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This paper describes a series of experiments using particle image velocimetry
to investigate the dynamic stall resulting due to a rapid pitching motion of a
flat plate. There exist in such unsteady separated flows multiple time-dependent
coherent structures, whose interaction and evolution are complex and nonlinear. The
experiments presented here are aimed at determining the behaviour of a dynamic stall
vortex system in the Reynolds number range 103 < Re < 104. Evidence is presented
for the development of the three-dimensional structure associated with the dynamic
stall vortex and its interaction with the no-slip boundary condition at the surface of
the pitching plate. The analysis presented suggests that a centrifugal instability exists,
and that the form of the three-dimensional structure is consistent with that expected of
a centrifugal instability. The structure and scale dependence of the flow are explored
using wavelet and Fourier methods, with the dependence of the flow on Reynolds
number examined, as well as the influence of spanwise end boundary conditions.
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1. Introduction

The flow around aerodynamic bodies undergoing rapid variation in angle of attack
exhibits stalling behaviour that differs from the steady case. This dynamic stall
is characterised by the separation of flow from near the leading edge and the
development of a strong vortex originating from the shear layer at the point of
separation (McCroskey, Carr & McAlister 1976; McCroskey 1982; Carr 1988). The
ubiquity of such unsteady separating flows means that a more in-depth understanding
of the processes governing dynamic stall would be advantageous to a variety
of applications. Highly manoeuvrable aircraft, for example, are susceptible to
leading-edge stall during high-pitch-rate manoeuvres (Lang & Francis 1985), and
the oscillatory relative velocity experienced by helicopter rotor blades (Ham &
Garelick 1968; Harris & Pruyn 1968) or wind turbines (Larsen, Nielsen & Krenk
2007; Ferreira et al. 2009; Buchner, Smits & Soria 2014; Buchner et al. 2015a;
Buchner, Soria & Smits 2015b) can induce similar flow behaviour. In general, flow

† Email address for correspondence: abel-john.buchner@monash.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

30
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-0371-3255
http://orcid.org/0000-0002-7089-9686
mailto:abel-john.buchner@monash.edu
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.305&domain=pdf
https://doi.org/10.1017/jfm.2017.305


Stability and 3D evolution of a transitional dynamic stall vortex 167

separation and stall is thought of as an operationally deleterious phenomenon; it can,
for example, be a source of inefficiency, or can cause structural vibration or produce
noise. Its existence in nature, however, shows that this is not always the case. Bird
and insect flight utilise the leading-edge vortex created by dynamic stall to provide
high instantaneous suction for acceleration and manoeuvring purposes (Ellington et al.
1996; Shyy et al. 2008), and there has been recent interest in applying observations
from nature to the development of micro air vehicles utilising unsteady propulsion
(Ol, Eldredge & Wang 2009b).

The behaviour of such flows is nonlinear and highly complex, with significant
variation as a result of relatively small changes in conditions. As such, developing
a fundamental understanding of the physical processes governing dynamic stall is
challenging. Nevertheless, the potentially broad practical applications of dynamic
stall motivate the need for a more thorough phenomenological understanding of its
governing physics before practical manipulation can be fully realised. One question
that may be posited, and that has been insufficiently addressed in the literature to
date, is that of Reynolds number dependence.

Much of the work on Reynolds number effects has been performed with a
view to applications in fighter jet manoeuvrability and helicopter rotor dynamics
and is therefore conducted at high Reynolds numbers or for high Mach numbers.
Of the literature that does exist at relatively low Reynolds number, such as that
of Baik et al. (2012), the focus has been on the practicalities (from an applied
engineering perspective) of force production. Such studies have mostly failed to find
any significant variation with Reynolds number above a threshold of order O(103).
This is because the forces, in the simplest analysis, scale with the circulation bound
to the airfoil as well as the added-mass effect due to airfoil acceleration, neither of
which are directly a function of Reynolds number (Brennen 1982; Anderson 2011),
but depend only on the velocity differential across the shear layer at the point of
separation (Buchner et al. 2014, 2015b). This shear layer strength is not a function
of Reynolds number, and indeed it has been shown that the dimensionless circulation
contained within the large-scale two-dimensional vortex structures associated with
dynamic stall does not depend on Reynolds number (Buchner & Soria 2014). Baik
& Bernal (2012) present counter-evidence for pitching and plunging airfoils with
Reynolds number of order O(104). They present evidence of variation in force
production with Reynolds number in the range 10 000–30 000, despite no variation
in the mean flow field being observed. That article is unclear as to the reason why
there is a Reynolds number dependence in the forces produced, but provides some
evidence of turbulent transition in the separated flow at approximately Re= 10 000.

The majority of the effort in studying Reynolds number effects has been focused on
laminar–turbulent transition in the boundary layer and its effect on the incipient stages
preceding the massive leading-edge separation that characterises dynamic stall, while
relatively little attention has been paid to the effect of Reynolds number on the post-
stall coherent structures, such as the leading-edge vortex. The work of Shreck, Faller
& Robinson (2002), for example, falls into this category, using shear stress sensors
placed in the vicinity of the leading edge to show small but consistent variation in
the initial flow reversal angle with Reynolds number in the range 4.8 × 104 6 Re 6
1.92 × 105. This effect is shown to be coupled with the variation in boundary layer
transition location measured in Shreck, Faller & Helin (1998). No conclusions are
drawn regarding the behaviour of the post-stall flow field. Ol et al. (2009a) state that,
although the Reynolds number has an effect on the size of the laminar separation
bubble before stall occurs, there appears to be only a very limited effect of Reynolds
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number on the post-stall behaviour. The work of Ramesh et al. (2014) empirically
indicates that Reynolds number plays a role in affecting the total suction that may
be maintained at the leading edge before boundary layer separation occurs; again,
no conclusion is made regarding the effect of Reynolds number on the flow after
separation has occurred. The surface pressure measurements on a pitching airfoil of
Robinson & Wissler (1988) and of Conger & Ramaprian (1994) agree that the effect
of Reynolds number is confined to the magnitude of the pressure coefficient peak at
the leading edge, and that this effect is only very minor.

Studies such as these have led to a conventional wisdom that Reynolds number is
of minor importance to dynamic stall, with its effects being primarily confined to the
pre- or incipient stages of stall. There exists, however, a dearth of data relating to the
Reynolds number dependence of the post-stall flow field behaviour. For the post-stall
behaviour, this assumption of Reynolds number independence has been insufficiently
validated and there remain questions as to the behaviour of the flow as it evolves
beyond the initial boundary layer separation and dynamic stall vortex rollup.

One of the primary effects of increasing Reynolds number in any flow is a transition
to an unstable, turbulent, three-dimensional state. Three-dimensional, three-component
velocity data from the tomographic particle image velocimetry (PIV) experiments
of Buchner et al. (2012) reveal the existence of three-dimensional substructure in a
dynamic stall vortex at Re= 7500 as it convects past the trailing edge of a pitching
plate, and into the wake region. The observations consist of significant spanwise
velocities in the dynamic stall vortex core, as well as vortex filaments associated
with, and azimuthally wrapped about, the dynamic stall vortex. An example of such a
structure encircling the dynamic stall vortex as it convects into the wake is illustrated
by isosurfaces of Q-criterion in figure 1(b), taken from Buchner et al. (2012). The
free-stream direction is from left to right and the trailing-edge position is indicated
by a red arrow. The large-eddy simulations of Garmann & Visbal (2011) show a
similar development of the three-dimensional structure within a dynamic stall vortex
system, and show that the rate at which this three-dimensionality develops is highly
dependent on Reynolds number. At Re= 5000, the flow in Garmann & Visbal’s study
is predominantly two-dimensional throughout the majority of the plate’s upstroke,
with strong three-dimensional structures appearing only upon growth and shedding
of the secondary and tertiary vorticity (figure 1a). At this Reynolds number, the
three-dimensional substructure is highly organised, consisting primarily of vortex
filaments azimuthally aligned about the perimeter of the dynamic stall vortex. In
contrast, at Re = 40 000, the three-dimensional substructure is much finer in scale,
less clearly organised and it appears much more rapidly at the beginning of dynamic
stall than at the lower Reynolds number. Similar transitional behaviour is observed
numerically by Visbal (2009) for flow over a plunging airfoil at Reynolds numbers
between Re = 10 000 and Re = 60 000. Neither Garmann & Visbal (2011), Buchner
et al. (2012) nor Visbal (2009) explore the development and Reynolds number
dependence of this substructure in a quantifiable way.

Understanding the organised three-dimensional substructure of the dynamic stall
vortex, and the physical processes leading to this structure, is important because it
is these features that are precursors to the transition to fully turbulent flow. Such
turbulent structures take their energy from the mean velocity gradient through the
production term, 〈u′iu

′

j〉∂Ui/∂xj, of the turbulent kinetic energy equation and thus must
affect the mean evolution of the dynamic stall vortex. The present study investigates
the existence of such features, and seeks to quantify their appearance and evolution,
as well as providing a physical explanation for the production of such structures in
the dynamic stall vortex system.
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FIGURE 1. (Colour online) Isosurfaces of Q-criterion showing the evolution of
three-dimensional structure in the form of azimuthally oriented vortex filaments in a
dynamic stall vortex. (a) The large-eddy simulations of Garmann & Visbal (2011) at
Re = 5000, with two different motion smoothing parameters (Eldredge, Chengjie & Ol
2009), and (b) the tomographic PIV measurements of Buchner et al. (2012) at Re= 7500,
experimentally confirming the existence of three-dimensional structures of this type. In
each case the free stream is from left to right. The tomographic PIV measurement covers
only the wake region, with a red arrow marking the trailing-edge location.

2. Problem description
The flow studied here results from a non-periodic rapid pitch–hold–return

manoeuvre of a flat plate. Upon completion of the motion sequence, the plate is
held steady to allow the generated structures associated with flow separation to
convect and evolve downstream. In studying a single, non-periodic, pitch–hold–return
motion, a single dynamic stall event can be observed in isolation.

The two primary parameters relevant to this flow are the Reynolds number, based
on the chord of the pitching plate

Rec =
U∞c
ν
, (2.1)

and the dimensionless pitch rate, by which the airfoil motion may be characterised,
defined as

Kc =
cθ̇

2U∞
, (2.2)

where θ̇ is the steady angular velocity of the flat plate, U∞ the free-stream velocity
and c the chord length.

The plate kinematics chosen for this experiment dictate that the plate pitches about
an axis coincident with its leading edge at a constant dimensionless rate of Kc = 0.7
to a maximum pitch angle of θ = 40◦, holds steady for 0.1T (where T is the time
taken to complete the movement) and returns to the zero-pitch-angle position at the
same dimensionless rate. Figure 2 illustrates the kinematics used in the present study.
This motion was chosen to fit within a canonical framework developed by the AIAA
Low Reynolds Discussion Group (now the ‘Massively Separated Flows Discussion
Group’) (Ol et al. 2010). There is a wealth of literature on pure pitch-ramp cases,
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FIGURE 2. Pitch-ramp motion profile used in the experiments, with temporal locations of
phase-ensemble measurements marked.

but in subsequently returning to zero pitch angle the current motion profile provides
a richer test case, with the opportunity to study a wider range of transient phenomena.
The pause time at the maximum pitch-up position is largely motivated by experimental
limitations to the pitch control mechanism, but also serves to separate out the effects
of pitch cessation and the beginning of the pitch-down motion.

Angular acceleration of the plate is sufficiently high such that the time taken
to accelerate to within 99 % of the constant pitch rate Kc = 0.7 is approximately
two orders of magnitude less than the ∼O(0.5–1.0T) time scale of the dynamic stall
vortex formation. Using the definition of Eldredge et al. (2009), the motion smoothing
parameter is a ∼ O(100). The motion may thus be considered a perfect pitch ramp.
Koochesfahani & Smiljanovski (1992, 1993) showed that the initial acceleration rate
served primarily to delay or bring forward the production of circulation but had no
significant effect on the flow structures themselves, once produced. The computations
of Gendrich, Koochesfahani & Visbal (1995) support this conclusion.

Selection of plate kinematics and free-stream flow properties is based on the desire
to produce data relevant to bio-inspired flight. The dimensionless rate of Kc= 0.7 is in
the range to be expected for birds and insects during rapid perching and accelerative
manoeuvres (Ol et al. 2009b), while the Reynolds numbers tested cover the range of
typical flight Reynolds numbers experienced by small birds and large insects (Shyy
et al. 2008). Measurements are presented for chord-based Reynolds numbers Rec =

1500, 2500, 4000, 5000, 7500 and 10 000. This Reynolds number range is relevant to
the design of unsteadily propelled micro air vehicles (MAVs), but is also of particular
fundamental physical interest, as there is evidence that the unsteady separating flow is
transitional or exhibits highly organised turbulence in this range (Garmann & Visbal
2011; Buchner et al. 2012).

3. Experiment
Experiments were performed to examine the structure and evolution of the flow

structures arising due to the pitching motion described in the previous section.
Results from three experimental databases are discussed. All three experiments were
performed under identical conditions, but differ in the orientation of the measurement
domain over which PIV velocity data are acquired, and the facility in which the
experiments were performed.

Two-component, two-dimensional (2C-2D) time-resolved velocity data from PIV
were acquired in a plane normal to the surface of the pitching plate, aligned with
the X–Y coordinate plane, and spanwise equidistant from the walls of the water
tunnel test section. The basic two-dimensional vortex structures produced by the
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FIGURE 3. Arrangement of measurement domains relative to pitching plate and primary
flow structures. (a) HT_XZ experiment, (b) VT_XZ experiment, and (c) relative placement
of all measurement domains. Coordinate system as indicated, with a right-handed Cartesian
coordinate system used.

pitching plate can be observed in this plane. Complete details of this X–Y plane
experiment are described in Buchner & Soria (2014). The spanwise variation of
the basic two-dimensional flow was measured by performing planar 2C-2D PIV in
an X–Z oriented plane parallel to the resting position of the plate (figure 3). By
measuring in this plane, an axially oriented slice of the leading-edge dynamic stall
vortex is observed. Two experimental databases in this plane orientation are available,
differing in the height, 1h, of the measurement plane above the suction surface of
the plate. The measurement domain in one instance is positioned at 1h= 0.10c such
that it captures an area of flow in the region between the plate’s surface and the
core of the dynamic stall vortex, whilst in the other instance the measurement plane
cuts directly through the core of the leading-edge dynamic stall vortex at 1h= 0.30c.
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Case Plane Facility 1h c (mm) Re Kc

VT_XY X–Y Vertical tunnel N/A 50 1500–10 000 0.70
VT_XZ X–Z Vertical tunnel 0.30c 50 1500–10 000 0.70
HT_XZ X–Z Horiz. tunnel 0.10c 100 5000–10 000 0.70

TABLE 1. Conditions of the experiment.

It has been observed by Buchner & Soria (2014) that the leading-edge vortex core
convects downstream at an approximately constant 1h ≈ 0.3c after t/T ≈ 1.00. The
1h= 0.30c measurement is conducted in a vertical water tunnel facility (VT) at the
Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC), with
symmetric no-slip spanwise end boundary conditions, while the 1h=0.10c experiment
is performed in the LTRAC horizontal water tunnel (HT) under the same kinematic
and scaling parameters but with asymmetric spanwise end boundary conditions. The
horizontal water tunnel is an open channel such that one end of the pitching plate
apparatus terminates perpendicularly to a no-slip wall, but the other end intersects a
free surface. In each case, the test section is five chord lengths wide. It will be shown
that the form of and range of scales inhabited by the three-dimensional structure in
the leading-edge dynamic stall vortex system are not significantly affected by the end
boundary conditions for the experiments performed. The use of two separate tunnels
serves to confirm that the phenomena observed are not facility-dependent. It must
be acknowledged, however, that experimental boundary conditions imposed by the
testing facilities have not been completely eliminated from the experiments, and this
should be kept in mind if making inferences about the truly infinite-span case.

To maintain succinctness, each experiment shall henceforth be abbreviated according
to the relevant facility and plane of measurement. Cases VT_XY, VT_XZ and HT_XZ
refer to experiments in the vertical tunnel and free surface horizontal channel, and
in the X–Y and X–Z Cartesian planes, respectively. The conditions tested by each
experiment are listed in table 1.

The airfoil used in the experiments is a flat plate with circular rounded leading
and trailing edges, constructed of carbon fibre, and with a thickness-to-chord ratio
of 2.3 %. Plate kinematics are controlled by a Parker–Hannifin AT6400 Indexer and
Rorze RD-023MS motor driver, programmed using Motion Architect 6000 software.
The drive motor microstepping resolution is 80 000 steps per revolution, allowing
smooth motion with no measurable vibration. The positional error due to control
system response and the finite stiffness of the pitching plate were determined via
a correlative procedure outlined in Buchner & Soria (2014). It was shown that the
deviation from the commanded motion was strictly less than 1.8◦, with an uncertainty
of ±0.27◦, which occurred due to overshoot at the cessation of motion. The overshoot
increased in magnitude with Reynolds number, but remains small compared to the
pitch amplitude. The measured motion profiles at Re = 1500 and Re = 10 000 are
shown in figure 4.

Each experiment has a unique optical image acquisition set-up, with details given
in table 2. The X–Y plane experiment (case VT_XY) provides time-resolved data,
with 100 image pairs being acquired during the pitch motion period and 217 samples
taken at each dimensionless time, t/T . Two PCO DiMax cameras were used in this
experiment, one at high resolution capturing flow separation at the leading edge, and
the other at lower resolution in the wake region. Only data from the high-resolution
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Case Camera Sensor size R (px µm−1) Samples, N

VT_XY PCO DiMax 2016× 2016 0.021 217
VT_XZ PCO.4000 (×2) 4008× 2672 0.024 300
HT_XZ ImperX Bobcat 4904× 3280 0.039 300

TABLE 2. Imaging parameters in each experiment.

0

20

40

10 2 3 4

FIGURE 4. Pitch-ramp motion profile used in the experiments (measured values).

leading-edge camera are presented here. This camera has a 2016 × 2016 pixel
complementary metal oxide semiconductor (CMOS) sensor, with the physical size of
each pixel being 11 µm× 11 µm. In each X–Z plane experiment, phase-locked data
are collected only at the phases marked A, B, C and D in figure 2, corresponding
to dimensionless times t/T = 0.76, 1.00, 1.50 and 2.00. A single ImperX Bobcat
digital charge-coupled device (CCD) camera was used in the experiment HT_XZ.
The camera has a 4904 × 3280 pixel high-resolution sensor array and each pixel
is 7.4 µm square. Images are acquired with a spatial resolution of 0.039 px µm−1.
Two PCO4000 cameras were used in the vertical tunnel experiment (VT_XZ), and
the velocity fields are stitched together to provide a continuous measurement across
the width of the tunnel test section with a spatial resolution of 0.024 px µm−1. Each
PCO4000 camera has a sensor size of 4008× 2672 pixels, and a physical pixel size
of 9 µm× 9 µm. Each camera is fitted with a 100 mm focal length Zeiss lens.

An in-house-developed iterative and adaptive multigrid cross-correlation parallelised
digital particle image velocimetry (MCCDPIV) algorithm (Soria 1996) is used
for cross-correlation of particle image pairs. The accuracy and uncertainty of
this algorithm for 2C-2D PIV image cross-correlation is assessed in Soria (1996)
and Soria, Cater & Kostas (1999). The random error associated with the PIV
cross-correlation algorithm is approximately 0.06 pixels. Given that the standard error
of the mean statistics reduces with the square root of the sample size, the standard
error for each experiment is 0.18 %, 0.14 % and 0.05 % of the free-stream velocity
in the VT_XY, VT_XZ and HT_XZ experiments, respectively. Derivative quantities
such as vorticity tend to have higher uncertainty associated with their measurement.
As outlined by Buchner & Soria (2014), the uncertainty in the instantaneous vorticity
in these experiments using the MCCDPIV algorithm is cω/U∞= 7.8, with a standard
error of the mean vorticity estimate of 0.19. The final interrogation window (IW)
sizes for the VT_XY, VT_XZ and HT_XZ experiments are 20, 32 and 48 pixels,
respectively. The interrogation windows are overlapped such that the spacing of the
resultant vector fields are 0.74 %, 0.67 % and 0.41 % of the respective chord length
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Case Init. IW (px) Final IW (px) Spacing (px) c

VT_XY 32× 32 20× 20 8 0.0074
VT_XZ 64× 64 32× 32 8 0.0067
HT_XZ 64× 64 48× 48 16 0.0041

TABLE 3. Processing parameters in each experiment.

in each case. The relevant PIV processing parameters used in each experiment are
given in table 3. In each case, image intensities are spatially homogenised using a
sliding mean filter, and background reflections are removed via ensemble mean image
subtraction. Bright reflections and regions with insufficient lighting are digitally
masked.

Several validation procedures are applied to reduce the incidence of spurious, non-
physical, vectors. A maximum particle displacement criterion is imposed, followed by
a local dynamic mean operator test (Raffel et al. 2007) on a 3 × 3 neighbourhood
of vectors. Correlation quality is increased through application of an eight-point Hart
filter, as well as a local χ 2 test utilising 13 points. Vectors resulting from a peak
correlation coefficient less than 0.6 are rejected. Any vectors invalidated by these
criteria are replaced via mean vector interpolation from nearest neighbours.

4. Results and discussion
4.1. Two-dimensional base flow

When a plate pitches rapidly to high angle of attack, the boundary layer separates
from its surface and vortices are formed at both the leading and trailing edges. The
strength of these vortices grows with time as circulation is continually added from
the points of separation until each vortex sheds and convects away from the plate’s
surface. This process is documented in detail by Buchner & Soria (2014). Figure 5
illustrates the evolution of the basic two-dimensional flow by contours of ensemble-
averaged vorticity derived from the PIV measurements. The fields are at Re= 10 000
at selected times t/T = 0.225, 0.45, 0.775 and 1.00. Every fourth velocity vector is
given. Both the pitch-up and pitch-down motions produce a series of small vortices
from the trailing edge, which interact and convect downstream, forming a jet of fluid
downwards in the wake. At the leading edge, which is fixed in space, circulation
accumulates in a tight leading-edge dynamic stall vortex, whose interaction with the
no-slip condition at the suction surface of the plate subsequently produces secondary
vorticity opposite in sign to the primary dynamic stall vortex.

This article focuses on the behaviour of the leading-edge dynamic stall vortex
only. The morphology of the dynamic stall vortex is illustrated in detail in figure 6,
with a comparison between Re = 1500 and Re = 10 000. During its formation, the
dynamic stall vortex interacts with the no-slip boundary condition at the surface of
the plate. This interaction induces secondary vorticity between the primary dynamic
stall vortex and the plate’s surface, which is illustrated in figure 6 in red. During the
return stroke of the plate, there is a rapid growth in the strength and extent of the
secondary vorticity. This vorticity is opposite in sign to the primary vortex, and has
been previously observed in similar flows (e.g. Soria et al. 2003; Ol 2009; Buchner
et al. 2012). Eslam Panah, Akkala & Buchholz (2015) concluded that this no-slip
interaction and production of secondary vorticity plays a key role in regulating the
leading-edge vortex strength.
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FIGURE 5. (Colour online) Ensemble-averaged vorticity fields at Re= 10 000: (a–d) t/T =
0.225, 0.45, 0.775 and 1.00.

It is during the plate’s return stroke that this small secondary region of opposite
vorticity peels off from the plate’s suction surface and begins to envelop the primary
dynamic stall vortex from the upstream side. Significant variation is observed at this
point in the behaviour of this vorticity as a function of Reynolds number. At low
Reynolds number, some fraction of the secondary vortex separates from the bulk
and begins to orbit the primary dynamic stall vortex. Figure 6(a) shows just this
behaviour, with the clockwise orbit of the secondary vorticity at this point in time
halfway complete. The separation occurs at roughly t/T = 0.55, coinciding with the
re-acceleration of the plate in the return stroke. The orbiting component rejoins the
bulk secondary vorticity after completing a single revolution. At higher Reynolds
numbers of 4000, 5000 and above, this effect is observed to weaken (see Buchner &
Soria 2014, figures 13 and 14), and the secondary vorticity tends instead to remain
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FIGURE 6. (Colour online) Spanwise-normalised vorticity (cωz/U∞) distribution in the
vicinity of the leading edge at t/T= 0.76 for (a) Re= 1500 and (b) Re= 10 000. Diagrams
are presented in coordinates aligned with the pitching plate, and the free-stream direction
is from (a) to (b).

coherent, slowly spreading about the periphery of the primary dynamic stall vortex
from the upstream side.

These flow features form the two-dimensional basic flow from which three-
dimensional features may evolve, a process that is explored in subsequent sections.

4.2. A centrifugal instability
A centrifugally unstable rotating flow develops vortex filaments oriented azimuthally
about the primary unstable vortex, and with a short wavelength in the axial direction
(Williamson 1996). These are often referred to as ‘streamwise vortices’ or ‘rib
vortices’ (Wu et al. 1994); or, when occurring in a boundary layer over a curved
surface, as ‘Görtler vortices’ (Görtler 1954). The strongly rotational nature of the
current flow suggests that centrifugal instabilities may play a role, and indeed the
three-dimensional structure identified by Garmann & Visbal (2011) and Buchner et al.
(2012) associated with the leading-edge dynamic stall vortex appears to take a form
consistent with the existence of such a centrifugal instability.

Rayleigh (1917) developed a criterion for the identification of centrifugally unstable
flow for the case of axisymmetric inviscid rotating flows with closed streamlines.
Rayleigh’s criterion states that for instability to occur the angular momentum of the
fluid must decrease with radial distance from the centre of rotation. The leading-edge
vortex in the current experiment is however exposed to an asymmetric strain field
imposed due to the no-slip boundary condition at the surface of the plate. The
problem of determining the stability characteristics of the flow thus requires an
analysis applicable to generalised two-dimensional base flows where the perturbation
and growth of a three-dimensional centrifugal instability do not occur symmetrically
about the axis of the revolving fluid. Sipp & Jacquin (2000) provide such a criterion
as

β = 2(R−1
‖u‖ +Ω)(ωz + 2Ω)< 0, (4.1)

where R is the algebraic radius of curvature of the unstable streamline, defined by
Theisel (1995) as

R= ‖u‖3(u2vx − v
2uy)

−1. (4.2)
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FIGURE 7. (Colour online) Centrifugal instability in the leading-edge dynamic stall vortex
system. Examples at t/T = 1.00 for (a) Re = 1500, (b) Re = 5000 and (c) Re = 10 000.
Regions susceptible to centrifugal instability, as defined by β < 0 per (4.1), are shaded
grey. Blue and red contour lines, respectively, represent negative and positive spanwise
vorticity and are spaced at cωz/U∞ = 10 intervals.

This modification to the Rayleigh criterion is valid for generalised two-dimensional
base flows and, unlike the earlier formulation of Bayly (1988), accounts for the
Coriolis force due to constructing the equations of motion in a frame rotating with
the fluid with angular velocity Ω . In the current experiment the angular velocity Ω
of the reference frame is equal to the pitch rate of the plate, θ̇ .

The non-axisymmetric Rayleigh criterion reveals that areas of centrifugal instability
exist about the perimeter of the leading-edge vortex core, especially in the neighbour-
hood of the secondary vortex. These regions are indicated in figure 7 by grey shading.
As outlined by Rayleigh (1917), centrifugal instability arises because of the need for
a rotating flow to satisfy conservation of both kinetic energy and angular momentum.
In (4.1), a mismatch between the signs of the vorticity and streamline curvature
causes a centrifugally unstable condition such that, for both of these quantities to
be conserved, rotation begins about the azimuthal streamlines. It is the interaction
between the counter-rotating primary and secondary dynamic stall vortices that yields
instability in this flow.

Being a second-order derivative quantity, the modified Rayleigh criterion (4.1) is
subject to noise, but it is clear from figure 7 that the leading-edge vortex is bounded
by a region of instability with, in particular, the existence of a strong negative region
of the Rayleigh criterion in the region directly upstream of the leading-edge vortex.
This is the region of genesis of three-dimensionality in the leading-edge vortex,
and matches the region in which significant three-dimensional structure has been
observed to develop most strongly both experimentally (Buchner et al. 2012) and
computationally (Garmann & Visbal 2011).

The theoretical linear growth rate of a centrifugal instability in the inviscid limit,
and for vanishingly small axial wavelengths, can be estimated for these flows by the
real part of the square root of the negative of the Rayleigh criterion

σc =
√
−β ∈R. (4.3)

The maximum growth rate for the centrifugal instability of the leading-edge vortex
occurs in the region bounded by the leading-edge vortex and the secondary vorticity
and is plotted in units of radians per second in figure 8 against dimensionless time,
t/T , for Reynolds numbers 1500, 5000, 7500 and 10 000. These values were computed
from the temporally resolved data of the case VT_XY. Uncertainty in the measurement
of the growth rate, due to velocity measurement uncertainty, is represented by the
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FIGURE 8. Growth rate of the centrifugal instability against dimensionless time, showing
increasing growth rate with Reynolds number for Re = 1500, 5000, 7500 and 10 000.
(a) Dimensional quantities, and (b) normalised by the chord length and free-stream
velocity. Shading indicates the growth-rate error estimate.

shaded areas. The growth rate curves collapse well with the scaling σ̂c = cσc/U∞,
except in a temporal window towards the end of the pitching cycle, within which
there remains a trend of increasing dimensionless growth rate with Reynolds number.
Growth-rate curves for Re=2500 and 4000 follow the same behaviour, but are omitted
for clarity.

A separate, phase-averaged experiment was conducted under the same conditions as
experimental case HT_XZ, and symbols representing the growth rate calculated from
these data are shown in figure 8(b) for Re=5000–10 000. These results match the case
VT_XY growth-rate results within the error estimate, indicating that these results are
repeatable and insensitive to spanwise end boundary conditions.

Four distinct temporal domains can be observed in the behaviour of the scaled
growth-rate curves given in figure 8(b). These are delineated in the figure as (i),
(ii), (iii) and (iv). During the initial stages of the plate’s pitch-up motion, region
(i), the leading-edge vortex is small and close to the plate’s leading edge, making
estimation of any unstable growth rate inaccurate. Data are not presented in this
region. Region (ii) encompasses the latter stages of the plate’s pitch-up motion, and
significant variability may be observed in the instability growth rate. During this
time, multiple small discrete vortices are formed, which subsequently merge into the
primary dynamic stall structure. This rapidly changing topology drives the fluctuations
in centrifugal growth rate seen during this period. The curves are, however, seen to
collapse with Reynolds number within the amplitude of this variability. During the
third temporal domain, region (iii), approximately corresponding with the return pitch
motion of the plate, the collapse with Reynolds number is incomplete, suggesting that
the instability is more persistent at higher Reynolds numbers, and we may expect to
see this impact the three-dimensional arrangement of the flow during this latter part
of the pitching cycle. Subsequent to cessation of the plate’s pitching motion, region
(iv), the growth rate is experimentally indistinguishable from zero.

4.3. Spanwise measurements
To investigate the impact of the centrifugal instability on the three-dimensional
arrangement of the leading-edge vortex system, velocity data are required over the
spanwise dimension. Experiments were performed in the X–Z plane for this purpose,
as described in § 3, allowing the direct observation of any spanwise variability.
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FIGURE 9. Phase-averaged (a,b) and root-mean-square (c,d) streamwise velocity
component. Values at y= 0.3c; (a,c) Re= 1500 and (b,d) Re= 10 000.

Figure 9 shows the ensemble average and root mean square (r.m.s.) of the
streamwise velocity component in the plane of measurement for case VT_XZ, plotted
against the streamwise coordinate. The large negative streamwise phase-averaged
velocity values in figure 9(a,b) confirm the position of this measurement plane within
the leading-edge vortex core, slightly below its centre. In both the Re = 1500 and
Re = 10 000 cases the peak reverse streamwise flow occurs at t/T = 1.00 and is of
order O(1). As time progresses, the peak reverse streamwise flow location travels
aftwards with the passage of the leading-edge vortex, passing the trailing edge by
t/T= 2.00. As the dynamic stall vortex passes, the velocity field re-establishes a value
close to ū/U∞ = 1. Given the large velocity gradients near the vortex core, the mean
velocity observed in the X–Z measurement plane is quite sensitive to small variations
in the core location relative to the X–Z measurement plane and in the morphology
of the leading-edge vortex. For example, a clear difference between the early-time
(t/T = 0.76) streamwise phase-averaged velocity profiles at each Reynolds number
is observed. The positive peak at x/c ≈ 0.3 is a result of the more complex flow
field at Re = 1500 illustrated in figure 6(a). The switch in sign between t/T = 0.76
and t/T = 1.00 relates to the movement of the secondary vorticity out of the X–Z
measurement plane as it completes its orbit around the primary leading-edge vortex.
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FIGURE 10. (Colour online) Phase-averaged and root-mean-square streamwise velocity
component, for t/T = 0.76 (a,b) and t/T = 1.00 (c,d). Values at y= 0.3c; (a,c) Re= 1500
and (b,d) Re= 10 000.

Despite the sensitivity of the mean streamwise velocity to the precise relative
placement of the X–Z measurement plane and leading-edge dynamic stall vortex core,
the r.m.s. values given in figure 9(c,d) are instructive in providing an understanding of
the dynamic stall vortex’s structure. This is especially true away from the vortex’s core
location, where the velocity gradients in the y-direction are lower and the observed
velocities are thus less sensitive to the measurement plane’s location. In general, the
r.m.s of the streamwise velocity component in the X–Z measurement plane displays
three peaks. This is especially true at early times. In order of increasing streamwise
position, the locations of the three peaks correspond to the upstream edge, core and
downstream edge of the leading-edge vortex system. At higher Reynolds numbers,
illustrated in figure 9(b,d) for Re= 10 000, the downstream peak is less prominently
separated from the core peak. The upstream peak, however, remains distinct from the
core and under scaling by the free-stream velocity is of greater magnitude, reaching
√

u′u′/U∞≈ 0.65, compared to
√

u′u′/U∞≈ 0.20 at t/T = 0.76 in the Re= 1500 case.
A comparison of the VT_XZ case data in the X–Z plane with that from the

VT_XY case is necessary to ensure consistency between the experiments and to
assess the level of variability across the Z-span. Figure 10 directly compares the
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FIGURE 11. (Colour online) Instantaneous normalised vorticity fields. Case VT_XZ at
t/T = 0.77 and 1h= 0.3c, for (a) Re= 1500, (b) Re= 5000 and (c) Re= 10 000.

streamwise velocity component from the X–Y plane measurement with that taken
from the X–Z plane, averaged across the Z-span of the measurement. A comparison
of the r.m.s. of the streamwise velocity component is also made. The curves for mean
and r.m.s. of the streamwise velocity component generally follow the same pattern
in each experiment, with variability in the Z direction accounting for discrepancies
between the curves of up to approximately 10 %–15 % of the maximum mean velocity
value. That these discrepancies are small leads us to conclude that the experiments
are comparable and that spanwise statistical variability in the VT_XZ experiment is
small compared to the maximum flow velocities.

The vorticity fields shown in figure 11 provide some insight into the arrangement
of the flow within the dynamic stall vortex at smaller scales. The figure represents
the X–Z plane at 1h = 0.3c, from the VT_XZ experiment. The contours depict
instantaneous through-plane vorticity, cωy/U∞, at t/T = 0.76 for three Reynolds
numbers, Re = 1500, 5000 and 10 000. The core of the dynamic stall vortex lies
at approximately x/c = 0.3, and the free-stream direction is from top to bottom. In
each of the higher Reynolds number measurements (figure 11b,c), a spanwise band
of positive and negative fluctuating vorticity may be seen upstream of the vortex
core. This feature does not appear at Re = 1500 (figure 11a), in which case it may
be observed that the flow’s arrangement is dramatically different. At Re= 1500, the
dynamic stall vortex substructure appears dominated by larger-scale features, with a
size of the order of the vortex radius.

Small-scale features are also seen within the dynamic stall vortex core at Re= 5000
and Re = 10 000. The region dominated by fluctuating vorticity in these figures is
smaller for the higher Reynolds number case. At Re = 5000, there appears to be a
region of strong fluctuation immediately downstream of the dynamic stall vortex core,
at approximately 0.5< x/c< 0.6. This is consistent with the more distinct downstream
r.m.s. peak in figure 10(a), compared to the Re= 10 000 measurement in figure 10(b).

The 1h = 0.1c measurement plane (case HT_XZ) allows the visualisation of
the region of the flow between the dynamic stall vortex core and the surface of
the pitching plate. Such an instantaneous velocity field captured at t/T = 1.00
at Re = 7500 is represented in figure 12. Shading of blue through red indicates the
magnitude of the velocity in the spanwise direction. It is clear that some phenomenon
exists wherein positive, and subsequently negative, regions of spanwise velocity are
arranged alternating in the spanwise direction. The spanwise velocity fluctuations
manifest over a broad range of scales, and would be consistent with the existence of
vortices lying parallel to, and intersecting, the measurement plane.
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FIGURE 12. (Colour online) Instantaneous velocity field at Re = 7500, case HT_XZ at
t/T = 1.00. The Y-coordinate is y= 0.1c. Colours represent spanwise velocity, and solid
black lines represent normalised through-plane vorticity contours.

Overlaid on the colour map are contour lines of normalised through-plane vorticity,
cωy/U∞. The arrangement of vorticity in this instantaneous field differs from the
arrangement of the spanwise velocity component fluctuations. Vortices are seen
intersecting the plane of measurement upstream of the dynamic stall vortex core,
consistent with the vorticity fields in figure 11. As with the spanwise velocity
component fluctuations, these occur on a range of scales. There is relatively little
through-plane vortex activity in the region between the vortex core and the plate
(0.2 < x/c < 0.5) but rather activity is restricted almost exclusively to the more
upstream region.

The measurements in figures 11 and 12 suggest a general three-dimensional
arrangement consisting of vortices lying in the 1h= 0.1c plane, which are wrapped
azimuthally around the upstream side of the dynamic stall vortex intersecting both the
1h = 0.1c and 1h = 0.3c planes. This substructure arrangement might be expected
in the case of a centrifugal instability of the leading-edge dynamic stall vortex
(Görtler 1954; Williamson 1996; Canals & Pawlak 2011), and thus supports the
results of the inviscid Rayleigh analysis discussed in § 4.2 for Reynolds numbers
above approximately 4000. There is some evidence that these vortex filaments also
exist at the downstream bound of the dynamic stall vortex, perhaps as a continuation
of the azimuthally wrapped filaments observed on the upstream edge. This is made
most clear at intermediate Reynolds numbers by the downstream fluctuating vorticity
in figure 11(b). Illustrations are provided in figure 13 depicting the salient features
in each plane of measurement.

4.4. Scale decomposition via wavelet analysis
4.4.1. Method

The non-periodic, statistically non-stationary nature of the current experiment
presents a challenge in attempting to quantify the scale-dependent features of the
flow. Fourier analysis and other related methods may not be used. In decomposing
a signal into sinusoidal functions, these methods necessitate an assumption of signal
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FIGURE 13. (Colour online) (a) Illustration of the structure of the leading-edge dynamic
stall vortex, showing the relative position of each spanwise X–Z measurement plane and
coloured contours representing spanwise vorticity measured at Re= 10 000 and t/T = 1.00.
The key features visible in each measurement plane are illustrated in (b) for 1h = 0.1c
and (c) for 1h= 0.3c.

periodicity over the domain of measurement, thus discarding information regarding
non-periodic, unsteady features of the flow. The wavelet transform provides a method
by which non-periodic signals can be decomposed into a finite series of basis
functions at various scales without loss of spatio-temporal information. Wavelet
decomposition was applied to the present experimental dataset.

Wavelet analysis decomposes a signal using a localised, non-periodic basis function,
called the wavelet function, which forms an orthogonal basis for the signal. The
well-proven Daubechies wavelet construction (Daubechies 1988) is chosen for this
study due to its common use and simplicity of implementation. The Daubechies
wavelet has also previously been applied to turbulent flows, both computationally and
experimentally (see e.g. Qian & Weiss 1993; Katul & Parlange 1994; Weng & Lau
1994; Li et al. 1999). The wavelet decomposition function,

ψ(x)=
N−1∑
k=0

(−1)kckφ(2x+ k−N + 1), (4.4)
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FIGURE 14. Numerical reconstruction error (a), and the Daubechies D16 wavelet basis
function (b).

is derived by taking differences, as described in Newland (1995), from a scaling
function,

φ(x)=
N−1∑
k=0

ckφ(2x− k), N even, (4.5)

which has the basic property that it may be dilated horizontally along the decomposition
dimension, x, without loss of similarity. Additionally, φ(x) will be orthogonal
to itself in any translated position φ(x − m), where m is an integral value. The
decomposition dimension may be spatial, or temporal, and in the present study
is defined spatially. This scaling function achieves its dilative qualities through
its self-referential construction wherein φ(x) is dependent on values of φ in the
neighbourhood of x. The terms, ck, in (4.4) and (4.5) are scalar coefficients, the
selection of which must necessarily satisfy certain strict conditions in order for the
wavelet expansion to form an accurate representation of the original signal, as outlined
in Strang & Fix (1973) and Strang (1989).

A family of Daubechies wavelet bases is built by varying the number of coefficients
used. An error analysis was performed on the accuracy of reconstruction of discrete
velocity fields representing the dynamic stall obtained from 2C-2D PIV data. It is
found that the r.m.s. error, ε, of the reconstructed signal from the original is generally
less than 1 % of the flow velocity, but with a minimum error using a Daubechies
wavelet with 16 coefficients (figure 14a). The resulting D16 wavelet function is shown
in figure 14(b), with the range over which the function is defined normalised to unity.

The discrete wavelet transform is sequentially mapped in two spatial dimensions
using Mallat’s pyramid algorithm (Mallat 1989). High-pass, Hj, and low-pass, Lj,
filters, based on the coefficients of the scaling and wavelet functions, are applied to
the velocity field, and the resulting approximation coefficients downsampled before
further filtering is applied.

For a signal of length L0, the wavelet transform can be calculated using Mallat’s
filter cascade with J levels. If aJ

= f (x), where aJ represents the initial choice of
approximation coefficients, then for j = J, (J − 1), . . . , 1 the low- and high-pass
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Scale number, Char. length,
j λj/c

0 ∞

1 0.6
2 0.3
3 0.2
4 0.15
5 0.12
6 0.10
7 0.086
8 0.075

TABLE 4. Characteristic length scales for the multi-resolution wavelet analysis.

filters can be applied as per (4.6) to successive approximation coefficients to distil
the coefficients of each scale from the original signal:

aj−1
= Ljaj,

bj−1
=Hjaj.

}
(4.6)

The detail coefficients bj represent the decomposition of the signal at each scale, j.
The 2C-2D PIV data are padded to ensure a signal of size 2m

×2n samples, where m
and n are positive integral values. The resulting multi-resolution scale decomposition
consists of nine separate scales.

The signal can be reconstructed, once the desired filtering and/or modification has
been performed in wavelet space, using the reverse process as in (4.7):

aj
= LT

j aj−1
+HT

j bj−1. (4.7)

If the process is completed for j= 1, 2, . . . , J, then aJ
= f̂ (x), where f̂ (x) is the fully

reconstructed velocity field. If it is desired that only a subset of the original velocity
field’s composition is represented, then the range of scales, j, can be restricted. The
physical spatial wavelength range to which each scale relates can be approximated by

λj =
L0

2j
, (4.8)

where L0 is the size of the measurement domain, and j is the scale number, ranging
from 0 through (J− 1). The minimum measurable wavelength depends on the ratio of
physical spatial resolution and the sample length of the measurement. This comparison
must, however, be approached with caution: scale and wavelength are not entirely
synonymous, as no assumption of periodicity is made by the wavelet transform. The
characteristic length scales for each level of the multi-resolution analysis for the
present data are given in table 4.

4.4.2. Reconstructed scales
Over the set of nine scales reconstructed from the phase ensemble data, there

exist significant variations in both structural arrangement and energy content by scale.
Scale 0, a constant, represents a spatial mean of the velocity field, while increasing
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FIGURE 15. (Colour online) Multi-resolution scale reconstruction by wavelets. Scales 2–5
(top to bottom) at Re= 7500, t/T= 1.00, displaying details of spanwise variation in vortex
substructure. Red colouring represents the streamwise velocity, while spanwise velocity
is represented by the blue contours. Data are taken from (a) case VT_XZ and (b) case
HT_XZ, at 1h= 0.3c and 1h= 0.1c, respectively.

scale number implies diminishing feature size. Each one of these scale reconstructions
represents features of the flow that vary over a length scale of the order given by
table 4. Mean-square maps of selected reconstructed scales are presented in figure 15
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to show regions of the flow in which fluctuations of each velocity component exist at
each characteristic length scale. The examples shown are for the flow at Re = 7500
and t/T = 1.00. The colour map represents the streamwise velocity component,
while the line contours represent the spanwise velocity component. The free-stream
direction is from top to bottom. The largest scale is at the top, with progressively
smaller scales placed beneath. The largest and the very smallest scales show nothing
of relevance to the present investigation and are not illustrated: scales 0 and 1 are
larger than the diameter of the dynamic stall vortex, and scales 7 and 8 are small and
dominated by measurement noise. Scales 2–6 illustrate the most interesting aspects
of the present flow. Axes on the left side represent reconstructed scales from the
vertical tunnel experiment (case VT_XZ) at 1h= 0.3c, while axes on the right side
represent the same scale reconstructions from the horizontal tunnel experiment (case
HT_XZ) closer to the pitching plate surface at 1h= 0.1c.

The bulk rotation of the dynamic stall vortex induces negative streamwise
velocities between the vortex core and plate’s suction surface. The large region
of high-magnitude streamwise velocity in scale 2 at the 1h = 0.1c measurement
plane is related to this. It is not seen in the 1h = 0.3c measurement plane, which
lies closer to the vortex axis. Similarly, a difference between the measurement planes
may be observed at scale 3; the 1h = 0.1c plane intersects the secondary vorticity
upstream of the primary dynamic stall vortex, and the imprint of this feature may be
seen in the reconstruction of this scale, whereas it does not appear in the 1h= 0.3c
plane. Spanwise variation is observed to be minimal in the secondary vorticity, with
fluctuation in the streamwise velocity component dominating, which indicates that at
this scale the secondary vorticity is primarily two-dimensional.

Despite the inhomogeneous, transient nature of the flow, the wavelet analysis
reveals that periodic content does exist in the spanwise direction at scales 4 and 5,
that is, at characteristic length scales, λ of 0.15c–0.2c. This spanwise periodicity is
seen in both measurement planes, with fluctuating velocities of the order of 0.25U∞
in both the streamwise and spanwise components. In the VT_XZ case, where the
measurement plane lies coincident with the dynamic stall vortex core, the primary
feature at these scales is a region of spanwise-periodic fluctuation in the streamwise
velocity component at the upstream boundary of the dynamic stall vortex. This
feature also figures prominently in the scales reconstructed from the HT_XZ case
data, closer to the wall. Significantly, this short-period spanwise periodicity lies in
the region one would expect to see short-period spanwise periodic structures arising
from the centrifugal instability shown in previous sections. In the measurement plane
at 1h = 0.1c, other features also become apparent. There exists a strong spanwise
periodicity in the fluctuating spanwise velocity component directly between the
leading-edge vortex core and the pitching plate’s surface. The magnitude of this
feature appears to be of the same order as the upstream fluctuations in streamwise
velocity, as well as inhabiting the same range of scales, and is consistent with
the instantaneous structure shown in figure 12 as well as the structural hypothesis
illustrated in figure 13.

The way in which these features evolve with time can be seen in figure 16, which
illustrates the fluctuating streamwise and spanwise velocity components at scale 4 for
t/T=0.76, 1.00, 1.50 and 2.00. The figure shows only Reynolds number Re=7500. It
can be seen that the spanwise-periodic variability upstream of the dynamic stall vortex
core begins early, prior to t/T = 0.76, and continues to strengthen until t/T = 1.50.
Some weakening of this feature is seen in the t/T = 2.00 map, as the dynamic stall
vortex system passes out of the measurement domain.
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FIGURE 16. (Colour online) Temporal evolution of scale 4 at Re = 7500, from case
HT_XZ data: (a–d) t/T = 0.76, 1.00, 1.50 and 2.00. Red colouring represents the
streamwise velocity, while spanwise velocity is represented by the blue contours.

Figure 17 provides some insight into the dependence of this three-dimensional
leading-edge vortex substructure on Reynolds number. Velocity reconstructions
are presented at scale number 4, at phase t/T = 1.00, for each of the Reynolds
numbers measured, Re = 1500 to Re = 10 000. Data are taken from the VT_XZ
measurement case. The spanwise-periodic fluctuation in the streamwise velocity
component upstream of the vortex system appears strongly at Reynolds number
Re= 4000 and above, but only faint signs of its presence can be seen at Re= 1500
and Re = 2500. This is consistent with the changes in vortex substructure observed
between the different Reynolds numbers in figure 11.

This variation of the substructure with Reynolds number can be seen even more
clearly when plotting the through-plane normalised vorticity, cωy/U∞, reconstructed
at scale number 4. Two Reynolds numbers are chosen and the early-time evolution
of the flow is illustrated in figure 18. At Re= 5000, the three-dimensional spanwise
periodicity associated with the centrifugal instability is clear from t/T = 0.76, whereas
at Re = 1500 there is no clear organised fluctuation at this scale early in the flow’s
evolution. At t/T = 1.00, upon completion of the plate’s pitching motion, similar
spanwise periodicity is observed in the lower Reynolds number case, but this is
intermittent. What this demonstrates is that, although the dynamic stall vortex system
appears to develop significant three-dimensionality due to centrifugal instability at
Reynolds numbers above approximately 2500–4000, the flow is potentially susceptible
to such instability even below these Reynolds numbers.
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FIGURE 17. (Colour online) Reconstruction of scale 4, at t/T = 1.00 for all Reynolds
numbers, from case VT_XZ data: (a–f ) Re= 1500, 2500, 4000, 5000, 7500 and 10 000.
Red colouring represents the streamwise velocity, while spanwise velocity is represented
by the blue contours.
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FIGURE 18. (Colour online) Early-time temporal ωy evolution of scale number 4 at
(a) Re= 1500 and (b) Re= 5000. Data taken from VT_XZ case.
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FIGURE 19. Mean energy content by scale, from the wavelet multi-resolution analysis.

4.4.3. Energy content
The energy content of the decomposed scales shows the relative dominance of

coherent structures at each of the scales. The mean scale-based energy is plotted in
figure 19 as a percentage of the total energy in the flow. Data are presented for each
of the t/T phases measured, and the error bars represent the energy variance across
the measurement ensemble.

At t/T = 0.76, the scale-specific energy content distribution is very similar over the
upper end of the Reynolds number range, with little difference between Re = 4000
and Re= 10 000. The lower Reynolds number decomposition however, at Re= 1500,
reveals a bias towards the lower scale numbers (large-scale features), consistent with
the observation of delayed substructure development at the smaller scales. By
t/T = 1.00 this discrepancy has diminished, and the scale decomposition of energy
in the flow remains invariant across the measured Reynolds number range after this
time. It may also be observed that, by t/T = 1.00, significantly higher variability has
developed in the scale-dependent energy content of the Re = 1500 ensemble than
in the higher Reynolds number cases. This can be suggestive of variation in the
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FIGURE 20. (Colour online) Spanwise one-dimensional premultiplied power spectral
density of the streamwise velocity component, calculated for each streamwise position, for
(a) Re= 1500, (b) Re= 5000 and (c) Re= 10 000 at t/T = 0.77. The leading-edge position
is indicated by the thin grey line at x= 0.

development of the three-dimensional vortex substructure at low Reynolds number,
consistent with the observations in figure 18(a).

4.5. Instability spectral content
The flow currently under scrutiny is neither spatially nor temporally periodic,
necessitating the application of wavelet analysis described in the previous section
(§ 4.4). The results of that wavelet analysis, however, indicate that the flow does
actually appear highly periodic and consistent across the spanwise direction, over
the range of scales relevant to the apparent centrifugal instability. This is the case
despite the unavoidable existence of spanwise no-slip end boundary conditions in
the experimental facility. Observing this, a Fourier decomposition in the spanwise
direction (and only the spanwise direction) may be justified. The limited, discretised,
scale resolution of the wavelet analysis can thus be overcome, for spanwise periodic
content.

Figure 20 compares the premultiplied spanwise one-dimensional power spectral
density functions of the fluctuating streamwise velocity, at t/T = 0.76 between
Re = 1500, 5000 and 10 000. The free-stream direction is from top to bottom, and
the vertical line towards the left of the axes indicates the leading-edge position.

In each case, there exists a strong, but broad, spectrum peak in the vicinity of the
leading edge, upstream of the dynamic stall vortex, and another broad peak in the core
region of the leading-edge vortex, at x/c≈ 0.3. Despite normalising the spectra by the
square of the free-stream velocity, the magnitude of both peaks is greater at higher
Reynolds number, indicating the effect of Reynolds number on the level of turbulent
fluctuation in the leading-edge vortex system. The general form of these spectra is the
same if the spanwise velocity component is chosen instead.

The spatial frequency content of the velocity spectra varies with Reynolds number.
At both Re = 5000 and Re = 10 000, the upstream spectrum peak lies in the
approximate range kzc= 10–50 radians per chord, but at lower Reynolds number, at
Re=1500, it appears weaker and shifted to lower spatial frequencies by approximately
a decade. The upstream spectrum also has a long tail extending to spatial frequencies
comparable to the peak at higher Reynolds numbers. Like the upstream spectral
peak, the core spectral peak also appears weakened and shifted by approximately a
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decade towards lower spatial frequencies in the Re = 1500 data, consistent with the
larger-scale structures observed in the lower Reynolds number velocity fields.

A third spectral peak appears in the streamwise velocity component spectra at
the downstream bound of the leading-edge vortex. This downstream peak is never
completely distinct from the peak within the leading-edge vortex core, and does not
appear at all at Re= 1500 or Re= 2500. It can most clearly be seen at intermediate
Reynolds numbers (illustrated here by the Re = 5000 case) but it becomes less
distinct from the core as the Reynolds number is increased beyond 5000 towards the
maximum values tested at Re = 10 000. The downstream spectral peak occurs at a
spatial frequency range similar to that in the upstream spectral peak.

As the flow evolves, the spectral peak in the leading-edge vortex core reduces
in magnitude at all Reynolds numbers tested. At Re = 1500, the core spectral peak
decays in magnitude in the kzc= 1–6 radians per chord spatial frequency range, but
increases in magnitude in the higher kzc = 10–50 radians per chord range between
t/T = 0.76 and t/T = 1.00. The growth in this frequency range in the vortex core
is accompanied by a growth in the magnitude of the upstream spectral peak at
Re = 1500, and a similar upward shift in spatial frequency range. At the higher
Reynolds numbers, the upstream spectral peak persists strongly through t/T = 1.00
before decaying in magnitude as the leading-edge vortex system convects downstream.

Performing a single spanwise power spectral density calculation on the through-
plane vorticity component, ωy, in the region of the upstream peak, the plots in
figure 21 may be produced. The general form of these spectra is a broad peak in the
range kzc= 20–50 radians per chord, diminishing with time. The significant difference
with Reynolds number is a delay in the development of this peak at Reynolds numbers
below Re = 5000, and a reduced peak magnitude at these Reynolds numbers. The
spatial frequency space inhabited by this peak is consistent with the wavelet analysis
and is typical of what may be expected from a short-wave centrifugal instability. The
delayed and reduced behaviour at the lower Reynolds numbers is consistent with
the observations of delayed substructure growth seen in the wavelet multi-resolution
reconstruction and energy analysis.

Plotting the peak energy of the spanwise spectra as a function of time and Reynolds
number (figure 22a), the delayed development of the centrifugal instability at low
Reynolds numbers is clearly seen. There is, however, little variation with Reynolds
number above Re = 4000. The spatial frequency at which the three-dimensional
structure occurs (figure 22b) reduces with time, demonstrating an energy shift
towards longer wavelengths from approximately 40 radians per chord to 20 radians
per chord at t/T = 2.00. The peak energy of the instability decays also by a factor
of approximately five over this time.

5. Summary and conclusions

A nominally two-dimensional, non-periodic, dynamic stall event has been produced
experimentally, and studied quantitatively using particle image velocimetry. In the
Reynolds number range Re= 1500 to Re= 10 000, organised three-dimensional flow
features have been shown to exist, associated with the leading-edge dynamic stall
vortex. It is suggested that this is due to the presence of a centrifugal instability
affecting this flow. The arrangement of the three-dimensional substructure is
consistent with the presence of a centrifugal instability, comprising short-period
spanwise periodic vortex filaments around the periphery of the dynamic stall
vortex core. It has been shown that these structures exist for Reynolds numbers
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FIGURE 21. Spanwise one-dimensional power spectral density of vorticity in the
instability region upstream of the dynamic stall vortex: (a–f ) Re= 1500, 2500, 4000, 5000,
7500 and 10 000.

above approximately 4000. At lower Reynolds numbers, the short-period spanwise
periodicity develops more slowly, and is preceded by a vortex substructure dominated
by larger-scale features.
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FIGURE 22. Peak energy (a) and frequency (b) of the spanwise instability as a function
of Reynolds number and time.

The three-dimensional vortex substructure has been quantified as a function of
both time and Reynolds number using a multi-resolution wavelet decomposition. The
most energetic three-dimensional features inhabit a range of scales with characteristic
lengths between 10 % and 15 % of the chord length. Comparing results of multiple
experiments demonstrates no observable effect of variations in the spanwise end
boundary conditions either on the general arrangement of the dynamic stall vortex
substructure, or on the range of scales at which the three-dimensional features appear.

The wavelet decomposition of the velocities within the leading-edge vortex system
suggests the vortex substructure to be spanwise-invariant for the range of length
scales inhabited by the centrifugal instability, justifying the use of Fourier analysis in
the spanwise direction. Spanwise power spectra show a broad spectral peak relating
to this phenomenon, in the spatial frequency range 20–50 radians per chord, with a
temporal energy shift towards larger wavelengths and a diminishing energy content
after the completion of motion of the plate. The spanwise spectra are consistent with
the delayed appearance of small-scale structure at low Reynolds numbers.
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