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1. Introduction

It is proved in [15] that every group definable in an o-minimal expansion of the real field

is a Lie group (i.e., it can be equipped with a smooth manifold structure so that the

group operations are smooth), and it is natural to ask when the opposite is true.

Question 1. What real Lie groups are Lie isomorphic to groups definable in o-minimal

expansions of the real field?

A significance of the above question is that for groups definable in o-minimal structures

one can use the well-developed and powerful tools of o-minimality (see [17, 19] for more

details on o-minimality).

In this paper, we give a complete answer to Question 1 for solvable Lie groups. Let G be

a solvable connected Lie group. Assume G is definable in an o-minimal expansion of the

real field. Then, by properties of groups definable in o-minimal structures (see Fact 5.1)

G contains a definable normal torsion-free subgroup H such that G/H is compact.
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First we prove (see Theorem 4.4) that every torsion-free group definable in an o-minimal

structure is completely solvable. It follows then that a necessary condition for a connected

solvable Lie group G to be Lie isomorphic to a group definable in an o-minimal expansion

of the real field is that G contains a torsion-free completely solvable subgroup N such

that G/N is compact; and we prove (see Theorem 5.4) that this condition is sufficient.

Moreover, every solvable Lie group satisfying this condition is Lie isomorphic to a group

definable in the structure Ran,exp.

By the Levi decomposition, any connected Lie group G is the product of its solvable

radical R and a semisimple subgroup S. We know by results in [12] that any semisimple

Lie group is Lie isomorphic to a group definable in an o-minimal expansion of the field

of reals if and only if it has a finite center: The center of a semisimple group is discrete,

so any semisimple group definable in an o-minimal theory must have finite center. Now,

if S is a semisimple group with finite center Z(S), then S/Z(S) is semisimple of trivial

center, the adjoint representation is faithful, S/Z(S) is isomorphic to a linear group, and

by Theorem 4.3 in [12], it is algebraic, so S/Z(S) is definable. But any extension of a

definable group by a finite group is definable, which implies definability of S. Thus, to

answer Question 1 in the whole generality one needs to understand definability of actions

of semisimple groups on solvable groups.

1.1. The structure of the paper

In § 2, we recall basic facts about groups definable in o-minimal structures and Lie groups

that we need in this paper.

In § 3, we prove that every completely solvable connected torsion-free real Lie group is

Lie isomorphic to a group definable in the structure Rexp (see Theorem 3.6).

In § 4, we prove that every torsion-free group definable in an arbitrary o-minimal

structure is completely solvable (see Theorem 4.4).

In § 5, we answer Question 1 for solvable Lie groups (see Theorem 5.4 there).

2. Preliminaries

2.1. Solvable and completely solvable Lie groups

In this paper, by a Lie group we always mean a real Lie group.

Fact 2.1. For a connected solvable Lie group G the following are equivalent.

(1) G is torsion-free.

(2) G is simply connected.

(3) G is diffeomorphic to Rn for some n.

Proof. This follows from results in Ch. 2, § 3 in [6]. All the references in this proof refer

to this.

The equivalence between (2) and (3) is precisely Corollary 2.
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As for the other implications, Corollary 1 states that given any solvable connected Lie

group G one can find a decomposition

{0} 6 G1 6 G2 6 · · · 6 Gn = G

where Gi+1/Gi is a one-dimensional Lie group. Any torsion element in G appears as

a torsion element in Gi+1/Gi for some i , so G would not be contractible, which shows

that (3) implies (1). Conversely, using the Euler characteristic one shows that if G is

torsion-free then so is Gi+1/Gi in the above decomposition. So Gi+1/Gi is diffeomorphic

to R, as required.

Thus, for connected solvable Lie group G we use torsion-free and simply connected

interchangeably.

We now turn to completely solvable Lie groups and Lie algebras.

Definition 2.1. Let g be a Lie algebra.

(1) A flag of ideals in g is a chain

g = gn > gn−1 > · · · > g0 = 0

such that each gi is an ideal of g.

(2) A flag of ideals g = gn > gn−1 > · · · > g0 = 0 is called complete if dim(gi ) = i for

each i = 0, . . . , n.

(3) A real Lie algebra g is called completely solvable (also often called split-solvable) if

it has a complete flag of ideals.

A connected Lie group is called completely solvable (also often called triangular or

split-solvable) if its corresponding Lie algebra is.

By the functorial correspondence between simply connected Lie groups and their

Lie algebras, one obtains the following alternative definition of connected torsion-free

completely solvable Lie groups.

Fact 2.2. A connected torsion-free solvable Lie group G is completely solvable if and only

if there exist a sequence of subgroups

G = Gn > Gn−1 > · · ·G0 = {e}

such that each Gi is normal in G and Gi+1/Gi is one-dimensional simply connected Lie

group for i < n.

The following is a well-known example of a connected torsion-free solvable group Ẽ0(2)
that is not completely solvable (see [6, Ch. 2, § 6.4] and also [8, Ch. 1, § 1, Example 12(c)]).

Example 2.3. Let Ẽ0(2) be the semidirect product Ẽ0(2) = R2 oγ R, where for x ∈ R

γ (x) =
[

cos 2πx sin 2πx
−sin 2πx cos 2πx

]
.
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The group Ẽ0(2) is a connected torsion-free solvable group that is not completely solvable.

It is a simply connected group with the Lie algebra of all matrices

 0 θ x
−θ 0 y
0 0 0

 .
2.2. Groups definable in o-minimal structures

We refer to [17] for basics on o-minimal structures.

In this paper, we need two particular o-minimal expansions of the real field.

Fact 2.4 (See [20]). The expansion of the real field by the exponential function ex is

o-minimal. (This structure is denoted by Rexp.)

Fact 2.5 (See [18]). The expansion of the real field by the exponential function and all

restrictions of analytic functions to compact domains is o-minimal. (This structure is

denoted by Ran,exp.)

We now turn to groups definable in o-minimal structures.

The following two facts are proved in [15].

Fact 2.6. Let G be a group definable in an o-minimal structure. Then G can be equipped

with a definable topological manifold structure so that the group operations are continuous.

In particular, if G is definable in an o-minimal expansion of the real field then G is a

Lie group.

Using the above fact we always view groups definable in o-minimal structures as

definable topological groups.

Fact 2.7. Let G be a group definable in an o-minimal structure. If H < G is a definable

subgroup then H is closed in G. In particular, if G is definable in an o-minimal expansion

of the real field and H < G is a definable subgroup then H is a Lie subgroup of G.

The following is Theorem 1.2 in [14].

Fact 2.8. If G is a torsion-free group definable in an o-minimal structure then G contains

a definable one-dimensional subgroup.

The following fact follows from Corollary 2.15 in [15].

Fact 2.9. If G is a definably connected one-dimensional group definable in an o-minimal

structure then G is abelian.

Using the following ‘definable choice’ for groups, proved by Edmundo (see [5,

Theorem 7.2]), we always view quotients of groups definable in an o-minimal structure

as definable objects.
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Fact 2.10. Let G be a group definable in an o-minimal structure and let {T (x) | x ∈ X}
be a definable family of nonempty definable subsets of G. Then there is a definable
function t : X → G such that for all x, y ∈ X , we have t (x) ∈ T (x) and if T (x) = T (y)
then t (x) = t (y).

In the following fact we collect properties of definable torsion-free groups that we need
in this paper. For proofs we refer to [5] and also to [13].

Fact 2.11. Let M be an o-minimal structure and G a torsion-free group definable in M.

(1) There is a definable normal subgroup H < G such that the group G/H is
one-dimensional (hence abelian).

(2) G is definably connected and solvable. More precisely, there are definable subgroups

G = Gn > Gn−1 > · · · > G0 = {e}
such that Gi is normal in Gi+1 and the group Gi+1/Gi is a torsion-free abelian
group for i = 0, . . . , n− 1.

(3) If H < G is a definable normal subgroup then the group G/H is also torsion-free.

(4) If M is an expansion of a real closed field then G is definably diffeomorphic to Mn.

Proof. (1) Is Corollary 2.12 in [13]. (2) Follows immediately by induction on the
(o-minimal) dimension, and (4) is a direct consequence of (2). Finally, (3) is Corollary 2.3
in [13].

By analogy with simply connected Lie groups we define definably completely solvable
groups.

Definition 2.2. A torsion-free group G definable in an o-minimal structure is called
definably completely solvable if there exists a sequence of definable subgroups G =
Gn > Gn−1 > · · · > G0 = {e} such that each Gi is normal in G and Gi+1/Gi is a
one-dimensional group.

Remark 2.12. It follows from Facts 2.9 and 2.11 that in the above definition all groups
Gi+1/Gi are abelian and torsion-free.

3. Solvable connected torsion-free Lie groups are definable in Rexp

In this section, we prove that any connected torsion-free solvable Lie group of finite
dimension is isomorphic (as a Lie group) to a group definable in Rexp.

In order to prove this we need the following lemma about completely solvable Lie
algebras over R.

Lemma 3.1. Let g be a solvable finite-dimensional Lie algebra over R. The following are
equivalent.

(1) g is completely solvable.

(2) For any ξ ∈ g all eigenvalues of the linear operator ad(ξ) are in R.

(3) g is isomorphic to a subalgebra of the upper-triangular matrices tn(R) for some
n ∈ N.
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Proof. For the equivalence of (1) and (2) we refer to [8, Corollary 1.30].

The implication (3)⇒ (1) is easy.

Thus, we only need to see that (1) implies (3). Although this implication is stated in

several books, e.g., in [6, § 2], we could not find a reference for a proof of it. Here we

present an argument provided to us by E. B. Vinberg in a private communication.

(1) H⇒ (3). Using Ado’s theorem we can embed g into gl(V ) for some finite-dimensional

R-vector space V , and we assume that g is a Lie subalgebra of gl(V ).
Let ga be the minimal algebraic subalgebra of gl(V ) containing g, i.e., ga is the Lie

algebra of an algebraic subgroup of GL(V ), ga contains g and is the minimal such. (It

exists by a dimension argument.) By [6, Ch. 1, Theorem 6.2] we have [ga, ga
] = [g, g], in

particular, g is an ideal of ga and ga/g is abelian.

Let G < GL(V ) be a connected algebraic subgroup whose Lie algebra is ga . Clearly G
is defined over R.

Let g = gn > gn−1 > · · · > g0 = 0 be a complete flag of ideals in g. Consider the adjoint

action of G on ga . Let

G ′ = {g ∈ G : Ad(g)(gi ) ⊆ gi for each i = 0, . . . , n}.

G ′ is an algebraic subgroup of G and, by [10, Ch. 2, Proposition 1.4], its Lie algebra is

g′ = {ξ ∈ ga
: [ξ, gi ] ⊆ gi for each i = 0, . . . , n}.

Obviously g ⊆ g′, so by minimality of ga we obtain g′ = ga and G ′ = G.

Thus, each gi is an ideal of ga , and since ga/g is abelian, the chain g = gn > gn−1 >

· · · > g0 = 0 can be extended to a complete flag of ideals of ga . Hence, ga is completely

solvable. Replacing g by ga if needed we assume that g is the Lie subalgebra of an

algebraic group G defined over R.

Let Gu be the subset of G consisting of unipotent elements, and T < G a maximal

algebraic torus defined over R (as usual by an algebraic torus we mean a commutative

algebraic group consisting of semisimple elements). Then, by [2, Theorem III.10.6], Gu is

a normal subgroup of G and G = T ·Gu (a semidirect product).

We now consider R-points of groups G, Gu and T. We have G(R) = T(R) ·Gu(R), Gu(R)
is a normal subgroup of G(R), and g is the Lie algebra of G(R) viewed as a Lie group.

We can write T as a product T = D ·S of algebraic groups D, S defined over R such

that D(R) is isomorphic over R to a product of multiplicative group Gm(R) and S(R) is

compact.

We have G(R) = S(R) ·D(R) ·Gu(R). Let H = D ·Gu . Then H(R) is a normal subgroup

of G(R) and G(R) = S(R) ·H(R) with finite intersection S(R)∩H(R). It is not hard to

see that H is an R-split-solvable group; hence, by [2, Theorem V.15.4], we can choose a

basis in V so that every matrix in H(R) is upper triangular.

Consider the adjoint representation Ad : G(R)→ GL(g). The differential of this

representation is the adjoint representation ad : g→ End(g) of g. By the equivalence of (1)

and (2), for every ξ ∈ g all eigenvalues of ad(ξ) are real. Hence, by [8, Corollary 1.30],

there is a basis of g such that ad(g) consists of upper-triangular matrices; hence, Ad(G(R))
consists of upper-triangular matrices as well. Since the group of upper-triangular matrices
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does not have nontrivial compact subgroup it implies that the image of S(R) under adjoint

representation is trivial, hence S(R) is in the center of G(R), in particular, it is a normal

subgroup of G(R).
Let s be the Lie algebra of S(R) and h be the Lie algebra of H(R). Both s and h are ideals

of g and g is the direct sum g = s⊕ h. We already know that (after choosing a suitable

basis) H consist of upper-triangular matrices, hence h also consists of upper-triangular

matrices, so h has a faithful representation by upper-triangular matrices. The Lie algebra

s is abelian, hence it also has a faithful representation by upper-triangular matrices, e.g.,

by diagonal matrices. Taking the direct sum of these two representations we obtain a

faithful representation of g by upper-triangular matrices.

We also need the following fact due to Dixmier [4].

Fact 3.2. Let G be a connected Lie group whose Lie algebra g is completely solvable. Then

the exponential map expg : g→ G is surjective. If in addition G is simply connected then

expg is a diffeomorphism.

Remark 3.3. For n ∈ N let T+n (R) be the group of all upper-triangular n× n-matrices

with positive diagonal entries. Its Lie algebra is the algebra of all upper-triangular tn(R).
Let Expn : gl(n,R)→ GL(n,R) be the usual matrix exponentiation

Expn(M) =
∞∑

i=0

1
n!

Mn .

It follows from Fact 3.2 (and also can be seen by direct computations) that Expn maps

tn(R) diffeomorphically onto T+n (R). Also for any Lie subgroup G < T+n (R) the matrix

exponentiation Expn maps the Lie algebra g of G diffeomorphically onto G.

Lemma 3.4. Let G be a connected torsion-free completely solvable Lie group. Then G is

Lie isomorphic to a Lie subgroup of T+n (R) for some n ∈ N.

Proof. Let g be the Lie algebra of G. Since g is completely solvable, by Lemma 3.1, there

is an embedding ϕ : g→ tn(R) for some n ∈ N.

By the general theory of Lie groups and Lie algebras, there is a smooth group

homomorphism 8 : G → T+n (R) whose differential is ϕ.

By [6, § 2, Theorem 3.4(1)], the image 8(G) is a simply connected Lie subgroup of

T+n (R). Since a lift of an isomorphism between Lie algebras to corresponding simply

connected Lie groups is an isomorphism,8 is a Lie isomorphism between G and8(G).

Lemma 3.5. For every n ∈ N the restriction of the map Expn to tn(R) is definable in Rexp.

Proof. Using Jordan normal form, because the diagonal and nilpotent components of

each Jordan block commute, it is easy to see that the restriction of Expn to the set of

n× n-matrices whose eigenvalues are real is definable in Rexp.

https://doi.org/10.1017/S1474748016000098 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748016000098


448 A. Conversano, A. Onshuus and S. Starchenko

Theorem 3.6. Any connected torsion-free solvable Lie group is Lie isomorphic to a group

definable in Rexp.

Proof. Let G be a connected torsion-free solvable Lie group. By Lemma 3.4, G is Lie

isomorphic to some Lie group G ′ ⊆ T+n (R). Let g′ ⊆ tn(R) be the Lie algebra of G ′. Then

G ′ = Expn(g
′) by Fact 3.2, and G ′ is definable in Rexp by Lemma 3.5.

4. Torsion-free solvable definable groups are completely solvable

In this section, we prove that every torsion-free group definable in any o-minimal structure

is definably completely solvable.

We need the following result by Baro, Jaligot and Otero, which is Corollary 5.6 in [1].

Fact 4.1. Let G be a nontrivial definably connected solvable group definable in an

o-minimal structure. Then G has an infinite abelian characteristic (in particular normal)

definable subgroup.

We also need the following fact that follows from results in [9].

Fact 4.2. Let R be an o-minimal expansion of a real closed field with additive group

(R,+) and multiplicative group (R>0, ·). Then either (R,+) is R-definably isomorphic to

(R>0, ·), or every definable endomorphism of (R>0, ·) is 0-definable.

Proof. Theorem 4.1 in [9] asserts that if an o-minimal expansion of a real closed

field is not exponential, then it is power-bounded. By [9, Theorem B], if such a field

is power-bounded, then every definable endomorphisms of (R>0, ·) is 0-definable, as

required.

The following lemma about definable abelian subgroups of centerless definable groups

will be a key.

Lemma 4.3. Let R be an o-minimal expansion of a real closed field, let G be a centerless

definably connected definable subgroup of GLn(R) for some n ∈ N, and let A < G be a

definable torsion-free normal abelian subgroup of G. Then A is R-definably isomorphic

to a Cartesian power of the additive group of R.

Proof. Since A is a linear group, by [12, Proposition 3.8] it is definably isomorphic to an

algebraic linear group and by [12, Fact 3.1] there are definable subgroups Am and Aa of A
such that A = Aa × Am , Aa is definably isomorphic to a Cartesian power (R,+)k , and Am
is definably isomorphic to a Cartesian power (R>0, ·)l . If (R,+) is definably isomorphic

to (R>0, ·), there is nothing to prove.

Assume (R,+) and (R>0, ·) are not definably isomorphic. It is easy to see then that for

any definable automorphism σ of A we have σ(Aa) = Aa and σ(Am) = Am . Considering

action of G on A by conjugation we obtain that both Aa and Am are normal subgroups

of G. By Fact 4.2 every uniformly definable family of automorphisms of Am is finite.

Since G is connected, it implies that the action of G on Am is trivial; hence, Am is in the

center of G, but G is centerless. Thus, Am is trivial and A = Aa .
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We can now prove the main result of this section.

Theorem 4.4. Every torsion-free group definable in an o-minimal structure is completely

solvable.

Proof. By Fact 2.11, if G is a torsion-free group definable in an o-minimal structure

and N < G is a definable normal subgroup, then the factor group G/N is torsion-free

as well. Thus, by an easy induction on dimension, it is sufficient to show that every

torsion-free group G definable in an o-minimal structure has a definable one-dimensional

(hence abelian) normal subgroup.

We prove an existence of a definable one-dimensional normal subgroup by induction

on the dimension of G.

If dim(G) = 1 then there is nothing to prove.

Let G be a torsion-free group definable in o-minimal structure M with dim(G) = k
and we assume that every torsion-free group definable in M of dimension less than k has

a definable normal one-dimensional subgroup. We need to show that G has a definable

normal one-dimensional subgroup.

If G is abelian then we are done by Fact 2.8. Assume G is not abelian. If the

center Z(G) is nontrivial, then dim(Z(G)) < k; hence, Z(G) contains a definable normal

one-dimensional subgroup A. Obviously A is also normal in G.

Thus, we may assume that G is centerless. If G is a direct product G = G1⊗G2 of

definable proper subgroups then, by induction hypothesis, G1 has a definable normal

one-dimensional subgroup, and this subgroup is normal in G. Thus, we may assume that

G is not a direct product of definable proper subgroups. It follows then from Theorems 3.1

and 3.2 in [11] that there is a real closed field R definable in M such that G is definably

isomorphic to a subgroup of GL(n, R). Hence, we may assume that M is an expansion

of a real closed field R and G is a definable subgroup of GL(n, R).
By Fact 4.1, G contains a nontrivial normal definable abelian subgroup A, and by

Lemma 4.3 the group A is definably isomorphic to a Cartesian power (R,+)l .
Let P(A) be the set of all definable one-dimensional subgroups of A. Since A is definably

isomorphic to (R,+)l the set P(A) can be identified with the projective space Pl(R). In

particular, it is definable and definably compact.

The group G acts on A by conjugation and this action induces a continuous action of

G on the set P(A). To finish the proof of the theorem it is sufficient to show that under

this action G has a fixed point in P(A). It will follow from the following general lemma.

Lemma 4.5. Let H be a torsion-free group definable in an o-minimal expansion of a real

closed field. Assume H acts definably and continuously on a nonempty definably compact

set X . Then H has a fixed point in X .

Proof. We will do induction on the dimension of H . For h ∈ H and x ∈ X we denote by

h · x the image of x under the action of h.

Assume dim(H) = 1. Then, by [16], H is definably homeomorphic to the interval (0, 1).
Let x be an arbitrary element of X . Since X is definably compact, the limit limt→1 t · x
exists in X , and it is not hard to see that this limit is fixed by H .
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Assume dim(H) > 1. By Fact 2.11(2), H has a definable normal subgroup K < H with

dim(H/K ) = 1. By induction hypothesis, K has a fixed point in X . Let X ′ ⊆ X be the

subset of all points in X fixed by K . By the continuity of the action, it is a closed subset

of X , and since K is a normal subgroup of H the set X ′ is H -invariant.

The action of H on X ′ induces an action of H/K on X ′. Since H/K is one-dimensional,

it has a fixed point in X ′, and this point is fixed by H .

This finishes the proof of Theorem 4.4.

Combining Theorems 3.6 and 4.4 we obtain a complete description of torsion-free
solvable groups definable in o-minimal expansions of the real field.

Theorem 4.6. For a connected torsion-free solvable Lie group G the following are
equivalent.

(1) G is Lie isomorphic to a group definable in Rexp.

(2) G is Lie isomorphic to a group definable in an o-minimal expansion of the real field.

(3) G is completely solvable.

5. Extensions of compact groups by torsion-free groups

Theorem 4.6 provides a complete characterization of connected torsion-free solvable Lie
groups definable in o-minimal expansions of the real field. In this section we extend it to
a characterization of solvable Lie groups.

The following fact follows from [3, Propositions 2.1 and 2.2]. (Although the context
in [3] is of o-minimal expansions of a real closed field, the proofs of this propositions hold
in any o-minimal theory.)

Fact 5.1. Let G be a group definable in an o-minimal structure. Then G contains a
maximal normal definable torsion-free subgroup H .

In addition, if G is solvable and H < G is the maximal normal definable torsion-free
subgroup then the group G/H is definably compact.

Combining the above fact with Theorem 4.4 and using Fact 2.7 we obtain the following
corollary.

Corollary 5.2. Let G be a solvable Lie group Lie isomorphic to a group definable in an
o-minimal expansion of the real field. Then G contains a normal Lie subgroup H such
that

(a) The group H is connected torsion-free and completely solvable.

(b) The factor group G/H is compact.

Our goal is to show that the converse in the above corollary is also true.
We need a lemma.

Lemma 5.3. Let G be a Lie group and M an o-minimal expansion of Ran. Assume G
is a semidirect product of a normal Lie subgroup H and a compact subgroup K . If H is
Lie isomorphic to a group definable in M then G also is isomorphic to a group definable
in M.
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Proof. Let γ : K → Aut(H) be the group homomorphism given by the action of K on H
by conjugations. So G = H oγ K .

Any compact Lie group admits a structure of an algebraic group (see [6, Ch. 4, Corollary

to Theorem 2.3]); hence, K is Lie isomorphic to a semialgebraic group K ′ definable in

the real field. Let H ′ be a group definable in M Lie isomorphic to H . We have that

G is Lie isomorphic to H ′oγ ′ K ′ for some γ ′ : K ′→ Aut(H ′). The group Aut(H ′) is a

Lie group and the group homomorphism γ ′ from the compact Lie group K ′ into the Lie

group Aut(H ′) is a real analytic map on a compact set, so it is definable in Ran . The

corresponding group isomorphism between H oγ K and H ′oγ ′ K ′ is a Lie isomorphism

as required.

Theorem 5.4. For a solvable Lie group G the following are equivalent.

(1) G is Lie isomorphic to a group definable in Ran,exp.

(2) G is Lie isomorphic to a group definable in an o-minimal expansion of the real field.

(3) G contains a normal connected torsion-free completely solvable Lie subgroup H such

that G/H is compact.

Proof. Implication (1)⇒ (2) is obvious, and (2)⇒ (3) is Corollary 5.2. It remains to

show that (3) implies (1).

Let G be a solvable Lie group with a normal connected torsion-free subgroup H such

that the group K = G/H is compact.

Since K is a solvable compact connected Lie group it is abelian by [7, Lemma 2.2],

hence G/H is abelian and H contains the commutator subgroup G ′ of G. Since H is

simply connected, by [10, Theorem 5.1] and [6, Ch. 2, Theorem 3.4(1)], G ′ is closed in H ,

connected and simply connected. By a theorem of Malcev (see [6, Ch. 2, Theorem 7.1]), G
can be decomposed into a semidirect product T n F of a torus T and a simply connected

Lie subgroup F . It is not hard to see that we must have H = F .

By Theorem 3.6 the group H is Lie isomorphic to a group definable in Rexp, and by

Lemma 5.3 G is Lie isomorphic to a group definable in M = Ran,exp.

Corollary 5.5. A connected real Lie group with compact Levi subgroups is Lie isomorphic

to a group definable in an o-minimal expansion of a real closed field if and only if its

solvable radical R is Lie isomorphic to a group definable in Ran,exp. By Fact 5.1 and

Theorem 4.6 this happens if and only if the R has a maximal normal torsion-free definable

subgroup H which is completely solvable.

Proof. If G is definable, then R is definable as well, and by Theorem 5.4 R can be

defined in Ran,exp. Conversely, if R is definable and G has compact Levi subgroups, the

maximal normal torsion-free definable subgroup H of R is a Lie subgroup of G that is a

complement of any maximal compact subgroup K of G. Then G is the semidirect product

of H and K and Lemma 5.3 then implies definability of G.
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