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The nonlinear dynamics of the flow in a differentially rotating split cylinder is
investigated numerically. The differential rotation, with the top half of the cylinder
rotating faster than the bottom half, establishes a basic state consisting of a bulk flow
that is essentially in solid-body rotation at the mean rotation rate of the cylinder and
boundary layers where the bulk flow adjusts to the differential rotation of the cylinder
halves, which drives a strong meridional flow. There are Ekman-like layers on the top
and bottom end walls, and a Stewartson-like side wall layer with a strong downward
axial flow component. The complicated bottom corner region, where the downward
flow in the side wall layer decelerates and negotiates the corner, is the epicentre
of a variety of instabilities associated with the local shear and curvature of the
flow, both of which are very non-uniform. Families of both high and low azimuthal
wavenumber rotating waves bifurcate from the basic state in Eckhaus bands, but
the most prominent states found near onset are quasiperiodic states corresponding
to mixed modes of the high and low azimuthal wavenumber rotating waves. The
frequencies associated with most of these unsteady three-dimensional states are such
that spiral inertial wave beams are emitted from the bottom corner region into the
bulk, along cones at angles that are well predicted by the inertial wave dispersion
relation, driving the bulk flow away from solid-body rotation.

Key words: boundary layer stability, nonlinear instability, rotating flows

1. Introduction

Flow instability, transition and turbulence in systems in fast rotation continue
to attract much fundamental interest due to their prevalence in many practical
flows, covering a large range from industrial flows, such as in turbo-machinery,
to geophysical and astrophysical flows (Crespo del Arco et al. 2005; Lappa 2012;
Davidson 2013; Le Bars, Cebron & Le Gal 2015). In enclosed incompressible rotating
flows, differential rotation drives secondary flows that are responsible for instability
and transition (Dijkstra & van Heijst 1983; Lopez 1990, 1998). However, when
the mean or background rotation is very fast, the Coriolis restoring force tends to
restrict secondary flows to the boundary layers. The interior flow is then essentially
in solid-body rotation at the mean rotation rate if the differential rotation is steady
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and if there is no unsteadiness introduced from boundary layer instabilities. If the
differential rotation is unsteadily driven and if the forcing frequency is less than
twice the background rotation frequency, then the interior flow can be driven away
from solid-body rotation, typically by internal wave beams emanating from where
the secondary flow abruptly changes its character. Typically, in enclosed cylinders
this happens at the corners where the side wall and the end walls meet (Lopez &
Marques 2014a), in spherical containers at the critical latitudes (Kerswell 1995) and
in cubes from the edges (Boisson et al. 2012). Even when the differential rotation is
steady, the boundary layer and corner flows can become unstable, and if the resulting
instabilities have appropriate frequency spectra, inertial wave beams can be emitted
into the interior flow (Lopez & Marques 2011; Sauret et al. 2012).

When the differential rotation is due to the counter rotation of the end walls
of a cylindrical container, massive boundary layer separations ensue leading to
bulk flows with complicated spatio-temporal structure in the interior. The mean
rotation rate is then typically small and the action of the Coriolis restoring force is
essentially not present (Lopez et al. 2002; Nore et al. 2003, 2004). However, when
the differential rotation is in co-rotation, the Coriolis force is strong and instabilities
are localized within the side wall boundary layer (Hart & Kittelman 1996; Lopez
1998; Lopez & Marques 2010). The study of the side wall boundary layer goes back
to Stewartson (1957), who considered the structure of the boundary layer in the limit
of small differential rotation and small viscosity. Stewartson (1957) also considered
the cylindrical shear layer that is produced in the interior flow between two rotating
disks that are split at a common radial distance from the axis, with the inner part
rotating differentially to the outer part. The shear layer problem has an extensive
subsequent literature, the most recent being the studies of Vo, Montabone & Sheard
(2014), Vo et al. (2015a), Vo, Montabone & Sheard (2015b). In both of Stewartson’s
problems, the radial structure of the interior shear layer and the side wall boundary
layer have thicknesses that scale with the kinematic viscosity of the fluid ν. There
is a ν1/4 scaling in which the differential rotation is adjusted and a ν1/3 scaling in
which the driven meridional circulation is adjusted. The meridional flow is driven by
the end wall boundary layers whose thickness scale as ν1/2.

In most cases studied where a Stewartson-type side wall boundary layer exists
in a cylindrical geometry it results from the differential rotation between the side
wall and one or both end walls. When the layer becomes unstable it is not clear
what role the discontinuity at the corner plays. Stewartson-type layers without the
presence of a discontinuous corner have also been studied in the idealized setting of
an infinitely long cylinder that is split with the top part rotating differentially to the
bottom part (Smith 1991). Hocking (1962) also studied this flow, but did not analyse
the boundary layer structure. For a finite enclosed split cylinder, van Heijst (1983)
showed that the meridional flow driven by the end wall boundary layers altered the
roles of the ν1/4 and ν1/3 side wall layers in a subtle fashion depending on where
the cylinder was split along the side wall. In particular, the ν1/4 layer is unable to
adjust the differential rotation on its own and neither is the ν1/3 layer able to adjust
the meridional circulation on its own, but a combination of the two accomplishes
the correct adjustments. All of these split-cylinder results cited so far are obtained
in the limit of small viscosity and small differential rotation and the stability of the
flows was not considered. Gutierrez-Castillo & Lopez (2015) relaxed these constraints
and considered the nonlinear viscous problem, albeit restricted to the axisymmetric
subspace, elucidating the complicated structure of the basic state. The boundary layer
at the faster rotating top end wall drives flow radially outward and down into the ν1/3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

41
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.419


668 J. M. Lopez and P. Gutierrez-Castillo

side wall layer; the split in the cylinder at half-height locally affects the boundary
layer thickness but does not directly impact the flow, which continues down and is
turned at the bottom corner. The side wall boundary layer flow that is closest to
the side wall continues past the corner and is fed radially inwards into the bottom
boundary layer from which it effuses slowly upward toward the top end wall, setting
up the interior flow that is essentially in solid-body rotation. The rest of the side wall
boundary layer flow is turned at the bottom corner and flows upward in the outer part
of the side wall layer. Two axisymmetric instabilities were found, one consisting of
a periodic swelling and deflation of the bottom corner flow region at a low enough
frequency that inertial wave beams are emitting into the interior from the corner.
The other instability consisted of a series of axisymmetric rollers travelling down the
inner side wall layer. Their associated frequency was too large (approximately four
times the background rotation frequency) and no inertial wave beams were emitted.
Furthermore, over a considerable range of parameters, quasiperiodic states which have
characteristics of both limit cycle states were found. Similarities were found between
the characteristics of these states and those found in the flow where the differential
rotation is driven by a faster rotating top end wall when restricted to the axisymmetric
subspace. In that case the base flow is primarily unstable to three-dimensional rather
than axisymmetric instabilities (Lopez & Marques 2010). These similarities and the
question of the role of the discontinuity motivated us to explore the fully nonlinear
three-dimensional rapidly rotating split-cylinder flow.

2. Governing equations and numerical methods
Consider a circular cylinder of radius a and height h, completely filled with a fluid

of kinematic viscosity ν and rotating at a mean angular speed Ω . The cylinder is split
in two at mid-height, with the top half rotating faster, with angular speed Ω +ω, than
the bottom half that has angular speed Ω − ω. A schematic of the flow system is
shown in figure 1.

The flow is governed by the Navier–Stokes equations, which are non-dimensionalized
using a as the length scale and 1/Ω as the time scale, giving

(∂t + u · ∇)u=−∇p+ 1
Re
∇2u, ∇ · u= 0, (2.1a,b)

where u = (u, v, w) is the velocity field in cylindrical polar coordinates (r, θ, z) ∈
[0, 1] × [0, 2π] × [−γ /2, γ /2] and p is the kinematic pressure. The corresponding
vorticity field is ∇× u= (ξ , η, ζ ). There are three governing parameters:

Reynolds number Re=Ωa2/ν,

Rossby number Ro=ω/Ω,
aspect ratio γ = h/a.

 (2.2)

The Reynolds number and aspect ratio can be combined to give the Ekman number
Ek= 1/(Reγ 2), which can also be used to characterize rotating flows. In the present
study, the aspect ratio has been kept fixed at γ = 1.

The boundary conditions are no slip:

top end wall, z= 0.5γ : (u, v,w)= (0, r(1+ Ro), 0),
bottom end wall, z=−0.5γ : (u, v,w)= (0, r(1− Ro), 0),

top half of side wall, r= 1, z ∈ (0, 0.5γ ]: (u, v,w)= (0, 1+ Ro, 0),
bottom half of side wall, r= 1, z ∈ [−0.5γ , 0): (u, v,w)= (0, 1− Ro, 0).

 (2.3)
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h

a

FIGURE 1. (Colour online) Schematic of the flow system. The inset shows contours of
the azimuthal vorticity η of the basic state at Re= 1.2× 104, Ro= 0.23 and γ = 1. There
are ten contour levels in the range η ∈ [−5, 5], cubically spaced.

The system has been solved using a second-order time-splitting method, with space
discretized via a Galerkin–Fourier expansion in θ and Chebyshev collocation in r
and z:

u(r, θ, z, t)=
2nr+1∑
n=0

nz∑
m=0

k=nθ /2−1∑
k=−nθ /2

ûmnk(t)Ξn(r)Ξm(2z/γ )eikθ , (2.4)

where Ξn is the nth Chebyshev polynomial. The spectral solver is based on the
method described in Mercader, Batiste & Alonso (2010) and has been used extensively
in a wide variety of enclosed cylinder flows. The results presented in this study were
computed with a spatial resolution of nr = nz = 100, nθ = 202 and a time resolution
of δt = 2× 10−3; these were sufficient to resolve the spatio-temporally complex flows
associated with the side wall and corner flow instabilities encountered in the parameter
regime studied. The spatial resolution in r and z was examined in detail over a wider
range of Re, Ro and γ than was used in the present study in Gutierrez-Castillo &
Lopez (2015), and is not repeated here. The two flow features that require the most
resolution are the Ekman-like layers on the end walls, whose thickness scales with
Re−1/2 and the discontinuity in the side wall. Neither of these are affected by the
three-dimensional aspects of the flow. In the θ direction, 202 Fourier modes were
used, which was more than enough to resolve even the high azimuthal wavenumber
states found, which have azimuthal wavenumbers of order 40.

The discontinuity in the side wall boundary condition for the azimuthal velocity is
regularized by smoothing out the discontinuity over a small distance. Specifically, the
boundary condition for the azimuthal velocity is replaced with

v(r= 1, θ, z)= 1+ Ro tanh(εz), (2.5)

where ε governs the distance over which the discontinuity is smoothed out. This
parameter is fixed at ε = 50 for the simulations presented here. Details of this
selection can be found in Gutierrez-Castillo & Lopez (2015).
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FIGURE 2. (Colour online) Regime diagram presenting an overview of the solutions
obtained.

The modal kinetic energies of the Fourier modes corresponding to azimuthal
wavenumbers m,

Em = 1
2

∫ 0.5γ

−0.5γ

∫ 1

0
um · u∗m r dr dz, (2.6)

where um is the mth Fourier mode of the velocity field and u∗m is its complex
conjugate, provide a convenient way to characterize many of the solutions obtained.

3. Results
3.1. Basic state

The basic state (BS) is steady and axisymmetric. It is stable for sufficiently small Re
and Ro, and consists of a bulk flow in solid-body rotation with v/r≈Re and boundary
layers of Ekman type on the top and bottom end walls and a Stewartson-like boundary
layer on the side wall. A typical BS at Re = 1.2 × 104 and Ro = 0.23 is presented
in figure 1, which shows contours of the azimuthal vorticity, η. The contour levels
are cubically spaced so that more levels are concentrated about the zero level. For
pure solid-body rotation there is no meridional flow and η = 0. Figure 1 shows that
this is essentially the case for BS for r . 0.7 and away from the top and bottom
Ekman layers. The details of how BS changes with parameters, in particular with
Ro, are provided in Gutierrez-Castillo & Lopez (2015). That study only considered
axisymmetric flow, and the only instabilities of BS considered were also axisymmetric.
However, as detailed in the following sections, over the wide range of parameters
considered, the primary instabilities of BS are not axisymmetric.

3.2. Overview of the instabilities
Figure 2 shows a regime diagram in (Ro, Re) parameter space, summarizing the
various types of states obtained following the instabilities of BS. The BS described
in the previous section (designated as small filled circles in the figure) is stable for
low Ro and Re. As Re and Ro are increased, the BS loses stability in a number
of different bifurcations. Generally, the bifurcations are supercritical for Ro & 0.245
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FIGURE 3. (Colour online) Variations of the modal kinetic energies Em of the various
rotating waves RWm (m ∈ [1, 4]) versus Ro for Re= 104. The filled symbols correspond
to stable states and open symbols to unstable states (computed in the corresponding
subspaces). (b) Is a zoomed-in version of (a).

and subcritical for Ro . 0.245. Flow curvature and shear in the side wall boundary
layer, and the flow negotiating the corner in the slower rotating half of the cylinder,
where the bottom end wall and the side wall meet, are the primary ingredients for
the instabilities. For small Re and large Ro, one class of instabilities leads to low
azimuthal wavenumber rotating waves (RWL) concentrated in the bottom corner, and
emits inertial wave beams into the interior. These are designated by open squares in
figure 2. For larger Re and smaller Ro, high azimuthal wavenumber rotating waves
(RWH) are found (designated by open diamonds). These are also concentrated near
the bottom corner, but more deeply in the side wall layer. There is an extensive
(Ro, Re) regime in between, where quasiperiodic states (QP) are found that have
well-distinguished features of both RWL and RWH; these are designated by large
open circles. All the states exist with a range of different azimuthal wavenumbers
corresponding to Eckhaus bands. In the following sections, we shall consider a
number of one parameter paths in the regime diagram, describing in some detail the
various instabilities and flow characteristics.

3.3. Low azimuthal wavenumber rotating waves

With fixed Re= 104, the basic state is stable for Ro. 0.265. For Ro above that critical
value, the BS undergoes a supercritical Hopf bifurcation that breaks axisymmetry,
resulting in a rotating wave state with azimuthal wavenumber m= 3, RW3. For larger
Ro, a complicated bifurcation process ensues that involves a number of RWL. A
summary of the RWL solution branches showing their primary modal kinetic energy,
Em for RWm, as functions of Ro are presented in figure 3, where (a) presents the
overall picture and (b) is a zoomed-in view near the onset of instability of the BS.
Very near the first bifurcation from the BS, the modal kinetic energy E3 of the
rotating wave RW3 grows linearly with increasing Ro, and then slower than linearly
with larger Ro, until Ro≈ 0.298 where RW3 loses stability. The unstable RW3 has also
been continued to larger Ro by restricting the computations to the m = 3 symmetry
subspace. Starting with the stable RW3 as the initial condition for a slightly larger
Ro results in an evolution to a rotating wave with m = 2, RW2. The RW2 solution
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branch was also continued to higher Ro; it loses stability for Ro & 0.322, and there
is a transition to another rotating wave branch with m = 1, RW1. This branch loses
stability for Ro . 0.275, but remains stable for higher Ro, at least up to the highest
value considered in this study, Ro= 0.40. On the other hand, the RW2 solution branch
was also continued to smaller Ro; it loses stability for Ro . 0.275 and switches to
an m = 4 branch, RW4. The RW4 loses stability for Ro . 0.267, and Ro & 0.292
switching to the RW3 branch.

The bifurcation scenario just presented is typical of an Eckhaus band (Tuckerman
& Barkley 1990). Here, the marginal stability curve is a discrete set of points due to
the integer wavenumber m resulting from breaking the azimuthal invariance, SO(2)
symmetry, of the BS, which gives the critical Ro for the instability of the BS to a
rotating wave with azimuthal wavenumber m. Only the rotating wave RWm with the
lowest critical Ro will be stable at its onset, in this case RW3, and the rotating waves
corresponding to other m will be unstable at their onset. However, these rotating
waves become stable at secondary bifurcations and the loci of points in (m, Ro)
where these occur form the Eckhaus stability boundary. In principle, at a given Ro
above critical, all rotating waves with m inside the Eckhaus band are stable, but
can become unstable as Ro is increased, and spawn unstable modulated rotating
waves. Similar dynamics has been studied in rotating convection problems, where the
Eckhaus instability for systems with SO(2) symmetry is further detailed (Lopez et al.
2007; Marques & Lopez 2008).

Figure 4 shows contours of the azimuthal vorticity, η, as well as its non-
axisymmetric component, η − η0, where η0 is the m = 0 Fourier component of η
in the meridional plane θ = 0 and the plane z = −0.4 which is close to the bottom
end wall. The four rotating wave states shown in the figure are for Re = 104 and
Ro= 0.29, and are inside the Eckhaus band where all four are stable. The boundary
layer structure of the rotating wave states is very similar to that of the basic state
(see figure 1), the main difference being a slight bulge in the lower corner region.
This bulge is more readily appreciated when the axisymmetric component is removed;
it is seen to be localized in the corner region and has azimuthal wavenumber m, as
is evident from the plots in the z = −0.4 plane. This bulge structure rotates in the
azimuthal direction at a constant rate without change of shape. In the corner region
at any fixed point in a reference frame rotating with the cylinder mean rotation rate,
the passage of the bulge provides a localized disturbance that emits a wave beam into
the interior along a cone. This cone forms an angle β with a plane orthogonal to the
cylinder axis given by the dispersion relation cos β =ωR/2. The dispersion relation is
obtained in the inviscid flow limit of infinitesimal perturbations to solid-body rotation
(Greenspan 1968), where ωR is the frequency of the perturbation in the frame of
reference rotating with the cylinder mean rotation rate Ω , and non-dimensionalized
with Ω . When the localized disturbance is axisymmetric, the resulting wave beams
are axisymmetric cones, but when the localized disturbance is not axisymmetric, the
wave beams are spirals on the cone. The contours shown in the z=−0.4 plane in the
third column of figure 4 illustrate the spiral nature of the wave beams, and the plots
in the meridional plane in the second column of the figure show the cone structure.

Figure 5 shows three-dimensional isosurfaces of the non-axisymmetric component
of the axial velocity, w−w0, for the four rotating wave states, illustrating the bulges
localized near the corner (almost horizontal rollers that are more inclined for larger
m). The resulting wave beams are emitted from the corner along the cone, with
reflections off either the top end wall or the axis, depending on the cone angle for
each case. Since our simulations are conducted in the stationary frame of reference,
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(a) (b) (c)

FIGURE 4. (Colour online) Contours of (a) η, (b) η − η0 in the meridional plane θ = 0
and (c) η− η0 in the plane z=−0.4, for the rotating waves RWm, m∈ [1, 4], at Re= 104,
Ro = 0.29. There are ten cubically spaced contour levels in the ranges η ∈ [−5, 5] and
η − η0 ∈ [−1, 1], with the positive being red (dark grey) and the negative being yellow
(light grey).

to predict the cone angle we need to convert the precession frequency of the rotating
wave in the stationary frame ωS (which is obtained directly from our simulations)
to ωR, the frequency a local observer sees in the rotating frame of reference. Recall

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

41
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.419


674 J. M. Lopez and P. Gutierrez-Castillo

(a) (b)

(c) (d)

FIGURE 5. (Colour online) Isosurfaces of w−w0, at levels ±0.001, of (a) RW1,
(b) RW2, (c) RW3 and (d) RW4 at Re= 104 and Ro= 0.29.

ωS ωR β (deg.)

RW1 −0.47 −1.47 42.63
RW2 0.39 −1.61 36.18
RW3 1.35 −1.65 34.38
RW4 2.22 −1.78 27.11
LC 1.68 1.68 32.86

TABLE 1. Frequencies in the stationary and rotating frames of reference and angles of
the inertial wave beam cones for different stable RW states and the unstable LC, all at
Re= 104 and Ro= 0.29.

that a structure with azimuthal wavenumber m takes 2πm/ωS time units to rotate
2π in the stationary frame of reference. To calculate the frequency in the rotating
frame of reference, the background rotation speed (non-dimensionalized to 1) has
to be subtracted from the angular speed of the rotating wave (ωS/m) to obtain
the angular speed of the rotating wave in the rotating frame of reference (ωR/m),
leading to ωR = ωS − m. Table 1 lists ωS, ωR and the corresponding cone angle β
for the four rotating waves shown in figures 4 and 5. The linear inviscid dispersion
relation predicts the cone angle β well, even though the simulations are viscous, with
Re= 104, and highly nonlinear with Ro= 0.29. In the stationary frame of reference,
the precession rates of the rotating waves vary considerably, with RW1 precessing
retrograde with respect to the sense of mean rotation of the cylinder (hence the
negative frequency), and the other three are prograde. However, when viewed in
the rotating frame, all are retrograde with a much smaller variation in frequencies.
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(a) (b) (c)

FIGURE 6. (Colour online) Contours of (a) η, (b) 〈η〉 and (c) η− 〈η〉 in a vertical plane
for the unstable LC solution at Re= 104, Ro= 0.29. There are ten contour levels in the
range η ∈ [−5, 5], 〈η〉 ∈ [−5, 5] and η− 〈η〉 ∈ [−1, 1], cubically spaced, with the positive
being red (dark grey) and the negative being yellow (light grey).

For the lowest m = 1, the cone angle is such that the wave beam almost perfectly
retraces itself as it is emitted from the corner region (r, z)= (1,−0.5) and is reflected
back from the axis at the top end wall (r, z)= (0, 0.5). For increasing m, the wave
beams do not penetrate all the way to the axis; for RW4, there is a clear quiescent
zone near the axis. This is consistent with the analysis of Wood (1981), who showed
that the radial extent of the quiescent axial zone increases with m.

It is of interest to compare the rotating wave states with the axisymmetric limit
cycle that bifurcates from the BS, which was first described in Gutierrez-Castillo
& Lopez (2015). We again fix Re = 104 and increase Ro, but compute in the
axisymmetric subspace, since the BS is first unstable to non-axisymmetric disturbances.
In doing so, the BS becomes unstable via a Hopf bifurcation at Ro≈ 0.28, spawning
an axisymmetric limit cycle (LC), which like the BS in this parameter regime, is
unstable to non-axisymmetric perturbations. Figure 6(a) shows a snapshot of the
azimuthal vorticity η of LC at Ro= 0.29. Its time average, 〈η〉, shown in figure 6(b)
is very similar in structure to the BS, as is to be expected near the Hopf bifurcation.
What is particularly of interest is the structure of the Hopf mode, which can be
approximated by η− 〈η〉 and compared directly with the Hopf modes associated with
the rotating waves, which are approximated by η − η0. Figure 6(c) shows η − 〈η〉
of the LC and it is clear that it has very similar structure to η − η0 of the rotating
waves, shown in the second column of figure 4. The corner region where the side
wall and lower end wall meet is the centre of localized unsteadiness. For the LC,
the pulsing in the corner is axisymmetric and an axisymmetric wave beam is emitted
into the bulk. As the LC is axisymmetric, the frequency of oscillation is the same in
the stationary frame and in any rotating frame (reported in the last row of table 1).

To make the connection between the LC and rotating waves more succinct, figure 7
shows snapshots at six equally spaced phases in one period of η − 〈η〉 for the LC
and η − η0 for RW1, RW2, RW3 and RW4; the period for each case is different,
as indicated by their frequencies, reported in table 1. Looking at a given meridional
plane over time, it is difficult to distinguish between the LC and RWm cases (except
perhaps for the RWm with larger m due to the small quiescent axial zone). This type
of duality between limit cycles and rotating waves in axisymmetric systems has been
examined previously, such as in Marques, Lopez & Shen (2002), Lopez & Marques
(2003), Lopez (2006).
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LC

t

FIGURE 7. (Colour online) Contours of η− 〈η〉 ∈ [−1, 1] for the unstable LC and η− η0

for the stable RW1, RW2, RW3 and RW4 in a meridional plane θ = 0 at Re = 104 and
Ro= 0.29; snapshots at six equally spaced phases over their respective periods are shown.

Now, we fix Ro=0.28 (RW1, RW2, RW3 and RW4 are all stable for Re=104 at this
Ro), and consider a one-parameter sweep increasing Re from a smaller value where
the BS is stable. At Re ≈ 9.2 × 103, the BS loses stability in a supercritical Hopf
bifurcation and RW2 emerges. Figure 8(a) shows how the modal energies E0 and E2

vary with Re. RW2 remains stable until Re≈ 1.1× 104, at which point it undergoes a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

41
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.419


Instabilities and inertial waves in a rapidly rotating split-cylinder flow 677

0.8 1.0 1.2 1.4
10–5

10–4

10–3

10–2

10–1

100

101

BS

0.9 1.1 1.3 1.5 1.7

Re

10–8

10–6

10–4

10–2

100

102

BS

HNL
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FIGURE 8. (Colour online) Variation of principal modal kinetic energies for various states
with increasing Re for (a) Ro = 0.28 and (b) Ro = 0.27; EH corresponds to the modal
kinetic energy for the high azimuthal wavenumber component of the various QP states,
and HNL are QP states that are highly nonlinear (described in § 3.5).

secondary Hopf bifurcation, spawning a quasiperiodic (QP) state, the details of which
are discussed in § 3.5. We already know that RW1, RW3 and RW4 are also stable in
the neighbourhood of Re∼ 104 for this Ro, but the fate of these rotating waves has
not been pursued any further. The point we wish to make here is that RW2 is the state
that is selected in this one-parameter sweep and that there is no obvious reason for
its selection – for example, figure 3(b) shows that at (Re, Ro)= (104, 0.28), RW2 is
not the most energetic of the four rotating waves. Repeating the one-parameter sweep,
but with Ro = 0.27, we find similar behaviour, but with RW1 being spawned from
the BS in a supercritical Hopf bifurcation at Re ≈ 1.01 × 104, and then undergoing
a secondary Hopf bifurcation to a QP state at Re ≈ 1.08 × 104 (see figure 8b). It
should be noted that figure 3(b) shows that at (Re, Ro)= (104, 0.27), RW3 and RW4
are the only rotating waves that have bifurcated from the BS and are stable, and yet
the one-parameter sweep performed selected RW1 at Re slightly above 104. Similar
behaviour is found for the one-parameter sweep with Ro= 0.26.

In order to gain insight into the nature of the QP states that result from secondary
Hopf bifurcations from RW states as Re is increased, it is convenient to first examine
the rotating wave states at lower Ro, which have much higher azimuthal wavenumbers
than the rotating waves RWL examined so far. As a group, the high-m rotating waves
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1.4 1.5 1.6 1.7

BS

Re

10–6

10–4

10–2

100

FIGURE 9. (Colour online) Variation of principal modal kinetic energies for various states
with increasing Re for Ro= 0.20; EH corresponds to the modal kinetic energy for the high
azimuthal wavenumber component of the various states.

are designed as RWH (individually, H is replaced with the corresponding m). The QP
states will be shown to be mixed modes of RWL and RWH .

3.4. High azimuthal wavenumber rotating waves
Figure 2 indicates that RWH are found at the low end of the Ro range considered.
Fixing Ro= 0.20 and conducting a one-parameter sweep with increasing Re, we find
that the BS is stable up to Re≈ 1.6× 104. A further small increase in Re results in
a jump to a QP state. Continuation from the QP state to lower Re reveals a series
of rotating waves with high azimuthal wavenumbers. This is a clear indication that
the BS at Ro = 0.20 loses stability in a subcritical bifurcation. Figure 9 shows the
modal kinetic energies of the states encountered in this one-parameter sweep. The
RWH found have m = 36, 41 and 42 with increasing Re; one was obtained from
the other as initial condition going from higher to lower Re. The transients involved
are very slow (of the order of a viscous time or longer), as is typically found when
undertaking one-parameter paths within an Eckhaus band of states (Lopez et al. 2007).
This, together with the cost of following multiple rotating wave branches with a large
range of high azimuthal wavenumbers, makes a detailed study prohibitive.

A typical example of a high azimuthal wavenumber rotating wave is RW41 at Ro=
0.20 and Re= 1.55× 104; figure 10 shows contours of η in a meridional plane and of
η−η0 in a meridional plane and in the plane z=−0.4. Since the modal kinetic energy
E41 is five orders of magnitude smaller than E0, the η contours of RW41 (figure 10a)
are virtually indistinguishable from those of the BS (not shown) at the same point in
parameter space, where both are stable. The contours of η−η0 however, show that the
perturbation of RW41 away from the BS is localized in the bottom half of the side wall
boundary layer and concentrated in the lower corner region, much as is the case for
the RWL. The three-dimensional isocontours of w − w0 for RW41 (figure 10d) show
a clear distinction from the w − w0 isocontours of RWL (figure 5). Apart from the
large difference in azimuthal wavenumber m, for RWL, the low-m spirals very near
the corner have a small negative helix angle, whereas the perturbation structures of
RW41 have a large positive helix angle. Another distinction between the two classes
of rotating waves is that all the RWL emitted inertial wave beams into the interior,
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(a) (b)

(c) (d)

FIGURE 10. (Colour online) Contours of (a) η and (b) η − η0 at θ = 0, (c) η − η0 at
z=−0.4 and (d) isosurfaces of w− w0, at levels ±0.001, for RW41 at Re= 1.55× 104

and Ro= 0.20. There are ten cubically spaced contour levels in the range η ∈ [−5, 5] and
η− η0 ∈ [−1, 1].

whereas no wave beams are evident for RW41. In the stationary frame of reference,
the m= 41 rotating wave structure has a very fast frequency ωS = 39.47; this is two
orders of magnitude faster than that of the RWL. However, in the frame of reference
rotating at the mean rotation rate of the cylinder, RW41 has ωR =−1.53, which is in
the middle of the range of ωR for the RWL, suggesting that inertial wave beams at an
angle of approximately 40◦ should be emitted from the corner region, but these are
not evident. This is likely a result of the enlargement of the quiescent axial zone for
the much larger azimuthal wavenumber m= 41 (Wood 1981), and perhaps the larger
m structures are also subjected to more viscous dissipation as their spatial gradients
are larger (Cortet, Lamriben & Moisy 2010; Machicoane et al. 2015). Also, it should
be noted that the relative strength of RW41, E41/E0, is approximately two orders of
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magnitude smaller than that of the RWL, and this also contributes to the muting of
any associated inertial wave beams. The other RWH found in the low-Ro regime are
similar to RW41.

3.5. Quasiperiodic mixed modes
The parameter regime where rotating waves RWL and RWH are found is quite
small, and most of the regime diagram (figure 2) where the BS is unstable is
dominated by QP states. Near where rotating waves exist, the QP states are seen to
emerge following secondary bifurcations from the rotating waves. The QP states have
oscillations associated with two distinct azimuthal wavenumbers that correspond to
RWH and RWL (and in some cases to m= 0 from LC). It is tempting to think of this
as resulting from a double-Hopf bifurcation where at a codimension-2 point (i.e. a
single point in (Re,Ro) parameter space), a RWL and a RWH bifurcate simultaneously
from the BS, and in some neighbourhood of the codimension-2 point there is a mixed
mode QPL,H . This type of scenario has been observed in other differentially rotating
cylinder systems (Lopez et al. 2002; Marques et al. 2002; Marques, Gelfgat & Lopez
2003), but in the present problem the situation is much more complicated, primarily
due to the RWL and RWH coming in Eckhaus bands, as well as due to the subcritical
nature of the instability of the BS at the lower end of the Ro range.

Figure 11 presents an example of a mixed mode QP0,36, showing contours of η
and η − η0 in different planes and isosurfaces of w − w0. QP0,36 is a mixed mode
with contributions from LC that drives inertial wave beams and RW36 which does
not. Contours of η in a meridional plane (figure 11a) clearly show the inertial waves,
and are very similar to the η contours of the pure LC shown in figure 6. Removing
the axisymmetric component, the contours of η− η0 shown in figure 11(b,c) and the
isosurfaces of w−w0 shown in figure 11(d) are very similar to those of a pure RWH ,
such as those of RW41 shown in figure 10.

Figure 12 is an example of a mixed mode QP2,39. In this case, there is a mix of
RW2 and RW39. The contours of η shown in figure 12(a) are very similar to those of
QP0,36 in figure 11(a); however, subtracting off the axisymmetric component (η − η0
shown in figure 12b,c) does not remove the inertial wave beams as it did for QP0,36,
as they are driven by the m= 2 component of QP2,39. This is further illustrated by the
three-dimensional isosurfaces of the axial velocity. Figure 12(d) shows isosurfaces of
the full solution minus its axisymmetric component, w−w0, and is rather complicated.
However, plotting only the m = 2 component of w, w2 in figure 12(e) and only the
m = 39 component, w39 in figure 12( f ) clearly shows that QP2,39 is indeed a mixed
mode of RW2 and RW39; compare these isosurfaces with those of RW2 in figure 5(b)
and RW41 in figure 10(d). The quantitative differences between the low and high
azimuthal wavenumber components of the QP and the corresponding RWL, or LC, and
RWH are due primarily to the different points in (Re, Ro) parameter space where the
comparisons are made.

To obtain the frequencies associated with the QP states, we follow the procedure
used for RWL and RWH . The fast Fourier transform of the time series of w at a point
close to the bottom corner of the cylinder provides a temporal spectrum of the flow in
the stationary frame of reference, ωS, which for a QP flow consists of two frequencies
and all their linear combinations. These two frequencies are associated with either
the RWL or LC and the RWH components of which QP is comprised. To calculate
the corresponding frequencies in the rotating frame of reference, ωR, two intermediate
steps are needed. First, we produce a movie of the low and high m components of
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(a) (b)

(c) (d)

FIGURE 11. (Colour online) Contours of (a) η and (b) η − η0 at θ = 0, (c) η − η0 at
z=−0.4 and (d) isosurfaces of w− w0, at levels ±0.001, for QP0,36 at Re= 1.35× 104,
Ro = 0.23. There are ten cubically spaced contour levels in the range η ∈ [−5, 5] and
η− η0 ∈ [−1, 1].

the QP independently, with a very high time resolution over a short time interval, to
determine if they are retrograde or prograde with the mean cylinder rotation in the
stationary frame of reference; if it is prograde (retrograde) the associated frequency
is positive (negative). Such movies are also useful for verifying which frequency is
associate with the low and high m components. Then, to determine the frequency of
the low and high m components of the QP in the rotating frame of reference, m is
subtracted from the corresponding frequency in the stationary frame of reference.

Figure 13(a) shows the mean modal kinetic energy for each azimuthal wavenumber
m in a QP1,31 state for which two peaks at m= 1 and m= 31 are evident (the peak
at m = 0 corresponding to the mean flow is always dominant). Figure 13(c) shows
the corresponding temporal spectrum of that state, determined from the time series
of w at (r, θ, z) = (0.98, 0, −0.4). It also consists of two peaks and all their linear
combinations; these are at ωS = 2.53 associated with the m= 1 component of QP1,31
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 12. (Colour online) Contours of (a) η, (b, c) η − η0, and isosurfaces of
(d) w− w0, (e) w2 and ( f ) w39 for QP2,39 at Re= 1.50× 104 and Ro= 0.28. There are
ten cubically spaced contour levels in the range η ∈ [−5, 5] and η− η0 ∈ [−1, 1], and the
isosurfaces are at ±0.001.

(verified to be prograde) and ωS = 29.20 associated with the m = 31 component of
QP1,31 (also prograde). The two frequencies associated with QP1,31 in the rotating
frame of reference are ωR = 1.53 and ωR =−1.80 respectively.
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FIGURE 13. (Colour online) Azimuthal (Em mean modal kinetic energies) and temporal
(power spectral density, PSD of w at (r, θ, z)= (0.98, 0,−0.4)) spectra for (a, c) QP1,31

at Re= 1.40× 104, (b, d) HNL at Re= 1.55× 104, both cases at Ro= 0.27.

Some of the QP states have spatial and temporal spectra that are broad band,
and they are not straightforward to decompose into simple mixed modes as done
previously. Such cases are termed highly nonlinear (HNL). The spatial and temporal
broad-band spectra of a HNL at Re = 1.55 × 104 and Ro = 0.27 are shown in
figure 13(b,d), respectively. This HNL is found between two different QP, QP1,31 and
QP2,32, as Re is increased with Ro = 0.27 fixed (see figure 8b). Figure 14 shows η
and η− η0 contours and isocontours of w−w0 of this HNL. The meridional plots are
similar to those of the various QP states previously described. The contours of η− η0
at z = −0.4 show a strong m = 1 modulation of the high-m wall structure; this can
be interpreted as coming from both the m= 1 component of QP1,31 and the nonlinear
interaction between the m = 31 component of QP1,31 and the m = 32 component of
QP2,32. The wave beam in this HNL seems to be driven by the m= 1 component of
HNL. The wave beam cone is clearly identified in the w−w0 isosurfaces (figure 14d),
but the m= 1 wave beam is not as clean as it is for RW1 (figure 5a). This is mainly
due to the broad-band nature of its temporal spectrum. The HNL were found to
persist for long times in parameter regimes separating some QP states with differing
primary azimuthal wavenumbers.

4. Discussion and conclusions
The nonlinear dynamics of the flow in a rapidly rotating split cylinder has been

investigated numerically for moderate differential rotations between the top and
bottom halves of the cylinder, Ro. The discontinuity provides the driving of the flow,
i.e. the differential rotation, that establishes the boundary layers and the corner flow
that become unstable as the driving is increased (increasing Ro) and the importance
of viscous dissipation is reduced (increasing Re). The flow becomes unstable to a
variety of three-dimensional instabilities localized in the bottom half of the side
wall boundary layer and the corner where the side wall and bottom end wall meet.
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(a) (b)

(c) (d)

FIGURE 14. (Colour online) Contours of (a) η and (b) η − η0 at θ = 0, (c) η − η0 at
z = −0.4 and (d) isosurfaces of w − w0 at levels ±0.001, for HNL at Re = 1.55 × 104,
Ro = 0.27. There are ten cubically spaced contour levels in the range η ∈ [−5, 5] and
η− η0 ∈ [−1, 1].

For stronger differential rotation, the instability modes are low azimuthal wavenumber
rotating waves, RWL, consisting of spiral vortex structures of alternating sign that are
roughly aligned with the mean flow direction in the bottom corner. Their structure and
flow alignment are suggestive of a centrifugal instability as they are akin to Görtler
vortices (Saric 1994), but it is difficult to estimate a Görtler number as the flow
curvature and speed are not uniform in this region. Perhaps these non-uniformities
are partially responsible for the multiplicity of such states that co-exist stably in this
parameter regime. The multiplicity of RWL come about supercritically in a fashion
typical of Eckhaus bands (Tuckerman & Barkley 1990).

At smaller Ro and larger Re, the flow is also unstable to rotating waves, RWH ,
but these have high azimuthal wavenumbers that are an order of magnitude larger
than those of RWL and their onset is subcritical so that there is a large hysteretic
region of parameter space where both the BS and RWH are stable. Their instability
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modes consist of a large (m ∼ 40) number of pairs of counter-rotating vortical
structures that are aligned orthogonally to the mean flow direction in the corner
region. Their structure and flow alignment are suggestive of Tollmien–Schlichting
waves (Schlichting & Gersten 2003) in the side wall and corner region closest to
the wall, but again the analogy is only qualitative due to the non-uniformity of the
boundary layer shear flow near the corner.

For a large range of Ro and Re in between where RWL and RWH are found, the
flow is quasiperiodic, consisting of states displaying a mix of the characteristics of
both RWL and RWH . As Ro and Re are varied in this regime, either the high or
low azimuthal wavenumbers of QP shift around (somewhat reminiscent of crossing
Eckhaus boundaries) and some HNL that have a broad-band spectrum in both space
and time are found to persist for long times (of the order of a viscous time), however,
they still retain the broader characteristics of being mixed modes of various RWL and
RWH .

The rotating waves are three-dimensional structures that do not change but simply
drift in the azimuthal direction. Viewing this drift from a frame of reference that
is rotating at the mean rotation rate of the split cylinder gives a frequency of the
rotating wave. For all RWL and RWH , this frequency is seen to be in a relatively
tight range of about 1.45–1.8 times the mean rotation frequency of the cylinder. From
a linear inviscid analysis of periodic perturbations to solid-body rotation (Greenspan
1968), such perturbation frequencies from a localized disturbance (the bottom corner
region in the split-cylinder flow) would emit inertial wave beams at angles in the range
26◦–44◦. For the aspect ratio γ =1 of the cylinder under consideration, this means that
the inertial wave beams (approximately) retrace themselves from the bottom corner to
and from the top of the cylinder axis. This was also true of the wave beams that
resulted when the flow was numerically restricted to being axisymmetric. In those
cases, Gutierrez-Castillo & Lopez (2015) also investigated variation in γ and found
that the Hopf bifurcations leading to periodic states had the Hopf frequency varying
with γ such that the resultant wave beams would continue to approximately retrace
themselves from the bottom corner to top of the axis in a primary bifurcation. This
seems to be a fairly general phenomenon when wave beams are the result of an
instability rather than due to an extraneously imposed periodic forcing, and has also
been found to occur in librating spheres (Sauret, Cébron & Le Bars 2013). Analogous
frequency selections leading to approximately retracing wave beams have been more
extensively studied in stratified flows (Sutherland & Linden 1998; Taylor & Sarkar
2007; Munroe & Sutherland 2014; Lopez & Marques 2014b), which are well known
to have analogous wave properties to rotating flows, with buoyancy providing the
restoring force instead of Coriolis (Veronis 1970).
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