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The dynamics on the laminar–turbulent separatrix is investigated numerically for
boundary-layer flows in the subcritical regime. Constant homogeneous suction is
applied at the wall, resulting in a parallel asymptotic suction boundary layer (ASBL).
When the numerical domain is sufficiently extended in the spanwise direction,
the coherent structures found by edge tracking are invariably localized and their
dynamics shows bursts that drive a remarkable regular or irregular spanwise dynamics.
Depending on the parameters, the asymptotic dynamics on the edge can be either
periodic in time or chaotic. A clear mechanism for the regeneration of streaks and
streamwise vortices emerges in all cases and is investigated in detail.
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1. Introduction

Near-wall coherent structures such as streaks and quasi-streamwise vortices are
a ubiquitous feature of transitional and turbulent wall-bounded shear flows. Their
regeneration process is intimately connected with the occurrence of bursting events,
i.e. strong intermittent ejections of low-speed fluid from the wall (for a review see
e.g Robinson 1991). Classical linear stability theory applied to the base profiles of the
various canonical wall-bounded flows predicts spanwise independent modes, so-called
Tollmien–Schlichting waves, as the most unstable disturbances (see e.g. Schmid &
Henningson 2001). As evidenced by numerous experiments and simulations, these
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FIGURE 1. (a) Conceptual two-dimensional sketch of the state space. The turbulent and laminar
states are shown in red and green, respectively. The separatrix (black line) supports the edge
state (yellow circle), which is attracting within the boundary and repelling in a direction
transverse to it. (b) Sketch of the asymptotic suction boundary layer (ASBL), where constant
homogeneous suction is applied at the wall. Figure adapted from Levin & Henningson (2007).

waves are not relevant in the context of sustaining near-wall turbulence. In the case
of a spatially developing Blasius boundary layer, the laminar base flow is linearly
stable up to a finite value of the Reynolds number Re, where Rec ≈ 520 based on the
displacement thickness (see e.g. Schlichting 1987). However, in the presence of strong
noise, subcritical transition may occur as well further upstream via the formation
of streamwise streaks, bypassing the classical transition scenario (see e.g. Brandt,
Schlatter & Henningson 2004). These elongated structures appear as a result of the
large sensitivity to forcing and large transient energy growth of these structures in
shear flows (Schmid & Henningson 2001). Thus streamwise streaks and streamwise
vortices can also be observed for boundary-layer flows in the absence of any linear
instability of the base flow. Such coherent structures seem closely connected with the
finite-amplitude solutions encountered in studies of subcritical transition in channels
(Itano & Toh 2001; Jiménez et al. 2005).

We will hence focus here on coherent structures as well as bursting events in
the framework of subcritical transition only. A recent idea specific to subcritical
instabilities is to analyse the laminar–turbulent separatrix, the invariant phase-space
region separating trajectories that relaminarize from those experiencing turbulent
dynamics (Itano & Toh 2001). Relative attractors on this separatrix are called edge
states (Skufca, Yorke & Eckhardt 2006). They correspond to an (unstable) equilibrium
regime and are thus crucial for: (i) understanding the structure of the phase space;
and (ii) identifying the physical mechanisms by which the flow can sustain non-trivial
dynamics. The concept of edge states has been developed in studies of cylindrical
Poiseuille flow and plane Couette flow, which both admit simple laminar solutions
that are linearly stable for all Reynolds numbers Re. However, in practice another
concurrent flow regime, namely turbulence, can be observed for moderate values
of Re, depending on the shape and amplitude of the initial perturbation to the
laminar base flow. There is compelling evidence that trajectories restricted to the
laminar–turbulent separatrix are attracted towards the edge state (see figure 1a), which
can be either a fixed point (Schneider et al. 2008), a travelling wave (Duguet, Willis
& Kerswell 2008), a relative periodic orbit (Toh & Itano 2003) or even a chaotic
object (Schneider, Eckhardt & Yorke 2007). These pioneering investigations of edge
states were performed numerically in the context of minimal flow units (Jiménez

717 R6-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

20
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.20


Localized edge states in the asymptotic suction boundary layer

& Moin 1991; Hamilton, Kim & Waleffe 1995). Later investigations in extended
computational domains (Duguet, Schlatter & Henningson 2009; Mellibovsky et al.
2009; Schneider, Marinc & Eckhardt 2010) revealed robust spatial localization for the
edge state, indicating a connection to incipient turbulent spots (Henningson, Spalart &
Kim 1987; Lundbladh & Johansson 1991), puffs and slugs (Duguet, Willis & Kerswell
2010).

The concept of edge states was recently carried over to the Blasius boundary-layer
flow over a flat plate (Cherubini et al. 2011; Duguet et al. 2012), where an additional
complication is the spatial development of the boundary layer. Duguet et al. (2012)
have identified almost-cyclic dynamics on the edge in terms of rescaled variables,
where the rescaling is done with respect to the local boundary-layer thickness. Edge
tracking in a spatially inhomogeneous context, however, is computationally demanding,
as the proper asymptotic dynamics remains currently out of reach in a numerical
domain of finite streamwise extent. Parallel flows are much better suited to asymptotic
edge tracking since periodic boundary conditions allow for both streamwise periodic
structures and a constant layer thickness (i.e. Reynolds number) in the domain.

Hence we focus here on a parallel model for boundary layers, for which a number
of variants have been discussed in the literature. Spalart & Yang (1987) proposed a
model for a temporal boundary layer in a moving frame of reference, which implies
a homogeneous boundary-layer thickness throughout the domain, which slowly grows
in time. Another approach was developed by Spalart (1988) and recently used with
some modification in an edge tracking study (Biau 2012). In their model a multi-scale
approximation of the flow was used to simulate the temporal evolution of a fixed
short streamwise portion of the boundary layer. In this paper we will focus on a third
alternative: suction is applied at the lower wall to compensate for the spatial growth
of the laminar profile. In the case when the suction is constant and homogeneous, the
boundary-layer thickness rapidly saturates and the associated flow is termed asymptotic
suction boundary layer (ASBL). Studying transition to turbulence in ASBL bears
considerable advantages: (i) its laminar solution is independent of the streamwise
position; (ii) it is one of the canonical solutions of the incompressible Navier–Stokes
equations (Schlichting 1987); (iii) the laminar solution is linearly stable for a wide
range of values of Re; and (iv) it is realizable in wind-tunnel experiments using a
porous plate with well-controlled suction. Applying suction is a powerful technique for
flow control, hence ASBL has been the subject of a number of numerical (Mariani
et al. 1993; Levin & Henningson 2007; Schlatter & Örlü 2011) and experimental
studies (Antonia et al. 1988; Fransson & Alfredsson 2003).

A numerical characterization of the edge states in ASBL is the main focus of this
paper. The structure of the paper is as follows. Parameters and numerical technique
are described in § 2. The results of edge tracking are presented in § 3 for both a
minimal flow unit and a spanwisely extended domain, where the spatial localization
and dynamics will be scrutinized. The main conclusions are given in the final section.

2. Problem set-up and numerical methodology

ASBL is the flow above a permeable flat plate subject to constant homogeneous
suction (see figure 1b). The incompressible Navier–Stokes equations admit in this case
a laminar solution where the velocity field is independent of the streamwise position x,

U = U∞(1− e−yVS/ν), V =−VS. (2.1)
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Here y is the wall-normal distance from the plate, U = (U,V) is the velocity field
of the base flow in the streamwise and wall-normal (x, y) directions, U∞ and VS

are the imposed free stream and suction velocities, respectively, and ν is the fluid
kinematic viscosity. An expression for the laminar displacement thickness δ∗ can be
found analytically as

δ∗ =
∫ ∞

0
(1− u(y)/U∞) dy= ν

VS
. (2.2)

The Reynolds number based on δ∗ is defined by Re = U∞δ∗/ν = U∞/VS. The laminar
solution is linearly stable for Reynolds numbers up to Rec = 54 370 (Hocking 1975);
however, transition to turbulence can be observed already above Re≈ 300 (Schlatter &
Örlü 2011).

Numerical simulations of the ASBL are performed here with a fully spectral
method, which solves the unsteady incompressible Navier–Stokes equations in a
domain Ω = [−Lx/2,Lx/2] × [0,Ly] × [−Lz/2,Lz/2]. The velocity field u = (u, v,w)
is expanded using Nx and Nz Fourier modes in the streamwise x and spanwise z
directions, respectively, and Ny Chebyshev polynomials in the wall-normal y direction.
Hence, periodicity is imposed in both x and z. In the wall-normal direction, Dirichlet
boundary conditions are used at both ends of the domain,

(u, v,w)y=0 = (0,−VS, 0), (2.3a)

(u, v,w)y=Ly = (U∞,−VS, 0). (2.3b)

Dealiasing with the 3/2 rule is performed in the x and z directions. The results
were validated by comparison between two codes – SIMSON (Chevalier et al. 2007)
and ChannelFlow (Gibson 2012). For time advancement, third-order Runge–Kutta and
second-order Crank–Nicolson methods are used for the nonlinear and linear terms,
respectively, with SIMSON, and a third-order semi-implicit backward differentiation
scheme with ChannelFlow. We have verified that both codes lead to the same results
and the same edge states both qualitatively and quantitatively. We therefore only
present results obtained with SIMSON in this paper. Non-dimensionalization with
U∞ and δ∗ is used throughout the paper. One has to be careful when choosing
the height Ly of the numerical domain, since the boundary layer tends to become
very thick for turbulent ASBL (Schlatter & Örlü 2011), saturating at very high
values of 99 % velocity thickness δ99 compared to the laminar case. However,
δ99 for edge states is much lower, and Ly = 15 proved sufficient for the present
investigation. Edge tracking was performed in two different distinct set-ups. In
the first case, which we refer to as a minimal flow unit, the domain has size
(Lx,Ly,Lz)= (10, 15, 6), with a numerical resolution of Nx × Ny × Nz = 32× 129× 32
spectral modes. In the second case, the numerical domain is extended in the spanwise
direction to a size of (Lx,Ly,Lz) = (6π, 15, 50), with the corresponding resolution
Nx ×Ny×Nz = 48× 129× 192. The results presented here were obtained for Re= 500.
Lowering Re to 400 did not show any significant changes in the dynamics. Resolution
checks were performed for the key simulations by doubling the number of spectral
modes in each direction. It turns out that the chosen resolution is fully adequate for
edge states and the early transitional stages, while higher resolution and larger values
for Ly are needed for the turbulent state to be accurately captured.

The dynamics on the separatrix is tracked using the bisection technique described
by Skufca et al. (2006). A set of initial conditions uλ = U + λ(u0 − U) is considered,
where u0 is an arbitrary non-trivial flow state. Initial conditions corresponding to
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FIGURE 2. (a) Evolution of the cross-flow energy Ecf with time t for the edge state in a
minimal flow unit. The solid red line corresponds to the converged edge trajectory, whereas
dotted blue lines correspond to trajectories diverging from the edge. (b) Space–time diagram for
the streamwise velocity fluctuations u′ averaged in x at y = 1 corresponding to the edge state in
the minimal flow unit.

various values of λ are evolved in time until they approach either the laminar or the
turbulent state, according to the predefined thresholds for the root-mean-square (r.m.s.)
value of the wall-normal velocity fluctuations vrms. By iteratively bisecting the value
of λ, we bracket the laminar–turbulent boundary and obtain a trajectory that evolves
for a sufficiently long time without becoming either laminar or turbulent. Because of
the exponential separation of initially nearby trajectories and the limited numerical
accuracy of the bisection, the resulting trajectory visits the boundary for a finite time
only. However, by restarting the bisection from the last state closest to the edge often
enough, it is possible to stay on the edge for an infinite time and to reach a relative
attractor.

3. Edge states

3.1. Minimal flow unit
The edge state in small computational domains close to a minimal flow unit has been
discussed by Kreilos et al. (2012). We briefly summarize the key features of the edge
state in a box of size (Lx,Ly,Lz)= (10, 15, 6).

The time evolution of the cross-flow energy based on the wall-normal v′ = v − V
and spanwise w′ = w velocity fluctuations of this state,

Ecf = 1
LxLzδ∗

∫
Ω

(v′2 + w′2) dx dy dz, (3.1)

is shown in figure 2(a). This quantity measures the energy in the components
transverse to the downstream flow and captures the intensity of the vortices. We
see that there are long phases in which Ecf changes only slowly, followed by strong
bursts at regular time intervals. Figure 2(b) shows the downstream velocity fluctuations
u′ = u − U averaged in x at y = 1. We see that, during the calm phase, the state
consists of a low- and a high-speed streak. At each burst, the low-speed streak is
broken up into two parts, which reconnect across the periodic boundaries to form a
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FIGURE 3. Time evolution of the cross-flow energy: (a) L edge state (indiscernible from R
state); (b) LR state. The colour coding is the same as in figure 2(a). See the text for the definition
of L, R and LR states.

new low-speed streak at a position that is shifted by half the box width. The edge
state is hence a periodic orbit with a period that is twice the interval between bursts,
i.e. 2 × 1290. A homotopy between plane Couette flow and ASBL was suggested by
Kreilos et al. (2012) to explain the bifurcation underlying the bursts and the shifts:
on the path from plane Couette flow to ASBL, the periodic orbit emerges from a
saddle-node infinite-period (SNIPER) bifurcation undergone by two symmetry-related
pairs of travelling waves.

3.2. Spanwise localized edge states
The dynamics described above relies heavily on the spanwise periodicity imposed by
the value of Lz, which is comparable to the streak spacing. In this work, we want
to investigate the dynamics of the edge state in the absence of interaction with its
periodic copies. We thus extend the spanwise width of the computational box to
Lz = 50 while keeping Lx relatively low at 6π. As in the minimal flow unit, the
cross-flow energy of the edge state is found to be periodic in time. By varying the
initial perturbation u0 used for edge tracking, we obtain not one, but three states. Two
of them are actually related by z← z0 − z transformations, under which the system
with boundary conditions (2.3) is invariant (z0 is arbitrary). The time evolution of the
cross-flow energy for all these states is shown in figure 3. Despite the difference in the
periods, the edge trajectories all show similar characteristics to the small box case, i.e.
a periodic alternation of calm phases and bursts. Space–time diagrams for 〈u′〉x(y = 1)
shown in figure 4(a–c) reveal a clear spanwise localization of the kinetic energy, as in
former studies of edge states in other systems (Schneider et al. 2010). This localization
property is robust to variations in Lz, as attested by figure 5(a).

The structure and dynamics of the three edge states can be understood from the
space–time diagrams in figure 4(a–c). The velocity fields are dominated by a pair
of high- and low-speed streaks, which undergo a burst in cross-flow energy before
being shifted in the spanwise direction. Depending on the direction of the shift, we
distinguish between the two symmetry-related states that repeatedly hop towards the
right (R) or towards the left (L), and the state that alternates regularly between
hopping left and right (LR). As already mentioned, the L and R states differ in the
direction of the shifts but otherwise have exactly the same characteristics since they
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FIGURE 4. Space–time diagrams for streamwise velocity fluctuations u′ averaged in x at y = 1:
(a) left-going state (L); (b) right-going state (R); (c) alternate left- and right-going state (LR);
(d) chaotic edge state for Lx = 4π.

are related by a reflection symmetry. The period between two bursts of the LR state is
approximately 668, while that for both L and R states is 1263, hence a bit shorter than
twice the LR period.

Though we distinguish between two fundamental states based on the different
motions in the spanwise direction z, the qualitative dynamics between two consecutive
bursts appears to be similar in all three cases. Therefore, our analysis of the detailed
sequence of events during one period can be limited to one of these states only. In
the following, we focus on the left-hopping state (L). Key snapshots of the cycle are
shown in figure 6; supplementary movies are available at http://dx.doi.org/10.1017/jfm.
2013.20. Starting from the calm phase, the state consists of one high-speed streak with
two low-speed streaks on each side. One of the low-speed streaks is moderately bent
and is flanked by counter-rotating quasi-streamwise vortices. These vortices induce
upward motion that advects slow fluid away from the wall, explaining the presence
of the low-speed streak (lift-up effect). Conversely, the second streak is less bent and
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FIGURE 5. (a) Absolute value of the wall-normal velocity fluctuations averaged in x at y = 1
evaluated at the time between two bursts for the L state with various spanwise widths of the
domain: , Lz = 100; , Lz = 50; , Lz = 36. (b) Time evolution of the cross-flow
energy Ecf for one of the edge trajectories in the shorter domain Lx = 4π. The colour coding is
the same as in figure 2(a).

(a) (b)

(c) (d )

FIGURE 6. Three-dimensional visualization during one period of the L state. Isosurfaces of
streamwise velocity fluctuations u′ = ±0.15 are coloured in blue (low-speed streak) and red
(high-speed streak), respectively. Vortices are visualized using the λ2 criterion (Jeong & Hussain
1995), with the isosurface λ2 = −0.001 coloured by the streamwise vorticity (grey-scale). The
whole computational domain is shown. (a) High-speed streak with two low-speed streaks on the
side during the calm phase at t = 2500. (b) Strong quasi-streamwise vortices that lean over the
active low-speed streak at t = 3100. (c) Breakdown at t = 3300. (d) Initial structures regenerated
with a shift in the spanwise direction at t = 3470. Supplementary movies for the L state as well
as the LR state are available at http://dx.doi.org/10.1017/jfm.2013.20.

is slowly decaying. As the vortices grow in strength, they wrap around the streak,
tilting in the streamwise direction and causing the streak to bend even further. At some
point the tips of the vortices cross the bent streak, each of them dividing the streak
into two regions with respect to its streamwise extent. In the first region the vortex
is still sustaining the streak, while in the second one it pushes fluid down instead of
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lifting it up. As the vortices cross the streak, they also cross each other, enhancing
the push-down effect and ultimately leading to the breakdown of the low-speed streak
and creation of a high-speed streak at the same location. During the same time, the
other low- and high-speed streaks decay. Those events correspond to the burst in the
cross-flow energy. In the streak breakdown process, the initial streamwise vortices
are destroyed and new vortices are re-created in the area around the newly created
high-speed streak. The vortices on both sides of the high-speed streak create two
low-speed streaks and the loop is closed. The low-speed streak on the left is the active
one that will develop instabilities and break down during the next burst, while the right
one will slowly decay, resulting in a leftwards shift of the whole structure.

This self-sustaining process resembles the regeneration cycle of the near-wall
turbulent structures discussed by Hamilton et al. (1995). We also start with streaks,
one of which develops an instability leading to its streamwise modulation (x-dependent
flow in the work by Hamilton et al. (1995)). In the process of streak breakdown,
new vortices are created, which corresponds to the vortex regeneration phase. Finally,
the streamwise vortices re-create the streaks by linear advection and return to the
beginning of the cycle. A distinct feature of the process in ASBL is the spanwise
shift of the regenerated streaks, which was not an intrinsic part of the self-sustaining
process by Hamilton et al. (1995).

One of the most important parts of the dynamics – vortices crossing the streak
– was also suggested in near-wall turbulence in minimal units (Jiménez & Moin
1991) and later confirmed using feature eduction in extended domains (Jeong et al.
1997). Similar structures are also observed in boundary layers during bypass transition
(Schlatter et al. 2008). The same mechanism can also be identified in the small box
ASBL (Kreilos et al. 2012), albeit the two low-speed streaks created after the burst
correspond to the same streak in this case owing to the small box periodicity.

3.3. Chaotic behaviour of the localized edge state
As the domain length is decreased to 4π, the periodicity of all three edge states is
lost. The resulting dynamics on the edge is chaotic, though also consisting of calm
and bursting regions (see figure 5b). In figure 4(d) we present the space–time diagram
corresponding to one of the edge trajectories in this case. We see that the structures
remain localized and that the bursts in the cross-flow energy still correspond to hops
in the spanwise direction. However, the direction and the distance of those shifts is no
longer fixed but varies in an unpredictable fashion.

Insights into the transition from the periodic to the aperiodic behaviour can be
obtained by slowly lowering the parameter Lx from 6π towards 4π. We find that the
periodic behaviour is sustained at least down to Lx = 5π, below which new states
– with longer periods and more complex sequences of spanwise shifts – emerge
as attractors. These bifurcations indicate that the periodic solutions discussed above
acquire at least one more unstable direction, hence cannot serve as relative attractors
any longer and can only be visited transiently by the edge trajectories (Duguet et al.
2008). Nevertheless, they may still constitute the beginning of a symbolic dynamics
for the chaotic regime. The complete cascade of bifurcations leading from periodic
towards chaotic edge states is currently under investigation.

4. Conclusions

To summarize, we have tracked the dynamics on the laminar–turbulent separatrix
in the asymptotic suction boundary layer, which turns out always to be localized in
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wide enough domains. We were able to identify a robust cycle encompassing a calm
phase with slow growth of a sinuous-type instability on a low-speed streak, and a
violent burst of the streak due to vortex interaction once they are crossing the streak.
Regeneration of new quasi-streamwise vortices and low-speed streaks accompanied
by a spanwise shift closes the cycle. This mechanism bears many similarities to
processes previously discussed in the context of minimal channel flow and the near-
wall regeneration cycle in wall-bounded turbulence (Jiménez & Moin 1991; Hamilton
et al. 1995; Jiménez et al. 2005). Depending on the streamwise length of the domain
used in the simulations, imposing the wavelength of the instability, the edge dynamics
can be regular or erratic. This suggests the existence of periodic orbits on the edge
which behave as attractors or saddle points. A more detailed study of the effects of
the streamwise localization and the relevance of the identified bursting dynamics for
both laminar–turbulent transition and fully developed near-wall turbulence are currently
under investigation.

Acknowledgement

Computer time provided by SNIC (Swedish National Infrastructure for Computing)
is gratefully acknowledged.

Supplementary movies

Supplementary movies are available at http://dx.doi.org/10.1017/jfm.2013.20.

References

ANTONIA, R. A., FULACHIER, L., KRISHNAMOORTHY, L. V., BENABID, T. & ANSELMET, F.
1988 Influence of wall suction on the organized motion in a turbulent boundary layer. J. Fluid
Mech. 190, 217–240.

BIAU, D. 2012 Laminar–turbulent separatrix in a boundary layer flow. Phys. Fluids 24, 034107.
BRANDT, L., SCHLATTER, P. & HENNINGSON, D. S. 2004 Transition in boundary layers subject to

free-stream turbulence. J. Fluid Mech. 517, 167–198.
CHERUBINI, S., DE PALMA, P., ROBINET, J. C. & BOTTARO, A. 2011 Edge states in a boundary

layer. Phys. Fluids 23, 051705.
CHEVALIER, M., SCHLATTER, P., LUNDBLADH, A. & HENNINGSON, D. S. 2007 A pseudo-spectral

solver for incompressible boundary layer flows. Tech. Rep. TRITA-MEK 2007:07. KTH
Mechanics, Stockholm, Sweden.

DUGUET, Y., SCHLATTER, P. & HENNINGSON, D. S. 2009 Localized edge states in plane Couette
flow. Phys. Fluids 21, 111701.

DUGUET, Y., SCHLATTER, P., HENNINGSON, D. S. & ECKHARDT, B. 2012 Self-sustained localized
structures in a boundary-layer flow. Phys. Rev. Lett. 108, 044501.

DUGUET, Y., WILLIS, A. P. & KERSWELL, R. R. 2008 Transition in pipe flow: the saddle structure
on the boundary of turbulence. J. Fluid Mech. 613, 255–274.

DUGUET, Y., WILLIS, A. P. & KERSWELL, R. R. 2010 Slug genesis in cylindrical pipe flow.
J. Fluid Mech. 663, 180–208.

FRANSSON, J. H. M. & ALFREDSSON, P. H. 2003 On the disturbance growth in an asymptotic
suction boundary layer. J. Fluid Mech. 482, 51–90.

GIBSON, J. F. 2012 ChannelFlow: a spectral Navier–Stokes simulator in C++. Tech. Rep. University
of New Hampshire, http://channelflow.org.

HAMILTON, J. M., KIM, J. & WALEFFE, F. 1995 Regeneration mechanisms of near-wall turbulence
structures. J. Fluid Mech. 287, 317–348.

HENNINGSON, D. S., SPALART, P. R. & KIM, J. 1987 Numerical simulations of turbulent spots in
plane Poiseuille and boundary-layer flow. Phys. Fluids 30, 2914–2917.

717 R6-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

20
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://dx.doi.org/10.1017/jfm.2013.20
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
http://channelflow.org
https://doi.org/10.1017/jfm.2013.20


Localized edge states in the asymptotic suction boundary layer

HOCKING, L. M. 1975 Non-linear instability of the asymptotic suction velocity profile. Q. J. Mech.
Appl. Maths 28 (3), 341–353.

ITANO, T. & TOH, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc.
Japan 70, 703–716.

JEONG, J. & HUSSAIN, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 69–94.
JEONG, J., HUSSAIN, F., SCHOPPA, W. & KIM, J. 1997 Coherent structures near the wall in a

turbulent channel flow. J. Fluid Mech. 332, 185–214.
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