated at the beginning of
the i-th stage of the next round. Note that it is crucial for fairness that
fulfillment phase for some �i is performed only once in a suitable stage.
After repeated application of downward and coherency saturation, we do
not consider �i again (it may be again unfulfilled!) but move to the next
stage and fulfill �i+1. �i will be dealt with again after k stages in the next
round.
Although a performance of each stage is terminating and each round is
also terminating, the process of building LS(G) may be infinite. Generally
after finishing every round (mk stage for some m ≥ 0) we start the next
one by examination of �1, and then the next formulae from LTF . Now,
it may be the case that after finishing some stage Sn(G) we obtain a finite
unprovable, saturated, and coherent extension of G where all elements of
LTF are fulfilled. In this case, the chain would extend forever by repeating
the last hypersequent and we can choose Gn as LS(G). By construction it is
saturated, coherent, and fulfilled for all temporal formulae occurring in the
succedents of all sequents.
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Otherwise, in every round we are finding at least one unfulfilled formula
and our chain is extended in a nontrivial way. In this case LS(G) is reached
in the omega-step as an infinite hypersequent G∞ being the limit of all
hypersequents occurring in the infinite chain. Thus every element of G∞
is a sequent s being an ordered pair of unions of formulae occuring in
all sequents belonging to the corresponding chain of reductions of s . One
may check that G∞ is indeed LS(G). G∞ is unprovable, otherwise some
finite Gn must be provable which is impossible. G∞ is saturated, for suppose
not, then there is some s in G∞ with a boolean formula ϕ which is not
decomposed. But ϕ occurred for the first time in some stage Sn(G) in the
reduction of s and by fairness it must have been dealt with in this stage.
G∞ is coherent, for suppose not. Then there is some temporal formula�F�
or �P� in the antecedent of some si , and some sj to the right of si (if it
is of the form �F�) or to the left (if it is of the form �P�) where � is
not in the antecedent. There must have been some stages Sn(G) and Sm(G)
where this formula was introduced for the first time to some reduction of
si , and where a descending chain of reductions of sj started. But then, by
construction, in the maximum of n,m, � was added to the antecedent of sj ,
contrary to our assumption. Finally, G∞ must satisfy condition (ii) of the
definition of LS(G). For assume that some temporal formula is not fulfilled
in G∞. But it is impossible since by construction it is dealt with infinitely
often during the construction of the chain so it must be fulfilled in the omega
step.
This is the basic construction of LS(G) for HCKt4.3. In case of stronger
logics satisfying at least one of the conditions of seriality, or density wemust
make some adjustments to our procedure.
For future seriality (and similarly for past seriality) after termination of
every round we just add⇒ as the rightmost sequent to every nonaxiomatic
leaf G ′. It must be unprovable since otherwise, by (FS) also G ′ would be
provable. Then we start the next round. This way we secure future seriality
of our infinite LS(G).
For density we must secure that in LS(G) for all s and s ′ such that s < s ′

we have s ′′ such that s < s ′′ and s ′′ < s . To get this result after termination
of every round we take two leftmost sequents of every nonaxiomatic leaf
G ′ = s1 | s2 | · · · | sn and insert ⇒ between them. s1 |⇒| s2 | · · · | sn is
unprovable, otherwise, by (D)G ′ would be provable.We repeat the procedure
with the next pair of sequents until we get sn, then we start the next round.
This way in the limit we get an infinite LS(G) where for every pair of
sequents an intermediate one was inserted at some stage. �
Now we define a modelMG for unprovable G as follows:

• T is the set of all occurrences of sequents in LS(G),
• R(Γi ⇒ Δi,Γj ⇒ Δj) iff Γi ⇒ Δi < Γj ⇒ Δj,
• V (p) = {Γ ⇒ Δ ∈ T : p ∈ Γ}.
Linearity and transitivity of R follows directly from the definition of
LS(G). Seriality and density are also straightforward to demonstrate for
the corresponding LS(G). We need to prove:
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Lemma 7.7 (Truth lemma). For each ϕ ∈ SF (G) and each Γ ⇒ Δ ∈ T it
holds true:

• ϕ ∈ Γ implies Γ ⇒ Δ � ϕ,
• ϕ ∈ Δ implies Γ ⇒ Δ � ϕ.

Proof. By induction on the complexity of formulae. The basis is obvi-
ous from the definition of V . For complex extensional formulae the result
follows directly from the definition of saturated sequents and the induction
hypothesis. We will only show the case of �F .
Assume that �F ϕ ∈ Γ. In order to show that Γ ⇒ Δ � �F ϕ, we must
show that if R(Γ ⇒ Δ,Π ⇒ Σ), then Π ⇒ Σ � ϕ. From the definition
of R and coherency of LS(G) it follows that ϕ ∈ Π and by the induction
hypothesis Π ⇒ Σ � ϕ.
Assume that�F ϕ ∈ Δ. In order to show thatΓ ⇒ Δ � �F ϕwemust show
that there is someΠ ⇒ Σ such thatR(Γ ⇒ Δ,Π ⇒ Σ) andΠ ⇒ Σ � ϕ. By
condition (ii) of the definition of LS(G) there is some Π ⇒ Σ on the right
of Γ ⇒ Δ with ϕ ∈ Σ. Hence by the induction hypothesis Π ⇒ Σ � ϕ. By
the definition of R it holds that R(Γ ⇒ Δ,Π ⇒ Σ), hence we are done. �
Consequently, we obtain:

Theorem 7.8 (Completeness). If |= G , then � G for all considered logics.
Proof. Assume that � G , then by LS Lemma, there exists some LS(G).
On the basis of LS(G), we obtain a model MG of suitable charac-
ter which falsifies every element of LS(G). But then, by the condition
(i) of the definition of LS(G), every element of G is falsified, as well.
Therefore, �|= G . �

§8. Concluding remarks. We finish the paper with some prospects for
future work. First of all there is an open question of how to prove syntactical
cut-elimination theorem forHCKt4.3 and its extensions. Onemust note that
suitable cut rule must be either of the form:

H1 | Γ ⇒ Δ, ϕ | H2 H1 | ϕ,Γ ⇒ Δ | H2
H1 | Γ ⇒ Δ | H2

or
H1 | Γ ⇒ Δ, ϕ | H1 H1 | ϕ,Π ⇒ Σ | H2

H1 | Γ,Π ⇒ Δ,Σ | H2 .

One can easily check that both rules are validity-preserving in our system.
Both rules are globally additive in the sense of having the same external
contexts (H1 and H2). Moreover the former (locally additive) seems to be
better since internal contraction rule is derivable in this case. For the time
being the problem of the syntactical proof of cut elimination for this system
is open. No existing strategy9 seems to work for the present system because

9See, e.g. the “history technique” of Avron [1], the “decoration technique” of Baaz and
Ciabattoni [5], Poggiolesi’s [40] adaptation of Dragalin’s proof for HC, or the general and
elegant method of Metcalfe, Olivetti and Gabbay [35].
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hypersequents are lists of sequents and this fact strongly restricts admissible
syntactic manipulations. Of course one can obtain a simple indirect proof
of the admissibility of both rules as a by-product of our completeness proof
and their validity-preservation. Assume that both premisses are schemata
of derivable sequents, then by Theorem 5.3 they are both valid and the
conclusion is also valid due to validity-preservation of the rule. Then, by
Theorem 7.8 the conclusion is also derivable, and the rule is admissible in
the system.
The next problem worth investigating is to provide a decidability proof for
respective logics on the basis of exhaustive proof-search procedure devised
for completeness proof. The problem is not only with careful detection
of loops generated by all modal logics of transitive frames; one can find
a discussion of such strategies for monomodal logics in Goré [19]. The
symmetry of past and future introduces additional complications because
it may appear that during a proof search some points previously identi-
fied may eventually change their content. To deal with such problems we
need for instance an adaptation of some kind of dynamic blocking intro-
duced by Horrocks, Sattler, and Tobies [21] in the framework of description
logics.
Finally—another related question is to find rules for other temporal oper-
ators like e.g. “since” and “until” or “next”. We leave these problems for
future work.
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