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Work-minimizing kinematics for small
displacement of an infinitely long cylinder
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We consider the time-dependent speed of an infinitely long cylinder that minimizes
the net work done on the surrounding fluid to travel a given distance perpendicular
to its axis in a fixed amount of time. The flow that develops is two-dimensional. An
analytical solution is possible using calculus of variations for the case that the distance
travelled and the viscous boundary layer thickness that develops are much smaller than
the circle radius. If t represents the time since the commencement of motion and T
the final time, then the optimum speed profile is Ct1/4(T− t)1/4, where C is determined
by the distance travelled. The result also holds for rigid-body translations and rotation
of cylinders formed by extrusion of smooth but otherwise arbitrary curves.

Key words: variational methods, boundary layer control

1. Kinematic optimization

Kinematic optimization is the topic of determining the best motion profile of a body
for a given purpose. Examples of kinematic optimization in the presence of a fluid
include the determination of the flapping kinematics of immersed bodies inspired by
aerial and aquatic animals (Alben, Miller & Peng 2013; Xu & Wei 2016), or the
contraction of a fluid-filled chamber to pump fluid inspired by the heart (Peskin 1982).

We study the simplest of such optimization problems. Consider a rigid body with
length scale R in an incompressible fluid with dynamic viscosity µ and density ρ

(with ν =µ/ρ). What is the minimum work needed to displace the body by distance
D in time T? The problem is characterized by the Reynolds number Re= ρRD/(µT)
and the ratio of distance travelled to the body size, D/R.

Such a problem for a general three-dimensional body is of practical importance in
its own right; for example, in the actuation of robotic equipment to move objects
immersed in a fluid. It is also one of the simplest kinematic optimization problems,
which in its most general case retains the full complexity of the surrounding fluid
dynamics.
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S. Mandre

When Re � 1, the neglect of inertia renders the governing physics linear and
kinematically reversible. These properties enable computations of the optimized
kinematics in the general case (see e.g. Tam & Hosoi 2007, 2011; Eloy & Lauga
2012; Montenegro-Johnson & Lauga 2014; Was & Lauga 2014), and also a few
analytical results (Michelin & Lauga 2010, 2011, 2013). Lack of substitutes for either
the linearity or the kinematic reversibility when Re = O(1) or larger significantly
aggravates the difficulty. The physical processes that complicate the solution in this
case include the development of the viscous boundary layer, its separation from the
boundary, the shedding of vorticity and the subsequent vorticity dynamics outside
the boundary layer. Attempts at kinematic optimization in this regime have generally
sought to parametrize the kinematics and then optimize on the parameter values
using simplified models or computational evaluation of the objective function. For
example, see the analyses by Pesavento & Wang (2009) on improving the kinematics
of flapping insect wings, Alben et al. (2013) on the optimal kinematics of jellyfish
bodies, and Gazzola, Van Rees & Koumoutsakos (2012) and van Rees, Gazzola &
Koumoutsakos (2015) for fish locomotion. Adjoint formulations are also proposed to
evaluate gradients of the objective with respect to the parameters (Jones & Yamaleev
2015; Xu & Wei 2016). One investigation has also resorted to experiments for
evaluating the objective function (Quinn, Lauder & Smits 2015), but use of adjoints
is not possible with them and gradients have to be evaluated using finite difference.
In any case, no analytical solutions are known.

With this background, we seek to determine the optimal displacement of a smooth
infinitely long rigid cylinder in a fluid for Re = O(1) or larger. In this article, we
examine the regime

√
νT/R � 1 and D/R � 1, in which the governing equations

simplify owing to Prandtl’s boundary layer approximation. This approximation retains
the dynamics of the formation and growth of the viscous boundary layer but neglects
separation and vorticity shedding.

We start in § 2 by determining the work-minimizing speed (D/T)f (t/T) of a
circular cylinder along the x-axis (perpendicular to the cylinder axis), where f is to
be determined. The resulting flow is two-dimensional. The simplification of the body
to a circular cylinder allows us to justify the approximations made to the governing
Navier–Stokes equations and also illustrate the structure of the solution. We show
that the optimum profile f and minimum work W per unit length can be solved
analytically to be

f (τ )=
[τ(1− τ)]1/4

β( 5
4 ,

5
4)

, W =
21/2π3/2

β( 5
4 ,

5
4)

ρ1/2µ1/2D2R
T3/2

≈ 12.74189
ρ1/2µ1/2D2R

T3/2
, (1.1a,b)

where β stands for the beta function. As a direct consequence, the maximum distance
D a circle can travel in time T for a given small amount W of net work done per unit
length against the fluid is

D=

√
β( 5

4 ,
5
4)

21/4π3/4

(
W2T3

ρµR2

)1/4

≈ 0.28014
(

W2T3

ρµR2

)1/4

. (1.2)

As presented in § 3, the same solution structure applies to a more general family
of kinematics of a possibly deformable body. Rigid displacements or rotations of
cylinders with smooth but otherwise arbitrary cross-sections are special cases of this
family. Therefore, the kinematics given by (1.1) also minimizes the work done in
such motion.
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Work-minimizing kinematics for displacement of a cylinder

An application for our results is to validate computational methods for kinematic
optimization. Methods that nest the computational solution of fluid flow within
optimization of boundary kinematics could use the work-minimizing kinematics
treated here as test cases. The availability of the optimum kinematics in closed form
and first variations using quadratures constitutes a valuable resource for developing
such methods, especially those using adjoints for computing gradients. Examples
with deformable boundaries can also be constructed using the treatment in § 3. The
approximations made here require that D/R and δ/R be small but place no constraint
on Re= (D/R)/(νT/R2). To the best of our knowledge, no other analytical solutions
are available for Re=O(1) or larger.

2. Work-minimizing motion of a circular cylinder

Consider an infinitely long cylinder of radius R moving in a fluid, which is initially
at rest. The vorticity being zero outside the boundary layer, the flow velocity there
may be written as

u=∇φ, where φ(r, t)=−
DR
T

f (t/T)
(r/R)

cos θ + φ1(r, θ, t) (2.1)

is a two-term asymptotic series in polar coordinates (r, θ) with origin at the circle
centre. The corresponding pressure, p, derived using the Bernoulli equation is

p=
ρDR
T2

[
f ′(t/T)

r/R
cos θ −

1
2

(
D
R

)
f 2(t/T)
(r/R)4

]
+ p1 ≈

ρDR
T2

f ′(t/T)
r/R

cos θ + p1, (2.2)

where p1 is the correction arising from φ1. (Note that, because u is an incompressible
potential flow, ∇2φ = 0, and consequently the viscous term in the Navier–Stokes
equation is identically zero in the outer region, irrespective of the Reynolds number.
Thus, the pressure determined using the Bernoulli equation also satisfies the viscous
Navier–Stokes equation.) In the boundary layer of thickness δ =

√
νT , the vorticity

is non-zero and the azimuthal velocity v satisfies the azimuthal momentum balance
according to Prandtl’s boundary layer approximation as

vt =−(ρr)−1pθ + νvrr. (2.3)

Note that in (2.2) and (2.3) the time derivatives scale as 1/T , whereas the tangential
advection derivatives scale as D/(RT), thus justifying the neglect of the latter for
D/R � 1. Similarly, for δ/R � 1, the viscous terms simplify to νvrr in (2.3), the
radial momentum balance simplifies to pr = 0 and mass conservation yields the radial
velocity component to be u≈−(1/R)

∫ r
R vθ dr. To proceed with the solution, substitute

v(r, t)=
D
T
[ f (τ )− 2V(η, τ )] sin θ, (2.4)

where V(η, τ ) is the new dependent variable, which satisfies the heat equation as

Vτ = Vηη, (2.5)

η= (r− R)/δ is the boundary layer coordinate and τ = t/T is the rescaled time. The
no-slip condition, matching with the flow outside the layer and the initial condition,
simplifies to

V(η= 0, τ )= f (τ ), V(η→∞, τ )= V(η, τ = 0)= 0. (2.6a,b)
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S. Mandre

The volume flux from the boundary layer forces φ1 through the next-order matching
condition

φ1r(r→ R, θ, t)= 2
Dν1/2

RT1/2
cos θ

∫
∞

0
V(η, τ ) dη. (2.7)

Solving ∇2φ1 = 0 with (2.7) as the boundary condition and using D/R� 1 yields

φ1 =−2
Dν1/2

T1/2

cos θ
(r/R)

∫
∞

0
V(η, τ ) dη, p1 ≈−2

D(ρµ)1/2

T3/2

cos θ
(r/R)

Vη(η= 0, τ ). (2.8a,b)

The drag on the cylinder has two components. The first is the pressure drag,

Fp =

∫ 2π

0
−p n̂ · x̂ R dθ ≈−π

ρDR2

T2
f ′(τ )+ 2π

DR(ρµ)1/2

T3/2
Vη(η= 0, τ ). (2.9)

The first term being proportional to the acceleration f ′(τ ) is the added mass, while the
second term represents the increase in the outer fluid momentum due to the growth of
the displacement thickness of the boundary layer. The second component of the drag
arises from skin friction,

Ff ≈µ

∫ 2π

0
vr(r= R, θ, t) θ̂ · x̂ R dθ = 2π

DR(ρµ)1/2

T3/2
Vη(η= 0, τ ). (2.10)

The net work done by an external force pushing the cylinder against the drag is

W ≈π
ρD2R2

2T2
[ f 2(1+)− f 2(0−)] − 4π

(ρµ)1/2D2R
T3/2

∫ 1

0−
Vη(η= 0, τ )f (τ ) dτ . (2.11)

The first term in (2.11) is the increase in the kinetic energy of the surrounding fluid
in the absence of any boundary layer, and the second term is due to the formation and
growth of the boundary layer. Since the circle starts from rest, f (0−) is zero. Hence
minimizing W to leading order requires f (1+)= 0, i.e. the circle must come to rest at
t= T+. However, the leading order does not prohibit an impulsive start of motion to
a finite speed at t= 0+ or an impulsive stop from t= T−. Whether minimizing work
requires an impulsive start or stop rests on the second term in (2.11), which is now
the objective of minimization. The positive definiteness of the second term may be
deduced from

W[ f ] =−
∫ 1

0−
Vη(η= 0, τ )f (τ ) dτ =

∫
∞

0

V2
|τ=1

2
dη+

∫ 1

0

∫
∞

0
V2
η dη dτ . (2.12)

After all, starting from rest, the work done by the moving circle on the fluid must
either be dissipated or appear as kinetic energy, which are both positive.

2.1. Optimization
The heat equation (2.5) with (2.6) may be solved using a Green’s function to yield

V(η, τ )=
∫ τ

0−
f ′(s) erfc

(
η

2
√

t− s

)
ds and Vη|η=0 =−

∫ τ

0−

f ′(s)
√

π(τ − s)
ds. (2.13a,b)
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Work-minimizing kinematics for displacement of a cylinder

The work minimization for a fixed displacement may then be written as

minimize
f (τ )

W[ f ] =
∫ 1

0

∫ τ

0−

f (τ )f ′(s)
√

π(τ − s)
ds dτ with C[ f ] =

∫ 1

0
f (τ ) dτ − 1= 0. (2.14)

Switching the order of integration and an integration by parts on both the integrals of
W yield alternative forms of the objective function as

W[ f ] =−
∫ 1

0

∫ 1+

τ

f (τ )f ′(s)
√

π(s− τ)
ds dτ =

1
2

∫ 1

0

∫ 1+

0−

f (τ )f ′(s) sgn(τ − s)
√

π|τ − s|
ds dτ . (2.15)

Writing the Lagrangian for this optimization as L[ f ] =W[ f ] − λC[ f ], where λ is
the multiplier for imposing the fixed displacement constraint, yields the first variation

δL
δf
=

∫ 1+

0−

sgn(τ − s)f ′(s)
√

π|τ − s|
ds− λ= 0. (2.16)

We note that minimizing (2.12) by subjecting (2.5)–(2.6) as constraints using Lagrange
multipliers, in combination with the solution (2.13), results in a first variation identical
to (2.16). Since the objective function is quadratic and positive definite in f , and the
constraint linear, the optimum is unique and, therefore, global.

Drawing insight from the hundreds of integral equations similar to (2.16) treated by
Polyanin & Manzhirov (1998), we use the following integral evaluated using complex
variables to construct a solution:∫ 1

0

[
a
(1− s)1/4

s3/4
+ b

s1/4

(1− s)3/4

]
sgn(τ − s)
√

π|τ − s|
ds= (a− b)

√
2π for any a, b. (2.17)

The solution then follows by observing that the contribution from any jumps in f at 0
and 1 can be eliminated by choosing b=−a, and that constraint C[ f ] sets the values
of a, b and λ. The resulting solution is

f (τ )=
[τ(1− τ)]1/4

β( 5
4 ,

5
4)

for which W[ f ] =
1

2β( 5
4 ,

5
4)

√
π

2
≈ 1.013967. (2.18)

Substituting in (2.11) yields (1.1) and (1.2). For comparison, f (τ ) = 1 in 0 6 τ 6 1
and zero otherwise yields W = 2/

√
π≈ 1.128379.

3. Work minimizing within a more general kinematic family

The calculation in § 2 may be generalized not only to rigid displacements of
bodies of arbitrary shapes but also to certain two-dimensional kinematics that allow
the cylinder to deform along a continuous sequence of shapes. The optimization is
then to determine the profile of speed to traverse these shapes that minimizes the
work done. The shapes are a set of curves given by x=X(ξ , γ ), where 0 6 ξ 6 ξmax
parametrizes along the perimeter of their cross-section and 0 6 γ 6 γmax parametrizes
the member of the sequence. Let s(ξ , γ ) be the arclength of the cross-section. The
key is to generate shapes such that the resulting work done for traversing them
with any speed profile is expressed as a separable product of a functional of ξ and a
functional of t, as is the case for the second term in (2.11). Examples of these shapes
are shown in figure 1. To generate these shapes starting from an initial shape X0(ξ),
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10
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0 0.1 0.2 0.3

FIGURE 1. Examples of a sequence of two-dimensional boundary shapes considered in § 3.
Legend shows the value of γ for these examples. In all the panels ς(ξ) is chosen such
that ∂s/∂ξ ≈ const. (a) Rigid translation along a curved path of a circle corresponding to
q∞(ξ) = cos ξ , 0 6 ξ < 2π and λ(γ ) = π. (b) A circle deforming according to q∞(ξ) =
cos 2ξ , 0 6 ξ < 2π and λ(γ ) = π. (c) A circle deforming according to q∞(ξ) = ecos ξ

−

C/(2π), 0 6 ξ < 2π and λ(γ )=π, where C is chosen such that q∞ has zero mean.

we prescribe two smooth periodic functions, q∞(ξ) and q0(ξ). Here the spatial profile
of the tangential speed of a point on the body labelled by ξ and of the fluid just
outside the boundary layer is expressed as independent combinations of q0(ξ) and
q∞(ξ). There is one integral constraint on X0 and q∞, presented later in (3.19), which
imposes ∂s/∂ξ ≈ const. The choice of X0, q∞ and q0, and the two more arbitrary
functions λ(γ ) and α(t) to be invoked later, defines the span of our general kinematic
family. In this treatment, we only consider the flow outside the cylinder, and any
material inside it is not considered.

3.1. Construction
The construction goes according to

∂X
∂γ
= (∇Φ · n̂)n̂+ ς(ξ)t̂, (3.1)

where t̂(ξ ; γ ) and n̂(ξ ; γ ) are unit vectors along the tangential and normal
(pointing into the fluid) directions, ς(ξ) is the function to be determined later
that reparametrizes ξ along the curve, and Φ(x; γ ) satisfies

∇
2Φ = 0, with Φ(x=X(ξ ; γ ); γ )=

∫ ξ

0
q∞(ξ)

∂s
∂ξ

dξ . (3.2)

In other words, the boundary shapes evolve according to the solution of the Laplace
equation with a sequence of Dirichlet boundary values.

A second sequence of solutions of the Laplace equation Ψ (x; γ ), but with a
Neumann condition is also needed to express the outer flow. Here Ψ satisfies

∇
2Ψ = 0 with ∇Ψ · n̂=

q′
∞
(ξ)− q′0(ξ)
∂s/∂ξ

on x=X(ξ ; γ ). (3.3)

The optimization question is to determine the time evolution of the parameter γ =
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Work-minimizing kinematics for displacement of a cylinder

γ (t) for 0 6 t 6 T , which minimizes the work done to execute the motion of the
boundary.

3.2. Solution
By problem definition, the time dependence of the boundary is given by X(ξ ; γ (t)),
and by construction the outer flow is given by the potential

φ(x, t)= φ0(x, t)+ φ1, where φ0 =Φ(x; γ (t))γ ′(t) (3.4)

and φ1 is the correction to φ due to growth of the boundary layer displacement
thickness. The normal velocity due to the leading term in this potential matches the
motion of the boundary by construction, i.e. using (3.1) yields

n̂ ·
∂X
∂t
= n̂ · ∇φ0. (3.5)

The tangential velocity can be deduced using the Dirichlet condition in (3.2) to be

v∞ ≡∇φ0 · t̂= q∞(ξ)γ ′(t), (3.6)

which is the separable form that facilitates the simplification of the optimization in § 2.
Analogous to the steps in § 2, the tangential velocity in the boundary layer satisfies

vt =−ρ
−1ps + νvnn, (3.7)

where v(ξ, n, t) is the tangential component of velocity in the boundary layer, ps is
the tangential pressure gradient and n is the local normal coordinate. Note that, due
to the solution in the outer region, −ps/ρ= vt= v∞t as n approaches the outer region.

We choose the following form for the tangential component of the material velocity
on the boundary:

u · t̂= q0(ξ)γ
′(t)+ (q∞(ξ)− q0(ξ))α

′(t), (3.8)

where we have now introduced one of the arbitrary functions α(t) that defines the
kinematic family. The boundary conditions on (3.7) are given by (3.6) as n→∞ and
by (3.8) at n= 0. Analogous to (2.4), we introduce Ṽ(t, n) as

v(ξ, n, t)= q∞(ξ)γ ′(t)− [q∞(ξ)− q0(ξ)]Ṽ, (3.9)

where Ṽ satisfies the heat equation

Ṽt = νṼnn, (3.10a)
Ṽ(t, n= 0)= γ ′(t)− α′(t), (3.10b)

Ṽ(t, n→∞)= Ṽ(t= 0, n)= 0. (3.10c)

The work done W, in close parallel to § 2, has two contributions. The first, W1, is
the work done against the shear stress acting on the boundary, written as

W1 = µ

{[∫ T

0
γ ′(t)Ṽn|n=0 dt

] [∫ ξmax

0
q0(ξ)[q∞(ξ)− q0(ξ)]

∂s
∂ξ

dξ
]
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+

[∫ T

0
α′(t)Ṽn|n=0 dt

] [∫ ξmax

0
[q∞(ξ)− q0(ξ)]

2 ∂s
∂ξ

dξ
]}

. (3.11)

The second is the work that gets converted to the kinetic energy of the outer fluid.
Here we again assume that the body and the fluid start from rest and the body comes
to rest, implying that the kinetic energy remaining in the outer region is due to the
growth of the displacement thickness of the boundary layer. To estimate this, we
need the correction φ1 to the outer flow potential, which we now construct using the
solution of (3.3). The correction φ1 satisfies ∇2φ1 = 0 with the Neumann boundary
condition derived using continuity in the boundary layer as

n̂ · ∇φ1 =−

∫
∞

0

∂(v − v∞)

∂s
dn. (3.12)

The solution that can be constructed using (3.3) is

φ1 =Ψ (x; γ (t))
∫
∞

0
Ṽ dn. (3.13)

The correction to the pressure p1 ≈−φt, by making use of (3.10a) for Ṽ , is

p1 =µΨ (x; γ (t))Ṽn|n=0, (3.14)

in analogy with (2.8). The work done, W2, against this pressure is

W2 =

∫ T

0

∫ ξmax

0
−p1∇φ · n̂

∂s
∂ξ

dξ dt. (3.15)

Substituting (3.4) and (3.14), using Green’s second identity and integrating by parts
in ξ , yields

W2 =−µ

[∫ T

0
γ ′(t)Ṽn|n=0 dt

] [∫ ξmax

0
q∞(ξ)[q∞(ξ)− q0(ξ)]

∂s
∂ξ

dξ
]
. (3.16)

The total work done W =W1 +W2 thus has the form

W =−µ
[∫ T

0
[γ ′(t)− α′(t)]Ṽn|n=0 dt

] [∫ ξmax

0
[q∞(ξ)− q0(ξ)]

2 ∂s
∂ξ

dξ
]
. (3.17)

3.3. Conditions for a separable structure for W
To conclude the separable structure of W into functionals of t and ξ , the second
factor on the right-hand side of (3.17) must be independent of time. The only time
dependence in this factor arises from ∂s/∂ξ ; hence we require ∂s/∂ξ to be a constant
in γ . We use our choice of ς(ξ) in (3.1) to impose this condition, which implies

ς(ξ)=

∫ ξ

0
κ n̂ · ∇Φ

∂s
∂ξ

dξ + λ(γ ), (3.18)

where κ is the curvature of the boundary curve and λ(γ ) is an integration constant,
which introduces the last arbitrary function that defines the kinematic family. The
existence of a periodic ς(ξ) necessitates∫ ξmax

0
κ n̂ · ∇Φ

∂s
∂ξ

dξ = 0 for all γ . (3.19)
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Work-minimizing kinematics for displacement of a cylinder

For certain choices of X0(ξ) and q∞(ξ), (3.19) is automatically satisfied. Unidirectional
rigid-body translation for any smooth body or rotation about any point are special
cases of the general kinematics family that fall under this class. To realize
unidirectional motion parallel to the x-axis for any body shape X0(ξ), one solves
∇

2χ = 0 with ∇χ · n̂= x̂ · n̂ on X0(ξ). For rotations about any point x0, the Neumann
condition is replaced by ∇χ · n̂= (ẑ× (x− x0)) · n̂ on X0. Using the solution to this
Laplace equation, one chooses q∞(ξ) = ∇χ · t̂, q0(ξ) = x̂ · t̂, λ(γ ) = 0 and α(t) = 0.
This satisfies (3.19) because the curve merely displaces or rotates, and consequently
in a translated or rotated coordinate system the outer flow and the integrand do not
change with γ . The result for a circular cylinder in § 2 is an illustration of this
property. In fact, for a circular cylinder, even if λ 6= 0 and the path is not straight,
∂s/∂ξ = const., as illustrated in figure 1(a).

Another class of choices for X0(ξ) and q∞(ξ) only satisfies (3.19) approximately.
An example of this case is by satisfying (3.19) exactly for only one value, say, without
loss of generality, γ = 0. This implies ∂(∂s/∂ξ)/∂γ = 0 at γ = 0. Hence, for γ close
to 0, the generic Taylor series for ∂s/∂ξ is (∂s/∂ξ)0 +O(γ 2)≈ const. This condition
implies that the resulting separation of variables will be approximate, which needs
to be carefully considered against the other approximations made in this calculation.
Examples of this class are illustrated in figure 1(b,c).

3.4. Mapping back to a solved problem
Upon non-dimensionalization, η= n/δ and τ = t/T , and defining

f (τ )=
γ ′(t)− α′(t)
γmax − α(T)

and Ṽ = (γmax − α(T))V(η, τ ), (3.20a,b)

(3.10) reduces to (2.5)–(2.6). The optimization problem of determining γ (t) that
minimizes W, in lieu of (2.13), then reduces to (2.14) for f (τ ), with the solution
given by (2.18).

4. Discussion and conclusion

The consequences of the singular nature of the boundary layer dynamics on the
minimum work done for moving a body starting from or coming to rest has not
been considered before. Here we have calculated analytically the minimum-work
kinematics for moving a smooth body by a small distance. The minimum work may
be interpreted using dimensional analysis as the product of the displacement D with
the average viscous shear force µR(D/T)/δ.

The optimum kinematics implies a velocity proportional to t1/4 immediately after
startup and proportional to (T − t)1/4 immediately preceding the final stop. The profile
of the power expended to execute the kinematics and the resulting velocity profile in
the boundary layer are shown in figure 2. The power expended is initially finite and
positive but decreasing in value as the flow in the boundary layer develops. It is finite
for t� 1 because, with the growth of V ∝ t1/4 and of δ ∝ t1/2, the shear stress scales
as µV/δ ∝ t−1/4, and its product with the velocity is then a constant in t. The power
decreases because, while the boundary layer thickness continues to grow, the rate of
growth of V diminishes below t1/4. At τ = τ∗ ≈ 0.898825, the power expended by
the body becomes zero, coinciding with the profile V(η, τ∗) having a zero slope at
η= 0. Up to this instant the dimensionless work done is W+≈ 1.056, which is shown
in figure 2(a). Subsequently, the flow in the boundary layer does work on the body.
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FIGURE 2. Characteristics of the optimal kinematics. (a) The dimensionless power
expended to execute the kinematics. The power is positive until τ = τ∗ ≈ 0.898825, and
becomes negative for τ∗ < τ 6 1. The area under the positive part of the curve is W+,
while that under the negative part is W−. (b) Profiles of V(η, τ ) for the optimal f (τ ).

The amount of kinetic energy imparted to the fluid during τ < τ∗ that is recovered
in the interval τ∗ < τ < 1 is shown as W− ≈ 0.042 in figure 2(b). This means that
approximately W−/W+ ≈ 3.94 % of the energy put in to the fluid is recovered by
the optimum kinematics. Using the solution in § 2, it can be readily derived that, for
the optimum kinematics of a circle, out of W = 1.013967, approximately 0.50698
and 0.12143 goes to the kinetic energy in the outer region and the boundary layer,
respectively, and 0.38555 is viscously dissipated.

The infinite acceleration at t = 0 and T implies an infinite starting and stopping
force due to the added mass of the surrounding fluid proportional to t−3/4 and
(T − t)−3/4, respectively. Furthermore, even the next order in force that arises
from the growth of the boundary layer also gives rise to a force proportional
to t−1/4 and (T − t)−1/4. Therefore, physical realizations may be able to approach
the work-minimizing kinematics depending on how large a force it can apply, but
never to reach it. Such a limitation does not apply to computational approaches for
optimization, which should attain the optimum to numerical precision.

In this article, our body shape evolves according to (3.1) to maintain a separable
structure in (3.17), which restricts our result to the family of kinematics described
in § 3. A physically relevant subset of this family is the rigid unidirectional (or
nearly unidirectional) or rotational motion of a smooth but otherwise arbitrary
two-dimensional body. The work integral will not be separable in ξ and t even
for simultaneous rigid-body translation and rotation, and certainly not for the most
general deformation. Similarly, the neglect of the nonlinear terms in the governing
equations may not be justified if the distance travelled by the body is not small. For
such cases, numerical solutions obtained by relaxing the condition of separability,
which are of considerable practical interest (see e.g. Spagnolie & Shelley 2009;
Weymouth & Triantafyllou 2013; Giorgio-Serchi & Weymouth 2016) will be needed
for determining the work-minimizing kinematics of bodies of arbitrary shape. We
leave such investigations to the future.
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