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Abstract
Root lesion nematodes of the genus Pratylenchus are important pests in crop cultivation that

cause severe damage to crops throughout the world. P. neglectus is one of the most important

members of this genus. The present study aimed to select barley accessions with resistance to

P. neglectus in a greenhouse resistance test and to detect resistance quantitative trait loci

(QTLs). Infection rates have been found to vary greatly among different barley accessions;

however, immunity could not be found. An existing Igri £ Franka doubled-haploid mapping

population was used to map resistance genes after artificial inoculation with P. neglectus

under controlled environment. QTLs were found with a likelihood of odds score between

2.71 and 6.35 and explaining phenotypic variation of 8 to 16%.
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Introduction

Root lesion nematodes (RLN) of the genus Pratylenchus

are significant pests in crop cultivation throughout the

world. They are polyphagous in nature and feed on

several crops of economic importance like cereals, coffee,

corn, banana, legumes, potato, peanut and many fruits.

They are migratory endoparasites and cause severe root

damage on a wide range of crops while feeding mainly

in the cortical parenchyma. Some of the commonly

observed symptoms of infected plants are (1) massive

plant tissue necrosis, (2) sloughing of cortical and epider-

mal cells, (3) retarded development of lateral roots in

terms of length and number and (4) fewer root hairs

(Taylor et al., 1999; Vanstone and Russ, 2001). Till

today, 68 species of this genus are known. In Australia,

RLN have been identified as major pests in wheat cultiva-

tion (Taylor et al., 2000; Ogbonnaya et al., 2008). Exten-

sive work has been carried out in Australia to map

quantitative trait loci (QTLs) for RLN resistance using

different mapping populations in wheat. Williams et al.

(2002) mapped the P. neglectus resistance locus Rlnn1

in the Australian wheat cultivar Excalibur using a combi-

nation of bulked segregant analysis and genetic mapping.

In addition, several other RLN resistance QTLs were

mapped by studying the inheritance of RLN resistance

in wheat. Zwart et al. (2010) mapped four QTLs for

P. thornei and P. neglectus resistance in a doubled-hap-

loid (DH) population developed from a cross between

the synthetic hexaploid wheat line CPI133872 and

the bread wheat Janz., designated as QRlnt.lrc-6D.1,

QRlnt.lrc-6D.2, QRlnn.lrc-6D.1 and QRlnn.lrc-4D.1

on linkage groups 6DL, 6DS and 4DS. In the northern

parts of Germany, enormous yield loss has been reported

in winter barley, which was caused by P. neglectus,

P. crenatus, P. fallax and P. penetrans (Hesselbarth, 2006).

In the first phase of this project, screening of a

large collection of barley germplasm was carried out.
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Five hundred and sixty-five barley accessions encom-

passing cultivated (Hordeum vulgare) and wild species

(H. spontaneum) were screened for resistance against

P. neglectus (Keil et al., 2009). In the second part, a

biparental DH mapping population was used to map

QTLs. Greenhouse tests are comparatively costly and

much time consuming. Therefore, a molecular marker

approach shall be implemented to identify favourable

QTLs which reduce nematode infection rates. Results

shall be the basis for establishing a marker test to replace

expensive and time-consuming greenhouse test.

Material and methods

A total number of 565 barley accessions were selected for

screening with P. neglectus, comprising of 375 winter, 30

spring barley lines (H. vulgare ssp. vulgare) and 160 wild

species accessions (H. vulgare ssp. spontaneum). As a

result of limited glasshouse facilities, it was impossible

to test all accessions at a time. The plant material was

grouped to its geographical origin (four groups): Euro-

pean barley accessions (218), North American barley

accessions (129), Asian-African barley accessions (213)

and Australian barley accessions (5). As a result of the

large number of plants, the 565 accessions had to be

tested in three different experiments. Each experiment

contained a representative number of accessions from

each geographical region. For each experiment, about

186 to 190 accessions were tested in a completely

randomized block design. The accessions of each

experiment were tested as single plant in six replications.

A validation experiment was carried out in the following

way: 5% of the most resistant accessions of each exper-

iment, regarding their overall rank, were selected and

tested with six repeats under the conditions described

above. All the experiments were conducted in the glass-

house and in the climate chamber with 238C day and

188C night temperature. Seeds were germinated on wet

filter paper at 268C for 1 d in the dark. Each seedling

was placed in a 20 cm3 tube (12 cm (H) height £ 2 cm

(B) thickness 2.3 mm) filled with steam-sterilized sand.

Seedlings were inoculated with 400 P. neglectus juveniles

in 1 ml water medium after 10 d. Further steps were fol-

lowed as described in Keil et al. (2009). After 12 weeks,

the plants were uprooted and nematodes were extracted
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Fig. 1. (a–d) Chromosomal location of QTL for P. neglectus resistance in the barley DH population Igri £ Franka.
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from the sand and the roots were chopped using a

Baermann funnel placed in a misting chamber for 5 d.

Nematode suspension were collected in a bottle and

placed at 58C before counting. For QTL mapping, 126

F1 anther-derived DH lines from a cross Igri £ Franka

were used (Graner et al., 1991). A molecular map was

constructed by integrating diversity array technology

(DarT) markers into the already available Igri £ Franka

map (Stein et al., 2007). QTL analysis was carried out

by composite interval mapping using the program QTL

Cartographer V2.5 (Wang et al., 2010).

Results and discussion

A representative collection of 565 cultivated and wild

barley accessions was tested for P. neglectus resistance

in three different experiments. The mean number of

nematodes/plant in the three experiments was 3335,

2920 and 1546 (P ¼ 0.0001), respectively. Fifty per cent

of the accessions had 1564 to 2988, 5% had below 982

and another 5% had above 5048 nematodes/plant.

There was no barley accession without any nematode

infection, i.e. showing immunity to P. neglectus. The

number of nematodes/plant ranged from 350 to 12,000.

In a verification experiment with 32 barley accessions,

five accessions namely ‘BCB-39’, ‘AC Queens’, ‘BYDV

17’, ‘AC Legend’ and ‘Beysehir’ were identified as moder-

ately resistant. Among the ten least susceptible accessions,

three Turkish and only one German accessions were

found (Keil et al., 2009). In general, German accessions

had a tendency for high susceptibility to P. neglectus

infection, reflecting the lack of selection pressure. In

Turkey, breeders have selected for resistance towards

Pratylenchus species over decades due to a high infection

pressure. On the other hand, in Germany, nematode

resistance was not a breeding aim because this problem

arose only recently mainly due to narrow crop rotations.

To unravel the genetics of RLN resistance, an Igri £

Franka DH population was tested under greenhouse

and climate chamber conditions. The means of nematode

counts of both parents, Igri (861) and Franka (1591),

were significantly different (P , 0.05). Among the DHs,

a high phenotypic variation was observed for P. neglectus

infection. Transgressive segregants were also observed in

the population which indicates that favourable alleles are

dispersed between both parental lines. For mapping,

DArT markers and previously mapped restriction frag-

ment length polymorphisms were used. Five QTLs were

mapped with a likelihood of odds score between 2.71

and 6.35 and explaining phenotypic variation of 8 to

16%, as shown in the Fig. 1(a–d). Some QTL positions

are coincident with previously identified QTLs or major

genes conferring resistance to a diverse spectrum of

barley pathogens such as scald (Rhynchosporium secalis,

Rrs) (Graner and Tekauz, 1996; Garvin et al., 2000),

Pyrenophora teres (net type blotch disease; Graner and

Tekauz, 1996), and barley yellow dwarf virus (Ryd2;

Collins et al. 1996). The data provide clear evidence of

a polygenic inheritance of RLN resistance in barley with

major QTL having a big impact on infection rates. The

tightly linked markers flanking the QTLs will be turned

into diagnostic markers for marker-assisted selection of

resistant plants from segregating offspring.
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