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A small-disturbance asymptotic model is derived to describe the complex nature of a
pure water vapour flow with non-equilibrium and homogeneous condensation around
a thin airfoil operating at transonic speed and small angle of attack. The van der
Waals equation of state provides real-gas relationships among the thermodynamic
properties of water vapour. Classical nucleation and droplet growth theory is used to
model the condensation process. The similarity parameters which determine the flow
and condensation physics are identified. The flow may be described by a nonlinear
and non-homogeneous partial differential equation coupled with a set of four ordinary
differential equations to model the condensation process. The model problem is used
to study the effects of independent variation of the upstream flow and thermodynamic
conditions, airfoil geometry and angle of attack on the pressure and condensate mass
fraction distributions along the airfoil surfaces and the consequent effect on the wave
drag and lift coefficients. Increasing the upstream temperature at fixed values of
upstream supersaturation ratio and Mach number results in increased condensation
and higher wave drag coefficient. Increasing the upstream supersaturation ratio at
fixed values of upstream temperature and Mach number also results in increased
condensation and the wave drag coefficient increases nonlinearly. In addition, the
effects of varying airfoil geometry with a fixed thickness ratio and chord on flow
properties and condensation region are studied. The computed results confirm the
similarity law of Zierep & Lin (Forsch. Ing. Wes. A, vol. 33 (6), 1967, pp. 169–172),
relating the onset condensation Mach number to upstream stagnation relative humidity,
when an effective specific heat ratio is used. The small-disturbance model is a useful
tool to analyse the physics of high-speed condensing steam flows around airfoils
operating at high pressures and temperatures.

Key words: reacting multiphase flow, compressible flows, shock waves

1. Introduction
The compressible transonic flow of steam around blades and airfoils operating in

internal flow systems has widespread industrial applications such as flows in steam
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turbines used for power/electricity generation and marine propulsion, injectors used
for oil and gas drilling, shock tubes, rocket motors, energy harvesting in waste plants
and production of pharmaceuticals. The operating conditions of typical designs are
characterized by high pressures and temperatures where the steam is superheated
and dry, avoiding the appearance of any condensation phenomena. However, at
operational thermodynamic conditions closer to the vapour–liquid saturation dome,
the rapid expansion of pure vapours typical of high-speed flows over curved surfaces
may result in flow regions with homogeneous condensation. The nucleation process
adds heat to the flow and thereby alters the flow and thermodynamic properties.
The heat release to the flow changes the distribution of pressure around the airfoil
and can have a substantial effect on its aerodynamic performance. The appearance
of condensation over a typical airfoil increases the wave drag. However, at certain
operational conditions, condensation phenomena in humid air flow over a circular arc
airfoil can decrease the strength and size of shock waves, and thereby reduce the
wave drag and increase the lift to drag ratio of the airfoil (Schnerr & Dohrmann 1990,
1994). Quantifying these effects through theoretical modelling coupled with numerical
studies may help in understanding the flow physics and in designing operational
conditions or new airfoil/nozzle shapes with improved aerodynamic performance.

Among the first experimental investigations of condensation in high-speed flows
in wind tunnels were the studies by Head (1949) and Schmidt (1966). Head (1949)
performed investigations on humid air flow in supersonic wind tunnels and found
that, under certain operational conditions, the water vapour could reach a highly
supersaturated state with a supersaturation ratio S (= p/pg(T) where p is the vapour
pressure and pg(T) is the saturation vapour pressure at flow temperature T) much
above one before condensation is initiated. Schmidt (1966) performed density
measurements in humid air flows over circular arc airfoils inside choked tunnels
to study the effect of changing upstream relative humidity. It was observed that
increasing the relative humidity level caused the shock wave to move upstream
and its intensity decreased. Moore et al. (1973) experimentally studied steam flows
with condensation in low pressure nozzles and compared them with theoretical
predictions according to various nucleation theories. Bakhtar & Zidi (1989) extended
the experiments to non-equilibrium condensation in high pressure wet steam flows
through converging–diverging nozzles. They determined axial pressure distributions
and droplet sizes in terms of rates of expansion of flow in the nozzles. Wegener
(1975) suggested that the condensation may follow one of the two likely processes.
The first kind is equilibrium condensation, which is characteristic of flows that possess
many foreign nuclei to support nucleation. The second kind is non-equilibrium and
homogeneous condensation, which typically occurs during rapid expansion of pure
vapour flows. In this paper, we focus on the latter case of condensation processes in
pure steam flows.

Wegener & Mack (1958) investigated the condensation process of pure water
vapour in humid air flow and were the first to explore changes in shock wave states
in supersonic wind tunnels due to condensation heat release. Similarity laws for the
condensation onset Mach number were formulated by Zierep (1965) and Zierep &
Lin (1967). Zierep (1969) devised a small-disturbance asymptotic model with a given
heat energy term to model condensation heat addition. He also found that, if the
heat input exceeded a critical limit, no steady state solution could be achieved by the
model. Hill (1966) compared experimental results of condensation in moist air and
pure steam flows through supersonic nozzles with classical nucleation and droplet
growth theory. Good agreement between the two was found when surface tension of
liquid droplets was assumed to be independent of curvature.
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Near-sonic steam flow with real-gas effects and condensation 884 A30-3

Steady transonic flows of humid air over airfoils with homogeneous condensation
have been studied theoretically and experimentally by Schnerr & Dohrmann (1990)
and Schnerr (1993). Schnerr & Dohrmann (1990) used numerical simulations and
experiments to study the effects of non-equilibrium and homogeneous condensation on
pressure drag of symmetrical two-dimensional airfoils. The thermodynamic behaviour
of the flow was described by the perfect-gas model which is relevant for atmospheric
flow conditions. The inviscid flow equations coupled with a classical nucleation
model for condensation were solved by an explicit finite-volume method. The airfoil
geometry was found to have an important influence on the pressure drag coefficient
with variation of relative humidity of upstream flow. In non-lifting flows over circular
arc airfoils at certain constant upstream conditions of stagnation temperature and
pressure, the shock wave shifted upstream along the airfoil chord towards the leading
edge with increase of upstream relative humidity, thereby resulting in a significant
decrease of the wave drag by a maximum of approximately 35 %. However, when
upstream flow relative humidity rises above ∼50 %, the high amount of resulting
condensation splits the shock wave into a system of two shock waves, thereby
reversing the drag behaviour and causing an increase of the wave drag. For same
upstream conditions of stagnation temperature and pressure of non-lifting flow around
a round-nosed NACA0012 airfoil, the movement of shock wave with increasing
upstream relative humidity was similar to that of circular arc airfoils, but the pressure
drag stays almost constant with the increase of upstream relative humidity up to 30 %,
after which it continuously increases with increasing upstream relative humidity.

Schnerr (1993) investigated in experiments and numerical simulations, effects of
phase transition of fluid (with low amounts of heat supply) in transonic compressible
flow of vapour/carrier gas mixtures in atmospheric flight and through indraft wind
tunnels. The governing parameters of the flow were changed to study non-equilibrium
condensation as well as equilibrium condensation. In indraft wind tunnels, lift was
observed to decrease with condensation and pressure drag could increase or decrease
depending on the free-stream Mach number and angle of attack. Non-lifting flow of
humid air over a circular arc airfoil at constant upstream thermodynamic conditions
showed a decrease in pressure drag of ∼40 % for certain Mach numbers. Changing
the airfoil shape was found to significantly affect the pressure distribution and
consequently the pressure drag at similar operating conditions. Increasing the angle
of attack for a NACA0012 airfoil from 0◦ to 1.25◦ at certain constant upstream
thermodynamic conditions and a constant free-stream Mach number (=0.8) showed
a decrease in lift of approximately 30 % whereas the pressure drag was found to
decrease by less than 5 %.

In addition, Schnerr & Dohrmann (1994) studied the difference between transonic
flows with either equilibrium or non-equilibrium condensation around airfoils for
various angles of attack. Non-equilibrium and homogeneous condensation was found
to produce, in certain cases, a decrease in pressure drag of ∼21 % and a decrease
in lift of 35 %. In other cases, depending on the angle of attack, the pressure drag
increased.

Rusak & Lee (2000a) studied steady, transonic, inviscid and condensing flow
of humid air at low pressures and at low temperatures around a thin airfoil.
A small-disturbance model was formulated to describe the flow and condensation
fields. The fluid thermodynamic behaviour was modelled by a perfect-gas equation of
state and classical theory of nucleation and droplet growth modelled the homogeneous
condensation process. The asymptotic theory identified a set of governing similarity
parameters of the flow. Numerical results according to the small-disturbance model
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agreed well with numerical computations of Schnerr & Dohrmann (1990). Lee &
Rusak (2000) conducted a parametric investigation to better understand the effects
of varying these similarity parameters independently. They noticed that when the
upstream Mach number was increased at fixed values of upstream temperature and
pressure or the upstream temperature was increased at fixed values of upstream
pressure and Mach number, condensation increased and the strength of the shock
waves decreased. Reduction in shock wave strength has been found to be linked with
reduction in wave drag coefficient.

Yamamoto (2005) numerically studied high-speed flows of humid air around NACA-
0012 airfoils at atmospheric flow conditions with condensation. Classical nucleation
theory was used to model homogeneous condensation whereas heterogeneous nucle-
ation was approximated by an assumption of constant number density and constant
radius of droplets. Heterogeneous condensation showed more downstream movement
of the shock on the suction surface of the airfoil compared to flow assuming homo-
geneous condensation. Hence, the assumption of heterogeneous condensation was
concluded to be vital when studying external flows around airfoils or wings. Internal
steam flows through turbine cascades were also investigated and it was observed that
the efficiency of the turbine decreased with homogeneous condensation and, hence,
it becomes important to include condensation in studies to make a more accurate
prediction of system behaviour.

More recently, Hamidi & Kermani (2015) numerically studied non-equilibrium
and homogeneous condensation in transonic flows of humid air and of pure steam
through converging–diverging nozzles. They found that at similar flow conditions for
water vapour, the droplet nucleation rate and wetness fraction in the nozzle for humid
air flow were greater than those for pure steam flow. Their simulation results show
agreement with Moore et al. (1973). Virk & Rusak (2019) have recently derived
a theoretical asymptotic model to describe pure steam flow around a thin airfoil
with non-equilibrium and homogeneous condensation. Perfect-gas equation of state
described the thermodynamic behaviour of steam, which limited the applicability
of the model to relatively low pressure and temperature conditions, p 6 3 bar and
T 6 400 K.

In the current study, a small-disturbance model is developed to investigate the steady
transonic flow of water vapour (steam) around a thin airfoil with non-equilibrium and
homogeneous condensation. The water vapour is assumed to be pure (free of foreign
nuclei). The thermodynamic properties of the steam are modelled according to the van
der Waals gas model (Moran et al. 2014). This model accounts for real-gas effects
such as intermolecular forces in the fluid and finite size of the molecules that affect
the thermodynamic behaviour of steam, especially at relevant operating conditions
of high pressures (up to 1.5 MPa), high temperatures (up to 450 K) and near the
vapour–liquid saturation conditions (where S ∼ 1 or slightly greater than 1). In the
current study, the van der Waals gas model provides the density and specific enthalpy
of water vapour. A brief comparison with the more accurate International Association
for the Properties of Water and Steam Industrial Formulation 1997 (IAPWS IF-97)
(Wagner & Kretzschmar 2007), reveals that at a temperature of 450 K and a pressure
of 1.5 MPa, the percentage difference between the densities of water vapour from
the van der Waals gas model and IAPWS IF-97 is 3 % and from the ideal-gas model
and IAPWS IF-97 is 6 %. The percentage difference between the specific enthalpies
of water vapour from the van der Waals gas model and IAPWS IF-97 is 11 % and
from ideal-gas model and IAPWS IF-97 is 15 %. Therefore, it is appropriate to
describe the thermodynamic behaviour of water vapour under specified conditions by
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the van der Waals gas model. Also, under these circumstances, non-equilibrium and
homogeneous condensation may be the dominant mode of condensation and can be
accurately described by the condensation models of Wegener & Mack (1958) and
Hill (1966). Limited experimental and theoretical studies have investigated this flow
problem, and a model that simplifies the governing equations of flow and condensation
may help in understanding the complex interactions of flow and condensation of steam
at a wide range of operating pressure and temperature conditions. The advantage of
the analytical treatment is a set of similarity parameters which provide detailed
insight into the physical nature of the problem and its dependence on variations of
aerodynamic and thermodynamic parameters.

The current theoretical small-disturbance model is relevant to a two-dimensional,
inviscid and steady water vapour flow at transonic speed around a thin airfoil
characterized by a small thickness ratio (0 < ε 6 0.14), a small curvature (with
maximum camber ratio <0.04) and at a small angle of attack (with |θ | 6 6◦). The
upstream flow conditions lie close to the vapour–liquid saturation conditions and
the flow experiences a small amount of condensate generation. Past experimental
studies have shown that large amounts of condensation can lead to unsteadiness and
flow instabilities. Upstream flow conditions beyond the specified limits could also
result in the appearance of three-dimensional or transient flow structures which the
model might not be able to suitably describe. Furthermore, the model explores only
heat energy interactions between the vapour and the condensate along a streamline
and assumes that no momentum exchange occurs between the two phases. For all
the numerical computations, the maximum droplet size was computed to be below
10 µm which is much smaller than the size of a fluid element (O(30 µm)). Hence,
the fluid element essentially carries the condensate along at the same velocity as the
surrounding vapour with the condensate staying inside the fluid element at all times
and consequently no shear forces are generated between the two phases.

The current model considers the curvature of the airfoil surface to be the primary
source of perturbations to the uniform stream properties and ignores effects of
surface roughness or impurities of the airfoil surface on the flow and condensation
fields. Furthermore, it is assumed that there is no heat or mass exchange between
the condensing flow and the airfoil surface. The velocity fluctuations caused by
acceleration of the flow along the airfoil geometry primarily initiate the homogeneous
nucleation process. This base model effectively describes the fundamental yet
complex nature of pure water vapour flow through nozzles or around thin airfoils.
The simplified model also serves as the first step towards the derivation of a
more comprehensive theoretical model which includes the effects of viscosity,
turbulence, surface energy and roughness of the airfoil, among others, on the flow
and condensation dynamics. The solution of the current model could serve as an
initial condition for solution of the comprehensive model.

An outline of this paper is described next. Section 2 describes the flow problem and
develops a mathematical model to describe it. Section 3 presents a detailed derivation
of the asymptotic small-disturbance model. Section 4 describes the numerical scheme
applied for solution of the asymptotic model. Section 5 presents studies focused on
grid convergence and parametric investigations. The model helps in investigating the
effects of condensation on steam flow around airfoils operating at relatively high
pressures and temperatures and near the vapour–liquid saturation line.

2. Mathematical model of the flow problem
A steady, two-dimensional, transonic, compressible and inviscid stream of pure

water vapour flowing around a thin airfoil is considered, as depicted in figure 1.
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x

c

´c

y - ´cFu,l(x/c) = 0

œ

y

Upstream (x → -∞)
p∞, ®∞, T∞, S∞

U∞ (M∞ £ 1)

FIGURE 1. Flow problem.

In this figure, the axial (x) axis measures distance from the leading edge of the airfoil
along the free-stream direction whereas the transverse (y) axis measures distance
perpendicular to the x axis. Far upstream of the airfoil, the pressure, temperature and
velocity profiles are assumed to be uniform and dry (i.e. devoid of any liquid or solid
condensate) i.e. the upstream flow conditions are given by the upstream pressure p∞,
upstream temperature T∞ and upstream axial flow velocity U∞ with no transverse
velocity. Upstream flow supersaturation ratio is S∞ = p∞/pg(T∞) and is taken to be
slightly above 1 to ensure dry vapour without pre-existing condensate ahead of the
airfoil. The upstream flow Mach number is M∞ =U∞/a∞ (here a∞ is the isentropic
frozen speed of sound in water vapour at the given temperature and pressure). Also,
let c be the chord length of the airfoil and θ be the small angle of attack between
an axis along the chord of the airfoil and the upstream flow direction. The geometric
shape of the airfoil is given as

S(x̄, ỹ)= ȳ− εFu,l(x̄)= 0, 0 6 x̄ 6 1, (2.1)

where ε is the thickness ratio (0<ε�1), ȳ= y/c and x̄= x/c. Also, Fu,l(x̄) correspond
to the upper and lower surfaces of the airfoil, respectively and are described as

Fu(x̄)=Ca(x̄)+ t(x̄)−Θ x̄, Fl(x̄)=Ca(x̄)− t(x̄)−Θ x̄, 0 6 x̄ 6 1. (2.2a,b)

Here t(x̄) and Ca(x̄) are functions that provide the thickness and camber along the
airfoil chord, Θ = θ/ε and the airfoil is characterized by a sharp trailing edge.

The density of a characteristic fluid element can be defined as the sum of partial
densities of the vapour and liquid phases of water contained in the fluid element, i.e.
ρ= ρv + ρl. The partial density of a phase is the ratio of mass of the particular phase
to the volume of the fluid element. In regions with no condensate formation, ρl = 0
and the fluid element density is simply the water vapour density. The condensate
mass fraction is a measure of condensation and is defined as g = ρl/ρ. At the
upstream conditions, g∞ = 0. Then, ρv = ρ(1− g). Also, let p, T , u and v represent
the local vapour pressure, local fluid temperature and the axial and transverse velocity
components, respectively. The compressible flow field of steam can be described by
the equations of balance of mass, momentum and energy,

(ρu)x + (ρv)y = 0, (2.3)

(p+ ρu2)x + (ρuv)y = 0, (2.4)
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(ρuv)x + (p+ ρv2)y = 0, (2.5)
(ρhTu)x + (ρhTv)y = 0. (2.6)

Subindices x and y symbolize partial derivatives with respect to these coordinates.
Here, the specific total enthalpy hT is expressed as ρhT =

1
2ρ(u

2
+ v2)+ ρvhv + ρlhl,

where hl and hv are the specific enthalpies of liquid water and water vapour,
respectively.

The van der Waals equation of state (see Moran et al. 2014) describes the
thermodynamic behaviour of water vapour,

p=
ρvRvT

1− bρv
− αρ2

v . (2.7)

Here, Rv=R/µ is the gas constant for water vapour where µ is the molecular weight
of water and R is the universal gas constant. Coefficients α and b represent the
effects of intermolecular forces and finite size of the molecules, respectively. These
effects become significant, especially for flows at high pressures and temperatures and
close to the water vapour saturation line. The coefficients α and b are related to the
thermodynamic critical pressure (pc) and critical temperature (Tc) of water as

α =
27R2

vT
2
c

64pc
, b=

RvTc

8pc
. (2.8a,b)

According to the van der Waals gas model, the water vapour specific enthalpy is
hv=CvvT−2αρv+RvT/(1− bρv) (see Rusak & Wang 1997) where Cvv is the specific
heat of water vapour at constant volume and is assumed to be fixed throughout the
flow field. It is also assumed that the liquid specific enthalpy is approximated by hl∼

hf (T)= hg(T)− hfg(T). Here, hfg is the specific latent heat of condensation of water;
hf and hg are specific enthalpies of saturated liquid and saturated vapour of water,
respectively. It is also assumed that hg(T)∼ hv. Then ρhT =

1
2ρ(u

2
+ v2)+ ρ[CvvT −

2αρv + RvT/(1− bρv)] − ρghfg. Using (2.3) and (2.6), it may be noticed that hT is
fixed along a streamline of a fluid element. It is also realized that hT = hT∞ for all
the streamlines in the flow, where hT∞ =

1
2 U∞2

+ CvvT∞ − 2αρ∞ + RvT∞/(1− bρ∞).
Therefore, the energy equation (2.6) becomes

1
2
(u2
+ v2)+CvvT − 2αρv +

RvT
(1− bρv)

− ghfg =
1
2

U∞2
+CvvT∞ − 2αρ∞ +

RvT∞
(1− bρ∞)

.

(2.9)
Equations (2.3)–(2.5), (2.7) and (2.9) together describe the fields of the pressure,
temperature, density and velocity components of water vapour with a heat source
term (ghfg) in (2.9).

To complete this set of equations, the field of condensate mass fraction (g) needs
to be determined. For that, the classical nucleation and droplet growth models for
non-equilibrium and homogeneous condensation given by Wegener & Mack (1958)
and Hill (1966) are used to model the condensation process. A brief review of these
models can be found in the appendix availabe at https://doi.org/10.1017/jfm.2019.945.
The following set of partial differential equations describes the fields of the
condensation parameters:

(ρug)x + (ρvg)y = 4πρf

(
ρQ1

dr
dt
+

1
3

Jr3
0

)
, (2.10)
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884 A30-8 A. S. Virk and Z. Rusak

(ρuQ1)x + (ρvQ1)y = 2ρQ2
dr
dt
+ Jr2

0, (2.11)

(ρuQ2)x + (ρvQ2)y = ρQ3
dr
dt
+ Jr0, (2.12)

(ρuQ3)x + (ρvQ3)y = J. (2.13)

Here, Q1, Q2 and Q3 denote the sum of droplet surface area, sum of droplet radii and
sum of droplets, respectively, all per mass of a fluid element. Also, J is the nucleation
rate, i.e. number of droplets nucleating per unit volume of fluid element per unit
time, dr/dt is the growth rate of the droplet’s radius (which may be given by Hertz–
Knudsen model) and r0 is the initial radius of a condensation nucleus. Expressions for
calculation of J, dr/dt and r0 are provided in the appendix. Empirical correlations of
the various parameters are used according to Schnerr & Dohrmann (1990). Hill (1966)
proposed that r0 = 1.3rc where rc is the critical radius required for a condensation
nucleus to grow. In (2.10), ρf is the liquid density. Equations (2.10)–(2.13) together
provide the fields of g, Q1, Q2 and Q3 in terms of the fluid pressure, temperature,
density and velocity described by (2.3)–(2.5), (2.7) and (2.9). For all the numerical
computations done in the study, rc was found to be below 6 nm and the maximum
droplet radius (maximum value of Q2/Q3) was found to be below 10 µm and these
are much smaller than the fluid element size.

The set of flow equations (2.3)–(2.5), (2.7) and (2.9) coupled with the condensation
equations (2.10)–(2.13) describe the complex interactions among the flow and
condensation fields for a steady, two-dimensional, compressible and inviscid steam
flow with non-equilibrium and homogeneous condensation. The boundary conditions
of the flow problem are obtained by noting that the flow cannot have a velocity
component normal to airfoil surface, i.e.

uSx + vSy =−uε(Fu,l)x̄ + v = 0, on ȳ= εFu,l(x̄), 0 6 x̄ 6 1. (2.14)

Also, at the trailing edge of the airfoil, the Kutta condition should be satisfied, i.e.
the pressure of flow from both sides of the sharp trailing edge are equal: p(c, y+TE)=

p(c, y−TE). The uniform and dry free-stream conditions of the flow give the far-field
conditions

u→U∞, v→ 0, ρ→ ρ∞, p→ p∞,
Q1→ 0, Q2→ 0, Q3→ 0, g→ 0 as x→−∞.

}
(2.15)

The thin airfoil produces only small disturbances to the uniform water vapour
free-stream properties in most of the flow region. Only exception is the nose region,
which is a small region O(ε2) around the leading edge, where the disturbances
are of a higher order of magnitude due to the flow experiencing rapid deceleration
to stagnation and acceleration back to uniform velocity. When ε is small, M∞ is
close to unity and g is small, the flow and condensation fields of pure steam can be
described by an asymptotic transonic small-disturbance (TSD) model in the entire flow
domain except the nose region. This model describes all the flow, thermodynamic and
condensation properties by asymptotic expansions of the small perturbations about
the uniform flow properties caused by the thin airfoil. The derivation of this model
is discussed in the next section.
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3. Transonic small-disturbance model of steam flow

Based on the approach of Cole & Cook (1986) and Rusak & Lee (2000a), the
properties of the pure steam flow may be approximated by the following asymptotic
expansions

p̄=
p

p∞
= 1+ ε2/3p̄1 + ε

4/3p̄2 + · · · , T̄ =
T

T∞
= 1+ ε2/3T̄1 + ε

4/3T̄2 + · · · ,

ρ̄ =
ρ

ρ∞
= 1+ ε2/3ρ̄1 + ε

4/3ρ̄2 + · · · , ū=
u

U∞
= 1+ ε2/3ū1 + ε

4/3ū2 + · · · ,

v̄ =
v

U∞
= εv̄1 + ε

5/3v̄2 + · · · , g= ε4/3ḡ1 + · · · ,

Q̄1 =
Q1

1/(ρf∞ lc)
= ε4/3Q̄11 + · · · , Q̄2 =

Q2

1/(ρf∞ l2
c)
= ε4/3Q̄21 + · · · ,

Q̄3 =
Q3

1/(ρf∞ l3
c)
= ε4/3Q̄31 + · · · , J̄ =

J
(ρ∞uc)/(ρf∞ l4

c)
= ε4/3J̄1 + · · · .


(3.1)

The various powers of ε in (3.1) are determined through a consistent asymptotic
analysis to provide the richest asymptotic model. In (3.1), lc and uc denote the
characteristic length and speed of condensation, respectively,

lc =
2σ(T∞)
ρf∞RvT∞

, uc =
p∞

ρf∞
√

2πRvT∞
. (3.2a,b)

In (3.2), σ(T∞) denotes the surface tension of liquid water at T∞. The liquid water
density at the upstream state in (3.1) and (3.2) is given by ρf∞ = ρf (T∞). The
functions with subscripts 1 and 2 are non-dimensional perturbation functions of the
similarity parameters of the flow problem and of the non-dimensional coordinates x̄
and ỹ, where

ỹ= ε1/3ȳ. (3.3)

It should be noted that the non-dimensional transverse coordinate is compressed
by a factor of ε1/3 to reflect the relatively larger distance over which the uniform
flow is affected at near sonic speeds in the transverse direction compared to the
axial direction. Also, a classical transonic similarity parameter, K, which defines the
upstream flow Mach number’s proximity to unity in terms of the small thickness
ratio ε is introduced as

K =
1−M2

∞

ε2/3
. (3.4)

Also, note that hfg(T)= hfg(T∞)+O(ε2/3).

3.1. Asymptotic equations of flow behaviour
Substituting (3.1)–(3.4) into (2.3)–(2.5), (2.7) and (2.9) results in the following
equations relating the perturbation functions:

from (2.3)

ε2/3(ρ̄1 + ū1)x̄ + ε
4/3
[(ρ̄1ū1 + ρ̄2 + ū2)x̄ + v̄1ỹ] + · · · = 0, (3.5)
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from (2.4)

ε2/3

(
a2
∞

M2
∞
ρ∞

p∞
ū1 + p̄1

)
x̄

+ ε2/3 a2
∞

M2
∞
ρ∞

p∞
(ρ̄1 + ū1)x̄

+ ε4/3

[(
a2
∞

M2
∞
ρ∞

p∞
(ρ̄2 + 2ū2 + ū2

1 + 2ρ̄1ū1)+ p̄2

)
x̄

+
a2
∞

M2
∞
ρ∞

p∞
v̄1ỹ

]
+ · · · = 0, (3.6)

from (2.5)

ε

(
p̄1ỹ +

a2
∞

M2
∞
ρ∞

p∞
v̄1x̄

)
+ · · · = 0, (3.7)

from (2.7)

ε2/3

[
p̄1 −

(
1+

αρ2
∞

p∞

)
T̄1 −

(
p∞ + αρ2

∞

(1− bρ∞)p∞
−

2αρ2
∞

p∞

)
ρ̄1

]
+ ε4/3

[
p̄2 −

(
1+

αρ2
∞

p∞

)
T̄2 −

(
p∞ + αρ2

∞

(1− bρ∞)p∞
−

2αρ2
∞

p∞

)
ρ̄2

−

(
p∞ + αρ2

∞

(1− bρ∞)p∞

)
ρ̄1T̄1

−

(
bρ∞(p∞ + αρ2

∞
)

(1− bρ∞)2p∞
−
αρ2
∞

p∞

)
ρ̄2

1 +

(
p∞ + αρ2

∞

(1− bρ∞)p∞
−

2αρ2
∞

p∞

)
ḡ1

]
+ · · · = 0,

(3.8)

and from (2.9)

ε2/3

[(
1+

Rv
Cvv(1− bρ∞)

)
T̄1 +M2

∞

a2
∞

CvvT∞
ū1 +

(
bρ∞Rv

Cvv(1− bρ∞)2
−

2αρ∞
CvvT∞

)
ρ̄1

]
+ ε4/3

[(
1+

Rv
Cvv(1− bρ∞)

)
T̄2 +M2

∞

a2
∞

CvvT∞

(
ū2 +

ū2
1

2

)
+

(
bρ∞Rv

Cvv(1− bρ∞)2
−

2αρ∞
CvvT∞

)
ρ̄2 +

(bρ∞)2Rv
Cvv(1− bρ∞)3

ρ̄2
1 +

bρ∞Rv
Cvv(1− bρ∞)2

T̄1ρ̄1

− ḡ1

(
hfg(T∞)
CvvT∞

+
bρ∞Rv

Cvv(1− bρ∞)2
−

2αρ∞
CvvT∞

)]
+ · · · = 0. (3.9)

Note that in (3.5) and (3.6), the term ε2/3(ρ̄1+ ū1) may be O(ε4/3). The leading-order
O(ε2/3) terms of (3.6) then give p̄1+ a2

∞
M2
∞
ρ∞ū1/p∞= f (ỹ). Owing to the uniformity

of the upstream flow, f (ỹ)= 0. Therefore,

p̄1 =−
a2
∞

M2
∞
ρ∞

p∞
ū1. (3.10)

The isentropic frozen speed of sound (a∞) in a van der Waals fluid can be expressed
as (see Rusak & Wang 1997)

a2
∞
=

p∞ + αρ2
∞

(1− bρ∞)ρ∞

(
1+

Rv
Cvv

)
− 2αρ∞ (3.11)
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or

a2
∞
ρ∞

p∞
=

p∞ + αρ2
∞

(1− bρ∞)p∞

(
1+

Rv
Cvv

)
−

2αρ2
∞

p∞
. (3.12)

For the following analysis, the formula

a2
∞

CvvT∞
=

Rv
Cvv(1− bρ∞)2

(
1+

Rv
Cvv

)
−

2αρ∞
CvvT∞

(3.13)

is also needed. To simplify the above equations, the following non-dimensional
parameters are defined:

Kr =
Rv

Cvv(1− bρ∞)
, Kb =

bρ∞
1− bρ∞

, Ka =
2αρ∞
CvvT∞

, Kα =
αρ2
∞

p∞
. (3.14a−d)

Expressing the isentropic speed of sound in terms of these parameters:

a2
∞
ρ∞

p∞
= (1+Kα)(1+Kb +Kr)− 2Kα;

a2
∞

CvvT∞
=Kr(1+Kb +Kr)−Ka. (3.15a,b)

The leading-order O(ε2/3) terms in (3.8) and (3.9) together with the result of (3.10)
give

T̄1 =−KrM2
∞

ū1. (3.16)

Utilizing (3.10) and (3.16), the leading-order O(ε2/3) terms in (3.8) give

ρ̄1 =−M2
∞

ū1. (3.17)

As a result, ε2/3(ρ̄1 + ū1) = ε
2/3(1 − M2

∞
)ū1 = ε

4/3Kū1 which validates the previous
assumption. Therefore, in the higher order O(ε4/3), (3.5) becomes

(ρ̄2 + ū2 +Kū1 −M2
∞

ū2
1)x̄ + v̄1ỹ = 0, (3.18)

and (3.6) becomes(
p̄2 +

a2
∞
ρ∞

p∞
M2
∞
[ρ̄2 + 2ū2 + ū2

1(1− 2M2
∞
)+Kū1]

)
x̄

+
a2
∞
ρ∞

p∞
M2
∞
v̄1ỹ = 0. (3.19)

From (3.18) and (3.19)

p̄2 =−
a2
∞
ρ∞

p∞
M2
∞
[ū2 + ū2

1(1−M2
∞
)], (3.20)

or
p̄2 =−[(1+Kα)(1+Kb +Kr)− 2Kα]M2

∞
[ū2 + ū2

1(1−M2
∞
)]. (3.21)
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Higher-order O(ε4/3) terms in (3.9) give

[Kr(1+Kb +Kr)−Ka]M2
∞

(
ū2 +

ū2
1

2

)
+ (1+Kr)T̄2 + (KbKr −Ka)ρ̄2 +KrK2

b ρ̄
2
1

+KrKbρ̄1T̄1 −

(
hfg(T∞)
CvvT∞

+KrKb −Ka

)
ḡ1 = 0. (3.22)

Utilizing (3.16) and (3.17) in the above equation gives

[Kr(1+Kb +Kr)−Ka]M2
∞

ū2
1

2
+ (1+Kr)(T̄2 +KrM2

∞
ū2)+ (KbKr −Ka)(ρ̄2 +M2

∞
ū2)

+KrKb(Kr +Kb)M4
∞

ū2
1 −

(
hfg(T∞)
CvvT∞

+KrKb −Ka

)
ḡ1 = 0. (3.23)

Higher-order O(ε4/3) terms in (3.8) give

p̄2 − (1+Kα)T̄2 − [(1+Kα)(1+Kb)− 2Kα]ρ̄2 − [(1+Kα)(1+Kb)(Kb +Kr)

−Kα]M4
∞

ū2
1 + [(1+Kα)(1+Kb)− 2Kα]ḡ1 = 0. (3.24)

Equations (3.18) and (3.21)–(3.24) together result in

(K −KGM2
∞

ū1)ū1x̄ + v̄1ỹ = ḡ1x̄

(
hfg(T∞)

K3CvvT∞(1+Kr)
− 1
)
. (3.25)

Here,

KG = 2
(

1+
K1 +K2

K3

)
, (3.26)

where

K1 =−
Kr

2
−

KbKr −Ka

2(1+Kr)
, K2 =−

Kα

1+Kα

+ (1+Kb)(Kb +Kr)−KbKr
Kb +Kr

1+Kr
,

K3 = (1+Kb)−
KbKr −Ka

1+Kr
− 2

Kα

1+Kα

.


(3.27)

Also, from (3.7) and (3.10), it is found that

ū1ỹ − v̄1x̄ = 0. (3.28)

The set of equations (3.25) and (3.28) constitute an extended Kármán–Guderley
system for transonic small-disturbance flow of steam with condensation. Equation
(3.25) contains a heat source term which depends on the condensate mass fraction
perturbation function, ḡ1. It can be concluded from (3.28) that the flow has no vorticity
and, hence, is isentropic to the leading order O(ε2/3) of perturbations in temperature,
density, pressure and velocity. This allows for the definition of a velocity perturbation
potential function φ1 where ū1 = φ1x̄ and v̄1 = φ1ỹ. Then, (3.25) can be written as

(K −KGM2
∞
φ1x̄)φ1x̄x̄ + φ1ỹỹ = ḡ1x̄

(
hfg(T∞)

K3CvvT∞(1+Kr)
− 1
)
. (3.29)

Equation (3.29) is also referred to as the extended TSD equation.
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Substitution of the asymptotic expansions (3.1) in airfoil boundary conditions (2.14),
the far-field conditions (2.15) and the Kutta condition provide the boundary conditions
for the extended TSD equation

φ1ỹ(x̄, 0+)= F′u(x̄) and φ1ỹ(x̄, 0−)= F′l(x̄) for 0 6 x̄ 6 1,
φ1x̄, φ1ỹ→ 0 as x̄→−∞, φ1x̄(1, 0−)= φ1x̄(1, 0+).

}
(3.30)

At low pressures and temperatures, the water vapour thermodynamic behaviour
approaches the perfect-gas behaviour. Under these limiting conditions, α= b= 0, and
therefore, Kα = Ka = Kb = 0, KG = γv + 1, K3 = 1 and 1 + Kr = γv, where γv is the
specific heat ratio of water vapour. Equation (3.29) then becomes

(K − (γv + 1)M2
∞
φ1x̄)φ1x̄x̄ + φ1ỹỹ = ḡ1x̄

(
hfg(T∞)
CpvT∞

− 1
)
, (3.31)

which is the TSD equation for perfect-gas steam flow with non-equilibrium and
homogeneous condensation (see Virk & Rusak 2019).

3.2. Asymptotic equations of the condensation process
Substituting the asymptotic expansions (3.1) into the set of condensation equations
(2.10)–(2.13) gives the relationships between the leading-order O(ε4/3) perturbation
functions of the condensation parameters, ḡ1, Q̄11, Q̄21 and Q̄31,

ḡ1x̄ = 4πKt

(
Q̄11

dr̄
dt̄
+

1
3

J̄1r̄3
0

)
, (3.32)

Q̄11x̄ =Kt

(
2Q̄21

dr̄
dt̄
+ J̄1r̄2

0

)
, (3.33)

Q̄21x̄ =Kt

(
Q̄31

dr̄
dt̄
+ J̄1r̄0

)
, (3.34)

Q̄31x̄ =KtJ̄1. (3.35)

Equations (3.32)–(3.35) form a complex set of first-order and closed-coupled nonlinear
ordinary differential equations. In these equations, r̄0 = r0/lc while dr̄/dt̄ and J̄1 are
non-dimensional forms of dr/dt and J (see appendix for expressions). It should be
noted that J̄1 depends on the number of water molecules in a characteristic droplet
nc = (4π/3)ρf∞l3

c/m. Here, m is the mass of a water molecule. Note that nc is a
function of upstream temperature (T∞) only. Also, the nucleation rate J̄1 is a highly
sensitive function of T̄ , that is given by

T̄ = 1− ε2/3KrM2
∞
φ1x̄ + ε

4/3

(
1+Kb −

2Kα

1+Kα

)(
hfg(T∞)

K3CvvT∞

)
ḡ1 + · · · . (3.36)

Note that T̄ depends on φ1x̄ and ḡ1; it is necessary for accuracy of the computations to
account for the effects of changes in ḡ1 (of O(ε4/3)) when computing the temperature
field. In addition, in (3.32)–(3.35), Kt is the condensation similarity parameter,

Kt =
tf

tc
=

cp∞
σ(T∞)M∞a∞

√
RvT∞

8π
, (3.37)
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where tf = c/U∞ represents the characteristic convection time and tc= lc/uc represents
the characteristic condensation time. If Kt < 1, time spent by the steam to convect
across the airfoil surface is less than the time spent by the steam to condense, and
thus no condensation is observed. Conversely, if Kt is very large (i.e. time required for
initiation of condensation is much less than the time required for the flow to convect
over the airfoil surface) then condensation might be observed along the airfoil surface.

The far-field conditions for the condensation equations

ḡ1 = Q̄11 = Q̄21 = Q̄31 = 0, as x̄→−∞, (3.38)

provide the initial values for integration of (3.32)–(3.35).

3.3. Summary of asymptotic model
In summary, the theoretical transonic small-disturbance model describes the flow
and condensation fields of pure water vapour around a thin airfoil with a nonlinear
partial differential equation (3.29) coupled with a set of ordinary differential equations
(3.32)–(3.35). The numerical solution of these equations requires a coupled iterative
process which provides the fields of φ1(x̄, ỹ) and of ḡ1(x̄, ỹ). The field of φ1 results
in the pressure field, p̄= p/p∞ = 1− ε2/3(a2

∞
M2
∞
ρ∞/p∞)φ1x̄ + · · · , the axial velocity

field u/U∞ = 1+ ε2/3φ1x̄ + · · · , the transverse velocity field v/U∞ = εφ1ȳ + · · · and,
together with ḡ1, the temperature field according to (3.36). The field of condensate
mass fraction (g) is obtained as g = ε4/3ḡ1 + · · · . The pressure coefficient (Cp) is
computed as Cp = (p − p∞)/( 1

2ρ∞U2
∞
) = −2ε2/3φ1x̄ + · · · . The wave drag and lift

coefficients, Cd and Cl, can be obtained by the integration of pressure distributions
along the airfoil surfaces as

Cd = ε

∫ 1

0
[(Cp)uF′u − (Cp)lF′l] dx̄, Cl =

∫ 1

0
[(Cp)l − (Cp)u] dx̄, (3.39a,b)

where u, l represent values on the upper and lower surfaces of airfoil. The model
also identifies the similarity parameters of the flow problem which are as follows:
thickness ratio of airfoil ε, scaled angle of attack Θ , classical transonic similarity
parameter K, real-gas similarity parameter KG, scaled latent heat of condensation
hfg(T∞)/[K3CvvT∞(1 + Kr)], upstream flow supersaturation ratio S∞, ratio of time
scales of convection to condensation Kt and number of molecules in a characteristic
droplet nc.

We note that the extended TSD equation (3.29) displays a leading-edge singularity
as the flow approaches stagnation near the leading edge (x̄→0, ỹ→0). The singularity
affects the TSD solution in a small region O(ε2) around the airfoil’s nose. As flow
becomes transonic and the upstream flow Mach number approaches unity, the nose
singularity causes the flow to be nearly symmetric about the leading edge and with
respect to subsonic flows, induces a loss of leading-edge suction and lift. In regions
away from the leading edge of the order of ε and lower, the TSD model solution
is not affected by the nose singularity. In the present study, the nose singularity is
removed from the TSD solution with the multiscale matched-asymptotic approach of
Rusak (1993) around the leading edge by replacing γv + 1 with KG in that analysis.
After removal of the nose singularity, the TSD model solution was found to match
better with an Euler flow problem solution around the nose region. Note, however,
that in the nose region the temperature is high, and no condensation occurs.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

94
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.945


Near-sonic steam flow with real-gas effects and condensation 884 A30-15

j = LA + 2

j = LA + 1

j = LA 

j = LA - 1

j = LA - 2

j = LA - 3
i = LE i = TE

Îy

Airfoil

¡

Îx

FIGURE 2. Computational domain.

4. Numerical algorithm

The extended TSD equation (3.29) is a type-changing partial differential equation,
the nature of which is determined by the value of (K − KGM2

∞
φ1x̄). The equation

is elliptic in regions where (K − KGM2
∞
φ1x̄) > 0, is hyperbolic in regions where

(K−KGM2
∞
φ1x̄)< 0 and is parabolic at points where (K−KGM2

∞
φ1x̄)= 0. Due to this,

the numerical computation of the extended TSD equation requires a finite-difference
scheme which is sensitive to its nature. Murman & Cole (1971) devised a numerical
method to solve type-changing partial differential equations which they encountered
during their TSD study of non-lifting dry air flow over a thin airfoil. In this method,
a simple test is performed to discover the nature of the TSD equation at a particular
computational point. Then a suitable finite-difference scheme is implemented to
discretize the TSD equation at that point. A line relaxation algorithm is then used
to iteratively solve the discretized equations while marching downstream in the
computational domain. Krupp & Murman (1972) extended this approach to solve
problems of transonic dry air flow around thin airfoils at small angles of attack. An
analytical approximation of the solution was used at the edges of the computational
domain. The circulation was represented by a leap in velocity perturbation potential
across the wake of the airfoil. Circulation was obtained as part of the solution after
every iteration and the far-field approximation was regularly updated using this value.
The numerical scheme was found to accurately predict the shock wave location along
the airfoil surface; however, it slightly under-predicted its strength. Cole & Cook
(1986) refined the numerical method of Krupp & Murman (1972) by including a test
to identify a shock wave point. A finite-difference scheme was then applied that used
elements of forward and backward difference schemes to discretize the TSD equation
at the shock wave point. This numerical scheme was found to more accurately predict
the shock wave strength and location along the airfoil surface. Rusak & Lee (2000a)
used this method in their numerical computations of non-lifting humid air flow
around a NACA0012 airfoil and the results matched well with the numerical results
of Schnerr & Dohrmann (1990) which were based on the inviscid flow equations.

Following the approach of Cole & Cook (1986), the flow domain in the current
study is transformed into a rectangular uniformly structured mesh with equal grid
spacings 4x̄ and 4ỹ along the axial (x) and transverse (y) axes, respectively. The
computational domain is depicted in figure 2. Here, the indices i, j denote a grid point.
The upstream, downstream, bottom and top edges of the computational domain are
denoted by i = 1, i = Mx, j = 1 and j = My grid lines respectively. The j = LA and
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j= LA− 1 grid lines are positioned one half of a grid spacing above and below the
airfoil surface, respectively. Vertical grid line i= LE is positioned one half of a grid
spacing downstream from the leading edge of the airfoil and vertical grid line i= TE
is positioned one half of a grid spacing upstream from the trailing edge of the airfoil.
Equation (3.29) can be written as

(Kφ1x̄ −KGM2
∞
φ1x̄

2)x̄ + (φ1ỹ)ỹ = ḡ1x̄

(
hfg(T∞)

K3CvvT∞(1+Kr)
− 1
)
. (4.1)

The finite-difference approximation of (4.1) can be written as

(Kφ1x̄ −KGM2
∞
φ1x̄

2)i+1/2,j4ỹ− (Kφ1x̄ −KGM2
∞
φ1x̄

2)i−1/2,j4ỹ

+ (φ1ỹ)i,j+1/24x̄− (φ1ỹ)i,j−1/24x̄= (ḡ1x̄)i,j

(
hfg(T∞)

K3CvvT∞(1+Kr)
− 1
)
4x̄4ỹ. (4.2)

Following the method of Cole & Cook (1986), two parameters are calculated at every
grid point:

fc =−K +KG
(φ1)i+1,j − (φ1)i−1,j

24x̄
, fb =−K +KG

(φ1)i,j − (φ1)i−2,j

24x̄
. (4.3a,b)

If fc < 0 and fb < 0, then (3.29) is elliptic at the grid point and central differencing is
used for discretization of the x̄ derivatives in (4.2). If fc > 0 and fb > 0, then (3.29) is
hyperbolic and backward differencing is used for discretization of the x̄ derivatives in
(4.2).

If fc < 0 and fb > 0, then i, j is a shock wave point and a mixed difference scheme
is used:

(φ1x̄)
M

i+1/2,j =
(φ1)i+1,j − (φ1)i,j

4x̄
, (φ1x̄)

M
i−1/2,j =

(φ1)i−1,j − (φ1)i−2,j

4x̄

(ḡ1x̄)
M

i,j =
(ḡ1)i+1,j − (ḡ1)i,j + (ḡ1)i−1,j − (ḡ1)i−2,j

24x̄
.

 (4.4)

If fc > 0 and fb < 0, then (3.29) is parabolic at the grid point and central differencing
is used to discretize (φ1x̄)i−1/2,j and (ḡ1x̄)i,j, and backward differencing is used to
discretize (φ1x̄)i+1/2,j. In all cases, ỹ-derivatives are discretized by a central difference
scheme.

Airfoil surface boundary conditions (3.30) are implemented as (φ1ỹ)i,j+1/2 = F′l(xi)
and (φ1ỹ)i,j−1/2=F′u(xi) in finite-difference equations along lines j=LA− 1 and j=LA,
respectively, for LE 6 i6 TE. Values of φ1 and φ1x at the airfoil surfaces are obtained
through simple extrapolation of computed results.

For non-lifting flows, the far-field conditions (3.30) are applied as (φ1ỹ)i,j−1/2 = 0
in the finite-difference equations at grid line j = 1, as (φ1ỹ)i,j+1/2 = 0 in the
finite-difference equations at grid line j=My, as (φ1x̃)i−1/2,j= 0 in the finite-difference
equations at grid line i= 1 and as (φ1x̃)i+1/2,j = 0 in the finite-difference equations at
grid line i=Mx. For lifting flows, a far-field analytical approximation of the solution
is used (see Krupp & Murman 1972) on the boundaries of the computational domain.
A jump in φ1 across the wake (i.e. ỹ= 0, x̄> 1) is incorporated in the iterative solver
to represent the circulation of flow around the airfoil. It is noted that the axial and
transverse velocities are continuous across the wake.
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An explicit iterative solver is used to solve (4.2). An initial guess of φ1 = 0 and
ḡ1 = 0 at all grid points is used to start the iterative solver. The solver works in
two steps, first (4.2) is solved iteratively until a converged solution of φ1 is obtained
(i.e. absolute relative change in φ1 at all grid points is smaller than 10−7). Then this
solution of φ1 is used to calculate the pressure and temperature at all computational
points. These thermodynamic properties are then used to calculate the condensation
parameters J̄1, dr̄/dt̄ and r̄0 at all computational points. Then, (3.32)–(3.35) are
integrated along each grid line j by Simpson’s rule iteratively until the absolute
change in ḡ1 at all grid points is smaller than 10−10. The far-field equation (3.38)
is used to initiate the integration. This constitutes a global iteration. This two-step
process of each global iteration is repeated until global convergence criteria are met,
i.e. maxi,j|φ1i,j,n − φ1i,j,n−1|/|φ1i,j,n−1|< 10−7 and maxi,j|ḡ1i,j,n − ḡ1i,j,n−1|< 10−10, where
n is a global iteration number. For lifting flows, the relative change in absolute value
of circulation was found to be less than 10−7 upon convergence.

The solution of the extended TSD model effectively describes the flow and
condensation fields in all regions other than the nose region (of the order of ε2). In
the present numerical calculations, the approach of Rusak (1993) is used to remove
the nose singularity from the TSD solution and form a composite solution of the
flow. This composite solution consists of an inner solution (which describes the flow
in the nose region) and an outer solution (which describes the flow in regions away
from the nose). To obtain the inner solution, dry flow of water at a sonic upstream
Mach number and at zero angle of attack around an infinite canonic parabola was
solved. The present TSD model solution was used as the outer solution. Overlapping
of the inner solution with the outer solution was done to ensure smooth transition of
the pressure coefficient as the flow moves from the nose region to regions far away
from nose. Details of the approach can be found in Rusak (1993) as well as Lee &
Rusak (2000). The current numerical method is second-order accurate in space, with
the exception of being first-order accurate across shock waves.

5. Computed results
5.1. Grid convergence studies

Convergence of the current numerical algorithm upon mesh refinement is studied
first. We focus on a representative example of a steady wet steam flow around a
NACA0012 airfoil (c = 0.1 m, ε = 0.12) at zero angle of attack that is computed
using several progressively refined meshes. The uniform upstream conditions of
this flow problem are described by T∞ = 450 K, p∞ = 1.2 MPa (S∞ = 1.28) and
M∞ = 0.8. Stagnation conditions of the upstream fluid are given by T0 = 501 K,
p0 = 1.87 MPa and Φ0 = 69.4 %. For this case, the similarity parameters are
K = 1.48, hfg(T∞)/[K3CvvT∞(1 + Kr)] = 2.035, KG = 2.20, nc = 18.14 and Kt =

5.88 × 105. For this problem, the flow and thermodynamic fields are symmetrical
about the x axis, so only the upper half of the computational flow domain is
considered with dimensions 3c (along the x̄ axis) and 3c (along the ỹ axis). The
upstream boundary of the domain is placed 1c ahead of the leading edge of the
airfoil; the downstream boundary is placed 1c behind the trailing edge; the top
boundary is placed 3c over the airfoil whereas the bottom boundary coincides with
the chord of the airfoil. The different mesh sizes chosen for the convergence study are:
300 (along the x̄ axis) × 150 (along the ỹ axis), 300 × 200, 450 × 200, 450 × 300
and 600 × 300. The computed distributions of the pressure coefficient (−Cp) and
the condensate mass fraction (g) at the airfoil surface for the selected meshes are

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

94
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.945


884 A30-18 A. S. Virk and Z. Rusak

300 ÷ 150
300 ÷ 200
450 ÷ 200
450 ÷ 300
600 ÷ 300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

-Cp

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

4

5

6

7

8

FIGURE 3. Distribution of −Cp at the NACA0012 airfoil surface for wet steam flow at
S∞= 1.28, T∞= 450 K, M∞= 0.8 and Θ = 0 using several meshes (points 1–3 and 9 are
beyond the scale of the figure).

presented in figures 3 and 4, respectively. Figure 5 shows the pressure–temperature
(p–T) phase diagram for a streamline along the airfoil surface for several mesh sizes.
Also shown for reference in figure 5 is the vapour–liquid saturation pressure (pg)
line. The numerical results converge upon mesh refinement. From figures 3, 4 and 5,
it can be noticed that the numerical solutions of −Cp, g and the p–T line computed
by the various meshes are close to each other. The numerical results from using a
450× 300 mesh are within 1 % of the corresponding numerical results from using a
finer mesh i.e. 600× 300. It is therefore concluded that a 450 × 300 mesh provides
grid-converged computations for non-lifting wet steam flows around airfoils. Figures 6
and 7 show the distributions of local supersaturation ratio (S) and nucleation rate (J)
along a streamline close to the airfoil surface for the chosen mesh, respectively.

Enlarging the computational domain along the x̄ and ỹ directions provides numerical
results which are within 2 % of the current numerical results. Using a far-field
analytical approximation of the solution (Krupp & Murman 1972) on the boundaries
of the computational domain for non-lifting flows, also gives numerical results within
2 % of the current TSD results. Similar behaviour was observed in past numerical
studies of dry air flow with TSD theory (Cole & Cook 1986). For flow problems
with K < 1.5 and Θ < 0.3, the supersonic regions of dry air flows over NACA0012
airfoils lie below ȳ = 1 (Krupp 1972). The computational domain with dimensions
3 (along x̄ axis) and 3 (along ỹ axis) provides a good balance between accuracy of
predictions and computational costs.

Figures 3–7 help in understanding the physical and thermodynamic behaviour of
the flow. Important characteristic states in the flow are marked with points numbered
from 1 to 9. The stagnation reservoir conditions are denoted by point 1 (T0= 501 K,
p0 = 1.87 MPa and Φ0 = 69.4 %). The upstream flow (point 2) ahead of the airfoil
(x̄< 0) is decelerated, compressed and reaches stagnation at the airfoil’s leading edge
(point 3). This results in maximum values of local pressure and temperature at the
leading edge. Flow is in a superheated state in this region, preventing condensation
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FIGURE 4. Distribution of g at the NACA0012 airfoil surface for wet steam flow at
S∞= 1.28, T∞= 450 K, M∞= 0.8 and Θ= 0 using several meshes (points 1–3 are beyond
the scale of the figure).
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FIGURE 5. The p–T phase diagram along the NACA0012 airfoil surface for wet steam
flow at S∞ = 1.28, T∞ = 450 K, M∞ = 0.8 and Θ = 0 using several meshes.

occurring (see point 3 in figure 6). Flow then expands as it accelerates along
the airfoil surface. As velocity increases, local pressure and temperature decrease,
which leads to the flow becoming supersaturated (S > 1). Substantial homogeneous
nucleation is initiated on the airfoil surface (see point 4 in figure 7). Flow continues to
accelerate and becomes sonic (point 5). Flow velocity increases and pressure decreases
until it reaches minimum values of local pressure and temperature (p = 0.83 MPa,
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FIGURE 6. Distribution of supersaturation ratio (S) along a streamline close to the
NACA0012 airfoil surface for wet steam flow at S∞ = 1.28, T∞ = 450 K, M∞ = 0.8 and
Θ = 0 (point 1 is beyond the scale of the figure).
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FIGURE 7. Distribution of nucleation rate (J) along a streamline close to the NACA0012
airfoil surface for wet steam flow at S∞ = 1.28, T∞ = 450 K, M∞ = 0.8 and Θ = 0
(points 1–3 and 7–9 are beyond the scale of the figure).

T = 424 K) at x̄∼ 0.15 (point 6). The flow attains the maximum supersaturation ratio
(see point 6 in figure 6) at this point, which is commonly referred to as the Wilson
point. This marks the onset of macroscopic heat release due to condensation and
related compression of the flow.
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FIGURE 8. Contours of Cp (solid line) and g (dashed line) for wet steam flow around a
NACA0012 airfoil (c= 0.1 m) at S∞ = 1.28, M∞ = 0.8, T∞ = 450 K and Θ = 0.

Condensate mass fraction g increases from 0 in a nearly constant pressure process.
The temperature is increased from 424 K at x̄= 0.15 to 445 K at x̄= 0.4 (point 7) at
which the flow is nearly saturated (p∼ pg(T)). Condensate mass fraction also attains
its maximum value (g ∼ 0.027). At x̄ ∼ 0.4 (point 7), a shock wave occurs and the
flow is compressed from p = 0.83 MPa, T = 445 K to p = 1.04 MPa, T = 459 K
(point 8) and liquid droplets evaporate across the shock wave. The flow exhibits the
classical Zierep shock wave behaviour downstream of the shock wave for 0.41 6 x̄ 6
0.54 where the pressure and temperature decrease and then increase with distance
from the shock wave. Yet, evaporation continues and g decreases in this range. For
0.54< x̄ < 1, water vapour compresses at near saturation conditions and evaporation
of liquid droplets continues as flow decelerates along the airfoil towards the trailing
edge (point 9). Behind the trailing edge, flow is accelerated, pressure and temperature
decrease and condensation is re-initiated because S becomes greater than 1 (see point
9 in figure 6). Far downstream of the airfoil, g reaches a nearly constant value of
0.013 and a wake of saturated liquid trails behind the airfoil. All other flow cases
presented in the following sections and figures follow similar flow and condensation
processes.

Figure 8 shows the mesh-converged solution of the contours of the pressure
coefficient Cp (solid contours) and the condensate mass fraction g (dashed contours)
in the airfoil’s near field at the given flow conditions. The flow around the shock
wave at x ∼ 0.4c is apparent from the coalescence of Cp contour lines. The shock
wave also spreads in the transverse direction up to y ∼ 0.03 m. The condensation
region starts on the airfoil surface at x∼ 0.15c and spreads downstream as well as in
the transverse direction to form a saturated parallel condensation zone with transverse
size y∼ 0.03 m.

For flows around airfoils at small angles of attack, a rectangular computational
domain centred around the airfoil with dimensions 3c (along x̄ axis) and 6c
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(along ỹ axis) is used. The upstream boundary of this domain is placed 1c ahead
of the leading edge of the airfoil; the downstream boundary is placed 1c behind the
trailing edge; the top boundary is placed 3c above the airfoil whereas the bottom
boundary is placed 3c below the airfoil. Grid convergence studies for a flow problem
with upstream conditions as described above and with θ = 1.5◦ reveal that a 450× 600
mesh provides grid-converged results and this mesh is used in all computations of
lifting wet steam flows around airfoils with |θ |6 2◦.

We also emphasize that, when compared with homogeneously condensing flow of
humid air around the same airfoils (such as circular arcs) in the same Mach number
regime (M∞ ∼ 0.8) and operating at similar flow conditions, diabatic compressions
inside local supersonic regimes in steam flow are much weaker. For example, the
present computations with external steam flows around airfoils do not depict any local
recompression regions or two separated local supersonic regimes terminated by shock
waves, as was found in the numerical computations of Schnerr & Dohrmann (1990,
1994). The steam flow case is different from the humid air flow case. The difference
is due to several reasons. First, since in the steam flow case there is no carrier gas
of the water content, the right-hand side of the TSD equation is different from that
of the humid air case; compare (3.29) of the present paper with (35) in Rusak & Lee
(2000a). The heat release of condensation goes from steam to air in the humid air case
while in the steam flow case, it goes directly from the condensate to the water vapour,
which has a lower specific heat ratio γv than air. Second, all the humid air cases are
characterized by upstream pressure that is atmospheric and below and temperatures
are relatively low (below 270 K). However, in the steam flow cases studied in this
paper, upstream pressure and temperature are much higher and therefore characterized
by higher Cvv, lower γv and lower hfg which lead to much weaker nonlinear effects
and heat release from condensation to the vapour.

5.2. Computed examples
In engineering applications that employ high-speed steam flows, it is necessary to
predict the flow behaviour and the resulting wave drag of the airfoils or blades, in an
attempt to reduce the drag for higher energy efficiency of the system. The upstream
flow and thermodynamic conditions of steam and the airfoil’s geometry and angle of
attack are the primary parameters that determine the real-gas flow and condensation
fields, and consequently the airfoil’s wave drag. With this purpose, the present TSD
model of steam flow is used to conduct parametric studies where each one of these
parameters is varied independently and their effects on flow and condensation physics
are analysed.

First, the effects of varying upstream temperature (T∞) in the range of 375–450 K
at fixed values of S∞ = 1.3 and M∞ = 0.8 for wet steam flow over a NACA0012
airfoil (c= 0.1 m, ε= 0.12) at Θ = 0 are studied. Table 1 lists the values of similarity
parameters nc, Kt, KG, hfg(T∞)/[K3CvvT∞(1 + Kr)], upstream pressure (p∞) and the
stagnation properties of the upstream fluid (p0, T0 and Φ0) for several flow cases. Note
that K = 1.48 for all the cases. From table 1, it can be noticed that KG decreases
slightly as a result of a change in T∞ within the given range, whereas the changes
in nc, Kt, hfg(T∞)/[K3CvvT∞(1 + Kr)] and p∞ are more pronounced. It is therefore
expected that condensation increases as T∞ increases at the described conditions.

Figures 9 and 10 depict the −Cp and g distributions at the airfoil surface.
A p–T phase diagram for a streamline along the airfoil surface for the various
flow cases is presented in figure 11. Also shown for reference in figure 11 is the
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FIGURE 9. Distribution of −Cp at the NACA0012 airfoil surface for wet steam flow at
S∞ = 1.3, M∞ = 0.8, Θ = 0 and several T∞.

T∞ (in K) 375 400 425 450
nc 51.49 36.23 25.61 18.14
Kt × 10−5 0.52 1.27 2.85 5.95
KG 2.29 2.27 2.24 2.20
hfg(T∞)/[K3CvvT∞(1+Kr)] 3.0 2.65 2.33 2.04
p∞ (in bar) 1.40 3.18 6.48 12.10
p0 (in bar) 2.24 5.05 10.20 18.90
T0 (in K) 426 452 477 501
Φ0 (%) 43.3 51.7 60.9 70.2

TABLE 1. Values of nc,Kt,KG, hfg(T∞)/[K3CvvT∞(1+Kr)], p∞, p0, T0 and Φ0 for
various T∞ at the given conditions.

vapour–liquid saturation pressure (pg) line to help visualize the regions where the flow
is supersaturated. From figures 9 and 10, it can be observed that the condensation
region on the airfoil surface increases in terms of axial extent and magnitude of g
with an increase in T∞. At T∞ = 375 K, the condensation region and the amount of
condensate mass fraction are relatively small and affect the pressure and temperature
distributions negligibly. At T∞ = 450 K, the region of condensation and size of g
are significant and affect the pressure and temperature distributions notably. As T∞
increases, the characteristic length of condensation lc decreases (see (3.2)) which
causes nc to decrease. This leads to an increase in nucleation rate J̄1. Also, uc

increases (see (3.2)); this, along with the decrease in lc, reduces the characteristic
condensation time tc. This causes a considerable increase in Kt (see (3.37)). Combined
effects of changes in J̄1 and Kt result in increased condensation as T∞ increases. It
can also be observed that the point of condensation onset moves upstream along the
airfoil surface with an increase in T∞. The effect of condensation on the pressure field
is clearly visible in figure 9. With increase in T∞, as the condensation region over
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FIGURE 10. Distribution of g at the NACA0012 airfoil surface for wet steam flow at
S∞ = 1.3, M∞ = 0.8, Θ = 0 and several T∞.

the airfoil increases, the flow experiences increased compression in the supersonic
region as a consequence of heat addition due to condensation of water vapour and
increased expansion in the subsonic region as a result of heat absorption due to the
evaporation of liquid droplets behind the shock wave. Therefore, as condensation
increases, the shock wave strength decreases. The shock wave shifts upstream along
the airfoil surface in the range 375 6 T∞ 6 400 K after which it moves downstream
in the range 400 6 T∞ 6 450 K. Behind the airfoil, condensation is reinitiated and g
achieves a fully developed value in the far wake.

Figure 12 shows that the pressure drag coefficient (Cd) increases monotonically
with an increase of T∞. The condensation affects the pressure distribution around
the airfoil and subsequently, the wave drag in three major ways. First, due to
condensation compression, the pressure in the increasing locally supersonic wet
flow region increases; this causes the shock wave strength to reduce and wave drag
decreases. Second, it shifts the shock wave along the airfoil surface. If the shock
wave shifts downstream, drag increases, and if it shifts upstream, drag decreases.
Third, as a result of heat absorption due to evaporation of liquid droplets downstream
of the shock wave, pressure decreases, which increases the wave drag. In this case,
the sum of the second and third effects dominates over the first effect and, thus, an
almost linear increase in Cd is observed with an increase in T∞ at the prescribed
conditions. Also shown, for reference, in figure 12 are Cd values for the adiabatic
flow cases. Adiabatic flow solutions are computed by imposing a no condensation
(g = 0) condition in the whole domain. The adiabatic Cd decreases as T∞ increases
at a fixed S∞. This happens because the thermodynamic similarity parameter KG

decreases with an increase in T∞, and causes the shock wave to shift upstream on
the airfoil surface. The percentage difference between diabatic and adiabatic Cd values
increases from 11 % at T∞ = 375 K to 50 % at T∞ = 450 K.
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FIGURE 11. The p–T phase diagram along the NACA0012 airfoil surface for wet steam
flow at Θ = 0, S∞ = 1.3, M∞ = 0.8 and several T∞.
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FIGURE 12. Variation of Cd for steam flow around the NACA0012 airfoil at S∞ = 1.3,
M∞ = 0.8, Θ = 0 and several T∞.

Zierep & Lin (1967) derived a similarity law for the onset of condensation Mach
number (Mc) as it is related to the stagnation relative humidity (Φ0),

Φa
0 =

γe + 1
2

1+
γe − 1

2
M2

c

. (5.1)
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FIGURE 13. Condensation onset Mach number (Mc) versus stagnation relative humidity
(Φ0) for steam flows around the NACA0012 airfoil surface at S∞ = 1.2 and S∞ = 1.3,
M∞ = 0.8, Θ = 0 and several T∞.

S∞ 1.2 1.22 1.24 1.26 1.28 1.3
Kt × 10−5 5.49 5.58 5.68 5.78 5.88 5.95
KG 2.206 2.205 2.204 2.2035 2.203 2.202
hfg(T∞)/[K3CvvT∞(1+Kr)] 2.026 2.028 2.030 2.033 2.035 2.037
p∞ (in MPa) 1.12 1.14 1.16 1.174 1.19 1.21
p0 (in MPa) 1.75 1.78 1.81 1.84 1.87 1.89
Φ0 (%) 65.2 66.2 67.3 68.4 69.4 70.2

TABLE 2. Values of Kt,KG, hfg(T∞)/[K3CvvT∞(1+Kr)], p∞ and the stagnation
conditions of fluid for various S∞ at the given conditions.

In (5.1), γe is the effective specific heat ratio of the gas, and exponent a has to be
determined from numerical simulations or experiments. In this study, we use γe =

KG − 1. Note that KG changes primarily with a change in upstream temperature T∞.
Figure 13 shows the results of the TSD computed condensation onset Mach number
(circles and squares) as a function of Φ0 for various T∞ at fixed values of S∞ = 1.2
and S∞ = 1.3. Also shown for the two fixed values of S∞, are the results of (5.1)
(lines). The exponents are found to be a = 0.066 for S∞ = 1.2, and a = 0.060 for
S∞ = 1.3. The exponent a is found to be slightly dependent on S∞, thereby making
a separate line for each S∞ value. The TSD results follow the similarity law (5.1) of
Zierep & Lin (1967) within a computational accuracy of 2 %.

Next, we analyse the effects of varying the upstream supersaturation ratio (S∞) in
the range of 1.2–1.3 at constant values of M∞ = 0.8 and T∞ = 450 K for wet steam
flow around a NACA0012 airfoil (c = 0.1 m, ε = 0.12) at Θ = 0. Increasing the
upstream supersaturation ratio S∞ at a fixed T∞, increases the upstream pressure p∞.
Table 2 lists the values of Kt, KG, hfg(T∞)/[K3CvvT∞(1+Kr)], p∞ and the stagnation
conditions of upstream fluid for the various flow cases. Note that nc= 18.14,K= 1.48
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FIGURE 14. Distribution of −Cp at the NACA0012 airfoil surface for wet steam flow at
Θ = 0, T∞ = 450 K, M∞ = 0.8 and several S∞.

and T0 = 501 K for all the cases. As can be noticed from the values of the various
similarity parameters, hfg(T∞)/[K3CvvT∞(1 + Kr)] and KG do not vary by much
over the range of S∞ studied, whereas Kt shows a comparatively larger increase in
values. We find that there is only negligible condensation at S∞ < 1.2. For these
flow cases, the critical supersaturation ratio required for initiation of homogeneous
nucleation is not attained in any flow region. The increase in S∞ is expected to
increase condensation at the prescribed conditions.

Figures 14 and 15 show the −Cp and g distributions at the airfoil surface for the
various flow cases. Figure 16 shows a p–T phase diagram for a streamline along
the airfoil surface for a few selected flow cases. From figure 14, it can be clearly
noticed that the condensation compression effect on the flow dynamics increases as
S∞ increases. Condensation compression in the supersonic region of the flow and
evaporative expansion in the subsonic region behind the shock wave reduces the
strength of shock wave. Also, the shock wave shifts upstream on the airfoil surface
in the range 1.2 6 S∞ 6 1.26 after which it shifts downstream for 1.26 6 S∞ 6 1.3.
From figures 15 and 16, it can be noticed that the condensation region on the airfoil
surface increases in axial size and magnitude of g as S∞ increases above 1.2. This
is primarily due to the flow experiencing higher local supersaturation ratio (S) values
as S∞ increases, which results in higher values of nucleation rate J. The increase in
Kt with S∞ also contributes to an increase in condensation as S∞ increases. Also, the
point of initiation of condensation moves upstream with the increase of S∞, indicating
that the critical supersaturation ratio required for spontaneous homogeneous nucleation
is attained relatively upstream on the airfoil surface as S∞ increases. Figure 17 shows
the nonlinear increase of Cd with increase in S∞. Also shown, for comparison, in
figure 17 are the values of Cd for the adiabatic flow cases. The adiabatic Cd values
stay constant at the given conditions, and the percentage difference between the
diabatic and adiabatic flows increases as S∞ increases, from 2 % at S∞ = 1.2 to
50 % at S∞ = 1.3 due to an increase in condensation. This can be explained by the
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FIGURE 15. Distribution of g at the NACA0012 airfoil surface for wet steam flow at
Θ = 0, T∞ = 450 K, M∞ = 0.8 and several S∞.
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FIGURE 16. The p–T phase diagram along the surface of the NACA0012 airfoil for wet
steam flow at Θ = 0, T∞ = 450 K, M∞ = 0.8 and several S∞.

collective drag-increasing effects of downstream shock wave movement and pressure
reduction behind the shock wave (due to evaporative heat absorption) dominating the
drag-reducing effect of condensation compression.

Figure 18 shows the results of TSD computed condensation onset Mach number
(circles and squares) as a function of Φ0 for various S∞ at fixed values of T∞= 400 K
and T∞ = 450 K. Also shown for the two fixed values of T∞ are the results of (5.1)
(lines). The exponents are found to be a= 0.062 for T∞ = 400 K, and a= 0.066 for
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FIGURE 17. Variation of Cd for steam flow around the NACA0012 airfoil at Θ = 0,
T∞ = 450 K, M∞ = 0.8 and several S∞.
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FIGURE 18. Condensation onset Mach number (Mc) versus stagnation relative humidity
(Φ0) for steam flows around the NACA0012 airfoil surface at T∞ = 400 K and
T∞ = 450 K, M∞ = 0.8, Θ = 0 and several S∞.

T∞ = 450 K. Note that KG = 2.27 (γe = 1.27) at T∞ = 400 K and KG = 2.20 (γe =

1.20) at T∞ = 450 K. Therefore, we have a separate line for each value of T∞. The
TSD results show good agreement, within a computational accuracy of 2 %, with the
similarity law (5.1) of Zierep & Lin (1967).

The effects of independently varying the upstream Mach number (M∞) of wet steam
flow around a NACA0012 airfoil (c= 0.1 m, ε= 0.12) at Θ = 0 are also investigated.
Various cases are solved where the upstream conditions are defined as T∞ = 450 K,
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FIGURE 19. Distribution of −Cp at the NACA0012 airfoil surface for wet steam flow at
Θ = 0, T∞ = 450 K, S∞ = 1.27 and several M∞.

M∞ 0.78 0.79 0.8 0.81 0.82 0.83
K 1.61 1.55 1.48 1.41 1.35 1.28
Kt × 10−5 5.98 5.90 5.83 5.76 5.69 5.62
p0 (in MPa) 1.81 1.83 1.85 1.87 1.90 1.92
T0 (in K) 497.7 499 501 502.7 504.4 506
Φ0 (%) 71.4 70.2 68.9 67.6 66.2 65

TABLE 3. Values of K, Kt and the stagnation conditions of fluid for various M∞ at the
given conditions.

S∞ = 1.27 and M∞ ranges from 0.78 to 0.83. For all these flow problems, p∞ =
1.18 MPa, nc = 18.14, hfg(T∞)/[K3CvvT∞(1+Kr)] = 2.034 and KG = 2.203. Values of
K, Kt and the stagnation conditions of fluid for the various flow cases are provided in
table 3. Both K and Kt decrease with increase of M∞. Flow is subsonic and there is
no condensation for M∞< 0.76. It is expected that the supersonic zone over the airfoil
increases, the location of the shock wave is pushed downstream and the shock wave
becomes stronger with increase of M∞ above 0.76. Thereby, within the subsonic range,
the condensation region and size of g also increase with M∞. The transonic similarity
parameter K decreases with an increase of M∞. This increases the relative effect of
nonlinear terms in (3.29) on the flow and condensation physics.

The distributions of −Cp and g at the airfoil surface for several flow cases are
shown in figures 19 and 20. A p–T diagram for a streamline along the airfoil surface
for the various flow cases is shown in figure 21. From figures 20 and 21, it can be
observed that the condensation region and size of g increase as M∞ increases. The
point of condensation onset and the steady state value of g in the far wake of the
airfoil are the same for the various values of M∞. This occurs because the various
flow cases have the same values of nc, similar S and J̄1 values in regions prior to
condensation onset. This is also reflected in figure 21, which depicts that the various
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FIGURE 20. Distribution of g at the NACA0012 airfoil surface for wet steam flow at
Θ = 0, T∞ = 450 K, S∞ = 1.27 and several M∞.

flow cases follow the same p–T phase diagram in regions prior to condensation onset
and in the far wake of the airfoil. Figure 19 depicts clearly the increasing effect
of condensation compression on the supersonic flow. Figure 22 shows the nonlinear
increase of diabatic and adiabatic Cd with increasing values of M∞. This is expected
as a result of the significant downstream movement and strengthening of the shock
wave with an increase in M∞ and at fixed thermodynamic conditions. The difference
between the adiabatic and diabatic Cd increases until M∞ 6 0.8 and reduces as M∞
rises above 0.8. Condensation leads to an increase in wave drag for M∞ 6 0.82.
However, at higher upstream Mach numbers M∞ > 0.83, condensation results in a
decrease in wave drag, primarily due to dominant effects of flow compression.

Several flow cases are solved to understand the effects of increasing a small angle
of attack (θ ) on the steady flow and condensation fields of the steam flowing around
the airfoil. In these problems, flows of supersaturated steam around a NACA0012
airfoil (c = 0.1 m, ε = 0.12) with T∞ = 450 K, p∞ = 1.12 MPa and M∞ = 0.8 are
studied. For all cases, T0 = 501 K, p0 = 1.75 MPa, Φ0 = 65.2 %, K = 1.48, Kt =

5.49 × 105, KG = 2.206, nc = 18.14 and hfg(T∞)/[K3CvvT∞(1 + Kr)] = 2.026. We
study cases with θ = 0◦, 0.5◦, 1◦ and 1.5◦, for which Θ = θ/ε = 0, 0.073, 0.145
and 0.218, respectively. Figure 23(a,b) presents distributions of −Cp on the suction
and pressure surfaces of the airfoil, respectively. With increase of θ , the flow on the
suction surface accelerates to higher supersonic speeds while the flow on the pressure
surface decelerates and even becomes subsonic. Consequently, the shock wave shifts
downstream on the suction surface and becomes stronger while the shock wave shifts
upstream on the pressure surface and becomes weaker as θ increases. Shock wave
disappears on the pressure surface for θ > 1◦.

Figure 24 shows the distribution of g on the suction surface. As θ increases, the
condensation region expands on the suction surface with higher values of g. This
happens because of the coupled interaction between flow acceleration on the suction
surface and the corresponding pressure and temperature reduction (as noticed in
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FIGURE 21. The p–T phase diagram along the NACA0012 airfoil surface for wet steam
flow at Θ = 0, T∞ = 450 K, S∞ = 1.27 and several M∞.
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FIGURE 22. Variation of Cd for steam flow around the NACA0012 airfoil at Θ = 0,
T∞ = 450 K, S∞ = 1.27 and several M∞.

figure 23a,b). This results in the flow attaining higher supersaturation ratio (S) values
in the supersonic region on the suction surface, which lead to higher nucleation
rates (J) and hence higher g values. The point of condensation onset also drifts
upstream on the airfoil surface with an increase of θ . This is because with an
increase of S, the flow attains the critical supersaturation ratio value required for
initiation of homogeneous nucleation relatively upstream on the airfoil surface. Note
that the condensate mass fraction attains the same steady state value (∼0.009) in the
far wake of the airfoil irrespective of θ . In tandem, condensation on the pressure
surface becomes negligible with a decrease of velocity and increase of pressure

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

94
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.945


Near-sonic steam flow with real-gas effects and condensation 884 A30-33

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

1.2

0.8

0.4

0

-0.4

-0.8

1.2

0.8

0.4

0

-0.4

-0.8

-Cp

-Cp

œ = 0�
œ = 0.5�
œ = 1�
œ = 1.5�

x

(a)

(b)

FIGURE 23. Distribution of −Cp at (a) suction and (b) pressure surfaces of NACA0012
airfoil for steam flow at T∞ = 450 K, S∞ = 1.2, M∞ = 0.8 and several θ .

and temperature, and is therefore not shown. Figure 25 shows that the pressure
drag coefficient (Cd) increases monotonically with increase of θ . As θ increases,
the downstream shift in shock wave position, strengthening of the shock wave and
reduction in pressure in the supersonic region on the suction surface dominate the
increase of wave drag. Also shown for comparison are the values of Cd for the
adiabatic flow cases. With an increase of angle of attack and consequent increase in
condensation, the percentage difference between the Cd of diabatic and adiabatic flow
cases increases from 4 % at θ = 0◦ to 28 % at θ = 1.5◦. The ratios of lift to wave drag
for the flow problems are given in table 4. Also given are values for the adiabatic
flow cases. For fixed values of upstream flow conditions, the lift to wave drag ratio
increases as angle of attack increases. Compared to the dry flow cases, the lift to
drag ratio increases as a result of condensation. As the angle of attack increases and
the amount of condensation on the suction surface of the airfoil increases, the jump
in the lift to wave drag ratio compared to the corresponding dry flow case increases.
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FIGURE 24. Distribution of g at the suction surface of NACA0012 airfoil for wet steam
flow at T∞ = 450 K, S∞ = 1.2, M∞ = 0.8 and several θ .
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FIGURE 25. Variation of Cd for steam flow around the NACA0012 airfoil at T∞= 450 K,
S∞ = 1.2, M∞ = 0.8 and several θ .

θ (deg.) 0 0.5 1 1.5
S∞ = 1.2 (g= 0) 0 6.76 9.94 12.06
S∞ = 1.2 0 6.96 10.41 12.83

TABLE 4. Ratio of lift to drag for various angles of attack at the given conditions.

A few cases are also solved to analyse the effects of airfoil geometry on the flow
and condensation fields of wet steam flow over a thin airfoil. Upstream conditions
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FIGURE 26. Distribution of −Cp at various airfoil surfaces for wet steam flow at
T∞ = 450 K, S∞ = 1.3, M∞ = 0.8 and Θ = 0.

for all the flow problems are T∞ = 450 K, p∞ = 1.21 MPa (S∞ = 1.3), M∞ = 0.8
and Θ = 0. Stagnation conditions of the upstream fluid are given by T0 = 501 K,
p0=1.89 MPa and Φ0=70.2 %. All airfoils have a thickness ratio of 0.12 and a chord
length of 0.1 m. The various airfoil geometries selected for analysis are: NACA0012
airfoil, circular arc airfoil, a modified airfoil (see, for shape function, Rusak & Lee
(2000b)) and an optimum critical airfoil of a sonic arc (see, for shape function, Rusak
(1995)).

The distributions of −Cp and g on the various airfoils for a wet steam flow at the
given conditions are presented in figures 26 and 27 respectively. For the NACA0012,
circular arc and modified airfoils, the effect of condensation compression on the
−Cp distributions (see figure 26) causes a reduction in shock wave strength due to
compression of supersonic flow and expansion of subsonic flow behind shock wave.
The condensation region stretches widest for the NACA0012 airfoil with a higher
value of maximum g. This is due to the curvature of the NACA0012 airfoil which
allows the flow to achieve higher speeds, lower pressures and temperatures and higher
supersaturation ratio values upon acceleration past the nose region. This also leads
to onset of condensation at a point on the NACA0012 airfoil which is relatively
upstream as compared to the other airfoils. Due to increased flow acceleration, the
flow attains the critical supersaturation ratio required for initiation of homogeneous
nucleation far upstream on the NACA0012 airfoil compared to other airfoils. Far
downstream of the airfoil, g reaches the same steady state value (∼0.013) for these
airfoils. It is noted that, at the given conditions, the sonic arc does not show any
shock wave and condensation along the airfoil surface.

The Cd values of the dry and wet steam flow around the various airfoils at the
prescribed conditions are provided in table 5. Wave drag on the optimum critical sonic
arc airfoil is found to be zero in both cases. Condensation leads to an increase in drag
for the other airfoil geometries. The rise in drag for the circular arc is 0.0021, for the
modified airfoil is 0.0015 and for the NACA0012 airfoil is 0.0027. The rise in wave
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FIGURE 27. Distribution of g at various airfoil surfaces for wet steam flow at T∞=450 K,
S∞ = 1.3, M∞ = 0.8 and Θ = 0.

Airfoil geometry Sonic arc Circular arc Modified NACA0012
Dry flow 0 0.0013 0.0081 0.0087
Wet flow 0 0.0034 0.0096 0.0114

TABLE 5. Values of Cd for the various airfoils at the given conditions.

drag is primarily due to the shift of shock wave position and reduction of pressure
downstream of the shock wave.

It is known that, due to the mass flow constraint of internal flows through nozzles
and channels by walls (Schnerr & Dohrmann 1990, 1994), increasing the amount
of heat addition due to condensation results in the initiation of self-excited high
frequency oscillations in the flow. Identification of a similar stability limit in external
flows remains a problem of interest. The current TSD theory helps in providing an
insight into the limit of the amount of condensation heat release to the steam flow
beyond which a steady state solution does not exist. The present computations are
performed where steam at M∞ = 0.8 flows around a NACA0012 airfoil (c = 0.1 m,
ε = 0.12) at Θ = 0. Upstream supersaturation ratio S∞ is increased at a fixed T∞
until the computations show oscillations, fail to converge and provide a steady state
solution. Table 6 lists the values of maximum upstream supersaturation ratio S∞ for
which steady state solution at a particular T∞ exists according to the current TSD
model. As T∞ is increased at fixed values of M∞ and airfoil geometry and angle
of attack, the steady state limiting S∞ decreases. Increasing the heat addition to the
steam flow beyond a certain amount, for example, beyond a maximum condensate
mass fraction generation on the airfoil surface of 3 %, resulted in the numerical
algorithm producing oscillations, and not converging to a steady state.

Virk & Rusak (2019) derived a transonic small-disturbance theory to describe the
physics of pure steam flow with non-equilibrium and homogeneous condensation where
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T∞ (in K) 375 400 425 450
S∞ 1.43 1.35 1.32 1.3

TABLE 6. Values of maximum S∞ for various T∞ at the given conditions.

thermodynamics of steam flow was modelled by the perfect-gas law. Comparisons
of numerical results of the current TSD model which takes into account the real-gas
effects with the perfect-gas model may provide meaningful insights into the sensitivity
of the TSD numerical results to thermodynamic modelling of steam.

First, a flow problem is solved using the two TSD models where pure steam
with free-stream conditions defined by M∞ = 0.8, T∞ = 375 K and S∞ = 0.8
(p∞= 0.87 bar) flows around a NACA0012 airfoil (c= 0.1 m, ε= 0.12) at zero angle
of attack (Θ = 0). The stagnation properties of the upstream fluid are: p0 = 1.23 bar,
T0=413 K and Φ0=34.3 %. Similarity parameters for the flow problem are: K=1.48,
Kt = 3.16 × 104, KG = 2.293, nc = 51.49 and hfg(T∞)/[K3CvvT∞(1 + Kr)] = 2.99.
No condensation is observed in any flow region for both flow cases because the
low upstream supersaturation ratio does not allow the flow to reach the critical
supersaturation ratio required for initiation of homogeneous nucleation anywhere in
the flow. The value of KG = 2.29 for a van der Waals gas is close to the perfect gas
KG = γv + 1= 2.33, and the thermodynamics of steam flow in these flow conditions
can be adequately described by the perfect-gas law. The solution of the two models
nearly overlap in most of the flow region.

The numerical results of the van der Waals gas TSD model are also compared to
perfect-gas TSD model for a condensing pure steam flow problem. For this, a pure
steam flow around a NACA0012 airfoil (c= 0.1 m, ε = 0.12) at zero angle of attack
(Θ = 0) and at free-stream conditions defined by M∞= 0.8, T∞= 375 K and S∞= 1.3
(p∞ = 1.41 bar) is considered. The stagnation properties of fluid are p0 = 2.24 bar,
T0= 426 K and Φ0= 43.3 %. Similarity parameters for the flow problem are K= 1.48,
Kt = 5.14× 104, KG = 2.291, nc = 51.49 and hfg(T∞)/[K3CvvT∞(1+Kr)] = 3.

Figures 28 and 29 show the distributions of the pressure coefficient and condensate
mass fraction along the airfoil surface, respectively. Figure 29 shows that the
perfect-gas TSD model predicts higher condensation and the condensation initiation
occurs relatively upstream in the flow compared to van der Waals gas TSD model.
The shock wave for the van der Waals gas model is located upstream and does not
show condensation compression effects as significant as in the perfect-gas model (see
figure 28). Due to significant condensation in the supersonic region ahead of shock
wave for the perfect gas, the shock wave also drifts downstream towards the trailing
edge as the pressure is increased in the local supersonic region. The condensation
compression ahead of shock wave and evaporation heat release behind the shock wave,
together reduce the shock wave strength considerably for the perfect-gas case relative
to the van der Waals gas solution. Thus, it can be concluded that the predictions
according to TSD models are sensitive to the thermodynamic modelling of the gas
for flows at high upstream pressures (p∞ > 2 bar) and temperatures (T∞ > 400 K).
Moreover, even for flows at low temperatures, which involve condensation initiation,
thermodynamic sensitivity is significant, although without condensation there is not
much difference between the predictions of the two TSD models. Real-gas behaviour
needs to be considered in describing the flow thermodynamics under such conditions
to improve modelling of the physical behaviour according to TSD theory.
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FIGURE 28. Distribution of −Cp at the NACA0012 airfoil surface for wet steam flow at
T∞ = 375 K, S∞ = 1.3, M∞ = 0.8 and Θ = 0 according to the perfect-gas and van der
Waals gas TSD models.
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FIGURE 29. Distribution of g at the NACA0012 airfoil surface for wet steam flow at
T∞ = 375 K, S∞ = 1.3, M∞ = 0.8 and Θ = 0 according to the perfect-gas and van der
Waals gas TSD models.

6. Conclusions
A transonic small-disturbance model is derived to describe the near-sonic flow and

thermodynamic properties of pure water vapour flow around a thin airfoil at a small
angle of attack. A van der Waals gas model describes the real-gas thermodynamic
behaviour of water vapour. An extended TSD equation (3.29) describes the flow
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field and is coupled with a set of ordinary differential equations (3.32)–(3.35) to
model the condensation field. A numerical algorithm based on the method of Cole
& Cook (1986) is used to iteratively solve the TSD equation and obtain predictions
of the velocity, temperature and pressure fields of the flow. Simpson’s rule is used
to integrate the ordinary differential equations and obtain the field of condensate
mass fraction. The TSD solution exhibits a nose singularity, which is removed by the
multiscale matched-asymptotic approach of Rusak (1993). The analysis gives a list
of similarity parameters that characterize the flow problem: the thickness ratio of the
airfoil ε, the scaled angle of attack Θ , the classical transonic similarity parameter
K, the real-gas similarity parameter KG, the scaled latent heat of condensation
hfg(T∞)/[K3CvvT∞(1 + Kr)], the upstream flow supersaturation ratio S∞, the ratio of
the time scales of convection to condensation Kt and the number of molecules in a
characteristic droplet nc.

To understand the effects of upstream conditions on the thermodynamic and
condensation fields of the flow, various wet steam flow problems around a NACA0012
airfoil are studied. In each one of these cases, the upstream conditions (T∞, S∞ and
M∞) are varied over a given range independently. It is noticed that, with an increase
in T∞ at constant values of M∞, S∞ and θ , the condensation region on the airfoil
surface increases in terms of the expanse and magnitude of the condensate mass
fraction. The point of initiation of condensation moves upstream as well. These
effects are attributed to the increase in Kt and decrease in nc as T∞ increases. The
increased condensation compression in supersonic regions, and increased evaporative
expansion in subsonic regions behind the shock wave, cause the strength of the
shock wave to reduce. The wave drag coefficient (Cd) increases almost linearly with
an increase in T∞. Similar effects are observed when S∞ is increased for fixed
values of M∞, T∞ and θ . However, in this case, the increase in condensation is a
result of higher local supersaturation values and an increase in Kt with increase in
S∞. The value of Cd increases nonlinearly with an increase in S∞. The effects of
independently increasing M∞ are the downstream movement and strengthening of the
shock wave. Condensation region on the airfoil surface increases in terms of expanse
and magnitude with an increase in M∞, although the point of condensation initiation
remains unchanged. The TSD results also confirm the similarity law of Zierep & Lin
(1967), relating the condensation onset Mach number to upstream stagnation relative
humidity, when an effective specific heats ratio (γe =KG − 1) is used in (5.1).

Increasing the angle of attack (θ ) for constant values of upstream conditions,
results in higher condensation compression effects on the suction surface. This is
caused by the increased flow acceleration on the suction surface, which leads to
higher supersaturation ratios and higher nucleation rates. The point of condensation
initiation also shifts upstream due to the same reason. The wave drag coefficient
Cd and lift coefficient Cl increase monotonically with an increase in θ . Comparing
the flow and condensation fields of wet steam around airfoils with the same chord
length and thickness ratio but with different geometries, reveals that NACA0012
airfoil produces the strongest shock wave and the highest condensation. The point
of initiation of condensation for the NACA0012 airfoil is also relatively upstream
compared to the circular arc and a modified airfoil. As a result, Cd is highest for the
NACA0012 airfoil. On the other hand, the optimum critical sonic arc airfoil exhibits
no supersonic speeds or condensation and has zero wave drag.

Predictions according to the current TSD model were also compared with
computations of the perfect-gas TSD model for steam flow with homogeneous
condensation. For flows at low upstream temperature (T∞ < 400 K) and with no
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condensation, the computed solutions according to the two models are almost the
same. However, for flows which involve condensation, thermodynamic sensitivity is
significant.

The present model is applicable to a steady, inviscid, two-dimensional and pure
(free of foreign nuclei) steam flow at near-sonic speed around a thin airfoil (with
small curvature and small thickness ratio) at a small angle of attack and with a
small amount of condensation. The airfoil surface is also assumed to be smooth
(and free of impurities) and does not have any thermodynamic interaction with the
flow. The present model is applicable to flow problems with upstream pressures
below 1.5 MPa and upstream temperatures below 450 K. Future studies will focus
on incorporating the effects of a viscous boundary layer, surface energy and surface
roughness of the airfoil into the TSD model. To deal with flows operating at higher
temperatures and pressures, a more accurate equation of state may be used to model
the real-gas thermodynamic behaviour. Unsteady effects shall also be included in
the model to better understand the critical limit of condensation beyond which the
flow and thermodynamic properties become oscillatory. An uncertainty analysis of the
computed results with respect to the empirical correlations in the condensation model
will be also be performed to relate results to practical applications.
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