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If private sector agents update their beliefs with a learning algorithm other than recursive
least squares, expectational stability or learnability of rational expectations equilibria
(REE) is not guaranteed. Monetary policy under commitment, with a determinate and
E-stable REE, may not imply robust learning stability of such equilibria if the RLS speed
of convergence is slow. In this paper, we propose a refinement of E-stability conditions that
allows us to select equilibria more robust to specification of the learning algorithm within
the RLS/SG/GSG class. E-stable equilibria characterized by faster speed of convergence
under RLS learning are learnable with SG or generalized SG algorithms as well.
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1. INTRODUCTION

Adaptive learning and expectational stability (E-stability) arise naturally in self-
referential macroeconomic models. The literature on adaptive learning assumes
that economic agents act as econometricians who run recursive regressions using
historical data to inform their decisions. The asymptotic outcome of adaptive
learning algorithms may be consistent with rational expectations. Evans and
Honkapohja (2001) provide the methodology and derive the conditions under
which recursive learning dynamics converges to rational expectations equilibria
(REE). If economic agents use recursive least squares (RLS) learning to update
their expectations of the future (or learn adaptively), then only E-stable REE can
be the asymptotic outcomes of a real–time learning process. Equilibria, stable
under a particular form of adaptive learning, are also called learnable.1 Hence,
E-stability is a necessary condition for RLS learnability.
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Evans and Honkapohja (2001) also draw attention to the lack of general results
on stability and convergence of different learning algorithms. Barucci and Landi
(1997) and Heinemann (2000) demonstrate that E-stability may not be a sufficient
condition for learnability if agents use adaptive algorithms other than RLS. Barucci
and Landi (1997) show that an alternative learning mechanism, namely, stochastic
gradient (SG) learning, converges to REE but under conditions different from RLS
learning.2

Furthermore, Giannitsarou (2005) provides examples, with a lagged endogenous
variable, of E-stable equilibria that are not learnable under SG learning. Evans
et al. (2010, Sec. 4) discuss additional conditions that ensure E-stable equilibria
are learnable under SG and generalized stochastic gradient (GSG) learning. They
propose the GSG algorithm as an extension to model learning in the presence of
uncertainty and parameter drift in agents’ beliefs. In this context, the algorithm
is a maximally robust learning rule. In addition, and more important, the authors
illustrate that given a particular weighting matrix the conditions for GSG–stability
are closely related to E-stability, and equivalent in a new Keynesian model of
monetary policy with alternative interest rate rules.

Evans and Honkapohja (2003) and Bullard (2006), among others, establish
the E-stability criterion as a minimum requirement for the design of meaningful
monetary policy. E-stability of the resulting REE is a desirable property of any
monetary policy rule, claim Bullard and Mitra (2007); in effect, equilibria ought
to be learnable under RLS. Recently Tetlow and von zur Muehlen (2009) posed
a problem of policy design in a world populated with agents who might learn
using a misspecified model of the economy. They state that an equilibrium that
is learnable for a wide range of possible specifications, even at a potential cost
of welfare losses, is a valuable property of a monetary policy rule. Robustifying
policy in this way ensures that learnability is achieved on the transition path to
REE, without compromising convergence.

In this paper, we focus on the properties of E-stable equilibria which facilitate
such a design problem allowing learnability under both RLS and GSG.3 We
propose a refinement of E-stability conditions that selects equilibria more robust
to specification of the learning algorithm within the RLS/SG/GSG class. We
show that the (mean–dynamics) speed of convergence under RLS learning is an
important component of such a refinement. E-stable equilibria, characterized by
a faster RLS speed of convergence, tend to remain learnable under SG or GSG
algorithms as well. The mean-dynamics speed of convergence, discussed in Ferrero
(2007), can also have consequences for welfare, and is related to the asymptotic
behavior of the agents’ beliefs as demonstrated by Marcet and Sargent (1995).

We extend E-stability requirements using two additional criteria. First, we re-
quire that REE be learnable under a broad set of learning algorithms of the
RLS/SG/GSG class. In some sense, this allows us to choose a subset of REE
with properties such that they remain learnable even if agents’ learning process
is misspecified asymptotically relative to RLS. Second, the speed of convergence
under RLS should be fast not only to aid learnability, but also to ensure a fairly
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quick return of agents’ beliefs toward the REE even after a small disturbance or
deviation.4 We confirm that the two additional criteria are related and can be met
simultaneously.

2. E-STABILITY AND LEARNABILITY REVISITED

It has been well established in Evans and Honkapohja (2001) and elsewhere
that the convergence of the RLS algorithm is closely related to E-stability. The
equilibrium is said to be E-stable if a stationary point Φ of the following ordinary
differential equation (ODE) is asymptotically stable:

dΦ

dτ
= T (Φ) − Φ. (1)

Φ corresponds to the rational expectations equilibrium of a forward–looking
model. T is the mapping from perceived law of motion (PLM) to actual law of
motion (ALM), and Φ is a vector of the parameters of interest. The differential
equation (1) governs the behavior of the approximating, or “mean,” dynamics in
continuous “notional” or meta-time.5 In a univariate setting, its equilibrium point
is asymptotically stable if the Jacobian of (1) evaluated at Φ,

J = DT (Φ)|Φ=Φ − I,

has only eigenvalues with negative real parts.6

If, instead of using RLS, economic agents rely on SG learning, the convergence
of the mean dynamics of the learning process is governed by the following ODE:

dΦ

dτ
= M(Φ) · [T (Φ) − Φ] , (2)

where M(Φ) is a symmetric and positive definite matrix of second moments of
the state variables used by agents in forming their forecasts.

The RE equilibrium Φ is still a stationary point of (2). It is learnable if Φ is
the locally asymptotically stable equilibrium of the ODE (2), which obtains when
all eigenvalues of M(Φ) · J have negative real parts. Barucci and Landi (1997)
first provided a proof of this result. It is important to note that the conditions that
establish the analogue of the E-stability condition in this case are different from
those obtained under RLS.

If the agents update their beliefs with a GSG learning algorithm instead, learn-
ability is related to the negative real parts of all eigenvalues of the matrix

�M(Φ) · J, (3)

where we explicitly restrict our attention to weighting (symmetric) positive definite
matrices � such that �M(Φ) is also arbitrary symmetric and positive definite. The
class of such matrices includes � = I (classic SG) and � = M(Φ)−1 (GSG
asymptotically equivalent to RLS), any linear (convex) combination of them, or
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such a matrix � that has the same set of eigenvectors as M(Φ) (GSG more
generally)—for example, � = Mα , α ∈ R.7 This fact is well documented and
illustrated in Evans et al. (2010). In some sense, we claim there is a single basis in
which the representations of both linear transformations (� and M) are diagonal.
In particular, any matrix that starts from diagonalization of M(Φ) = P�P T ,
where P is a nonsingular matrix containing the eigenvectors of M , and uses
� = P�̃P T , where �̃ is an arbitrary diagonal matrix with positive diagonal, or a
linear combination of such a � with the identity matrix, will yield a matrix in the
class of interest here: symmetric positive definite.

The problem of a correspondence between E-stability and GSG-stability for all
such � is, therefore, equivalent to the following linear algebraic problem: Given a
matrix J with all its eigenvalues to the left of the imaginary axis, can we guarantee
that no eigenvalue of �M(Φ) · J has positive real parts? This problem is well
known and is referred to as H–stability, and was discussed earlier in Carlson (1968),
Arrow (1974), Johnson (1974a), and Johnson (1974b). A sufficient condition for
H-stability that is easy to check exists: matrix J is H-stable if its symmetric
part, 1

2 (J + J T ), is stable. Such a matrix is called negative quasidefinite. It is
rather difficult to interpret this condition meaningfully from an economic point of
view. Again, Evans et al. (2010) provide an economic example and an extended
discussion of GSG learning and H-stability.

Although the convergence of the adaptive learning algorithms has been exten-
sively studied, the transition along the learning path toward the equilibrium REE
of interest is less well understood. Our starting point of reference is the results in
Benveniste et al. (1990) and Marcet and Sargent (1995), who first identified the
behavior of the speed of convergence (how fast or slowly agents’ beliefs approach
a REE point) and analyzed the asymptotic properties of the fixed point under RLS
learning. For the purposes of this paper, we use the term “speed of convergence”
to mean the minimum absolute value of the real parts of the eigenvalues of the
linearized E-stability ODE. This value governs the speed of convergence of the
mean dynamics under RLS learning.

In the linearized E-stability ODE dΦ
dτ

= J · Φ, where all eigenvalues of J are
distinct and have only negative real parts, the solution will be given as a linear
combination of terms of the form Ci · eλi ·t , where λi are the eigenvalues of J and
Ci are arbitrary constants. In the long run, the solution is dominated by the term
that corresponds to λ̂ = min

i
| Re(λi) |, the minimum absolute value of the real part

of the eigenvalue.8 In the context of adaptive learning, this speed of convergence,
λ̂, determines how fast the approximating mean dynamics described by the ODE
in (1) approaches the REE asymptotically. Under standard decreasing-gain RLS
learning, the speed of convergence is time-varying, subsiding as time evolves, and
changes along the mean dynamics with the parameter estimates of the perceived
law of motion, Φ̂.

The behavior along the transition path and the importance of short-run deviations
away from the REE were illustrated by Evans and Honkapohja (1993) and Marcet
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FIGURE 1. SG- and H-stability. The asterisks represent E-stable equilibria for which the
sufficient condition of H-stability is satisfied. The dots show SG-stable equilibria that do
not satisfy negative quasidefiniteness. The empty circles are SG-unstable equilibria.

and Sargent (1995). Ferrero (2007) further argued that the speed of convergence
can be considered an important policy variable in the design of monetary policy. An
open question is how important the RLS speed of convergence is for learnability
under alternative learning algorithms.

The concepts of GSG-learning stability for all � considered in this paper and
the speed of convergence under RLS appear distinct and far apart. However, it
turns out that there is a close connection between the two. Consider, for example,
the model in Sections 2 and 3 of Giannitsarou (2005). The reduced form of this
univariate model is given by

yt = λyt−1 + αE∗
t yt+1 + γwt ,

wt = ρwt−1 + ut .

In this model, |ρ| < 1 and ut ∼ N(0, σ 2
u ). The equilibrium of the model, with the

same parameter values as in the paper, γ = σu = 0.5, ρ = 0.9, is E-stable, and
therefore learnable under RLS. Both eigenvalues are real for all values of (α, λ)

for which the solution �− is stationary and E-stable.
The E-stability ODE for this model is given by equation (1), where the mapping

T is defined by equation (5) of Giannitsarou (2005, p. 277), and the vector Φ is
two-dimensional. Figures 1 and 2 summarize the negative quasidefiniteness for
the corresponding Jacobian and the speed of convergence of the mean dynamics,
respectively, as functions of the parameters α and λ. These figures clearly indicate
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FIGURE 2. The RLS mean dynamics speed of convergence. The arrows point to the contour
levels of the speed of convergence.

that negative quasidefiniteness obtains in regions of the parameter space where
the speed of convergence is higher. Figure 2 is a contour plot of the speed of
convergence, which increases toward the lower left corner of the graph, a region
where the negative quasidefiniteness of the Jacobian is also observed.

In the region of the parameter space where the Jacobian is not negative quasidef-
inite, we expect that a matrix � might exist such that �M(Φ) · J was not stable.
Therefore, the GSG learning algorithm that corresponds to this � does not result
in an approximating dynamics converging to the REE. This conjecture stands
correct: Giannitsarou (2005) shows that the equilibrium achieved under the SG
learning algorithm (for which � equals the identity matrix) cannot be learned for
a small set of parameter values. Figure 2 illustrates that for these parameter values
the equilibrium is SG-unstable, and the speed of convergence is close to zero. On
the other hand, for parameter values that correspond to a negative quasidefinite
Jacobian, the speed of convergence is high and is never less than 0.35. Given that
the negative quasidefiniteness is a sufficient condition for H-stability, we are guar-
anteed that GSG learning with any choice of � induces a learnable equilibrium.
In particular, SG–learning will always converge for this set of parameter values.
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This analysis indicates that there appears to exist a close relationship between
SG-learning stability and the speed of convergence of the mean dynamics under
RLS learning. The paper studies the nature of this relationship and addresses the
following questions:

(i) Why is SG-instability associated with a lower speed of convergence under
RLS?

(ii) In contrast, why do conditions that guarantee fast convergence to REE
also seem to ensure SG- and GSG-stability for any �?

(iii) Are the answers to (i) and (ii) general and applicable enough to a wide
variety of self-referential models?

In what follows, we provide a two-dimensional geometric interpretation of the
case where E-stability holds but GSG-stability is not achieved (i.e., a matrix J

is stable but not H -stable) and relate this finding to the speed of convergence of
expectations to their REE values under RLS learning.

3. A GEOMETRIC INTERPRETATION OF LEARNABILITY

Provided J is a stable matrix, when is � · J stable? We propose a simple two-
dimensional geometric approach to answer this question. To preview our results:
we study the eigenvalues of a matrix J , but not its components, and then relate those
values to the speed of convergence of the mean dynamics under recursive least-
squares learning. These findings have an intuitive and meaningful interpretation
in a wide variety of adaptive learning models.

Now suppose that the 2 × 2 matrix J has only eigenvalues with negative real
parts. This matrix is the Jacobian of the ODE in (1) for some adaptive learning
model. J is asymptotically stable; therefore, the equilibrium associated with the
model is E-stable and learnable under RLS.

The eigenvalue problem of J can be written as

J · V = V · , (4)

where V is a matrix with columns containing the eigenvectors of J , and  is
diagonal with the corresponding eigenvalues λi on the main diagonal. If the
eigenvectors are linearly independent, the matrix J can be diagonalized as J =
V V −1.

Learnability of the equilibrium with GSG learning is determined by the eigen-
values of � · J . For our purposes, � is assumed to be symmetric and positive
definite and thus can be written as � = P�P T , where � is diagonal with main
elements the eigenvalues of �.9 The eigenvalue problem for � · J can be written
as:

P�P T · V V −1 · Ṽ = Ṽ · ̃, (5)

where the columns of Ṽ are the eigenvectors of � · J and ̃ is a diagonal matrix
with the eigenvalues of � · J as entries. Next premultiply (5) by P −1 and define
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V = P −1Ṽ to get

� · P T V V −1P · V = �J̃ · V = V · ̃. (6)

It is clear that the matrix J̃ = P T V V −1P has the same eigenvalues as J ,
i.e., the values on the main diagonal of . Geometrically, if J represents a
linear mapping in a two–dimensional space, then J̃ represents the same map-
ping, after rotation, in new coordinates, given by the two orthogonal eigenvectors
of �.

We work in the new coordinates and replace the problem of seeking conditions
on the eigenvalues and eigenvectors of J such that � · J has an eigenvalue with a
positive real part (i.e., turns unstable) with the equivalent problem concerning J̃

and �J̃ . To fix notation, let us order δ1 and δ2, the (positive) eigenvalues of �,
so that the following is always true: (δ2/δ1) > 1. The real eigenvalues of J and
J̃ are −λ1 and −λ2, ordered so that (λ2/λ1) > 1. Denote the eigenvectors of J̃

corresponding to −λ1 and −λ2 as v1 = (v11, v21)
T and v2 = (v12, v22)

T . Define
ϒ = v22/v21v11/v12. The main focus of our analysis is on the real eigenvalue case,
but for completeness we also discuss the possiblity of complex eigenvalues. The
proofs are relegated to Appendices A and B, respectively.

PROPOSITION 1. Let λ1,2 be real. The matrix � · J has an eigenvalue with a
positive real part and thus J is not H-stable if and only if the following conditions
hold:

(i) 0 < ϒ < 1,

(ii) λ2
λ1

> 1
ϒ

, and

(iii)

δ2

δ1
>

(
λ2
λ1

− ϒ
)

(
λ2
λ1

ϒ − 1
) . (7)

Proof. See Appendix A.

COROLLARY 1. Let λ1,2 be real. If either ϒ < 0 or ϒ < λ1
λ2

, the matrix J is
H-stable and the equilibrium is learnable for any GSG learning algorithm.

Proof. See Appendix A.

Given this choice of ordering of the eigenvalues of J , the speed of conver-
gence is equal to |λ1|. If the speed of convergence, λ̂, is very low, the ratio
(λ2/λ1) will tend to be extremely large. At the same time, higher λ̂ will typically
lead to smaller values of the ratio (λ2/λ1). This therefore implies that the higher
speed of convergence facilitates stability under learning for GSG algorithms. It
is also possible to observe lower values of this ratio when both eigenvalues are
similar in magnitude while the speed of convergence is relatively small. But for
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a range of the parameter set of interest we rarely observe this, and geometrically,
the eigenvectors associated with these eigenvalue configurations are close to or-
thogonal. In this case, the conditions required in Propostion 1 are impossible to
satisfy, and learning stability is achieved. We emphasize that a higher λ̂ plays
an essential role in ensuring stability in the class of RLS/SG/GSG algorithms, as
confirmed in our numerical analysis. We also give an intuitive explanation for this
requirement.

Proposition 1 constructs a counterexample of a matrix � such that � · J is
not stable. This means that agents who update their beliefs adaptively with the
corresponding GSG algorithm cannot learn the REE, even though it is E-stable.
A necessary condition for E-stable REE not to be learnable under a GSG learning
algorithm for some �, as defined in this paper, is a positive ϒ less than one.
Geometrically, 0 < ϒ < 1 implies that, after rotation into the system of coordi-
nates defined by the eigenvectors of �, the two eigenvectors of J̃ are in the same
quadrant. When the eigenvectors of J are close to being collinear, a larger set of
matrices � will satisfy this geometric condition. This leads to a larger set of GSG
algorithms such that the REE is not learnable.10

It may be impossible to satisfy the assumptions of Proposition 1 if the eigenvec-
tors are close to being orthogonal. In this case ϒ is either too small (less than λ1/λ2)
or too large (greater than 1) when it is positive. If they are exactly orthogonal, the
positive ϒ equals 0 or approaches ∞. The necessary (and sufficient) condition
described in (7) shows that, for a given ϒ , instability of � ·J occurs when (λ2/λ1)

or (δ2/δ1) or both are sufficiently large. What does this imply? Or when can this
occur? The ratio (λ2/λ1) will be large if |λ1| is very small, i.e., the RLS speed of
convergence is low. Increasing |λ1| will facilitate GSG learnability as the condition
in Proposition 1 becomes more difficult to fulfill. For sufficiently large |λ1|, the
ratio (λ2/λ1) is such that Corollary 1 confirms that the REE is learnable for any
GSG algorithm.

Moreover, higher values of (δ2/δ1) imply that the eigenvalues of � are highly
unbalanced. If agents update their beliefs using SG learning, this means that �

is the covariance matrix of regressors with highly unequal diagonal terms. For
example, the scaling invariance issue with SG identified by Evans et al. (2010)
is more severe. The economic agents, who learn adaptively, are less likely to be
using an SG algorithm when the (co-)variances of the regressors are extremely
unequal. Therefore, the speed-of-convergence criterion directly ensures that the set
of equilibria learnable by agents using algorithms within the RLS/SG/GSG class
is sufficiently large. This result indicates how the speed of convergence plays an
essential role in leading to (G)SG instability in general: the slower you approach
the REE, the more likely you are to observe (G)SG instability, as exhibited in our
simulations.

Figure 3 plots the necessary and sufficient condition (7) for three values of
ϒ : 0.3, 0.1, and 0.05 (where the last value exhibits eigenvectors of J̃ close to
being orthogonal). The condition is satisfied in the area of the figure located
above and to the right of the corresponding line. If v1 and v2 are almost collinear,
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FIGURE 3. The necessary and sufficient conditions of Proposition 1. The white area in
the upper right corner is where (7) holds for ϒ ≥ 0.05. The black area: (7) holds for
0.10 ≥ ϒ ≥ 0.05. The gray area: (7) holds for 0.3 ≥ ϒ ≥ 0.10.

GSG-instability can be achieved for relatively mild ratios of the eigenvalues ( λ2
λ1

)

and ( δ2
δ1

).
Turning to the results in Giannitsarou (2005), we show that points in the pa-

rameter space for which the equilibrium is not learnable under SG satisfy the
conditions of Proposition 1. In this case, the corresponding values of ( λ2

λ1
) and ( δ2

δ1
)

are extreme and lie in the vicinity of 112 and 5.5 × 105, respectively. Such a high
degree of imbalance in the matrix � emerges because ϒ is very close to zero (the
eigenvectors of J are almost orthogonal) throughout the whole parameter space.
For these parameters the speed of convergence is low (of order of magnitude 10−3),
and hence the ratio of the eigenvalues of J is very large. It is clear from this exam-
ple that as the parameters of the model change, so do the associated eigenvalues.
Hence, Corollary 1 (and Proposition 1) establishes a link between GSG-stability
conditions and the speed of convergence, λ̂, both of which are influenced by the
agents’ estimates of the model parameters. We attempt to quantify this intuition
via simulations in the next section.

For completeness, we next turn to the case where the eigenvalues of the stabil-
ity matrix are complex. To fix notation, assume that J̃ has two complex eigen-
values: ν ± iμ, ν < 0, and two complex eigenvectors w1 ± iw2, where w1

equals (w11, w21)
T

and w2 is (w12, w22)
T

. Define W̃ = w11w12 + w21w22 and
|W | = w11w22 − w12w21. The following proposition provides the necessary and
sufficient condition for the instability of the matrix � · J :
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PROPOSITION 2. Let λ1,2 be complex. The matrix � · J has an eigenvalue
with a positive real part, and thus J is not H-stable, if and only if the following
condition holds:

μ

|ν|
W̃

|W |

(
δ2
δ1

− 1
)

(
δ2
δ1

+ 1
) > 1. (8)

Proof. See Appendix B.

Similarly, Proposition 2 demonstrates that a smaller ratio of the eigenvalues of
� is conducive to the stability of � · J . Hence, the corresponding GSG learn-
ing algorithm generates a convergent dynamics. A higher speed of convergence,
larger |ν|, makes the necessary and sufficient condition described in (8) harder to
fulfill, and thus increases the set of parameters for which equilibria are learnable.
Orthogonality of w1 and w2 means that the condition in Proposition 2 cannot be
satisfied. The intuition is similar to that for the real eigenvalue case: in both cases
orthogonality of eigenvectors (real case) or their real and imaginary components
(complex case) ensures that GSG-learning instability is impossible.

Furthermore, Propositions 1 and 2 construct examples and state that if the
spectrum of the Jacobian J is located farther away from the instability region (at
least one eigenvalue with a positive real part), it is harder to find a set of � matrices
(associated with) J—premultiplication by a (symmetric) positive definite matrix-
that will lead to instability. Corollary 1 allows us to determine the robustness
of the learning rule against such “disturbances.” We establish that the speed of
convergence facilitates this robustness property in the class of GSG algorithms
considered here.

In this sense, Propositions 1 and 2 indicate that the second criterion we impose
on all desirable REE—the high speed of convergence under RLS learning—is
in accordance with the first criterion; that is, the REE are learnable under a
range of learning algorithms within the RLS/SG/GSG class. To illustrate further
the alignment of these two criteria and the way in which they modify selection
of monetary policy rules, we study a standard model of monetary policy under
commitment with learning.

4. MONETARY POLICY UNDER COMMITMENT

4.1. The Model Environment

Following Evans and Honkapohja (2006), we start with a standard two-equation
new Keynesian (NK) model:

xt = −ϕ (it − π̂t+1) + x̂t+1, (9a)

πt = λxt + βπ̂t+1 + ut . (9b)

Here xt and πt express the output gap and inflation in period t , and all variables
with circumflexes denote private sector expectations. it is the nominal interest rate,
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in deviation from its long-run steady state. The parameters ϕ and λ are positive
and have the standard interpretation, and the discount factor is 0 < β < 1. Our
main interest is in the learning behavior of private sector agents, and we maintain
the assumption that expectations may not be rational. We also assume the presence
of only one shock to illustrate the results in this paper, and disregard the influence
of the demand shock in the IS equation (9). The cost-push shock in (9b) is given
by ut = ρut−1 + εt where εt ∼ iid(0, σ 2

ε ) is independent white noise. In addition,
|ρ| < 1.

We consider the expectations-based interest rate policy rule under commitment,
using the timeless perspective solution

it = φLxt−1 + φππ̂t+1 + φxx̂t+1 + φuut . (10)

The optimal values of the policy rule parameters, based on a standard loss
function, are given in Evans and Honkapohja (2006, p. 26, equation (15)) (notice
that the coefficient φg is assumed to be zero in our specification). Here we do
not restrict our attention to optimal monetary policy. We fix the values of the
policy parameters, φL and φu, at their optimal level, and treat the other two policy
parameters as choice variables of the policy response of the monetary authority.

Under the assumed policy rule the model can be written as

yt =
[

xt

πt

]
=

[
1 − ϕφx ϕ (1 − φπ)

λ (1 − ϕφx) λϕ (1 − φπ) + β

] [
x̂t+1

π̂t+1

]
+

[ −ϕφL 0
−ϕλφL 0

] [
xt−1

πt−1

]
+

[ −ϕφu

1 − λϕφu

]
ut (11)

yt = Aŷt+1 + CET yt−1 + But ,

where E = (1, 0)T .
The MSV solution of this system can be expressed in the following way, with

c and b both being vectors such that c = (cx, cπ )T , b = (bx, bπ )T :

yt = cET yt−1 + but . (12)

Using the method of undetermined coefficients we find the REE solution, where
cx solves the cubic equation

cx = −ϕφL + (1 − ϕφx) (cx)2 + λϕ (1 − φπ) (cx)2

1 − βcx
.

The rest of the solution is provided in

cπ = λcx

1 − βcx

and
b = [I − A(cET + ρI)]−1B.
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Next we turn to the conditions under which REE are learnable. We check
for determinacy of the RE solution using the conditions derived in Evans and
Honkapohja (2006, p. 35), which are not reproduced here.

4.2. Determinacy and E-Stability: The Minimum Requirements for
Desirable RE Equilibria

Discussing E-stability, we follow the rest of the literature in assuming that the
MSV solution obtained in the preceding is the PLM used by the private sector
agents in the model. Let us rewrite the model as

yt = Aŷt+1 + CET yt−1 + But ,

ut = ρut−1 + εt .

Calculate ŷt+1, the nonrational expectation of the model (12), as

ŷt+1 = E∗
t [cET yt + but+1]

= [A(cET )(cET ) + CET ]yt−1 + [A(cET + ρI)b + B]ut .

Then the T–map for the problem becomes

T (b, c) = [A(cET + ρI)b + B, (cT E)Ac + C].

This allows us to compute the (4 × 4) Jacobian matrix

J =
[

A(cET + ρI) − I2 (ET b)A

0 A(cET + ET c · I ) − I2

]
.

4.3. SG-Stability

The matrix of the second moments of the state variables in the model used by
the agents to forecast inflation and the output gap is obtained from a two-variable
VAR written as [

xt

ut+1

]
=

[
cx bx

0 ρ

] [
xt−1

ut

]
+

[
0
1

]
εt+1.

Thus, to study the SG-stability of the model, we examine the eigenvalues of
� · J , which are now

� · J = (M ⊗ I2) · J.

The Kronecker product appears in the expression because we have a multivariate
model; Evans et al. (2010, Sect. 3), provide further details. Although it would be
straightforward to include an intercept in the learning model [as in Evans et al.
(2010)], we have omitted it here to reduce dimensionality, and it is not essential
for our purposes.
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We also study GSG learning stability, in which the agents are updating their
beliefs about the parameters in the model by making small errors around the
outcomes achieved under RLS learning. We adopt � in (3) to be the inverse of a
second moments matrix M̃ , which is compatible with the same model evaluated at
parameter values obtained within the neighborhood of the calibrated parameters
used in the simulation analysis. We assume that these alternative learning algo-
rithms model agents’ uncertainty about the second moments of the state variables,
which they need to know in order to use GSG learning as asymptotically equivalent
to RLS learning. GSG-learning stability of the equilibria under this assumption is
achieved when all eigenvalues of the matrix [(M̃−1 · M) ⊗ I2] · J have negative
real parts. We note that the (Cholesky) transformation of variables proposed by
Evans et al. (2010) delivers the same E-stability ODE as running generalized SG
with � = M−1. However, along the transition to the asymptotic equilibrium, the
dynamics in these two cases will be different. Whereas the variable transforma-
tion in Evans et al. (2010) requires knowledge of the covariance matrix of the
regressors, we allow for agents’ mistakes regarding its estimates.

Propositions 1 and 2 cannot be stated in the four-dimensional case we have
specified in the model, and therefore we analyze the stability of the system via
simulations. Still, we expect that the main finding presented in the Propositions
remains valid in the higher dimensions as well, namely that the lower speed of
convergence of the mean dynamics under RLS will be associated with higher
incidence of GSG-instability.

5. LEARNING INSTABILITY AND EQUILIBRIA: DISCUSSION

To analyze the link between GSG-stability for all � and the speed of convergence
under RLS, we resort to simulations of the simple NK model under commitment
for different values of the expectations-based policy rule parameters. We take
this example because it gives robust learning stability, as argued in Evans and
Honkapohja (2003). We do not perform an exhaustive study of the possible mone-
tary policy rules in this model. To be more precise, we keep the parameters φL and
φu at their optimal values derived in Evans and Honkapohja (2006), but vary φπ

and φx in a sufficiently broad range. The theoretical results on expectation-based
policy rules under commitment, namely determinacy and E-stability of the REE,
for any parameter values, were derived only for optimal policy by Evans and
Honkapohja (2006). Therefore, we proceed to check every point for determinacy
and E-stability (i.e., we check the eigenvalues of J for a negative real part). In
addition, we calculate the speed of convergence of the mean dynamics under RLS
learning, as described in Sect. 2, and check for convergence of the SG learning
algorithm, by evaluating the eigenvalues of (M ⊗ I2) · J .

We calibrate our model using the following parameter values. They are the
same as in the Clarida et al. (1999) calibration: β = 0.99, ϕ = 4, and λ = 0.075,
also used in Evans and Honkapohja (2003). We assume different values for the
persistence of the cost-push shock, ρ = 0.90 (commonly used in the literature)
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FIGURE 4. Determinacy and SG–stability: Monetary policy under commitment (ρ = 0.9).
All points within the outer contour are E-stable equilibria. The black area is indeterminate.
The gray area is determinate but SG-unstable. The white area is determinate and SG-stable.
The asterisk represents the optimal monetary policy under commitment.

and ρ = 0.60. We also perform sensitivity analysis and robustness checks for
various combinations of parameters other than ρ, e.g., the various permutations
of the parameter space used in Evans and McGough (2010). We vary the number
of simulation runs and confirm that the results are not altered.

The results of our simulations with ρ = 0.90 are presented in Figure 4. It illus-
trates, for every pair of the policy parameters (φπ , φx), whether the resulting REE
is determinate, E-stable, and SG-stable.11 We only plot the E-stable points. The
black area represents all indeterminate equilibria. We see that the standard Taylor
principle applies [see Llosa and Tuesta (2009) for the theoretical derivations].
The points satisfying the Taylor principle are further split into SG-stable (white
area) and SG-unstable (gray area).12 SG-instability is concentrated in areas where
φπ is relatively low; as evident, more active monetary policy is associated with
SG-stability.

How does this result fare against our Propositions 1 and 2, which associate the
robustness of learning stability under alternative algorithms with the higher speed
of convergence under RLS? In Figure 5 we see the link clearly. The association is
shown by plotting contour levels of the speed of convergence for the same values
of (φπ , φx). All SG-unstable points have low convergence speed. When we move
to more active monetary policy under commitment, both the speed of convergence
and the robustness of SG learnability increase.

To compare our results with those of Evans and Honkapohja (2006), we plot
a black asterisk at the point corresponding to the optimal monetary policy for
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FIGURE 5. The RLS mean dynamics speed of convergence: Monetary policy under com-
mitment (ρ = 0.9). The arrows point to the contour levels of the convergence speed. The
asterisk represents the optimal monetary policy under commitment.

our calibrated values.13 As expected, this policy delivers determinate and E-stable
REE; however, notice that this policy is very close to both SG–stability and E-
stability boundaries. This proximity raises the issue of the robustness of the optimal
monetary policy if the agents are making small mistakes in their learning process.
Evans and McGough (2010) study optimal monetary policy in NK models with
inertia. They show that such a policy typically is located near the boundary of a set
in the space of policy parameters where an E-stable and determinate equilibrium
obtains. Small mistakes in calculating the policy parameters thus could lead to
E-instability, indeterminacy, or both. We consider a forward-looking model, with
lagged endogenous variable, where inertia is introduced through monetary policy
under commitment. We show that even if we select policy parameters well inside
the E-stable and determinate region, the outcome may turn unstable when the
learning algorithm adopted by agents is SG, or GSG, which is not asymptotically
equivalent to RLS.

We now perform the following experiment to study the robustness of the optimal
or near-optimal monetary policy. We assume that the agents update their beliefs by
running not RLS but instead a GSG learning algorithm. If the agents knew exactly
the second moments matrix M associated with the parameter values (including
the optimal monetary policy parameters) of the model, they would run a GSG that
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used M−1 as a weighting matrix. This GSG algorithm would be asymptotically
equivalent to RLS, delivering determinate and E-stable REE, as explained in Evans
et al. (2010).

In the experiment, we assume that agents face uncertainty regarding the second
moments matrix. Given that the agents are learning second-order moments, such as
correlations between future inflation and past output gap and the cost-push shock
(and, therefore, they do not know them, at least away from the REE achieved
asymptotically in infinite time), it seems natural to assume that their knowledge
of other second-order moments is limited as well. Thus economic agents take the
deep, structural parameters of the model to be somewhere in the neighborhood
of the “true” parameter vector θ that we use in simulations. The agents would
believe in θ̃ and use it to compute the second moments matrix M̃(θ̃).14 Then the
agents would tend to use the matrix M̃−1 as a weighting matrix in updating their
beliefs. Hence, M̃−1 = � in equation (3). The condition for the convergence of
this real–time learning process, as we explained, is given by all eigenvalues of the
matrix [(M̃−1 · M) ⊗ I2] · J with negative real parts.

We draw realizations of agents’ beliefs about the parameters, θ̃ , from a distri-
bution that is centered at the true parameters θ . The range of the distribution is
comparable to the prior distributions usually found in the literature on estimated
DSGE models, for example, Milani (2007). We nest the true RLS learning in this
procedure because it could be argued that SG-learning is too different from the
RLS [for example, it is not scale-invariant; see Evans et al. (2010)] to be a realistic
description of any actual updating process. Then we check whether this GSG
algorithm is learnable or not. By repeating this procedure 1,000 times, we obtain
an estimate of the probability of obtaining GSG instability for a given parameter
pair, (φπ , φx).15,16

The simulation exercise confirms the results described in Propositions 1 and 2.
Comparison of Figures 4 through 6 shows that, for the SG-unstable points with
a low RLS (mean dynamics) speed of convergence, we generally observe high
incidence of GSG learning instability with imperfect knowledge of the second
moments matrix. For the lowest speed still consistent with determinate and E-
stable REE, we observe up to 60% probability of GSG instability. The optimal
monetary policy (black asterisk) is associated with about 20% probability of
becoming GSG-unstable. This result lends support to the finding in Evans and
McGough (2010), where optimal monetary policy is shown to be rendered E–
unstable or indeterminate by even small mistakes committed by adaptive agents.

The probability of observing a divergent GSG algorithm measures only how
likely it is to find parameter draws such that the agents’ misperceptions become
strong enough to lead to expectational instability. How far should these mistaken
perceptions be from the “truth” in order to generate a divergent algorithm? To
answer this question, we take the matrix M̃−1M and evaluate its largest eigen-
value.17 We take this value as a measure of the mismatch between the “true”
second moments matrix M and the agents’ erroneous beliefs M̃ . We further
consider the minimum of this measure over those among the 1,000 realizations
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FIGURE 6. The probability of GSG stability: Monetary policy under commitment (ρ = 0.9).
All points within the outer contour are determinate and E-stable equilibria. The probability
of GSG stability is at least as large as the arrows indicate.

that lead to divergent GSG algorithms, and plot their contour levels in Figure
7. The lower intensity of gray depicted in the right area of the figure is associ-
ated with the higher contour levels. For example, the white area represents the
strongest misperceptions about the true second moments matrix. The darkest area
corresponds to the least mismatch of perceptions that allows a divergent GSG
algorithm.18

The results of this exercise point in the same direction. More active monetary
policy precludes a divergent GSG learning algorithm, because the necessary mis-
match of beliefs is stronger (the lighter areas in Figure 7). For points in the (φπ, φx)
space that correspond to almost zero probability of observing GSG-instability, the
mismatch measure equals 10 or higher, with the few unstable points exhibiting a
very large mismatch of beliefs.19

The simulations depicted in Figures 4 through 7 support the conditions estab-
lished in Propositions 1 and 2. According to Corollary 1, the higher the RLS speed
of convergence, the harder it is to generate a divergent GSG-type algorithm. The
higher speed of convergence corresponds to SG-learning stability and a lower
probability of finding a second-moments matrix, M̃ , with bigger misperceptions
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FIGURE 7. The minimum measure of misperceptions of GSG instability: Monetary policy
under commitment (ρ = 0.9). All points within the outer contour are determinate and
E-stable equilibria. The minimum measure of misperceptions of beliefs to get GSG insta-
bility is at least as large as the arrows indicate.

necessary to generate a divergent GSG algorithm. Thus, the two “refinements” to
the concept of E-stability that we propose, the higher mean dynamics RLS speed
of convergence and the greater robustness within a class of RLS/SG/GSG learning
algorithms, do not need to generate trade-offs and can be satisfied simultaneously.

We summarize the results for ρ = 0.9 in Table 1. We also perform some
sensitivity analysis of our simulation results. Table 2 presents the results for the
same set of parameter values, but changes to ρ = 0.6. In the presence of a
highly persistent cost-push shock, a temporary increase in inflation might result in
increased inflation expectations that would remain elevated for a prolonged period
of time, and induce actual inflation persistence as well. The convergence speed
under adaptive learning decreases in the persistence of the shock, and thus any
initial deviation in either actual inflation or expected inflation takes longer to die
out. If the shock persistence is lower than in the baseline model calibration, in
accordance with Propositions 1 and 2 and the results of this section, we expect
higher RLS convergence speeds to lead to a larger area of SG-stability and a lower
probability of finding a GSG-unstable algorithm.

In Tables 1 and 2, the speed of convergence is a decreasing function of the
cost-push shock persistence.20 The area of SG-instability disappears completely
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TABLE 1. Simulations results: Monetary policy under commitment (ρ = 0.9)

SG-stab Speed GSG-stab Prob Min Dist

φx = 0.25
φπ = 1.5 − 0.33 0.73 2.71
φπ = 2.0 + 0.56 0.83 4.15
φπ = 2.5 + 0.80 0.93 16.00

φx = 0.35
φπ = 1.5 − 0.25 0.64 2.17
φπ = 2.0 − 0.38 0.74 3.59
φπ = 2.5 + 0.48 0.84 6.56

φx = 0.45
φπ = 1.5 − 0.22 0.70 3.79
φπ = 2.0 − 0.33 0.71 5.10
φπ = 2.5 + 0.43 0.76 5.72

Note: SG-stab: SG–stability. Speed: RLS convergence speed. GSG-stab prob: The probability of GSG–stability.
Min dist: The minimum measure of misperceptions necessary to get GSG instability.

for values of persistence less than 0.6 [Table 2, column (3)]. For ρ = 0.6, the
probability of GSG-stability is everywhere above .99, and it becomes essentially
unity for monetary policy with φπ > 1.2, which is less active than the optimal
under REE. In the baseline calibration with persistence shock 0.9, only a Taylor
rule with φπ as high as 3.5 guarantees GSG-stability.21

Finally, we comment on the known examples in this context where E-stability
and SG-stability conditions are found to be equivalent. This is true in the univariate,

TABLE 2. Simulations results: Monetary policy under commitment (ρ = 0.6)

SG-stab Speed GSG-stab prob Min dist

φx = 0.25
φπ = 1.5 + 0.59 1 N/A
φπ = 2.0 + 0.77 1 N/A
φπ = 2.5 + 0.97 1 N/A

φx = 0.35
φπ = 1.5 + 0.51 1 N/A
φπ = 2.0 + 0.60 1 N/A
φπ = 2.5 + 0.68 1 N/A

φx = 0.45
φπ = 1.5 + 0.49 1 N/A
φπ = 2.0 + 0.57 1 N/A
φπ = 2.5 + 0.64 1 N/A

Note: SG-stab: SG–stability. Speed: RLS convergence speed. GSG-stab prob: The probability of GSG–stability.
Min dist: The minimum measure of misperceptions necessary to get GSG instability.
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purely forward-looking, cobweb-type models discussed in Evans and Honkapohja
(2001, p. 37). The Jacobian J of the E-stability ODE is given by (α − 1) times
the identity matrix. Premultiplying J by a positive definite M(�) therefore cannot
affect stability, and thus SG-stability is equivalent to E-stability. In a multivariate
extension of the cobweb model studied by Evans and Honkapohja (1998), the
eigenvectors of �·J can be expressed as m⊗j , where m is some eigenvector of the
second moments matrix M and j is an eigenvector of J . Because the eigenvectors
of a symmetric matrix are orthogonal, certain eigenvectors of � ·J are orthogonal
as well. We conjecture that a variant of the geometric condition stated in Corollary
1 continues to hold in higher dimensions; namely, the equivalent orthogonality
condition is inconsistent with �·J instability whereas J is stable. The equivalence
of E-stability and SG-stability conditions for univariate and multivariate cobweb-
type models agrees with our results.

6. CONCLUSION

Whereas under recursive least-squares learning the dynamics of linear and some
nonlinear models converge to E-stable rational expectations equilibria, recent
examples argue that E-stability is not a sufficient condition for SG-stability. We
establish that there is a close relationship between the learnability of E-stable
equilibria and the speed of convergence of the RLS learning algorithm. In the
2 × 2 case, we give conditions that ensure that a higher mean dynamics speed
of convergence implies learnability under a broad set of learning algorithms of
the RLS/SG/GSG class. This is a refinement of the set of E-stable REE with
properties such that learnability is achieved even if agents’ learning is misspecified
asymptotically relative to RLS.

Furthermore, we quantify the significance of the RLS speed of convergence
for learnability under alternative learning algorithms. Evans and Honkapohja
(2006) show that optimal monetary policy under commitment, specifically for
their “expectations-based rule,” leads to expectational stability in private agents’
learning. We provide evidence that such an E-stable REE might fail to obtain its
GSG learning stability if agents used a misspecified second-order moments matrix
of the model parameters. For the lowest speeds of convergence consistent with
determinate and E-stable REE, we observe up to a 60% probability of GSG insta-
bility. If the agents use an algorithm other than RLS, the optimal monetary policy
under commitment is also associated with an approximately 20% probability of
being subject to expectational instability.

NOTES

1. The possible convergence of learning processes and the E-stability criterion of REE dates back
to DeCanio (1979) and Evans (1985). Marcet and Sargent (1989) first showed the conditions for
convergence in a learning context using stochastic approximation techniques.
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2. Evans and Honkapohja (1998) find that E-stability and SG-stability are the same in a multivariate
cobweb-type model.

3. In the literature, the concepts of E-stability and learnability are often used interchangeably.
Following Giannitsarou (2005), we consider learnability a broader concept and distinguish between E-
stability, which is related to learnability under RLS, and learnability under different learning algorithms.

4. Ferrero (2007) examines the welfare consequences of slow adjustment of inflationary expecta-
tions to their REE values.

5. There are technical conditions other than the stability of the approximating mean dynamics
that ought to be satisfied for convergence of the real-time dynamics under learning; see Evans and
Honkapohja (2001, Chap. 6, Sects. 6.2, 6.3). We assume that these conditions are always satisfied,
and claim that learnability is obtained when the equilibrium is stable under the approximating mean
dynamics.

6. The exceptional cases where we observe eigenvalues with a zero real part do not typically arise
in economic models.

7. Evans et al. (2010, p. 246) choose to transform variables using the Cholesky transformation,
and hence allow any matrix � to have the same eigenvectors as M . Diagonal matrices, as in their
Proposition 5, p. 247, also have the same eigenspace spanned by coordinate unit vectors.

8. With RLS learning, the mean dynamics ODE that governs estimates of the second moments
matrix of regressors, R, is given by dR/dτ = M(Φ) − R. The Jacobian of this part of the mean-
dynamics ODE equals −I , with all eigenvalues equal to −1; see Evans and Honkapohja (2001,
pp. 234–235).

9. The eigenvectors of a symmetric matrix are orthogonal, and so P −1 = P T . In addition if we
adopt the approach of Evans et al. (2010) and state our geometric conditions based on transformed
variables, such that M = I , the decomposition of � will also allow the proposed form in the paper.
Refer to Mangnus and Neudecker (1999, Theorem 23, p. 22).

10. Note that the angle between the eigenvectors of J is preserved under the rotation into the
orthogonal coordinate system determined by the eigenvectors of �. Therefore, we use collinearity of
the eigenvectors of J and J̃ interchangeably.

11. We also check the sufficient condition for H-stability (symmetric part of J stable), but in the
range of our calibration and policy parameters we found no points that satisfied the condition. This
further shows how restrictive the negative quasidefiniteness of a matrix proves to be.

12. We do not track SG-stability for indeterminate REEs.
13. To derive the optimal policy values used in our simulations, we assume a relative weight equal

to 0.02 on the output gap.
14. We do not think that agents who learn adaptively and “know” exactly a wrong second moments

matrix is an assumption that is any more restrictive than assuming they are endowed with perfect
knowledge of M . Using this procedure, we intend to generate “perturbed” second moments matrices
with similar correlation structure to the true one.

15. We assume that the agents keep parameters (φπ , φx) the same but recalculate (φL, φu).
16. The exact values of the probability of obtaining a GSG algorithm that delivers a learnable

equilibrium depend on the assumed distribution of θ̃ . We are only interested in the direction in the
parameter space in which this probability increases or decreases.

17. When agents use RLS learning, this eigenvalue is equal to one.
18. This exercise is in the spirit of Tetlow and von zur Muehlen (2009), who model agents with RLS

learning but allow them to commit errors in the ALM. They study the minimum pertubation such that
the resulting algorithm is divergent.

19. In the simple case of a constant and i.i.d. shock, the value of 10 means that agents perceive the
shock as being 10 times more volatile than in “reality,” which is indeed a severe misperception.

20. Compare the entries for the same φπ and φx in Tables 1 and 2.
21. Simulations that illustrate the sensitivity of the results to the shock persistence are not reported,

but are available upon request.
22. The case of a noninvertible N is not generic, and we do not consider it here.
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APPENDIX A: LEARNING INSTABILITY: THE REAL
EIGENVALUES OF J (OR J̃ )

First we examine the real eigenvalues case. We investigate the conditions under which �J̃

has an eigenvalue with a positive real part, and is therefore unstable. Because
∣∣�J̃

∣∣ =
|�| · ∣∣J̃ ∣∣ > 0, instability can only appear if the trace of �J̃ , denoted by Tr(�J̃ ), is strictly
positive. Write the matrix of the eigenvectors of J̃ and its inverse22 as

N =
[

v11 v12

v21 v22

]
, N−1 = 1

|N |
[

v22 −v12

−v21 v11

]
;

then the matrix J̃ can be written as

J̃ = NN−1 = 1

|N |
[

v11 v12

v21 v22

]
·
[ −λ1 0

0 −λ2

]
·
[

v22 −v12

−v21 v11

]
.

We can establish that the diagonal elements of J̃ are given by

J̃11 = λ2v12v21 − λ1v11v22

|N |
and

J̃22 = λ1v12v21 − λ2v11v22

|N | .

The trace of the �J̃ is thus equal to

Tr(�J̃ ) = δ1
λ2v12v21 − λ1v11v22

|N | + δ2
λ1v12v21 − λ2v11v22

|N | > 0. (A.1)

The condition (A.1) is equivalent to

δ1
λ2v12v21 − λ1v11v22

|N | + δ2
λ1v12v21 − λ2v11v22

|N | > 0,

δ2

δ1

λ1v12v21 − λ2v11v22

|N | − λ1v11v22 − λ2v12v21

|N | > 0,

δ2

δ1

v12v21 − λ2
λ1

v11v22

|N | −
v11v22 − λ2

λ1
v12v21

|N | > 0.

Now select the direction of the eigenvectors so that v12v21 > 0, let ϒ = v22
v21

v11
v12

= v22
v12

/ v21
v11

,
and observe that |N | equals v21v12 (ϒ − 1). The trace condition (A.1) becomes

δ2
δ1

v12v21

v21v12 (ϒ − 1)

(
1 − λ2

λ1
ϒ

)
− v12v21

v21v12 (ϒ − 1)

(
ϒ − λ2

λ1

)
> 0
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or

1

ϒ − 1

[
δ2

δ1

(
1 − λ2

λ1
ϒ

)
−

(
ϒ − λ2

λ1

)]
> 0. (A.2)

When ϒ < 0, this expression is clearly negative. Thus, learning instability requires that
both eigenvectors of J after rotation into the coordinates defined by the eigenvectors of �

are located in the same quadrant of the plane. This condition is impossible to meet if the
two eigenvectors are orthogonal.

When ϒ > 1, the term in the square brackets in (A.2) is negative: it is a decreasing
function of λ2/λ1, δ2/δ1, and ϒ , reaching its maximum of 0 for λ2/λ1 = δ2/δ1 = ϒ = 1.
Therefore, the whole expression (A.2) is negative forϒ > 1 .

When 0 < ϒ < 1, learning instability requires that

δ2

δ1

(
1 − λ2

λ1
ϒ

)
< ϒ − λ2

λ1
< 0.

This is possible only if 1− λ2
λ1

ϒ < 0 or λ2
λ1

> 1
ϒ

> 1, in which case the preceding condition
can be rewritten as

δ2

δ1
>

ϒ − λ2
λ1

1 − λ2
λ1

ϒ
=

λ2
λ1

− ϒ

λ2
λ1

ϒ − 1
.

APPENDIX B: LEARNING INSTABILITY: THE
COMPLEX EIGENVALUES OF J (OR J̃ )

In this case, the eigenvalues of J̃ are given by ν ± iμ, ν < 0, and the corresponding
eigenvectors are w1 ± iw2. Following the same steps as in the real roots case, write

W =
[

w11 + iw12 w11 − iw12

w21 + iw22 w21 − iw22

]
,

W−1 = 1

2 |W |
[

w22 + iw21 − (w12 + iw11)

w22 − iw21 − (w12 − iw11)

]
,

|W | = w11w22 − w12w21,

WW−1 = 1

2 |W |
[

w11 + iw12 w11 − iw12

w21 + iw22 w21 − iw22

]
·
[

ν + iμ 0
0 ν − iμ

]
·

×
[

w22 + iw21 − (w12 + iw11)

w22 − iw21 − (w12 − iw11)

]

= 1

2 |W |
[

(ν + iμ) (w11 + iw12)
(
ν + iμ

) (
w11 + iw12

)
(ν + iμ) (w21 + iw22)

(
ν + iμ

) (
w21 + iw22

) ]
·

×
[

w22 + iw21 − (w12 + iw11)

w22 + iw21 − (
w12 + iw11

) ]
.
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The overline in the expressions denotes a complex conjugate. Finally, the two diagonal
elements of J̃ can be written as

J̃11 = Re [(ν + iμ) (w11 + iw21) (w22 + iw21)]
|W | ,

J̃22 = −Re [(ν + iμ) (w12 + iw22) (w21 + iw11)]
|W | ,

which reduce to

J̃11 = ν − μ
w11w12 + w21w22

|W | ,

J̃22 = ν + μ
w11w12 + w21w22

|W | .

The trace of �J̃ then is given by

Tr(�J̃ ) = ν (δ2 + δ1) + μ
w11w12 + w21w22

|W | (δ2 − δ1) > 0 (B.1)

and should be positive for the instability to occur.
Let W̃ = w11w12 + w21w22 and recall that ν is negative. Then (B.1) is equivalent to

μ
w11w12 + w21w22

|W | (δ2 − δ1) > −ν (δ2 + δ1) ,

μ

|ν|
W̃

|W |
δ2
δ1

− 1
δ2
δ1

+ 1
> 1.

This expression allows us to evaluate and relate the speed of convergence, the real part
of the eigenvalues in this case, and the conditions for learning instability. It is easy to show
that if w1 ⊥ w2, then W̃/|W | = 0, making (8) impossible to satisfy.
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