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We present the first general metric for attractor overlap (MAO) facilitating an
unsupervised comparison of flow data sets. The starting point is two or more
attractors, i.e. ensembles of states representing different operating conditions. The
proposed metric generalizes the standard Hilbert-space distance between two
snapshot-to-snapshot ensembles of two attractors. A reduced-order analysis for
big data and many attractors is enabled by coarse graining the snapshots into
representative clusters with corresponding centroids and population probabilities. For
a large number of attractors, MAO is augmented by proximity maps for the snapshots,
the centroids and the attractors, giving scientifically interpretable visual access to the
closeness of the states. The coherent structures belonging to the overlap and disjoint
states between these attractors are distilled by a few representative centroids. We
employ MAO for two quite different actuated flow configurations: a two-dimensional
wake with vortices in a narrow frequency range and three-dimensional wall turbulence
with a broadband spectrum. In the first application, seven control laws are applied
to the fluidic pinball, i.e. the two-dimensional flow around three circular cylinders
whose centres form an equilateral triangle pointing in the upstream direction. These
seven operating conditions comprise unforced shedding, boat tailing, base bleed, high-
and low-frequency forcing as well as two opposing Magnus effects. In the second
example, MAO is applied to three-dimensional simulation data from an open-loop
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drag reduction study of a turbulent boundary layer. The actuation mechanisms of
38 spanwise travelling transversal surface waves are investigated. MAO compares
and classifies these actuated flows in agreement with physical intuition. For instance,
the first feature coordinate of the attractor proximity map correlates with drag for
the fluidic pinball and for the turbulent boundary layer. MAO has a large spectrum
of potential applications ranging from a quantitative comparison between numerical
simulations and experimental particle-image velocimetry data to the analysis of
simulations representing a myriad of different operating conditions.

Key words: computational methods, low-dimensional models, wakes

1. Introduction

A quantitative comparison of models, simulations and experiments is at the
heart of fluid mechanics – in fact of all quantitative sciences. In some cases, the
assessment is straightforward, for instance, if only a single quantity, like drag, is
of interest. However, a comparison of flow dynamics and spatio-temporal structures
still constitutes a significant challenge. How can the similarity be quantified without
strong subjective bias? Which physical structures do two data sets have in common
and which ones are unique to only one set? How can dozens of data sets be compared
in an automated manner? The presented study addresses these questions.

In fact, most fluid mechanics publications contain a comparison of flows from
different sources, e.g. experiments versus simulations or the same source at various
operating conditions, e.g. optimal control versus the unforced benchmark. In an
engineering application, this comparison is easily performed for a single global
solution parameter of interest, e.g. drag for a car, lift for an airfoil, mixing for
a combustor or far-field noise of a jet engine. These comparisons of performance
parameters are simple but provide a limited assessment of the flow physics. For
instance, Reynolds-averaged Navier–Stokes (RANS) simulations of cylinder wakes
may predict well the drag coefficient at low Reynolds number. However, RANS
computations predict the von Kármán vortex street to dissipate far too quickly in the
streamwise direction. A commonly used and more refined comparison includes
the statistical moments of the flow field, or at least transverse or streamwise
velocity profiles. The comparison of statistical moments is straightforward using a
corresponding Hilbert-space norm. This comparison is more detailed than employing
a single order parameter. Yet, it excludes the spatial-temporal dynamics of coherent
structures.

Coherent structures are often visible to the naked eye, as beautifully depicted for
wakes over 500 years ago by Leonardo da Vinci. Their quantification has been the
subject of thousands of publications and many disputes. Vortices provide important
dynamical insight into geometrically simple two- and three-dimensional flows and
have been the cornerstone of early reduced-order modelling efforts starting with the
famous Helmholtz vortex laws in 1869 (see, e.g. Lugt 1996). Data-driven vortex
identifications have been proposed by Jeong & Hussain (1995) for snapshots and
by Haller (2005) for flow histories. These frequently cited publications represent –
pars pro toto – a myriad of other feature analyses, e.g. Galilean invariant snapshot
topology (Kasten et al. 2016).
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722 R. Ishar and others

An alternative approach is a reduced-order representation by expansions in terms of
global modes. Proper orthogonal decomposition (POD) (Berkooz, Holmes & Lumley
1993), dynamic mode decomposition (Rowley et al. 2009; Schmid 2010), stability
eigenmodes (Theofilis 2011) or plain temporal Fourier expansions may serve as
examples. These modes provide important insight into physical mechanisms of the
coherent structure dynamics. Yet, one cannot expect the modes of different data
sources to coincide or even to be similar. POD modes may be sensitive to small
changes of the data. Thus they are not a good indicator of similarity (Venturi 2006).
In addition, the energy resolved by low-order turbulence representations is often much
smaller than the energy of the unresolved stochastic fluctuations.

The analyses of local features and expansions in terms of global modes pose
significant challenges for an automated comparison of different attractor data. In this
study, we neither follow the Galerkin method nor the vortex modelling approach.
Instead, the distance between two data sets is, roughly speaking, geometrically
characterized by the average distance between each snapshot of one attractor to the
closest snapshot of the other attractor. In characterizing the overlap and disjoint
regions of both attractors by selected flow states, we follow the pioneering clustering
approach of Burkardt, Gunzburger & Lee (2006) in fluid dynamics. Clustering implies
that similar snapshots are put into ‘bins’ represented by a centroid. The centroid can
be understood as a flow state averaged over all elements in the same ‘bin’. Shared
centroids span the overlap region of both attractors and disjoint centroids illustrate
different attractor regions. The comparison methodology is augmented by powerful
feature extraction from machine learning.

More specifically, we propose a general metric between attractor data from different
operating conditions. With attractor data, we refer to an ensemble of statistically
representative flow snapshots which allow for the computation of statistical moments
and resolve coarse-grained coherent structures. Here, attractor is understood in a
nonlinear dynamics sense for dissipative systems, i.e. a subset of the state space to
which all solutions converge independently of the initial condition (see, e.g. Schuster
1988). The existence of a single global attractor is implicitly assumed in statistical
fluid mechanics. Otherwise, statistical moments may have multiple values depending
on the initial conditions. The focus on attractor data is not requested by the metric
but simplifies the first demonstration of its usefulness.

The unsupervised comparison methodology has little subjective bias. This methodo-
logy is exemplified for two configurations with many associated open-loop actuations
each. The first example is the two-dimensional fluidic pinball, i.e. the flow around
three stationary rotating circular cylinders (Noack et al. 2016). Unlike the single
rotating cylinder, the fluidic pinball exhibits rich spatial-temporal dynamics under
different actuation laws at similarly low computational cost (Noack & Morzyński
2017). The second example demonstrates the applicability to three-dimensional
wall-bounded turbulent flow, namely the turbulent boundary layer actuated with a
spanwise transversely travelling surface waves (Meysonnat et al. 2016).

For the proposed framework, we choose a direct numerical simulation of the
fluidic pinball, i.e. the flow around three equal circular cylinders with centres on
an equilateral triangle pointing in upstream direction (Noack et al. 2016). The
term ‘fluidic pinball’ is owed to the possibility of moving fluid particles like balls
in a conventional pinball machine by suitably rotating the cylinders. The pinball
configuration includes most wake stabilization strategies with suitable rotation of the
three cylinders. Examples include phasor control (Roussopoulos 1993), aerodynamic
boat tailing (Geropp 1995; Geropp & Odenthal 2000; Barros et al. 2016), base
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bleed (Wood 1964; Bearman 1967), high-frequency forcing (Thiria, Goujon-Durand &
Wesfreid 2006; Oxlade et al. 2015) and low-frequency forcing (Pastoor et al. 2008).
Another possibility is to deflect the wake via the Magnus effect. In this study, we
compare the unforced reference and six open-loop actuation mechanisms.

Wakes or free-shear flows downstream of blunt bodies often possess dominant
structures as opposed to wall-bounded shear flows whose distributions of the spatial
and temporal scales exhibit smooth broadband spectra. As a challenging benchmark,
the comparison methodology is also applied to data from a large-eddy simulation of
a zero pressure-gradient boundary layer over a surface that undergoes a transversal
spanwise travelling wave motion, i.e. the wall is deflected in the wall-normal direction.
The canonical fully turbulent boundary layer flow is an interesting test case to study
the impact of wall motion on friction drag. The results of this simple geometry are
to a certain extent transferable to problems such as airfoil flows where the boundary
layer varies in the streamwise direction. Besides the well-known passive control
approaches, e.g. riblets (García-Mayoral & Jiménez 2011), a wide range of active
drag reduction methods has been investigated in the past three decades. To name a
few, Jung, Mangiavacchi & Akhavan (1992) achieved high relative drag reduction
using in-plane spanwise wall oscillations, Du, Symeonidis & Karniadakis (2002)
applied a travelling wave-like body force in the spanwise direction to lower the
friction drag and Zhao, Wu & Luo (2004) extended the idea by an flexible wall
approach. A good overview of active drag reduction approaches is given by Quadrio
(2011).

Spanwise travelling transversal surface waves have been investigated experimentally
(Itoh et al. 2006; Shinji & Motoyuki 2012; Li et al. 2015) and numerically (Klumpp,
Meinke & Schröder 2010b; Koh et al. 2015b; Meysonnat et al. 2016). Drag
reductions of the order of 10 % were achieved. The physical mechanism of this
active control is the generation of a secondary near-wall flow field in the wall-normal
and spanwise directions through a, for example, sinusoidal up and down motion of
the wall to interrupt the near-wall cycle of the turbulent shear flow and as such
to redistribute the turbulent scales. The main parameters for the sinusoidal wave
actuation are wavelength, amplitude and frequency. It goes without saying that due
to the nonlinear interaction between the wall-motion parameters and the wall-shear
stress, i.e. the friction drag, it is quite a challenge to efficiently determine for a
given flow, i.e. predefined free-stream Reynolds number, the optimum parameter
settings to minimize the wall-shear stress distribution. In this study, the large-eddy
simulation data for a non-actuated turbulent boundary layer flow constitutes the
reference problem. The drag reduction is studied for 37 transverse surface wave
actuations which vary in wavelength, amplitude and frequency.

The structure of the manuscript is as follows. In § 2, the comparison methodology
for attractor data is outlined. In § 3, the employed fluidic pinball simulation and the
actuated turbulent boundary layer flow are described. The corresponding data include
converged data of the 7 attractors and of the 38 parameter variations of the travelling
wave. The proposed approach is exemplified for all operating conditions of the fluidic
pinball in § 4 and for all actuations of the turbulent boundary layer in § 5. Section 6
summarizes this study and outlines future directions of research.

2. Comparison methodology for different attractors

In this section, we propose a comparison methodology for attractor data. In these
following, these data are statistically representative snapshots for one or multiple
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Data collection

Clustering

Identification of overlapping and disjoint attractor regions

Statistical analysis

Metric for attractor overlap (MAO)

Dgeom(a, b) from (3.5)

Geometric analysis

Proximity map

P

k

P1

P2

P3

P1

P2

P3

FIGURE 1. (Colour online) Schematic of the pipeline for the metric of attractor overlap
and associated proximity maps. Here, P1, P2 and P3 refer to data sets outlined in § 3,
i.e. sets of snapshots which are statistically representative of an attractor under a given
operating condition. Of course, the number of data sets is typically much larger. D is the
metric of attractor overlap (§ 2.1). Its two arguments P, Q represent data sets, like P1,
P2 and P3. The proximity map (top right) is explained in § 2.3. The coarse graining by
clusters (centre row) is discussed in § 2.4 and the identification of overlapping and disjoint
attractor regions (bottom row) is outlined in § 2.5.

operating conditions. The first constitutive element is a standard metric for snapshots.
In § 2.1, this metric is generalized to attractor data and referred to as metric for
attractor overlap (MAO). The MAO formalism is extended for continuous data in
§ 2.2. In § 2.3, the closeness of all attractors are featured in proximity maps.

A coarse-grained version of MAO is enabled by clustering (§ 2.4). This coarse
graining (§ 2.5) reduces the computational expense of the metric and gives visual
access to select coherent structures which the attractors have in common, i.e. they
overlap, or do not share, i.e. they are disjoint.

Figure 1 previews the proposed methodology. The top row illustrates the processing
from the raw data of multiple attractors (left) to the proximity map (right) employing
the snapshot MAO. The centre row represents the coarse-grained version with
clustering. Clustering opens the opportunity to pinpoint the overlap region of attractors
to a few select velocity fields, i.e. shared centroids, as indicated in the bottom row.

2.1. Metric of attractor overlap for snapshot data
Let u(x) and v(x) be two velocity fields in the domain Ω . We define the distance
between these fields as

D(u, v)=

√∫
Ω

dx‖u(x)− v(x)‖2. (2.1)
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Here, ‖ · ‖ denotes the Euclidean norm. Note that this distance is based on the
norm associated with the Hilbert space L2(Ω) of square-integrable functions. It
fulfils all properties of a metric, like positive definiteness, commutativity and triangle
inequality. For the fluidic pinball data of § 3.1, the distance measure uses the whole
computational domain Ω . For the turbulent boundary layer of § 3.2, a subdomain
over the whole actuated surface is chosen. The surface actuation leads to a small
domain deformation. This deformation is neglected and the operations are performed
in a stationary domain in which the grid points assume their unactuated equilibrium
location.

In this section, we define a measure for the attractor similarity based on the
snapshot configuration and the Hilbert-space metric. Loosely speaking, the difference
between two attractors A and B – represented by their snapshot ensembles – is
geometrically defined as the sum of the average distances between the snapshots of
A to B and vice versa.

In the following, this quantity is defined. For simplicity, let us consider two
attractors A and B. Let M := {um

}
M
m=1 be the union of all snapshots from both

attractors. For simplicity, we assume the generic case that all snapshots are pairwise
different. The subset of M belonging to attractor A is defined by the characteristic
function

χm
A :=

{
1, if um

∈A,
0, otherwise.

(2.2)

The number of snapshots in A is given by MA :=
∑M

m=1 χ
m
A. Similar formulae hold for

attractor B.
The distance of a snapshot u to B is defined by the closest corresponding snapshot

of B,
D(u,B)= min

m=1,...,M
χm
B=1

D(u, um). (2.3)

The average distance of attractor A to B is defined by

D(A,B)=
1

MA

∑
m=1,...,M
χm
A=1

D(um,B). (2.4)

This distance is not commutative. Suppose A has only one snapshot of B and B has
many more elements. In this case, D(A,B)= 0 but D(B,A) > 0. Hence, we define a
symmetrized version of this distance

Dgeom(A,B) :=
D(A,B)+D(B,A)

2
. (2.5)

We refer to this quantity as the metric of attractor overlap (MAO). MAO has the
properties of a metric for snapshot ensembles A and B and C since the defining
properties can be shown for the generic case of pairwise different snapshots.

(i) Positive definiteness: Dgeom(A,B)> 0 for all A,B and

A=B ⇔ Dgeom(A,B)= 0. (2.6)

(ii) Symmetry: by definition (2.5),

Dgeom(A,B)=Dgeom(B,A). (2.7)
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726 R. Ishar and others

(iii) Triangle inequality:

Dgeom(A, C)6 Dgeom(A,B)+Dgeom(B, C). (2.8)

To illustrate the physical implications of MAO, we consider several cases. If A and
B only consist of velocity fields u and v, respectively, their distance coincides with
the Hilbert-space metric, D(A,B)=D(u, v).

Let A contain one velocity field, e.g. an unstable steady solution, and B contains
many fields, e.g. snapshots of a stable periodic dynamics. Then D(A, B) is the
smallest distance between the steady solution and the snapshots on limit cycle,
while D(B, A) represents the average distance between fixed point and limit cycle.
This asymmetry makes sense; D(A, B) quantifies how well elements of A can be
represented by elements of B on average. This measure is inherently non-commutative:
a small set may be better represented by a rich set than the other way around. MAO
is the average of both, i.e. an effective average distance between two attractors, not
the minimal geometric distance between the closest elements of two sets.

Next, let us assume that both attractors arise from periodic dynamics defining limit
cycles with the same origin and the same plane but with radii 10 and 11. In this case,
the distance approaches unity for sufficiently large number of snapshots. Complete
attractor overlap, Dgeom(A, B) = 0, implies that A and B have the same snapshots.
The probability of their occurrence may differ in both data.

In summary, MAO averages how well each snapshot of A is represented by the
closest snapshot of B and vice versa. Note that some of the above statements need to
be refined in case of identical snapshots. We shall not pause to do so.

2.2. Generalization of MAO to continuous data
Intuitively, the metric can be expected to converge against a continuous ensemble-
averaged value for infinite number of snapshots M. Here, we generalize the above
metric for continuous data. This generalization highlights geometric and statistical
implications of the metric.

For simplicity, we restrict the discussion to N-dimensional vectors a ∈ RN , e.g. the
first POD mode coefficients. Let ρA(a) and ρB(a) denote the probability distributions
for a ∈ RN of attractors A and B, respectively. In the following, the attractor symbol
will be used also for the set of its points.

In analogy to (2.3), the distance of the vector a ∈A to the attractor B is defined
by the infimum of the corresponding distances,

D(a,B)= inf
b∈B

D(a, b). (2.9)

Following (2.4), the distance of attractor A to attractor B is defined as the average
distance of the A elements to B,

D(A,B)=
∫

daρA(a)D(a,B). (2.10)

The symmetrization (2.5) completes the definition of the metric. In principle, the
distance can more generally be formulated in terms of Borel probability measures on
L2(Ω).

Figure 2 illustrates the definition. The attractor sets are the support of the probability
density, for instance a∈A⇔ρ(a) 6=0. Only the disjoint sets A\B and B\A contribute
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D
C

E.A

B
a

b

FIGURE 2. Schematic of the metric of attractor overlap for continuous data.

to the metric. The closest neighbour D ∈B to A ∈A\B defines the distance D(A,B).
Similarly, B∈B\A is best represented by point E ∈A. MAO averages these distances.
The intersection of both sets does not contribute to the metric. For instance, C∈A

⋂
B

has, by definition, vanishing distance to both sets. This implies a vanishing metric for
attractors with the same support A=B. As a technical issue, the existence of points
D and E assumes compact attractor sets. Otherwise, D and E are the limiting points
at the border of the attractor sets.

It should be noted that complete mutual attractor overlap implies identical
characteristic functions χA(a) = χB(b). In other words, ρA(a) = 0 ⇔ ρB(a) = 0.
However, A = B does not imply ρA(a) = ρB(a) 6= 0. Two attractors can share the
same points, i.e. have a vanishing MAO, but have different probability distributions.
Statistical similarity and geometrical closeness are two fundamentally different
concepts. Consider two close points with different probability densities. From a
geometric point of view, only the distance is relevant. From a statistical perspective,
the resulting differences in first and higher moments are of interest.

The metric between the two attractors has similarity with the Hausdorff distance
between two sets. The Hausdorff distance distils the worst-case scenario or rare
extreme events, i.e. the maximum distance between a point of one set and its closest
neighbour of the other set. For instance, the points from two slightly different
Gaussian distributions have arbitrarily large Hausdorff distance for increasing number
of points. In contrast, MAO quantifies the average distance which can be considered
more representative for attractor data.

2.3. Proximity map
In the case of two attractors A and B, the closeness can be characterized by MAO,
i.e. a single number. The comparison of many attractors Al, l= 1, . . . , L with L� 1
is more challenging. In this case, the complete snapshot set {um

}
M
m=1 comprises the

elements of all L attractors. The closeness of the attractors Al may be visualized in
a two-dimensional proximity map which preserves the metric of attractor overlap as
well as possible (see figure 1 top, right). This task is performed by multi-dimensional
scaling (Cox & Cox 2000) presented in the following.
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The relative distances between the attractors is expressed by the symmetric matrix

Dln :=Dgeom(Al,An), l, n= 1, . . . , L. (2.11)

Let γ l
∈ R2 be a two-dimensional feature vector associated with the lth operating

condition. The goal of a proximity map is to find a mapping A 7→ γ such that the
pointwise distances in the feature plane are preserved as well as possible,

L∑
l,n=1

(Dln − ‖γ
l
− γ n
‖)2

!
=min. (2.12)

At this point, the feature plane is indeterminate with respect to translation, rotation
and reflection. However, one can request that the centre of the feature vector is at
the origin, removing the translative degree of freedom. Moreover, the variances of the
first feature coordinate can be maximized, removing the rotational degree of freedom.
Now, only the indeterminacy with respect to reflection is left, as for POD modes.

The proximity map can easily be generalized for higher-dimensional feature spaces.
Moreover, the proximity map requires only a distance matrix and can thus also
be used for snapshots using the snapshot metric (2.1). Proximity maps have been
presented for mixing layer and Ahmed body wake data (Kaiser et al. 2014) and for
ensembles of control laws (Duriez, Brunton & Noack 2016; Kaiser, Li & Noack
2017a; Kaiser et al. 2017b).

2.4. Cluster analysis
Next, the M snapshots um(x), m= 1, . . . ,M, are coarse grained into K representative
centroids ck(x), k = 1, . . . , K. These centroids are chosen to minimize the total
variance of the snapshots um with respect to the nearest centroid ck,

V =
K∑

k=1

∑
um∈Ck

D2(um, ck)
!
=min. (2.13)

Each centroid ck defines a cluster Ck containing all flow states um which are closer
to ck as compared to any other centroid cj, j 6= k. Thus, each snapshot um can be
attributed to one cluster Ck. This cluster affiliation is coded as characteristic function

Tm
k :=

{
1, if um

∈ Ck,

0, otherwise.
(2.14)

The number of snapshots in the kth cluster reads

Nk =

M∑
m=1

Tm
k . (2.15)

The centroids can also be expressed in terms of this characteristic function. It can
be shown that they are the mean of all snapshots in the corresponding cluster,

ck =
1

Nk

∑
um∈Ck

um
=

1
Nk

M∑
m=1

Tm
k um. (2.16)
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Numerically, the optimization problem (2.13) for the centroids is solved using
k-means clustering (Steinhaus 1956; MacQueen 1967; Lloyd 1982) and k-means++
(Arthur & Vassilvitskii 2007) for the initialization. Since k-means shows a dependence
on the initial conditions, we run the corresponding MATLAB routine for 1000 initial
conditions and select the one having the smallest variance. The iteration stops when
convergence is reached, i.e. the characteristic function (2.14) does not change. The
number of iterations is limited to 10 000 iterations.

In principle, k-means clustering can lead to two different coarse grainings with
the same resolution level. For instance, the centroids of 10 clusters of a uniformly
populated circle may be at angles 0◦, 36◦, . . . , 324◦ or at angles 18◦, 54◦, . . . , 342◦.
In practice, this typically implies a rare symmetry, like a rotation invariant uniformly
populated data set in our example. Second, the difference between the centroids
vanishes with increasing number of clusters. Third, only one set of centroids is used
for the comparison leading to comparable discretization errors.

For practical reasons, we perform a lossless POD decomposition prior to the
clustering of M snapshots into the mean flow u0 and M− 1 modes ui, i= 1, . . . ,M− 1
(see appendix A). Let u = u0 +

∑M−1
m=1 aiui be one snapshot and v = u0 +

∑M−1
m=1 biui

another one. Then, D2(u, v) =
∑M−1

m=1 (ai − bi)
2. The right-hand side requires 3M

floating point operations while the computational load of the integral (2.1) scales
with the number of grid points and is much larger even for the employed grids.
It should be noted that these immense computational savings are enabled by an
expensive computation of POD modes. However, for the fluidic pinball data, the
POD correlation matrix comprises approximately 24.5 million space integrals while
the employed k-means++ with 1000 initial conditions with up to 10 000 iterations
requires up to 70 billion (!) integrals, i.e. three orders of magnitudes more. The
savings for the turbulent boundary layer are comparable.

The clustering enables to characterize each operating condition by a corresponding
probability distribution. Let l = 1, . . . , L be the index of the L operating conditions.
Let N l

k be the number of snapshots of the lth attractor data in the kth cluster. Let
N l
=
∑K

k=1 N l
k be the total number of snapshots of the lth attractor data. Then, the

probability that a snapshot belonging to the lth operating condition lies in the kth
cluster reads

Pl
k =

N l
k

N l
, k= 1, . . . ,K. (2.17)

In particular, the probability distribution is determined here as relative frequencies
of cluster visits and fulfils the non-negativity, Pl

k > 0, and normalization condition,∑K
k=1 Pl

k = 1.

2.5. Cluster-based analysis of the attractor overlap and dissimilarity
In this section, we define a measure for the attractor similarity based on the centroid
configuration. Each snapshot um is represented by its closest centroid ck. Let A and
B be two sets of attractor data, say Al and An, l, n∈ {1, . . . , L}. Let P= (Pl

1, . . . ,Pl
K)

and Q= (Pn
1, . . . ,Pn

K) be the corresponding cluster-based probability distributions. The
snapshot-based metric is coarse grained to the average distance between the centroids
of attractor A and B,

Dgeom(P,Q)=
1
2

K∑
k=1

[Pl
kD(ck,Bc)+ Pn

kD(ck,Ac)]. (2.18)
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Here Ac and Bc denote the centroid ensembles associated with attractors A and B,
respectively. This formula can be derived from (2.5) replacing the snapshots um by
the closest centroids ck and taking into account the population size. The centre row
of figure 1 illustrates the approximative cluster-based analysis. Evidently, (2.18) is an
approximation of (2.5) and is equivalent for the maximum cluster resolution K =M
of snapshots. In this case, each snapshot represents a centroid and the probability
distributions associated with each cluster are unit vectors.

The main computational load for MAO comes from the distance matrix of the
snapshots or centroids. The computational savings of the cluster-based measure
(2.18) with respect to snapshot-based metric (2.5) scale with (K/M)2. For the fluidic
pinball study with M = 3500 snapshots and K = 50 clusters, this translates to the
quite dramatic factor of ≈2/10 000. This saving does not include the operations for
clustering. These can be large for a field-based clustering of § 2.4 and small for an
alternative clustering, e.g. based on few aerodynamic force components.

A lossless POD reduces the computational load of the distance matrix and of the
clustering to a tiny fraction of the original cost. The main cost of POD originates from
the correlation matrix which requires a similar amount of operations as the distance
matrix. The advantage of POD preprocessing is the many post-processing options at
negligible cost.

As a side note, a commonly used metric for probability distributions is the Jensen–
Shannon distance (see appendix B). This distance measures probability differences
on shared clusters but is blind to the geometric distances of disjoint clusters. In the
previous example of concentric co-planar circles, the metric is the same for all non-
identical radii.

3. Plant configurations
The comparison methodology MAO is applied to two configurations with many data

sets from open-loop actuation studies. A two-dimensional fluidic pinball configuration
(§ 3.1) is computationally inexpensive and allows an extensive visualization of the flow
quantities while exhibiting a complex behaviour. The open-loop drag reduction of a
three-dimensional turbulent boundary layer (§ 3.2) constitutes the second example. The
corresponding data allow us to assess MAO for a complex three-dimensional flow with
a large range of scales and frequencies.

3.1. Fluidic pinball simulation
In this section, the computation of the employed flow data is described. In § 3.1.1,
the configuration of the fluidic pinball is introduced. The corresponding direct
Navier–Stokes solver is described in § 3.1.2. Finally, the fluidic pinball simulation of
seven open-loop actuations is detailed. These flow data are subjected to the proposed
comparison methodology of the next section.

3.1.1. Fluidic pinball configuration
In the following, the considered two-dimensional flow control configuration is

described. Three equal circular cylinders with radius R are placed parallel to each
other in a viscous incompressible uniform flow at speed U∞ (see figure 3). The
centres of the cylinders form an equilateral triangle with side length 3R, symmetrically
positioned with respect to the flow. The leftmost triangle vertex points upstream, while
the rightmost side is orthogonal to the oncoming flow. Thus, the transverse extent of
the three-cylinder configuration is given by 5R.
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FIGURE 3. (Colour online) Configuration of the fluidic pinball. The Cartesian coordinate
system (x, y) is depicted at the centre of the cylinders.

This flow is described in a Cartesian coordinate system where the x-axis points
in the direction of the flow, the z-axis is aligned with the cylinder axes and the
y-axis is orthogonal to both (see figure 3). The origin 0 of this coordinate system
coincides with the geometric centre of the cylinder triangle. The location is denoted by
x= (x, y, z)= xex + yey + zez, where ex,y,z are unit vectors pointing in the direction of
the corresponding axes. Analogously, the velocity reads u= (u, v,w)= uex+ vey+wez.
The pressure is denoted by p and the time by t. In the following, we assume a
two-dimensional flow, i.e. no dependence of any flow quantity on z and vanishing
spanwise velocity w≡ 0.

The Newtonian fluid is characterized by a constant density ρ and kinematic
viscosity ν. In the following, all quantities are assumed to be non-dimensionalized
with cylinder diameter D = 2R, the velocity U∞ and the fluid density ρ. The
corresponding Reynolds number is ReD = 100 where ReD = U∞D/ν. The Reynolds
number based on the transverse length L = 5D is 2.5 times larger. The non-
dimensionalization with respect to the diameter is more common for clusters of
cylinders (Hu & Zhou 2008a,b; Bansal & Yarusevych 2017) and will be adopted in
the following. With this non-dimensionalization, the cylinder axes are located at

xF =−
√

3/2, yF = 0,
xB =
√

3/4, yB =−3/4,
xT =
√

3/4, yT =+3/4.

 (3.1)

Here, and in the following, the subscripts ‘F’, ‘B’ and ‘T’ refer to the front, bottom
and top cylinders. An alternate reference is the subscripts 1, 2, 3 for the front, bottom
and top cylinders, respectively.

The incompressibility condition reads

∇ · u= 0, (3.2)

where ∇ represents the Nabla operator. The evolution is described by the Navier–
Stokes equations,

∂tu+∇ · (u⊗ u)=−∇p+
1

ReD
4u, (3.3)

where ∂t and 4 denote the partial derivative with respect to time t and the Laplace
operator, respectively. The dot ‘·’ and dyadic product sign ‘⊗’ refer to inner and outer
tensor products.
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Without forcing, the boundary conditions comprise a no-slip condition on the
cylinder and a free-stream condition in the far field,

u= 0 on the cylinder and u= ex at infinity. (3.4)

As initial condition, we chose the unstable steady Navier–Stokes solution us(x).
This solution is computed with a Newton search algorithm, as in (Noack et al. 2003).
Vortex shedding is kick-started with cylinder rotations in the first period.

The forcing is exerted by rotation of the cylinders with circumferential velocities
b1=U1=UF, b2=U2=UB and b3=U3=UT for the front, bottom and top cylinders,
respectively. The actuation command b = (b1, b2, b3) = (U1, U2, U3) is preferably
used for control theory purposes (Brunton & Noack 2015; Duriez et al. 2016) while
(UF,UB,UT) are more natural for a discussion of physical mechanisms. The actuation
is conveniently expressed with the vector cross-product ‘×’,

u= 2Ui(x− xi)× ez on the ith cylinder, (3.5)

where xi denotes the centre of the ith cylinder.
The factor 2 counterbalances the non-dimensional radius 1/2.
We like to refer to this configuration as the fluidic pinball as the rotation speeds

allow one to change the paths of the incoming fluid particles like flippers manipulate
the ball of a conventional pinball machine. The front cylinder rotation may determine
if the fluid particle passes by on the upper or lower side of the cylinder, while the
top and bottom cylinder may guide the particle through the interior.

3.1.2. Direct Navier–Stokes solver
The chosen computational domain is bounded by the rectangle [−6, 20] × [−6, 6]

and excludes the interior of the cylinders

Ω = {(x, y) : − 6 6 x 6 20∧ |y|6 6∧ (x− xi)
2
+ (y− yi)

2 > 1/4, i= 1, 2, 3}. (3.6)

This flow domain is discretized on an unstructured grid with 4225 triangles and
8633 vertices (see figure 4). This discretization optimizes the speed of the numerical
simulation while keeping the accuracy at an acceptable level. Increasing the number
of triangles by a factor 4 yields virtually indistinguishable results. The Navier–Stokes
equation is numerically integrated with an implicit finite-element method (Noack
et al. 2003, 2016). The numerical integration is second-order accurate in space
and third-order accurate in time. This direct numerical simulation has a companion
experiment at turbulent Reynolds numbers ReD ≈ 4000–6000 (Raibaudo et al. 2017).

3.1.3. Attractor data
We simulate seven actuations in a single simulation starting at t = 0 with the

unstable steady Navier–Stokes solution. Each phase is associated with one control
law and lasts 100 convective time units based on the diameter of one cylinder, i.e.
according to the performed non-dimensionalization. Figure 5 provides a preview of
the simulation which is detailed in the following.

In the first phase, vortex shedding is kick-started with a motion of the front cylinder,

UF =


1/2, t 6 6.25,
−1/2, 6.25< t 6 12.5,
0, otherwise

(3.7a)

UB = −UT = 0. (3.7b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

44
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.447


Metric for attractor overlap 733

FIGURE 4. Grid of the fluidic pinball simulation.

t = 150.1 t = 354.3 t = 552.2

t = 55.4 t = 289.8 t = 470.5 t = 659.3

4

(a)

(b)

(c)

2
0

Fx

Fy

5
0

-5

U

5

0

-5
0 100 200 300 400

U1

500 600
t

700

U2 U3

FIGURE 5. (Colour online) Operating conditions of the fluidic pinball simulation. (c) Time
series of the actuation commands for each cylinder over all phases together. (a) The flow
of each phase is illustrated with a vorticity snapshot corresponding to maximum lift or
minimum drag of the converged phase. (b) The time series of the total drag Fx and total
lift Fy are displayed.

The imposed period 12.5 corresponds to a Strouhal number of 0.2 based on the
transverse width 5R. Without this kick-start, the onset of vortex shedding may require
hundreds of shedding periods depending on accuracy of the steady solution and
the truncation errors in the Navier–Stokes solver. In the second phase, strong boat
tailing with symmetric cylinder rotation of the upper and lower cylinders pushes the
separation close to the x-axis and completely suppresses vortex shedding,

UF = 0, UB =−UT = 4. (3.8a,b)

In the third phase, base bleed is enforced with opposite cylinder motion

UF = 0, UB =−UT =−2. (3.9a,b)
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Phase Time Actuation mechanism Control law

I t 6 100 Unforced reference UF =UB =UT = 0 for t> 12.5, see (3.7)
II t ∈ (100, 200] Boat tailing UF = 0,UB =−UT = 4
III t ∈ (200, 300] Base bleed UF = 0,UB =−UT =−2
IV t ∈ (300, 400] High-frequency forcing UF =UB =UT = 2 cos(10πt/12.5)
V t ∈ (400, 500] Low-frequency forcing UF = 0,UB =−UT = 1/2 cos(πt/12.5)
VI t ∈ (500, 600] Positive Magnus effect UF =UB =UT = 2
VII t ∈ (600, 700] Negative Magnus effect UF =UB =UT =−2

TABLE 1. Summary of the different control phases of the fluidic pinball simulation and
the associated actuation mechanism.

This actuation widens the wake and pushes vortex formation downstream. In the fourth
phase, symmetric high-amplitude, high-frequency actuation energizes both shear layers

UF =UB =UT = 2 cos(10πt/12.5). (3.10)

The frequency corresponds roughly to five times the one of natural vortex shedding,
following Thiria et al. (2006) for a single cylinder. In the fifth phase, symmetric low-
amplitude, low-frequency forcing delays vortex shedding

UF = 0, UB =−UT =
1
2 cos(πt/12.5). (3.11a,b)

Low amplitudes were found to be most effective in stabilizing the wake in a
parametric study (Rolland 2017). In the sixth phase, a uniform rotation of all cylinders
deflects the wake upwards via the Magnus effect,

UF =UB =UT = 2. (3.12)

In the seventh and last phase, the opposite Magnus effect is imposed,

UF =UB =UT =−2. (3.13)

Table 1 summarizes all control laws for later reference. (A visualization of the whole
simulation can be found at http://fluidicpinball.com.)

The attractor data contain time-resolved snapshots from the last 50 convective units
of each phase. These snapshots are equidistantly sampled with a time step of 0.1, i.e.
each phase is represented by 500 velocity fields. The first 50 convective time units
correspond to 2.5 downwash times – enough for the transient dynamics to die out.
We decided to perform one simulation with different control laws since the transients
reveal the robustness of the post-transient phase.

3.2. Actuated turbulent boundary layer
The generation of data of the turbulent boundary layer flow over a surface undergoing
a transversal spanwise travelling wave motion is described in this section. Firstly, the
configuration of the boundary layer flow is described in § 3.2.1. Then, the numerical
method of the flow solver is presented in § 3.2.2. Finally, the collection of attractor
data from 38 simulations with varying actuation parameters is detailed in § 3.2.3.
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3.2.1. Boundary layer configuration
The zero-pressure-gradient (ZPG) turbulent boundary layer flow actuated by a

sinusoidal wall motion is defined in a Cartesian domain with the x-axis corresponding
to the mean flow direction, the y-axis pointing into wall-normal direction and the
z-axis in the spanwise direction. Positions are denoted by x = (x, y, z) and the
corresponding velocities by u= (u, v,w), the pressure is given by p and the density by
ρ. The governing equations of the flow are the unsteady compressible Navier–Stokes
equations and the thermal and caloric state equations (Meinke et al. 2002a; Liepmann
& Roshko 2013). The heat flux is described by Fourier’s law and the temperate
dependence of the fluid viscosity is given by Sutherland’s law. Unlike standard ZPG
turbulent boundary layer flow, the actuated flow is statistically three-dimensional due
to the wave propagating in the z-direction. The flow variables are non-dimensionalized
using the flow quantities at rest, the speed of sound a0 and the momentum thickness
of the boundary layer at x0 = 0, such that θ(x0 = 0) = 1. The momentum thickness
based Reynolds number is Reθ = 1000 at x0 where Reθ =U∞θ/ν. The Mach number
is M = 0.1, i.e. the flow is nearly incompressible.

An overview of the set-up is given in figure 6. The dimensions of the physical
domain are Lx = 190θ , Ly = 105θ and Lz = 21.65θ . At the inflow of the domain,
the reformulated synthetic turbulence generation (RSTG) method by Roidl, Meinke
& Schröder (2013) is used to prescribe a fully turbulent inflow distribution with
an adaptation length of less than five boundary layer thicknesses δ99, such that a
natural turbulence state is achieved at x0, which marks the onset of the actuation.
Characteristic outflow conditions are applied at the downstream and upper boundary
of the domain and periodic conditions are used in the spanwise direction. On the
wall, no-slip conditions are imposed and the wall motion is described by

y+|wall(x, z+, t+)= g(x)A+ cos
(

2π

λ+
z+ +

2π

T+
t+
)
, (3.14)

where A+ = Auτ/ν is the amplitude, λ+ = λuτ/ν the wavelength and T+ = Tu2
τ/ν

the period of the travelling wave in inner coordinates, i.e. scaled by the kinematic
viscosity ν and the friction velocity uτ (x0) of the non-actuated reference case. The
piecewise defined function

g(x)=



0, if x<−5,
1
2

[
1− cos

(
π(x+ 5)

10

)]
, if − 5 6 x< 5,

1, if 5 6 x< 130,
1
2

[
1+ cos

(
π(x− 130)

10

)]
, if 130 6 x< 140,

0, otherwise

(3.15)

enables a smooth streamwise transition from a flat non-actuated to an actuated wall
and vice versa. Apart from the reference case without any wall actuation, i.e. A+= 0
and T+= 0, 37 parameter combinations of λ+, T+ and A+ are considered (see table 3).
Most parameter points were generated using Latin hypercube sampling.

The physical domain is discretized by a structured body-fitted grid with a resolution
of 1x+ = 12 in the x-direction, 1y+|wall = 1.0 in the y-direction using gradual
coarsening with increasing distance from the wall and 1z+ = 4.0 in the z-direction.
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FIGURE 6. (Colour online) Overview of the physical domain of the actuated turbulent
boundary layer flow, where Lx, Ly and Lz are the dimensions of the domain in the
Cartesian directions, λ is the wavelength of the spanwise travelling wave, x0 marks the
onset of the actuation and xτw,start and xτw,end denote the interval of the integration of the
wall-shear stress τw.

Parameter Value

M∞ 0.1
Reθ 1000
1x+ 12.0
1y+wall 1.0
1z+ 4.0
δ99(x= 0.0) 8.638
δ1(x= 0.0) 1.488
θ(x= 0.0) 1.0
Lx × Ly × Lz 190.15× 104.91× 21.65
ncells 732× 131× 250≈ 24× 106

xτw,start 50.0
xτw,end 100.0

TABLE 2. Flow and grid parameters of the non-actuated reference case and the 37
actuated cases.

This nearly direct numerical simulation (DNS)-like resolution guarantees the capture
of all relevant turbulent scales and allows a smooth representation of the wavy wall.
In total, the grid consists of n= 732× 131× 250≈ 24× 106 cells. The details of the
flow conditions and grid parameters are summarized in table 2.

3.2.2. Large-eddy simulation solver
The actuated turbulent boundary layer flow is simulated using a finite volume

approximation of the unsteady compressible Navier–Stokes equation on a structured
body-fitted mesh. A second-order accurate formulation of the inviscid fluxes using the
advection upstream splitting method (AUSM) by Liou & Steffen (1993) is applied.
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The cell-surface values of the flow quantities are reconstructed from the surrounding
cell-centre values using a monotone upstream scheme for conservation laws (MUSCL)
type strategy. The viscous fluxes are discretized by a modified cell-vertex scheme at
second-order accuracy. The time integration is performed by a second-order accurate
five-stage Runge–Kutta scheme, rendering the overall discretization second-order
accurate. The subgrid scales in the large eddy simulation (LES) are implicitly
modelled following the monotonically integrated large-eddy simulation approach
(Boris et al. 1992), i.e. the numerical dissipation of the AUSM scheme models for
the viscous dissipation of the high wavenumber turbulence spectrum (Meinke et al.
2002b). Thus, the small-scale structures are not explicitly resolved and the grid is
used as a spatial filter resolving the large energy-containing structures in the inertial
subrange. To capture the temporal variation of the geometry, the Navier–Stokes
equations are written in the arbitrary Lagrangian–Eulerian (ALE) formulation (Hirt,
Amsden & Cook 1997) such that the actuated wall can be represented by an
appropriate mesh deformation. Additional volume fluxes are determined to satisfy
the geometry conservation law (GCL).

The numerical method has been thoroughly validated by computing a wide variety
of internal and external flow problems (Rütten, Schröder & Meinke 2005; Alkishriwi,
Meinke & Schröder 2006; Renze, Schröder & Meinke 2008; Statnikov, Meinke &
Schröder 2017). Analyses of drag reduction in turbulent boundary layer flow have
been performed for riblet structured surfaces (Klumpp, Meinke & Schröder 2010a)
and for travelling transversal surface waves (Klumpp, Meinke & Schröder 2011; Koh
et al. 2015a,b; Meysonnat et al. 2016). The quality of the results confirms the validity
of the approach for the current flow problem.

3.2.3. Attractor data
Firstly, the simulation of the reference set-up is run for tU∞/θ ≈ 650 convective

units until a quasi-steady state of the drag evolution is observed. Then, the average
drag of the reference set-up is measured for the next 1tU∞/θ ≈ 1000 convective units.
Subsequently, the actuated cases are initiated using an intermediate solution from the
reference case and a quick transition from the flat wall to the fully deflected wall is
enforced. When a new quasi-steady state of the friction drag is obtained, i.e. after
1tU∞/θ ≈ 150 convective units, the drag of each actuated case is averaged over a
period of 1tU∞/θ ≈ 800 convective units. The relative drag reduction for the ith test
case

1cd,i =

∫
A,na

τw,na dA−
∫

A,i
τw,i dA∫

A,na
τw,na dA

· 100, (3.16)

is computed by integrating the wall-shear stress distribution τw over the wetted surface
A in the interval x ∈ [xτw,start, xτw,end] of the non-actuated reference (subscript na) and
the actuated set-ups (subscript i). The values of the relative drag reduction 1cd and
the skin-friction reduction 1cf , i.e. the drag reduction without considering the increase
in the wetted surface, of the various amplitude, wavenumber and period prescriptions
are listed in table 3. An exemplary illustration of the impact of the moving surface
on the near-wall velocity field and the friction drag development is given in figure 7
for the reference case N1, the case with the highest drag reduction N24 and the case
with the lowest drag reduction N2. In figure 8, the variation of the turbulent structures
in the near-wall region of these three cases is shown. The comparative juxtaposition
of the data evidences the decrease of the turbulent structures for the N24 case.
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FIGURE 7. (Colour online) Illustration of the turbulent boundary layer flow: (a,d)
non-actuated reference case N1, (b,e) actuated case with highest drag reduction N24 and
(c, f ) actuated case with lowest drag reduction N2; (a–c) contour plots of the instantaneous
Cartesian velocity components u, v and w in a y–z plane at x/θ ≈ 65; (d–f ) time evolution
of the instantaneous relative drag reduction 1cd.

N1

N24

N2
0 0.025 0.050 0.075 0.100

u

FIGURE 8. (Colour online) Contour plot of the λ2-criterion (Jeong & Hussain 1995),
coloured by the instantaneous streamwise velocity, for three turbulent boundary layer
flows; non-actuated reference case N1, actuated highest drag reduction case N24, actuated
lowest drag reduction case N2.

The snapshots for the computation of the POD modes are obtained in a subdomain
spanning from x= 15θ to x= 120θ , from the wall to a thickness of y= 15.4θ and over
the full spanwise extent of the computational domain. That is, the subdomain covers
the complete boundary layer over the actuated part of the wall, excluding the zones
of spatial transition. The data are collected at the post-transient states with a sampling
period of 1tU∞/θ ≈ 0.94.
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N λ+ T+ A+ 1cd 1cf

1 — — — — —

2 200 20 30 −27.57 −6.82
3 200 30 21 −1.13 8.16
4 200 40 30 −9.43 8.37
5 200 50 45 −26.58 8.93
6 200 60 30 −9.89 7.98
7 200 70 14 −0.79 3.70
8 200 70 38 −17.42 9.23
9 200 100 28 −9.79 6.29

10 500 20 30 −0.17 3.18
11 500 30 22 8.18 9.88
12 500 40 21 6.41 7.99
13 500 40 30 7.51 10.61
14 500 60 30 3.77 7.00
15 500 70 36 2.66 7.24
16 500 70 64 −10.52 3.56
17 500 100 48 −4.53 3.70

18 1000 20 10 3.58 3.67
19 1000 20 30 11.95 12.72
20 1000 20 50 −0.45 1.93
21 1000 40 10 3.15 3.24
22 1000 40 20 6.48 6.84
23 1000 40 30 11.79 12.56
24 1000 40 40 15.69 16.98
25 1000 40 50 14.77 16.79
26 1000 40 60 12.49 15.42
27 1000 80 10 0.65 0.75
28 1000 80 20 3.49 3.87
29 1000 80 30 5.60 6.42
30 1000 80 40 9.18 10.58
31 1000 80 50 8.86 11.01
32 1000 80 60 8.34 11.41
33 1000 120 10 0.73 0.83
34 1000 120 20 −0.51 −0.11
35 1000 120 30 2.07 2.93
36 1000 120 40 4.34 5.81
37 1000 120 50 3.02 5.31
38 1000 120 60 2.03 5.31

TABLE 3. Actuation parameters of the turbulent boundary layer simulations, where each
set-up is denoted by a case number N. The quantity λ+ is the spanwise wavelength of
the travelling wave, T+ is the period and A+ is the amplitude, all given in inner units, i.e.
non-dimensionalized with the kinematic viscosity ν and the friction velocity uτ . Each block
includes set-ups with varying period and amplitude for a constant wavelength. The list
includes the values of the averaged relative drag reduction 1cd, and the averaged relative
skin-friction reduction 1cf .
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FIGURE 9. (Colour online) Cluster centroids of the fluidic pinball simulation. The
centroids are sorted in order of appearance neglecting the first 50 time units (transients)
of each phase. The visualization depicts the vorticity distribution: green, red and blue
represent vanishing, positive and negative values, respectively.

4. Comparison of fluidic pinball attractors with different control laws
The comparison of fluidic pinball attractors is performed following the proposed

methodology of the previous section. For simplicity and consistency, we follow the
coarse-grained data comparison displayed in the centre and bottom row of figure 1.
Firstly, in § 4.1, the cluster analysis is performed. Sections 4.2 and 4.3 present the
metric of attractor overlap and associated proximity maps. It should be noted that
the analysis is only based on converged post-transient data while the shown temporal
dynamics includes also the actuation transients.

4.1. Cluster analysis
Figure 9 illustrates 50 centroids distilled from 7 × 500 post-transient snapshots.
The cluster affiliation as a function of time is shown in figure 10. This affiliation
illustrates the role of each centroid (figure 9) in the post-transient behaviours of
control laws I–VII of table 1. Clusters 1–5 describe unforced vortex shedding of
phase I (see figure 9). We emphasize that the centroids are only meant to resolve
converged attractor data and that the presentation of the transient dynamics shall only
indicate the transient times. The stabilized boat tailing of phase II is described by a
single centroid k = 6. Base bleed (phase III) is resolved by the new centroids 7–20,
indicating that base bleed leads to significantly different vortex shedding structures.
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FIGURE 10. (Colour online) Cluster affiliation k of the fluidic pinball simulation as
a function of time t. The applicable control laws are described in table 1 and the
corresponding centroid ck is depicted in figure 9. By construction, new cluster indices
are a monotonically increasing function of time, neglecting the initial actuation transients.
Grey curve sections correspond to transients while red sections mark the post-transient
data taken for the analysis.

High-frequency (phase IV) and low-frequency forcing (phase V) can be resolved with
the centroids of unforced vortex shedding and of base-bleed actuation. Low-frequency
forcing leads to a wider wake, like base bleed, and has more overlap with the
base-bleed dynamics. The new centroids 34–41 resolve the positive Magnus effect
(phase VI) while centroids 42–50 the negative Magnus effect (phase VII). As physical
intuition suggests, the strong deflected wake has no overlap with forced states which
are symmetric or statistically symmetric.

Figure 11 displays the population of each cluster by the seven different dynamics.
Probabilities below 1 % are kept white. The probability distributions for each attractor
are far from being uniform. This behaviour is different from single attractor cluster
analyses, where all clusters are generally populated (Kaiser et al. 2014). In contrast,
considering the whole simulation results in the total probability Pk = P1

k + · · · + P7
k

which is non-zero for any cluster k. Note that one cluster may be populated by
different attractor dynamics.

4.2. Metric of attractor overlap
The metric of attractor overlap for the seven operating conditions is displayed in
figure 12. The positive (semi)definiteness implies the vanishing elements in the
diagonal and non-negative values elsewhere. The symmetry condition leads to the
corresponding symmetry of the matrix. The values of the metric are based on the
Hilbert-space norm (2.5) and an averaging process over the two attractors (2.1).
Hence, the fluctuation level, i.e. twice the fluctuation energy, 2TKE, represents a
natural reference value for the square of the metric. Values which are at least one
order of magnitude smaller correspond to similar attractors. For the unforced fluidic
pinball configuration, the fluctuation level is 2TKE= 17.80. Hence, a MAO value of
√

2TKE= 4.22 can be considered as reference scale for closeness.
Natural vortex shedding (l = 1) is seen to be close to high- and low-frequency

forcing (l = 4, 5), as the metric is a tiny value of the maximum (small circles).
This closeness is corroborated by the probability distributions figure 11: the three
states share joint clusters. In contrast, the wake stabilized with boat tailing shares no
centroids with the other six operating conditions and has a large MAO distance to
them. The values are comparable or exceed the reference scale. Similarly, the positive
and negative Magnus effect (l= 6, 7) have a large distance to each other, as expected
from the opposite deflections of the wake in figure 5 and the empty overlap of both
attractors, i.e. no shared clusters in figure 11.
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FIGURE 11. (Colour online) Population probabilities of the clusters for the seven fluidic
pinball phases (table 1). The abscissa denotes the phase l and the ordinate the cluster index
k. Each box represents a non-vanishing probability. The yellow to red tones indicate the
population probability Pl

k from (2.17). Probabilities below 1 % are kept white. Note that
steady boat tailing (l= 2) is represented by a single centroid.

7
6
5
4
3
2
1 6

5

4

3

2

1

0

1 2 3 4 5 6 7

FIGURE 12. (Colour online) Metric of attractor overlap (2.18) for the seven control laws
of the fluidic pinball (table 1). The value of Dgeom(Pl, Pn) is shown in the lth row and
nth column as colour code from white to red and by the size of the circle as illustrated
by the caption on the right.

4.3. Proximity maps
Figure 13 displays all centroids and all snapshots in a proximity map following § 2.3.
Phase I–V attractors are located on the γ2 = 0 line. These flows are statistically
symmetric with respect to the x-axis and have, correspondingly, vanishing average lift.
Phases VI and VII correspond to positive and negative Magnus effects associated with
negative and positive average lift, respectively. These phases are mirror-symmetrically
located in the lower and upper region. The second feature coordinate γ2 is clearly
related to averaged lift. The lift values of all phases are displayed in figure 5.
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FIGURE 13. (Colour online) Proximity map of the fluidic pinball showing the centroids
(large circles) together with snapshots (small circles). Snapshots from transients are
displayed as grey dots, while the data for the analysis are colour coded by cluster
affiliation.
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FIGURE 14. (Colour online) Attractor proximity map of the fluidic pinball: (a) based
on the snapshot-based MAO (2.5) and (b) on a cluster-based MAO (2.18) with K = 50
clusters. The points P1 . . .P7 correspond to the seven control laws in table 1. Note that the
snapshot-based MAO represents a cluster-based MAO with maximum number of clusters.

The boat-tailed (phase II) and base-bleed dynamics (phase III) represent the minimal
and maximum drag states of considered dynamics, referring again to figure 5. These
attractors are on the leftmost and rightmost sides near the γ1-axis, respectively. The
other attractors have similar drag and have γ1 ≈ 0. Summarizing, the first feature
coordinate is strongly correlated to drag. It should be noted that the automatically
determined feature coordinates are strongly linked to aerodynamic forces although the
forces did not enter the multi-dimensional scaling analysis.

The proximity map for the attractors based on MAO is depicted in figure 14.
Figure 14(a) corresponds to the snapshot-based definition, i.e. the most accurate
metric while figure 14(b) corresponds to the coarse cluster-based estimate. By
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construction of the proximity map, the distances between the feature vectors of
the seven attractors are similar to the MAO metric values displayed in the matrix
of figure 12. Both proximity maps are virtually indistinguishable, thus showing the
accuracy of the cluster-based approximation. Varying the cluster resolution in a wide
range K ∈ {25, 50, 100} corroborates the robustness of the cluster-based MAO: for
all values, the proximity maps are an excellent approximation of the snapshot-based
version.

The feature coordinate δ1 correlates with the drag and δ2 with the average lift –
as in figure 13. These feature coordinates are quantitatively similar to the snapshot
and centroid proximity maps (figure 13). This quantitative similarity indicates the
robustness of the multi-dimensional scaling for the construction of proximity maps.
Another corroboration of the robustness is the symmetry properties of the proximity
maps: statistically symmetric flow changes of the attractor mean are characterized by
γ1 and δ1 while the statistically anti-symmetric changes are parameterized by γ2 and
δ2. No symmetry constraints have been imposed on the data processing.

5. Comparison of turbulent boundary layers at different wall actuations
We analyse the three-dimensional flow data generated by 38 simulations of the

actuated turbulent boundary layer using the cluster-based MAO methodology. In § 5.1
we present the cluster analysis of the 38 attractors. In §§ 5.2 and 5.3 the MAO
analysis and proximity maps for snapshots, centroids and attractors are illustrated.

5.1. Cluster analysis
Figure 15 displays the probability distribution of each attractor to pass through a given
cluster. Again, probabilities below 1 % are kept white. All attractors have pairwise
different cluster compositions. The unforced reference l = 1 occupies the first five
clusters. The attractors l= 2, . . . , 9 corresponding to a spanwise wavelength λ= 200
populate clusters k= 5, . . . , 16. The attractor l= 7 with low actuation amplitude shares
four of five clusters with the unforced flow and populates one new cluster k = 14.
The simulations with a spanwise wavelength λ+ = 500 (l= 10, . . . , 17) pass through
the new clusters k = 18, . . . , 26. These attractors have no overlap with the unforced
reference and share few states with the previous group at low-wavelength actuation.
The long-wavelength actuation (λ+ = 1000) populates the new clusters l= 27, . . . , 50.
This group shares only one cluster (l = 16) with the medium-wavelength group but
may have significant overlap with the unforced reference. This is particularly true for
low-amplitude (A+ = 10) actuations at l = 21, 27 and 33. It should be noted that
the MAO methodology displays the overlap between attractors in a computer- and
human-interpretable form.

5.2. Metric of attractor overlap
Figure 16 displays the geometric distance between the attractors based on MAO.
Evidently the diagonal vanishes by definition. In complete analogy to the fluidic
pinball, the reference for a large scale can be taken to be the fluctuation amplitude
√

2TKE = 0.8767 of the unforced flow (A = 0), noting that actuation may increase
this amplitude by one order of magnitude. Most of metric values are in this range or
lower.

The unforced reference l= 1 is seen to be very different from most other attractors.
Attractors 2 to 6 are very close to each other, which can be expected because of
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FIGURE 15. (Colour online) Population probabilities of the clusters for the 38 turbulent
boundary layer simulations (see table 3). The abscissa denotes the data set l and the
ordinate the cluster index k. Each box represents a non-vanishing probability. The yellow
to red tones indicate the population probability or relative frequency Pl

k from (2.17).
Probabilities below 1 % are kept white. The actuation wavelength is indicated by the three
vertical line separating simulations with no actuation, λ+ = 200, λ+ = 500 and λ+ = 1000
from left to right. The actuation amplitude A+ and time T+ are shown in the top caption.

their same actuation wavelength λ+ = 200. Again, attractors 10 to 17 corresponding
to wavelength λ+ = 500 display significant similarity, i.e. a low MAO. The group
of actuated cases with large wavelength λ+ = 1000 show less similarity, which is
consistent with the discussed overlap from the previous figure. Attractors 7, 21, 27 and
33 have low actuation amplitude and share similar characteristics with the unforced
reference, as may be expected.

5.3. Proximity map
Figure 17 visualizes the distance between the centroids and snapshots. Actuations at
low wavelengths (small k) are close to the origin while large-wavelength actuation
(large k) may populate circular regions in the periphery. A closer analysis reveals that
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FIGURE 16. (Colour online) Metric of attractor overlap (2.18) of the turbulent boundary
layer with 38 control laws (see table 3). The visualization is analogous to figure 12.
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FIGURE 17. (Colour online) Proximity map of the actuated turbulent boundary layer. The
figure displays the centroids (large circles) together with snapshots (small circles). The
data for the analysis are colour coded by cluster affiliation.

γ1, γ2 correspond to the first POD mode amplitudes a1, a2 computed from all snapshot
data together. These POD mode amplitudes are nearly periodic, particularly for large
actuation amplitudes.

Figure 18 displays the proximity map of the attractors based on MAO as shown
in figure 16. From figure 18(a) the first feature coordinate δ1 is linked to the drag
reduction for the attractors: for δ1 < 0 actuation has little effect on drag but for
δ1 > 0 these changes are significant – positive for δ2 > 0 and negative for δ2 < 0.
From figure 18(b), δ2 correlates with the wavelength of the travelling wave. The large
wavelengths are located in the top half of the plot. As seen in the fluidic pinball,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

44
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.447


Metric for attractor overlap 747

-8 -4 0
9

7
8
2

3

27 22
37

38

28

34
29

35
36

33

10-20,
23-26,
30-32

4-6
1

21

-8 -4 0

1.0

0.5

0

-0.5

-1.0

1.0

0.5

0

-0.5

-1.0

10

0

-10

-20

1000

800

600

400

200

0

∂1

∂2

∂1

Îcd ¬+(a) (b)

FIGURE 18. (Colour online) Attractor proximity map of the turbulent boundary layer
simulations (see table 3): (a) colour coded with relative drag reduction 1cD; (b) colour
coded with wavelength λ+. The actuation parameters of each symbol is indicated in (a)
by a number corresponding to the index from table 3.

the MAO-based attractor proximity map extracts the aerodynamics and actuation
properties without directly including information about them.

6. Conclusions and outlook

We have proposed a novel quantitative measure, termed the metric of attractor
overlap (MAO), for the similarity of attractor data. This measure generalizes the
Hilbert-space metric for two velocity fields to a metric between two sets with
snapshot data. A refined comparison analysis includes proximity maps and coarse
graining with clustering.

Our proposed comparison methodology has five discriminating features. Firstly, the
difference between two attractors is quantified in a single, non-negative number
encapsulating all resolved coherent structures. Secondly, the cluster probability
distribution of each attractor identifies shared and disjoint flow states via a manageable
number of centroids. Thirdly, the metric of attractor overlap enables the automatic
creation of a proximity map from a myriad of attractors. Neighbouring feature
points represent attractors with similar flow states, largely separated points indicate
attractors with different physics. Fourthly, the approach is compatible with statistical
post-processing: the centroids and their probabilities define the mean flow and – in
principle – any higher-order moments, like Reynolds stress or fluctuation energy. Even
POD modes can be derived from the centroids. Finally, the comparison methodology
can be automatized and has little subjective bias. One does not need to decide in
advance on a cost function, such as drag power, a frequency filter, such as a low-pass
filter, important flow features, such as vortices, just to name a few.

The metric of attractor overlap is only based on two decisions. Firstly, one needs to
choose the flow state space, e.g. the velocity field in a domain Ω . Such a decision is
unavoidable for any metric. Secondly, a metric for two flow states is needed. A L2(Ω)

Hilbert-space norm appears as a natural candidate. For the optional coarse graining,
the number of clusters or, synonymously, the typical size of a cluster needs to be
chosen. The coarse-grained metric is found to quickly converge to the snapshot-based
one with increasing number of clusters.
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The comparison methodology has been applied to the fluidic pinball, the flow
around a cluster of three rotating cylinders. The considered attractors include the
unforced reference, aerodynamic boat tailing, base bleed, symmetric high-frequency
forcing, symmetric low-frequency forcing and a Magnus effect deflecting the wake to
both sides. The metric of attractor overlap confirms physical inspection of the seven
configurations. Firstly, boat tailing with complete wake suppression differs strongly
from all other states. Secondly, both Magnus effects also strongly differ from all
other states. Third, unforced vortex shedding and wakes manipulated by base bleed
as well as high-frequency and low-frequency forcing have a significant overlap of
shared clusters, i.e. are similar.

Particularly noteworthy are the proximity maps of the snapshots and the cluster-
based attractors. The trajectory through all seven configurations displays the dynamics
very clearly (see figure 5). Surprisingly, the first and second feature coordinates
resemble the drag and lift respectively (see figure 14). The features of the snapshots
show the reduced drag by boat tailing (P2) and the increased drag by base bleed (P3)
and significant average lift by both Magnus forcing (P7 and P6). The proximity map
of the attractor visually elucidates the discussed neighbourhood relations in the first
three feature coordinates.

The second application of MAO is an open-loop drag reduction study of a turbulent
boundary layer. The operating conditions include the unforced reference and 37
actuations with spanwise travelling waves at different amplitudes and frequencies.
The spanwise wavelengths include a small (λ+ = 200), medium (λ+ = 500) and large
value (λ+ = 1000). The computational and observation domain are defined by the
largest actuation wavelength. The MAO analysis features several highlights. Firstly,
the low-amplitude actuations share centroids with the unforced reference in agreement
with physical intuition. Secondly, actuations with the same spanwise wavelength show
significant overlap. Thirdly, the feature map of the snapshots show low-amplitude
states near the centre and large-amplitude actuations populate outer circular regions.
The feature coordinates are well aligned with the first two POD mode amplitudes.
These modes approximate the phase-averaged flow response to the periodic actuation.
Finally, the first feature coordinate of the attractor proximity map correlates well with
the drag reduction –as for the fluidic pinball – while the second coordinate depends
on the spanwise actuation wavelength.

The observed correlation between first feature coordinate and drag for two
independent configurations is surprising as the input data do not contain information
about drag. In hindsight, this behaviour may be explained by the strong correlation
between the time-averaged flow and the drag – both for the wake and for the
boundary layer.

Evidently, the presented MAO comparison encourages numerous other applications,
like a comparison between computed and experimental velocity fields and a
comparison between flow behaviour under different actuations, e.g. periodic forcing
or machine learning control studies (Duriez et al. 2016). The analysis may also be
applied to sensor data, e.g. a hot-wire rig, instead of velocity fields.

Future research may significantly extend the MAO methodology. The employed
Hilbert-space norm is a good initial choice but highly sensitive to small mode
deformations (Noack 2016). A small change in wavenumber gives rise to unphysically
large differences in the norm. Force-related feature vectors and manifold learning may
be one remedy (Loiseau, Noack & Brunton 2018). Rigorous physics-based criteria
for the cluster numbers need to be advanced. The comparison may also be targeted
towards single- or multi-objective goals by generalizing the snapshot metric. So far,
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the comparison only addressed ergodic properties of the attractor, and the snapshot
data only needed to be statistically representative and not time resolved. The temporal
dynamics of different attractors may be compared using time-resolved snapshots and
corresponding Markov models (Kaiser et al. 2014).

Summarizing, a rational automated comparison method has been proposed which
holds significant promise for future data assessments. The authors are actively pushing
this direction.
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Appendix A. Proper orthogonal decomposition versus clustering
The cluster analysis is compared with the proper orthogonal decomposition (POD)

from the same data in the same observation domain. Each snapshot is expanded in
terms of the mean flow u0(x) of all post-transient attractor data and N POD modes
ui(x), i= 1, . . . ,N and their corresponding amplitudes ai(t), i= 1, . . . ,N

u(x, t)≈ u0(x)+
N∑

i=1

ai(t)ui(x). (A 1)

Figures 19 and 20 display the first ten POD modes and their amplitudes,
respectively. Mode 1 resolves a base-flow deformation, like a shift mode (Noack
et al. 2003). Mode 5 represents a symmetric near-field modulation. The other
modes have more oscillatory structures. We shall not pause to hypothesize about
the physical meaning of these modes. Modes with cleaner frequency content yet
near the optimal residual could, for instance, be constructed with recursive dynamic
mode decomposition (DMD) (Noack et al. 2016). The cluster analysis resulting in
the snapshot cluster affiliation (figure 10) and centroids (figure 9) is physically easier
to interpret than the POD.

It may be noted that POD also allows for another metric of attractor overlap.
Let p(a) be the probability distribution associated with one attractor and q(a) the
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u1 u6

u2 u7

u3 u8

u4 u9

u5 u10

FIGURE 19. (Colour online) The POD modes ui(x), i = 1, . . . , 10. Visualization as in
figure 9.

distribution of another one. Then, the continuous version of the Jensen–Shannon
distance (B 4) can be applied. An advantage is that the snapshot distance (2.1)
is reflected in the construction of the metric. A disadvantage is the need for
approximations to construct a continuous probability distribution from a finite number
of snapshots.

Appendix B. Jensen–Shannon distance

Probability distributions can easily be compared using information measures. Let
Q= [Q1, . . . ,QK] be a reference probability distribution and P= [P1, . . . , PK] a new
measured one. Then, the information gained from P with respect to the reference Q
is quantified by the Kullback–Leibler divergence (Kullback & Leibler 1951; Kullback
1959), also called relative entropy,

DKL(P‖Q)=
K∑

k=1

Pk ln
[

Pk

Qk

]
. (B 1)
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FIGURE 20. (Colour online) POD amplitudes ai(t), i = 1, . . . , 10. Snapshot sequences
after the decay of the transients are employed for the analysis (coloured in red).

Identical probability distributions P = Q give rise to a vanishing Kullback–Leibler
divergence. Different distributions yield a positive value. If Pk=0, the term Pk ln Pk/Qk

is interpreted as zero because limx→0 x ln x= 0. Strictly speaking, the Kullback–Leibler
divergence is not defined in case there exists a k for which Qk = 0 and Pk > 0. One
could follow a common practice of smoothing using the absolute discounting method
by replacing Qk by a small value, e.g. ε = 0.001.

The Kullback–Leibler divergence is not symmetric, i.e. DKL(P‖Q) 6≡ DKL(Q‖P).
Hence, it cannot serve as a metric. The probability distributions P and Q may be
compared with the Jensen–Shannon divergence which is defined as symmetrized and
smoothened Kullback–Leibler divergence

JSD(P,Q)= 1
2 [DKL(P‖M)+DKL(Q‖M)], where M= 1

2 [P+Q]. (B 2)

Equivalently,

JSD(P,Q)=
1
2

K∑
k=1

(
Pk ln

[
2Pk

Pk +Qk

]
+Qk ln

[
2Qk

Pk +Qk

])
. (B 3)
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FIGURE 21. (Colour online) Distances between attractors: (a) Kullback–Leibler divergence
and (b) Jensen–Shannon divergence based on the cluster probability distribution for each
of the seven control phases. The row and column of DKL(P‖Q) correspond to the first (P)
and second arguments (Q). The value of the divergence is colour coded and indicated by
the size of the circle (see the corresponding caption).

The summation term is interpreted as zero if Pk = Qk = 0 or if the numerator of
the logarithm argument vanishes. Note that we do not need the ε threshold of the
Kullback–Leibler entropy anymore.

The square root of the Jensen–Shannon divergence has all properties of a metric
(Endres & Schindelin 2003) and is referred to as the Jensen–Shannon distance,

DJS(P,Q)=
√

JSD(P,Q). (B 4)

This distance (B 4) defines an entropic metric of attractor overlap between two
attractor data represented by the cluster distributions P and Q.

Figure 21 displays the Kullback–Leibler and Jensen–Shannon divergences between
the seven fluidic pinball attractors. The diagonal entries vanish by definition. Unforced
vortex shedding is seen to be similar to high- and low-frequency forcing, as was
indicated already by the many shared clusters in figure 10. The difference between
unforced shedding, base-bleed dynamics and both Magnus effects is larger as they
share no joint clusters. The stabilized boat tailing with a single cluster is seen to
be very different from all other phases with no cluster overlap. The Kullback–Leibler
divergence is, as expected, not symmetric. For instance. the divergence of boat tailing
with respect to base bleed is larger than the other way around. It should be noted
that the Jensen–Shannon distance is typically ln(2) (or unity if the base 2 logarithm
is used) corresponding to no shared clusters.

The Jensen–Shannon distance is a natural metric for probability distributions. Yet, it
is blind to the geometric location of the centroids. Let us assume the first attractor data
populate only cluster 1, Pi= δi,1, and the second data occupy only cluster 2, Qi= δi,2.
In this case, JSD(P, Q)= ln 2, regardless of whether the centroids are very close or
very far from each other. This property makes the Jensen–Shannon distance strongly
dependent on the number of clusters or, equivalently, on the typical size of the clusters.
For the minimum number of clusters, K = 1, we have obtained the trivial result P1=

Q1 = 1 and JSD= 0. For the maximum number of clusters, each snapshot represents
one centroid and defines one cluster. In the generic case of different snapshots, the
Jensen–Shannon distance is also ln 2 independent of the geometric location of the
snapshots. Only a few of the seven fluidic pinball phases share joint clusters and the
proximity maps based on (B 4) provide limited physical insight. The metric may be
far more meaningful in other cases in which most attractors have significant overlap.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

44
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.447


Metric for attractor overlap 753

REFERENCES

ALKISHRIWI, N., MEINKE, M. & SCHRÖDER, W. 2006 A large-eddy simulation method for low
Mach number flows using preconditioning and multigrid. Comput. Fluids 35 (10), 1126–1136.

ARTHUR, D. & VASSILVITSKII, S. 2007 k-means++: the advantages of careful seeding. In
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035.
Society for Industrial and Applied Mathematics.

BANSAL, M. S. & YARUSEVYCH, S. 2017 Experimental study of flow through a cluster of three
equally spaced cylinders. Exp. Therm. Fluid Sci. 80, 203–217.

BARROS, D., BORÉE, J., NOACK, B. R., SPOHN, A. & RUIZ, T. 2016 Bluff body drag manipulation
using pulsed jets and Coanda effect. J. Fluid Mech. 805, 442–459.

BEARMAN, P. W. 1967 The effect of base bleed on the flow behind a two-dimensional model with
a blunt trailing edge. Aeronaut. Q. 18 (03), 207–224.

BERKOOZ, G., HOLMES, P. & LUMLEY, J. L. 1993 The proper orthogonal decomposition in the
analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575.

BORIS, J. P., GRINSTEIN, F. F., ORAN, E. S. & KOLBE, R. L. 1992 New insights into large eddy
simulation. Fluid Dyn. Res. 10 (4–6), 199–228.

BRUNTON, S. L. & NOACK, B. R. 2015 Closed-loop turbulence control: progress and challenges.
Appl. Mech. Rev. 67 (5), 050801.

BURKARDT, J., GUNZBURGER, M. & LEE, H. C. 2006 POD and CVT-based reduced-order modeling
of Navier–Stokes flows. Comput. Meth. Appl. Mech. Engng 196, 337–355.

COX, T. F. & COX, M. A. A. 2000 Multidimensional Scaling, 2nd edn. (Monographs on Statistics
and Applied Probability), vol. 88. Chapman and Hall.

DU, Y., SYMEONIDIS, V. & KARNIADAKIS, G. E. 2002 Drag reduction in wall-bounded turbulence
via a transverse travelling wave. J. Fluid Mech. 457, 1–34.

DURIEZ, T., BRUNTON, S. L. & NOACK, B. R. 2016 Machine Learning Control – Taming Nonlinear
Dynamics and Turbulence, (Fluid Mechanics and Its Applications), vol. 116. Springer.

ENDRES, D. M. & SCHINDELIN, J. E. 2003 A new metric for probability distributions. IEEE Trans.
Inf. Theory 49, 1858–1860.

GARCÍA-MAYORAL, R. & JIMÉNEZ, J. 2011 Hydrodynamic stability and breakdown of the viscous
regime over riblets. J. Fluid Mech. 678, 317–347.

GEROPP, D. 1995 Process and device for reducing the drag in the rear region of a vehicle, for
example, a road or rail vehicle or the like. United States Patent US 5407245 A.

GEROPP, D. & ODENTHAL, H.-J. 2000 Drag reduction of motor vehicles by active flow control
using the Coanda effect. Exp. Fluids 28 (1), 74–85.

HALLER, G. 2005 An objective definition of a vortex. J. Fluid Mech. 525, 1–26.
HIRT, C. W., AMSDEN, A. A. & COOK, J. L. 1997 An arbitrary Lagrangian–Eulerian computing

method for all flow speeds. J. Comput. Phys. 135 (2), 203–216.
HU, J. & ZHOU, Y. 2008a Flow structure behind two staggered circular cylinders. Part 1. Downstream

evolution and classification. J. Fluid Mech. 607, 51–80.
HU, J. & ZHOU, Y. 2008b Flow structure behind two staggered circular cylinders. Part 2. Heat and

momentum transport. J. Fluid Mech. 607, 81–107.
ITOH, M., TAMANO, S., YOKOTA, K. & TANIGUCHI, S. 2006 Drag reduction in a turbulent boundary

layer on a flexible sheet undergoing a spanwise traveling wave motion. J. Turbul. 7, N27.
JEONG, J. & HUSSAIN, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 69–94.
JUNG, W. J., MANGIAVACCHI, N. & AKHAVAN, R. 1992 Suppression of turbulence in wallbounded

flows by highfrequency spanwise oscillations. Phys. Fluids A 4 (8), 1605–1607.
KAISER, E., LI, R. & NOACK, B. R. 2017a On the control landscape topology. In The 20th World

Congress of the International Federation of Automatic Control (IFAC), pp. 1–4.
KAISER, E., NOACK, B. R., CORDIER, L., SPOHN, A., SEGOND, M., ABEL, M. W., DAVILLER, G.,
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