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DISTAL AND NON-DISTAL PAIRS

PHILIPP HIERONYMI AND TRAVIS NELL

Abstract. The aim of this note is to determine whether certain non-o-minimal expansions of o-minimal
theories which are known to be NIP, are also distal. We observe that while tame pairs of o-minimal
structures and the real field with a discrete multiplicative subgroup have distal theories, dense pairs of
o-minimal structures and related examples do not.

§1. Introduction. Over the last two decades, NIP (or dependent) theories, first
introduced by Shelah in [13], have attracted substantial interest. Properties of
these theories have been studied in detail, and many examples of such theories
have been constructed (see [15] for a modern overview of the subject). Recently,
Simon [14] identified an important subclass of NIP theories called distal theories.
The motivation behind this new notion is to single out NIP theories that can be
considered purely unstable. O-minimal theories, the classical examples of unsta-
ble NIP theories, are distal. The aim of this note is to determine whether certain
non-o-minimal expansions of o-minimal theories which are known to be NIP, are
also distal.
Let A = (A,<, . . . ) be an o-minimal structure expanding an ordered group and
let B ⊆ A. We consider theories of structures of the form (A, B) that satisfy one of
the following conditions:

1. A is the real field and B is a cyclic multiplicative subgroup of R>0 (discrete
subgroup),

2. A expands a real closed field, B is a proper elementary substructure such that
there is a unique way to define a standard partmap fromA intoB (tame pairs),

3. B is a proper elementary substructure of A dense in A (dense pairs),
4. A is the real field andB is a dense subgroup of the multiplicative group ofR>0
with the Mann property (dense subgroup),

5. B is a dense, definably independent set (independent set).

Here and throughout this paper, dense means dense in the usual order topology
on A. All the above examples are NIP. For dense pairs this is due independently
to Berenstein, Dolich, Onshuus [2], Boxall [3], and Günaydın and Hieronymi [8];
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for dense groups this was shown in [3] and [8]; for tame pairs and for the discrete
subgroups NIP was first proven in [8]. For a later, but more general result implying
NIP for all these theories, see Chernikov and Simon [4]. Our main results here are
as follows.

Main result. The theories of structures satisfying 1. or 2. are distal. The theories
of structures satisfying 3., 4., or 5. are not distal.

We observe the following interesting phenomenon: All examples of the above
NIP theories that do not define a dense and codense set, are distal. However, all
the examples that define a dense and codense set, are not distal. This is not true
in general. The expansion (R, <,Q) of the real line by a predicate for the set of
rationals is dp-minimal and hence distal by [14, Lemma 2.10].

Definitions and notations.Here are precise definitions of the properties under
investigation. Let T be a complete theory in a language L and let M be a
monster model of T . When a sequence (ai)i∈I from Mp is indiscernible over a
parameter set A, we say the sequence is A-indiscernible. We assume that such
a parameter set A ⊆ M always has cardinality smaller than the cardinality of
saturation of M. If we say a sequence is indiscernible, we mean the sequence is
∅-indiscernible.
Definition 1.1. We call an L-formula ϕ(x, y) dependent (in T ) if for every
indiscernible sequence (ai)i∈� fromMp and every b ∈ Mq , there is i0 ∈ � such that
eitherM |= ϕ(ai , b) for every i > i0 orM |= ¬ϕ(ai , b) for every i > i0. The theory
T is NIP (or is dependent) if every L-formula is dependent in T .
Here and in what follows, I, I1, I2 will always be linearly ordered sets. When we
write I1 + I2, we mean the concatenation of I1 followed by I2. By (c) we denote the
linearly ordered set consisting of a single element c.

Definition 1.2. We say T is distal if whenever A ⊆ M, and (ai)i∈I an
indiscernible sequence fromMp such that

a. I = I1 + (c) + I2, and both I1 and I2 are infinite without endpoints,
b. (ai)i∈I1+I2 is A-indiscernible,

then (ai)i∈I is A-indiscernible.

It is an easy exercise to check that every distal theory as defined above is also NIP.
When T is NIP, the definition of distality given above is one of several equivalent
definitions. Here we will only use this characterization of distality, and we refer the
interested reader to [14,15] for more information.
For the purposes of this paper it is convenient to introduce the following notion
of distality for a single L-formula.
Definition 1.3. Let ϕ(x1, . . . , xn ;y) be a (partitioned) L-forumula, where xi =
(xi,1, . . . , xi,p) for each i = 1, . . . , n. We say ϕ(x1, . . . , xn;y) is distal (in T ) if for
b ∈ Mq and every indiscernible sequence (ai)i∈I fromMp that satisfies

a. I = I1 + (c) + I2, and both I1 and I2 are infinite without endpoints,
b. (ai)i∈I1+I2 is b-indiscernible,
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then
M |= ϕ(ai1 , . . . , ain ; b)↔ ϕ(aj1 , . . . , ajn ; b)

for every i1 < · · · < in and j1 < · · · < jn in I .
This definition of distality of a single formula depends on the indicated partition
of the free variables. It is immediate that T is distal if and only if every L-formula
is distal in T . Using saturation ofM, one can also see easily that in order to check
the distality of a formula, one may assume that I1 and I2 are countable dense linear
orders without endpoints.
We now fix some notation. We will use m, n for natural numbers. For X ⊆ M,
we shall write dclL(X ) for the L-definable closure of X in M. When T is an o-
minimal theory, the closure operator dclL is a pregeometry. We will use this fact
freely throughout this paper. For a tuple b = (b1, . . . , bn) ∈ Mn and X ⊆ M, by Xb
wemeanX ∪{b1, . . . bn}, andwe say that b is dclL-independent if the set {b1, . . . , bn}
is. For a function f, ar(f) will denote the arity of f.

§2. The discrete case. In this section we give sufficient conditions for expansions
of o-minimal theories by a function symbol to be distal. We prove in sections
following this one that both tame pairs and the expansions by discrete groups
mentioned above satisfy these conditions. This criterion for distality (and its proof)
is closely related to the criterion for NIP given in [8, Theorem 4.1]. Here we use the
same set up. As in [8], let T be a complete o-minimal theory extending the theory of
ordered abelian groups and let L be its language with distinguished positive element
1. Such a theory has definable Skolem functions. After extending it by constants
and by definitions, we can assume the theory T admits quantifier elimination and
has a universal axiomatization. In this situation, any substructure of a model of T
is an elementary submodel, and therefore dclL(X ) = 〈X 〉 for any subset X of any
modelA ofT ; here 〈X 〉 denotes theL-substructure ofA generated byX . ForB 	 A
we write B〈X 〉 for 〈B ∪ X 〉. Following the notation from [8] we extend L to L(f)
by adding a new unary function symbol f. We let T (f) be a complete L(f)-theory
extending T . As usual, we takeM to be a monster model of T (f).

Theorem 2.1. Suppose that the following conditions hold :

(i) The theory T (f) has quantifier elimination.
(ii) For every (C, f) |= T (f), B 	 C with f(B) ⊆ B and every c ∈ Ck , there are
l ∈ N and d ∈ f

(B〈c〉)l such that
f
(B〈c〉) ⊆ 〈f(B), d 〉.

(iii) Let m ≥ n and let g, h be L-terms of arities m + k and n + l respectively,
b1 ∈ Mk, b2 ∈ f(M)l , (ai)i∈I be an indiscernible sequence fromf(M)n×Mm−n

such that
a. I = I1 + (c) + I2, where both I1 and I2 are infinite and without endpoints,
and (ai)i∈I1+I2 is b1b2-indiscernible,

b. ai = (ai,1, . . . , ai,m) for each i ∈ I , and
c. f(g(ai , b1)) = h(ai,1, . . . , ai,n , b2) for every i ∈ I1 + I2.
Then f(g(ac , b1)) = h(ac,1, . . . , ac,n, b2).

Then T (f) is distal.
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Proof. By (i), it is enough to show that every (partitioned) quantifier-free
L(f)-formula �(x1, . . . , xp;y) is distal. We will prove this by induction on the
number e(�) of times f occurs in �. If e(�) = 0, this follows just from the fact
that o-minimal theories are distal. Let e ∈ N>0 be such that every quantifier-free
L(f)-formula �′ with e(�′) < e (with any partition) is distal. Let �(x1, . . . , xp;y)
be a quantifier-free L(f)-formula with e(�) = e. We will establish that � is
distal. Take an indiscernible sequence (ai)i∈I from Ms and b ∈ Mk such that
I = I1 + (c) + I2, where both I1 and I2 are countable dense linear orders with-
out endpoints, and (ai)i∈I1+I2 is b-indiscernible. By b-indiscernibility we may
assume that

(A) M |= �(ai1 , . . . , aip ; b) for all i1 < · · · < ip ∈ I1 + I2.
Let j ∈ {1, . . . , p}, u1 < · · · < uj−1 ∈ I1 and v1 < · · · < vp−j ∈ I2. It suffices to
show that

M |= �(au1 , . . . , auj−1 , ac, av1 , . . . , avp−j ; b). (2.1)

Since e > 0, there is an L-term g such that the term f(g(x1, . . . , xp, y)) occurs in �.
Now let A be the L(f)-substructure of M generated by {ai : i ∈ I1 + I2}. By (ii),
there is d ∈ f

(A〈b〉)l such that
f(A〈b〉) ⊆ 〈f(A), d 〉

(useM � L as C and A � L as B in the statement of (ii)). Take q, r ∈ N, uj < · · · <
uq ∈ I1 and v−r < · · · < v0 in I2 such that
(B) u1 < · · · < uq and v−r < · · · < vp−j ,
(C) d is in the L(f)-substructure generated by au, av, b,
where au = (au1 , . . . , auq ) and av = (av−r , . . . , avp−j ). By the definition of d , we have
for every i ∈ I1 + I2

f(g(au1 , . . . , auj−1 , ai , av1 , . . . , avp−j , b)) ∈ 〈f(A), d 〉,
in particular when uq < i < v−r . Because (ai)i∈I1+I2 is b-indiscernible, we can (after
possibly increasing q, r and extending au and av) find an L-term h, n ∈ N and
L(f)-terms t1, . . . , tn (all of the form f(si) for an L-term si) such that
(D) for every i ∈ I1 + I2 with uq < i < v−r
f(g(au1 , . . . , auj−1 , ai , av1 , . . . , avp−j , b)) = h(t1(au, ai , av), . . . , tn(au, ai , av), d ).

Let I ′ = (I1)>uq + (c) + (I2)<v−r . For each i ∈ I ′ set
a′i := (t1(au, ai , av), . . . , tn(au, ai , av), ai).

Since (ai)i∈I is indiscernible, so is (a′i )i∈I ′ . By (C) and the b-indiscernibility of
(ai)i∈I1+I2 , we get that (a

′
i )i∈I ′ is bd -indiscernible. Applying (iii) now using the

indiscernible sequence (a′i )i∈I ′ and (D), we deduce that

f(g(au1 , . . . , auj−1 , ac, av1 , . . . , avp−j , b)) = h(t1(au, ac, av), . . . , tn(au, ac , av), d ).
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From this and (D), we get a quantifier-free L(f)-formula �′ with e(�′) < e such
that for all i ∈ I ′

M |= �(au1 , . . . , auj−1 , ai , av1 , . . . , avp−j ; b)
↔ �′(t1(au, ai , av), . . . , tn(au, ai , av), ai ; b, d

)
.

By (A) and the induction hypothesis, (2.1) follows. �

§3. Discrete groups. Let R̃ be an o-minimal expansion of (R, <,+, ·, 0, 1) which
is polynomially-bounded with field of exponents Q. We will establish distality for
the theory of the expansion of R̃ by a predicate for the cyclic multiplicative subgroup
2Z of R>0. Towards this goal, let T be the theory of R̃ and L be its language. Let
� : R → R be the function that maps x to max(−∞, x] ∩ 2Z when x > 0, and to
0 otherwise. It is immediate that the structures (R̃, 2Z) and (R̃, �) define the same
sets. Van den Dries [16] showed quantifier elimination for the latter structure when
R̃ is the real field. This result was generalized by Miller [12] to expansions of the
real field with field of exponents Q. It is worth pointing out that by [10, Theorem
1.5] the assumption on the field of exponents can not be dropped.
Let Tdisc be the theory of (R̃, �) in the language L(�), the extension of L by a
unary function symbol for �. In order to show distality of Tdisc, we can assume that
R̃ has quantifier elimination and has a universal axiomatization.

Theorem 3.1. Tdisc is distal.

Proof. We need to verify that Tdisc satisfies the assumptions of Theorem 2.1.
Assumptions (i) and (ii) were already established in [8, Theorem 6.5]. It is left
to prove (iii). Let M be a monster model of Tdisc. We denote �(M) \ {0} by G .
Note that G is a multiplicative subgroup of M>0. For p ∈ N, the set of p-powers
G [p] := {gp g ∈ G} has finitely many cosets in G , since |2Z : (2Z)[p]| = p. Indeed,
1, 2, . . . , 2p−1 are representatives of the cosets of G [p].
Take an indiscernible sequence (ai)i∈I from Mm, where I = I1 + (c) + I2 and
I1 and I2 are infinite without endpoints, such that ai,1, . . . , ai,n ∈ �(M) for every
i ∈ I and ai = (ai,1, . . . , ai,m). Let (b1, b2) ∈ Mk × �(M)l such that (ai)i∈I1+I2 is
b1b2-indiscernible. Suppose that there are L-terms g, h such that for i ∈ I1 + I2

�(g(ai , b1)) = h(ai,1, . . . , ai,n, b2).

It is left to conclude that �(g(ac, b1)) = h(ac,1, . . . , ac,n, b2). By definition of �, we
have for every i ∈ I1 + I2

M |= 1 ≤ g(ai , b1)
h(ai,1, . . . , ai,n, b2)

< 2.

Since T is distal, the previous statement holds for all i ∈ I . It is left to show that
h(ac,1, . . . , ac,n, b2) ∈ G . By [8, Corollary 6.4] and b-indiscernibility of (ai)i∈I1+I2 ,
there are t, q1, . . . , qn ∈ Q, r = (r1, . . . , rl ) ∈ Ql such that for every i ∈ I1 + I2

h(ai,1, . . . , ai,n, b2) = 2t · aq1i,1 · · · aqni,n · br2,
where br2 stands for b

r1
2,1 · · · brl2,l . By distality of T , this equation holds for all i ∈ I .

It is left to show that 2t · aq1c,1 · · · aqnc,n · br2 ∈ G . Let p ∈ N be such that p · t, p · q1, . . . ,
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p · qn ∈ Z and p · r ∈ Zl . It is enough to prove 2p·t · ap·q1c,1 · · · ap·qnc,n ∈ bp·r2 ·G [p]. Let
s ∈ {0, . . . , p − 1} be such that bp·r2 is in 2s ·G [p]. Then for every i ∈ I ,

2p·t · ap·q1i,1 · · · ap·qni,n ∈ bp·r2 ·G [p] iff 2p·t · ap·q1i,1 · · · ap·qni,n ∈ 2s ·G [p]. (3.1)

Since the second statement in (3.1) holds for i ∈ I1 + I2 and (ai)i∈I is indiscernible,
it holds for all i ∈ I and in particular for i = c. �

§4. Tame pairs. For this section, letT be a complete o-minimal theory expanding
the theory of real closed fields in a languageL. In [19] van den Dries and Lewenberg
introduced the following notion of tame pairs of o-minimal structures.

Definition 4.1. A pair (A,B) of models of T is called a tame pair if B 	 A,
A �= B and for every a ∈ A which is in the convex hull of B, there is a unique
st(a) ∈ B such that |a − st(a)| < b for all b ∈ B>0.
The standard part map st can be extended to all of A by setting st(a) = 0 for
all a not in the convex hull of B. Instead of considering (A,B) we will consider
(A, st). It is easy to check that these two structures are interdefinable. Let Tt be the
L(st)-theory of all structures of the form (A, st). After extending T by definitions,
we can assume that T has quantifier elimination and is universally axiomatizable.
By [19, Theorem 5.9] and [19, Corollary 5.10], Tt is complete and has quantifier
elimination.
We will also need to consider the theory of convex pairs. A T -convex subring
of a model A of T is a convex subring that is closed under all continuous unary
L-∅-definable functions. A convex pair is a pair (A, V ), where A |= T , V is a
T -convex subring of A, and V �= A. We denote the theory of all such pairs by
Tc . By [19, Corollary 3.14], this theory is weakly o-minimal. By [5, Theorem 4.1],
every weakly o-minimal theory is dp-minimal and hence distal by [14, Lemma 2.10].
Therefore Tc is distal.
For every model (A, st) of Tt , the pair (A, V ) is a model of Tc , where V is the
convex closure of st(A). It follows immediately that for every b ∈ st(A) and a ∈ A

st(a) = b ⇐⇒ a = b or ((a − b)−1 /∈ V ) or (b = 0 and a /∈ V ).
We will not use the explicit description on the right, but we will use the fact that this
gives us an L(U )-formula � such that for all a ∈ A and b ∈ st(A)

(A, st) |= st(a) = b iff (A, V ) |= �(a, b). (4.1)

Theorem 4.2. Tt is distal.

Proof. We will show that Tt satisfies the assumptions of Theorem 2.1. Assump-
tions (i) and (ii) were already established for [8, Theorem 5.2]. We only need
to prove (iii). Let M be a monster model of Tt , and V the convex closure of
st(M). Let (ai)i∈I be an indiscernible sequence fromMm, where I = I1 + (c) + I2
and I1 and I2 are infinite with no endpoints, such that ai,1, . . . , ai,n ∈ st(M) for
i ∈ I and ai = (ai,1, . . . , ai,m). Let (b1, b2) ∈ Mk × st(M)l such that (ai)i∈I1+I2 is
b1b2-indiscernible. Suppose that there are L-terms g, h such that for i ∈ I1 + I2

st(g(ai , b1)) = h(ai,1, . . . , ai,n , b2).
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We need to show that st(g(ac , b1)) = h(ac,1, . . . , ac,n, b2). Since st(M) is a model
of T , we have h(ai,1, . . . , ai,n, b2) ∈ st(M) for every i ∈ I . By (4.1), there is an
L(U )-formula � such that for i ∈ I

(M, st) |= st(g(ai , b1)) = h(ai,1, . . . , ai,n , b2)⇐⇒ (M, V ) |= �(ai , b).
Since Tc is distal,M |= �(ac, b). �

§5. Dense pairs. In this section we present sufficient conditions for nondistality
of expansions of o-minimal theories by a single unary predicate, and give several
examples of NIP theories satisfying these conditions. Let T be an o-minimal theory
in a language L expanding that of ordered abelian groups, U a unary relation
symbol not appearing in L, and TU an L(U ) = L ∪ {U}-theory expanding T . Let
M be a monster model of TU . We denote the interpretation of U in M by U (M).
We say that an L(U )-definable subset X of M is small if there is no L-definable
(possibly with parameters) function f : Mm → M such that f(Xm) contains an
open interval inM. When we say a set is dense inM, we mean dense with respect to
the usual order topology onM.

Theorem 5.1. Suppose the following conditions hold :
(1) U (M) is small and dense inM.
(2) For n ∈ N, C ⊆ M, and a, b ∈ Mn both dclL-independent over C ∪U (M),

tpL(a|C ) = tpL(b|C )⇒ tpL(U )(a|C ) = tpL(U )(b|C ).
Then TU is not distal.
Proof. Let b ∈ M be dclL-independent over U (M). The existence of such a
b follows immediately from smallness of U (M) and saturation of M. Let I1, I2
be two countable linear orders without endpoints. Consider a set Φ containing
L(U )-b-formulas in the variables (xi)i∈I1+(c)+I2 expressing the following statements:
(i) {xi : i ∈ I1 + I2} is dclL-independent over U (M)b,
(ii) f(xi1 , . . . , xin , b) < xin+1 , for each i1 < · · · < in+1 ∈ I1 + (c) + I2 and

L-∅-definable function f,
(iii) there is u ∈ U (M) such that xc = u + b.
We will show that Φ is realized inM. By saturation ofM it is enough to show that
every finite subset Φ0 of Φ is realized. Let F = {f1, . . . , fm} be the L-definable
functions appearing in formulas of the form (ii) inΦ0.Let i1 < · · · < in ∈ I1+(c)+I2
be the indices of variables occurring in Φ0. We may assume c is among these, and
by adding dummy variables that each fj is of the form f(xi1 , . . . xik , b) for some
k < n. We now recursively choose (ai1 , . . . , ain ) realizing the type Φ0.
Suppose we have defined ai1 , . . . , aik−1 . If k = 1, we will have defined no previous
ai , and the functions below will be of arity 1 only mentioning b. If ik = c, then by
denseness of U (M) we may choose ac in

(
b +U

) ∩
(

max
f∈F ,ar(f)=k

f(ai1 , . . . , aik−1 , b),∞
)
.

If ik �= c, then by smallness of U (M) we may choose aik in(
max

f∈F ,ar(f)=k
f(ai1 , . . . , aik−1 , b),∞

)
\ dclL(U (M)bai1 · · · aik−1 ).
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As (ai1 , . . . , ain ) realizes Φ0, Φ is finitely satisfiable.
By saturation,we canpick a realization (ai)i∈I1+(c)+I2 ofΦ inM. This sequence can
be thought of as a very rapidly growing sequence; each elementwill realize the type at
+∞ over the L-definable closure of everything before it. Therefore the sequence is a
Morley sequence for theL-type of +∞ over dclL(b), and hence isL-b-indiscernible.
As dclL is a pregeometry and b is dclL-independent overU (M), (i) and (iii) together
imply that the full sequence is dclL-independent over U (M). Thus by (2), the
L-indiscernibility of these sequences lifts toL(U )-indiscernibility; that is, (ai)i∈I1+I2
is L(U )-indiscernible over b, and the full sequence is L(U )-indiscernible. However,
since ac = b + u for some u ∈ U (M), the full sequence is not L(U )-indiscernible
over b. Hence TU is not distal. �
Optimality. Note that, the assumption that T expands the theory of ordered
abelian groups can not be dropped. As pointed out in the introduction the theory
of the structure (R, <,Q) is distal. However, it is not hard to check that the theory
of (R, <,Q) satisfies the other assumptions of Theorem 5.1.

Dense pairs. Let A,B be two models of an o-minimal theory T expanding the
theory of ordered abelian groups such that B 	 A, B �= A, and B is dense in A.
We call (A,B) a dense pair of models of T . Let Td be the theory of dense pairs
in the language L(U ). By van den Dries [17] Td is complete. Moreover, for every
dense pair (A,B), the underlying set of B is small by [17, Lemma 4.1]. While not
stated explicitly, it follows almost immediately from [17, Claim on p.67] thatTd also
satisfies (2) of Theorem 5.1 (see [7, Proposition 2.3] for detailed proof). Therefore
Td is not distal.

Dense groups. Let R be the real field (R, <,+, ·, 0, 1). Let Γ be a dense subgroup
of R>0 that has the Mann property, that is for every a1, . . . , an ∈ Q×, there are
finitely many (�1, . . . , �n) ∈ Γn such that a1�1 + · · ·+ an�n = 1 and

∑
i∈I ai �i �= 0

for every proper nonempty subset I of {1, . . . , n}. Every multiplicative subgroup of
finite rank in R>0 has the Mann property. Let L be the language of R expanded by
a constant symbol for each � ∈ Γ. Let TΓ be the L(U )-theory of (R, (�)�∈Γ,Γ) in
this language. This structure was studied in detail by van den Dries and Günaydın
[18]. A proof that every model satisfies (1) of Theorem 5.1 is in [9, Proposition
3.5]. Similarly to dense pairs, it is not mentioned in [18] that these theories satisfy
condition (2) of Theorem 5.1. However, it can easily be deduced from the proof of
[17, Theorem 7.1] (see also [7, p. 6]).
The argument can easily be extended to related structures (see [1,9,11]).

Independent sets. We finish with another class of structures that were studied
recently by Dolich, Miller and Steinhorn [6]. Let T be an o-minimal theory in a
languageL expanding that of ordered abelian groups. Let T indep be anL(U )-theory
extending T by axioms stating that U is dense and dclL-independent. By [6],
T indep is complete. Every model of T indep satisfies (1) of Theorem 5.1 by [6, 2.1].
By [6, 2.12], condition (2) of that theorem also holds for T indep.
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