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Travelling wave states in pipe flow
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In this paper, we have found two new nonlinear travelling wave solutions in pipe
flows. We investigate possible asymptotic structures at large Reynolds number R
when wavenumber is independent of R and identify numerically calculated solutions
as finite R realizations of a nonlinear viscous core (NVC) state that collapses towards
the pipe centre with increasing R at a rate R−1/4. We also identify previous numerically
calculated states as finite R realizations of a vortex wave interacting (VWI) state with
an asymptotic structure similar to the ones in channel flows studied earlier by Hall
& Sherwin (J. Fluid Mech., vol. 661, 2010, pp. 178–205). In addition, asymptotics
suggests the possibility of a VWI state that collapses towards the pipe centre like
R−1/6, though this remains to be confirmed numerically.
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1. Introduction
Research on flows in pipes, channels and boundary-layer flows are areas of much

recent activity. Of particular interest are travelling wave (TW) states at large Reynolds
number R in channel (Nagata 1990; Waleffe 1995, 1997, 1998, 2001, 2003; Wang,
Gibson & Waleffe 2007; Gibson, Halcrow & Cvitanovic 2009; Blackburn, Hall &
Sherwin 2013) and pipe geometries (Faisst & Eckhardt 2003; Fitzerald 2004; Hof
et al. 2004; Wedin & Kerswell 2004; Kerswell & Tutty 2007; Pringle & Kerswell
2007; Viswanath 2007) with different degrees of symmetry. These states do not
arise from finite R bifurcation of plane Couette or Hagen–Poiseuille flow in a pipe,
though they come increasingly close as R → ∞. Nonetheless, the existence and
stability of these states, and their connection in phase space, play important roles in
understanding both transition and large R behaviour of channel and pipe flows. There
is also some evidence to suggest that these vortex wave interacting (VWI) states are
edge states (Schneider & Eckhardt 2009) for large Reynolds numbers in the sense
that they separate the initial conditions in phase space between those that return
to laminar flow from those that do not. Furthermore, when the unstable manifold
of these states are low dimensional and slow, as suggested by earlier numerical
calculations (Viswanath & Cvitanovic 2009) of one of these states in pipe geometry,
they correspond to coherent flows that are experimentally observable (Hof et al.
2004) in intermediate R turbulence with the flow drifting slowly from one TW state
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to another. These nonlinear TW states are also of potential technological importance
if suitable controls can be inserted to stabilize a coherent state with a significantly
smaller drag than an uncontrolled turbulent flow.

The physical mechanism to sustain such steady states for large Reynolds number is
now well understood. In the context of pipe flow, if we use cylindrical coordinates
(r, θ, z) with the cylinder axis aligned along the z-axis, and non-dimensionalization
with a domain corresponding to r<1, the nonlinear states are Navier–Stokes travelling
wave solutions of the form

u= vP(r)+U(r, θ)+ vw(r, θ, z− ct), (1.1)

where vP(r) = (1 − r2)ẑ is Hagen–Poiseuille flow, and vw is 2π periodic in
both θ and in z̃ := α(z − ct), with zero axial average over a period, denoted by
〈vw〉 = 0. If we write U(r, θ)= (U(r, θ), V(r, θ),W(r, θ)) in cylindrical coordinates,
(U(r, θ),V(r, θ),0) is referred to as the roll part of the flow and represents streamwise
vortices; (0, 0,W(r, θ)) is termed the streak while vw(r, θ, z− ct) represents the wave
part of the flow. A similar decomposition is possible for Couette flow and indeed
for any predominantly unidirectional shear flow. In a boundary-layer study by Hall
& Smith (1991) for large Reynolds number R, it was for the first time recognized
in a general shear flow context that an O(R−1) streamwise perturbation vorticity can
produce an O(1) streak, thereby significantly altering the linear stability features
of unperturbed flow, and that neutrally stable small-amplitude waves of the right
magnitude through Reynolds stresses can sustain O(R−1) streamwise vortices, which
otherwise would have decayed in time. This is exactly the same self-sustaining
process (SSP) discovered numerically later for channel (Waleffe 1995, 1997) and
pipe flows (Faisst & Eckhardt 2003; Wedin & Kerswell 2004).

The amplitudes of the rolls, streaks and waves have to be of just the right size
to sustain this three way interaction between rolls, streaks and waves. This three
way interaction has been described completely for channel flows asymptotically by
Hall & Sherwin (2010) through numerical solutions of the rescaled parameter-free
equations, and remarkable agreement found with direct numerical calculations (Wang
et al. 2007; Blackburn et al. 2013) even at moderate R. Following Waleffe (1997),
these states have been called SSP states in most of literature; we prefer to call
them the VWI (vortex–wave interaction) states as it is descriptive of the physical
mechanism that sustains such flows, as discovered originally by Hall & Smith (1991).
As described by large R asymptotics by Hall & Sherwin (2010), VWI states are
characterized by small-amplitude linear waves driving the rolls through Reynolds
stress. Another possibility for travelling waves is the occurrence of a fully nonlinear
viscous core (NVC) similar to the one observed earlier in boundary-layer flows by
Deguchi & Hall (2014a). While NVC states are also characterized by a three-way
interaction, as previously mentioned, there is no meaningful separation in scales
between rolls, streaks and waves in this case, and the interaction between different
axial wavenumber components is fully nonlinear as R→∞, unlike the VWI states.
We will use the terminology of TW to describe both VWI and NVC states.

This paper concerns primarily the calculation of two new TW solutions, called C1
and C2, that collapse towards the centre of the pipe as R→∞, which we identify
as NVC states. Despite localization of rolls and waves over a shrinking core at the
centre of the pipe, the streaks do not decay and remain the same size outside as inside
the core, until wall effects become important. We also present scaling arguments to
identify in general the asymptotic structure of the travelling wave solution as R→∞
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for which the axial wavelength α is independent of R. We also confirm that the
so-called S-antisymmetric state calculated in a pipe by Viswanath (2009) is a VWI
state with scales in agreement with expected asymptotics. Instead of following
previous approaches and trying to use numerical continuation of some fictitious
forcing to determine a suitable initial guess for our Newton iteration procedure,
which need not always result in convergence, we perturb the base Hagen–Poiseuille
flow by introducing azimuthal suction–injection of small magnitude that is enough to
cause instability of the base flow at large R. Using the solution from the resulting
Hopf-bifurcation as an initial guess for small-amplitude waves, we continue in wave
amplitude before turning off the suction–injection. Our calculations, we believe, are
also reasonably efficient and accurate and are valid at very large R; this is helped by
exploiting asymptotic scalings of wave amplitudes in the choice of preconditioners
needed to solve the large linear systems of equations arising in Newton iteration.

The TW solutions we are looking for satisfy the Navier–Stokes equations

ut + u · ∇u=−∇p+ 1
R
1u, ∇ · u= 0 (1.2)

in the form
u= vB(r, θ)+ v(r, θ, z− ct), (1.3)

where vB is the base flow, while (r, θ, z) are cylindrical coordinates with the pipe
aligned along the z-axis. We assume v to be 2π periodic in θ and z̃ := α(z− ct) and
satisfies boundary condition on the wall

v(1, θ, z− ct)= 0. (1.4)

We take the base flow vB = vB(r, θ) to be the steady Navier–Stokes solution with
only non-zero radial and azimuthal components satisfying a periodic suction–injection
boundary condition at the wall:

vB(1, θ)= s
R

cos(k0θ)r̂ (1.5)

with the same average pressure gradient −4/Rẑ as for Hagen–Poiseuille flow vP =
(1− r2)ẑ.

Solutions to (1.2) in the form (1.3) have been computed before for s = 0, i.e.
when vB = vP, through an initial guess determination procedure (Wedin & Kerswell
2004) that mimics the three-way interaction between rolls, streaks and waves and/or
introduction of forcing (Faisst & Eckhardt 2003). Our procedure is different; we first
study the linear stability of the base flow vB for s 6= 0 and determine (α,R) at which
the flow becomes unstable. A finite-amplitude solution from a Hopf bifurcation at
a neutrally stable point is then used to determine the initial guess in the Newton
iteration procedure for travelling wave solutions in the form (1.3); at finite wave
amplitude far from the bifurcation point, the solution is then continued to s = 0 to
determine a TW state without suction/injection. We used this to recalculate the TW
states of Wedin & Kerswell (2004) in a more efficient manner. We also find new
states, which we later identify as finite R realizations of NVC asymptotic states,
that are concentrated in the centre of the pipe as R→∞. We make no attempt to
determine all possible TW states numerically; we focus mainly on the properties of
these new centre modes that are concentrated at the centre of the pipe. Investigation
of the scaling properties of these states, both numerically and through asymptotic
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arguments, constitutes the most significant part of this paper. We also present more
general arguments to identify all possible consistent R→∞ asymptotic scalings of
roll, streak and wave components of a TW state when the axial wavenumber α is
independent of R. It is to be noted that these states differ from the spiralling centre
modes of Smith & Bodonyi (1982) and Deguchi & Walton (2013).

2. Computational method
Our computational method is based on Galerkin truncation in Fourier modes in θ

and z− ct and a Chebyshev representation in r similar to Wedin & Kerswell (2004)
which automatically accounts for the boundary condition. However, we found it more
efficient to eliminate pressure using the Poisson equation. In the following subsections,
we give some details.

2.1. Basic state calculation
For the basic state calculation for s 6= 0, we find it convenient to decompose

vB = gS + vS, (2.1)

where

gS = s
R

(
r(2− r2) cos(k0θ),− 4

k0
r(1− r2) sin(k0θ), 0

)
(2.2)

is a smooth divergence-free function chosen to satisfy the boundary condition at the
wall, which allows vS= (uS(r, θ), vS(r, θ),wS(r, θ)) to have the similar truncated basis
representation as TW states:uS

vS
wS

=
 0

0
1− r2

+ ∑
06j6N
06k6M

ujkΦj(r; kk0) cos kk0θ

vjkΦj(r; kk0) sin kk0θ

wjkΨj(r; kk0) cos kk0θ

 , (2.3)

where Φj, Ψj is given in terms of Tchebyshev polynomials Tj as follows:

Φj(r; k)=
{

T2j+2(r)− T2j(r) for k odd,
T2j+3(r)− T2j+1(r) for k even

(2.4)

Ψj(r; k)=
{

T2j+3(r)− T2j+1(r) for k odd,
T2j+2(r)− T2j(r) for k even.

(2.5)

We decompose pS =−4z/R+ qS where qS satisfies the Poisson equation

1qS =−∇ · (vS · ∇vS + gS · ∇vS + vS · ∇gS + f S) :=N [vs], (2.6)

subject to compatible Neumann boundary conditions at r= 1:

∂qS

∂r
= r̂ ·

(
1
R
1vs − f S

)
, (2.7)

where
f S =− 1

R
1gS + gS · ∇gS. (2.8)
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We solve (2.6) with the boundary condition (2.7) (see Ozcakir (2014) for details). This
allows computation of −∇qS=−∇∆−1N [vS] for given vS in the following equation:

vS · ∇vS + gS · ∇vS + vS · ∇gS =− 4
R

ẑ−∇qS + 1
R
1vS − f S. (2.9)

Using a Galerkin approximation 0 6 k 6 K in θ and collocation at the radial points
{rj′}Nj′=0 we obtain a system of 3× (K + 1)× (N + 1) algebraic equations for as many
unknowns {uk,j, vk,j, wk,j}k=0,...,K,j=0,...,N that is solved through Newton iteration. The
initial guess is obtained through a continuation process, starting at s= 0, when vS= vP
is an exact solution.

A similar representation was used for linear stability of the basic state (see Ozcakir
2014).

2.2. TW calculations
As mentioned in the introduction, TW states correspond to solutions of Navier–Stokes
in the form u= vB(r, θ)+ v(r, θ, z− ct) where c is now real. It is clear that v satisfies

−c
∂v

∂z
+ (v · ∇)v =−∇∆−1N [v] + 1

R
1v − vB · ∇vB − vB · ∇v − v · ∇vB, (2.10)

where ∆−1 is defined with consistent Neumann boundary conditions Nb[v]. (We make
an implicit choice of the arbitrary constant arising in the Neumann problem in the
choice of basis for ∆−1N [v]; this choice is immaterial because of the ∇ operator in
(2.10).) Here, the operators N and Nb are defined as:

N [v] :=∇ · [−vB · ∇vB − vB · ∇v − v · ∇vB], (2.11a)

Nb[v] := r̂ ·
[

1
R
1v − vB · ∇vB − vB · ∇v − v · ∇vB

]
. (2.11b)

On the pipe wall,
v(1, θ, z− ct)= 0. (2.12)

Similar to Wedin & Kerswell (2004), we use

u
v

w

 = ∑
06j6N
06k6M

06l even6P


(u(1)jkl cos lz̃+ u(2)jkl sin lz̃)Φj(r; kk0) cos kk0θ

(v
(1)
jkl cos lz̃+ v(2)jkl sin lz̃)Φj(r; kk0) sin kk0θ

(w(1)
jkl sin lz̃+w(2)

jkl cos lz̃)Ψj(r; kk0) cos kk0θ



+
∑

06j6N
06k6M

16l odd 6P


(u(1)jkl cos lz̃+ u(2)jkl sin lz̃)Φj(r; kk0) sin kk0θ

(v
(1)
jkl cos lz̃+ v(2)jkl sin lz̃)Φj(r; kk0) cos kk0θ

(w(1)
jkl sin lz̃+w(2)

jkl cos lz̃)Ψj(r; kk0) sin kk0θ

 . (2.13)

This is a basis representation suitable at r = 0 for the so-called S-symmetric
states discussed in Wedin & Kerswell (2004); note Viswanath & Cvitanovic (2009)
calculates S antisymmetric states which have a representation different from (2.13).
(Though we did not explicitly impose the regularity condition at r = 0 of Batchelor
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& Gill (1962), we checked that it was satisfied to a numerical accuracy sufficient for
the reported calculation.) This representation fixes the origin in θ . In addition, to fix
the origin in z, we impose

N∑
j=0

u(1)j,1,1 = 0. (2.14)

We use representation (2.13) and equate coefficients of cos(kk0θ) cos(lz̃), sin(kk0θ)
cos(lz̃), cos(kk0θ) sin(lz̃), and sin(kk0θ) sin(lz̃) for 0 6 k 6 M, 0 6 l 6 P on both sides
of (2.10) and evaluate the resulting expressions at the collocation points {rj′}. This,
together with the scalar equation (2.14), results in a nonlinear algebraic system for
(X, c)

G(X, c; β)= 0, (2.15)

where X = {u(i)jkl, v
(i)
jkl , w(i)

jkl}j,k,l,i and β = (R, α, s) are the set of specified parameters.
More details about inversion of ∆−1 subject to Neumann conditions, calculation of
the corresponding Jacobian J that arises in Newton iteration and its efficient inversion
through use of a preconditioner and GMRES are described elsewhere (Ozcakir 2014).
In the vicinity of neutral stability points α=αN(R), we use the eigenfunction at α=αN
of the stability problem summed with its complex conjugate, re-expressed in the real
form (2.13) to determine a suitable initial guess for travelling wave calculations.
Sufficiently far from the bifurcation point, we continue to s → 0 to determine a
TW state. Note that the azimuthal symmetry (k0 = 2) of the suction–injection profile
is reflected in the ultimate symmetry of the travelling wave solutions. The matrix
inversion process is similar to Viswanath (2009), though our choice of preconditioner
exploits the knowledge (Hall & Sherwin 2010) of weak nonlinear wave interaction
for large R.

3. Numerical results for TW calculations
The calculations described thus far are limited to k0 = 2; i.e. 2-fold azimuthally

symmetric TW states. Unless otherwise stated, in our figures we used (N, M, P) =
(85, 12, 5) when R > 5000 and (N, M, P) = (45, 8, 5) when R < 5000. Significantly
increasing each of N, M and P for a particular Reynolds number in this range and
comparing with the baseline calculations suggested that the calculation for c was
accurate to four significant digits, whereas the velocity was accurate to at least three
digits. We display with cross marks results from a higher resolution calculation that
resulted in the largest deviation from the baseline calculations shown by solid or
dashed lines.

We reproduced the S-symmetric solution of Wedin & Kerswell (2004) for k0 = 2.
The comparison of c versus R curve for α = 1.55 is shown in figure 1. Our
calculations for (N, M, P) = (45, 8, 5) (shown in blue) are indistinguishable from
the grey curve of Wedin & Kerswell (2004). The black curve, which sits on top of
the blue curve, corresponds to higher resolution (N, M, P) = (85, 12, 5). More on
comparisons with Wedin & Kerswell (2004) appear in Ozcakir (2014).

The scaling of rolls, streaks and waves for the computed WK solutions are roughly
in agreement with the expected VWI scales for δ= 1 (see § 4.2), which is the same as
the Hall & Sherwin (2010) scaling in channel flows, though our inability to continue
the WK solution past about R= 11 000 hampered a more precise comparison between
numerical results and R→∞ scaling results.

In addition, two new branches of travelling wave solutions have been found, which
we denote as C1 and C2. Besides the S-symmetry (shift-and-reflect) the C2 branch
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c

R

FIGURE 1. c versus R for WK branch at α= 1.55: grey curve: Wedin & Kerswell (2004)
calculations, blue curve: our (N,M, P)= (45, 8, 5) calculations, black curve (N,M, P)=
(85, 12, 5).

R

c
(C1)
(C2)
(C1)
(C2)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.60
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0.80

0.85

0.90

FIGURE 2. c versus R for different solution branches C1, C2 for different axial
wavelength α.

also has Ω2-symmetry (shift-and-rotate) as defined in Pringle, Duguet & Kerswell
(2009), though this additional symmetry was not imposed in the numerical code.
As pointed out earlier, in the representation (2.13), this corresponds to non-zero
contributions only for even k + l. For k0 = 2, this results in rolls and streaks having
4-fold azimuthal symmetry.

However, unlike other states calculated before, these new branches appear to have
a collapsing vortex–wave structure toward the centre of the pipe as R→∞, which
will be quantified. These states are also different from the helical centre modes of
Smith & Bodonyi (1982) (confirmed for finite R by Deguchi & Walton 2013) where
the dependence in θ and z are linked; these spiral modes are special to k0 = 1. In
figure 2 the phase speed c is shown as a function of R for the two wavenumbers α for
C1 and C2 solutions for the lower branch. For C1 and C2, we were able to compute
solutions indefinitely with increasing R, though resolution checks were limited to R<
2 × 105. In order to understand the asymptotic scaling of the new centre modes C1
and C2, in figure 3, 1 − c is plotted against R on a log–log scale for large R for
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104 105

FIGURE 3. 1 − c versus R in a log–log scale for different α for C1 and C2 solutions.
Dotted lines are linear approximations to each curve using larger R.
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–0.2–0.6 0.2 0.6 1.0–1.0 –0.2–0.6 0.2 0.6 1.0–1.0 –0.2–0.6 0.2 0.6 1.0–1.0

FIGURE 4. Roll and streak profiles at R= 3940 for α = 1.55. (a) C1; (b) C2; (c) WK.

two different values of α, with slopes m ranging from −0.32 to −0.38. This does
not change much with higher resolution calculations shown by cross marks. In all the
figures, slopes are quoted to two significant figures. A linear least square fit using data
in the range 5× 104 < R< 2× 105 is shown in dotted lines. We also noted that the
slope in the regime 105 < R < 2 × 105 is about three percent larger than the quoted
value, suggesting that the solution may not have reached an ultimate asymptotic scale.
Also, we noted a consistent tendency for the 1− c versus R curve to steepen slightly
with increasing α. For instance, the linear fit based on limited calculations for α=2.51
in a large R regime for the C1 solution shows (1− c)∼R−0.39. (The notation ‘∼’ here
and in the rest of the paper is not in the usual asymptotic sense; instead it is to be
interpreted as the scaling.)

For these new states, the streamwise-averaged flows are displayed in a plane
perpendicular to the pipe axis at several values of R in figures 4–6 where the rolls
(U, V) are depicted using arrows whilst the streak velocity intensity is represented in
colours, where the lighter colours correspond to positive values of streak W, while
darker colours correspond to negative W. For comparison, we also present the WK
solutions. (Note that Newton iteration failed to converge for the WK branch of
solution for R larger than about 11 000, presumably because the solution approaches
of a bifurcation point; this aspect was not pursued any further in this paper.) In all
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(a) (b) (c)

FIGURE 5. Roll and streak profiles at R= 104 for α = 1.55. (a) C1; (b) C2; (c) WK.
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FIGURE 6. Roll and streak profiles at R= 105 for α = 1.55. (a) C1; (b) C2.

of the plots, the streak velocity ranges in the interval [−0.4163, 0.0963]. Note that
the streaks get weaker as R becomes larger, in accordance with asymptotic scaling
results in § 4.

The grey surfaces in figures 7 and 8 show surfaces of constant magnitude of
streamwise velocity, excluding Poiseuille, at a value of 0.8 times the maximal value
for two different R values for the C2 state for specific α = 1.55. We observed
similar patterns for other values of α and for the C1 state. The coloured surfaces
in the corresponding figures denote iso-surfaces of 0.8 times the maximal or
minimal streamwise vorticity, with blue corresponding to positive vorticity and
red corresponding to negative vorticity. Note that while the vortex structures become
closer to the origin with larger R, the streamwise velocity magnitude iso-surface,
which is dominated by the streak component, does not shrink noticeably towards
the origin. This feature is explained theoretically in § 4.4 and owes its origin to the
mechanism found by Deguchi & Hall (2014a).

A quantity of general interest, which has some technological implications, is the
friction factor Λ associated with each of these states. Λ is defined as

Λ := 64R
Rm

2 , where Rm := 2wR (3.1)

and w is the non-dimensional mean streamwise velocity given by

w= 2
∫ 1

0

(
(1− r2)+

N∑
j=0

w(2)
j00Ψj(r; 0)

)
r dr (3.2)
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FIGURE 7. Streamwise velocity and vorticity iso-surfaces at 0.8 times extreme values at
R= 50 000 for α = 1.55 for C2.
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FIGURE 8. Streamwise velocity and vorticity iso-surfaces at 0.8 times extreme values at
R= 191 020 for α = 1.55 for C2.

Λ is plotted against R for WK, C1, C2 solutions for three different values of α and
compared against the Hagen–Poiseuille value of 64/R in figure 9.

Now we report on other scaling features of the C1, C2 solutions for large R,
restricted to R < 2 × 105. These include the behaviour of rolls, streaks and waves,
including the location and magnitude of their maximum. We will also consider the
collapsing of these solutions towards the centre of the pipe. It is convenient to define
kth azimuthal-amplitude functions for rolls, streaks and waves and their maximums
as follows:

AU
k (r)=

√√√√( N∑
n=0

u(1)nk0Φn(r)

)2

+
(

N∑
n=0

u(2)nk0Φn(r)

)2

, AU
k,m :=max

r
AU

k (r)= AU
k (rm),

(3.3a,b)
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FIGURE 9. Friction factor ratio Λ/ΛHPF versus R for lower branch WK, C1 and C2
solutions at α = 1.55, α = 0.624; note Λ=ΛHPF = 64/R for Hagen–Poiseuille flow.

AS
k(r)=

√√√√( N∑
n=0

w(1)
nk0Ψn(r)

)2

+
(

N∑
n=0

w(2)
nk0Ψn(r)

)2

, AS
k,m :=max

r
AS

k(r)= AS
k(rm),

(3.4a,b)

Aw
l (r, θ)=

√
w(1)

l (r, θ)2 +w(2)
l (r, θ)2, (3.5)

A⊥l (r, θ)=
√

u(1)l (r, θ)2 + v(1)l (r, θ)2 + u(2)l (r, θ)2 + v(2)l (r, θ)2, (3.6)

where the lth axial Fourier component of wave velocity is defined for l even and odd
as: u(i)l (r, θ)

v
(i)
l (r, θ)

w(i)
l (r, θ)

 = ∑
06j6N
06k6M


u(i)jklΦj(r; kk0) cos kk0θ

v
(i)
jklΦj(r; kk0) sin kk0θ

w(i)
jklΨj(r; kk0) cos kk0θ

 ,

=
∑

06j6N
06k6M


u(i)jklΦj(r; kk0) sin kk0θ

v
(i)
jklΦj(r; kk0) cos kk0θ

w(i)
jklΨj(r; kk0) sin kk0θ

 (3.7a)

wk,l(r) =

(

N∑
j=0

w(1)
jkl Ψj(r; kk0)

)2

+
(

N∑
j=0

w(2)
jkl Ψj(r; kk0)

)2


1/2

, (3.7b)

wk,l,m = max
r

wk,l(r). (3.7c)
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FIGURE 10. Supremum norm of roll components (U, V) and of streak W versus R for
(a) C1 and (b) C2 solution.

Figure 10 shows roll component sup-norms ‖U‖∞ and ‖V‖∞ and streak sup-norms
‖W‖∞ for two different α as a function of R on a log–log scale. The linear fittings
on a log–log scale are based on a best-fit estimate of the data in the regime 5× 104<

R< 2× 105. The scaling for rolls for C1 ranges between R−0.74 and R−0.77; whilst the
streak scaling ranges between R−0.34 and R−0.38. We found a systematic trend for the
slope to steepen slightly with increasing α. For instance, at α = 2.51, the observed
roll slope is close to R−0.80, while the streak slope is R−0.40. The roll scaling for C2
on the other hand ranges between R−0.78 and R−0.80, whilst the streak size scaling
ranges between R−0.29 and R−0.35, again with slight dependence on α. At α = 2.51,
the observed roll slope is approximately R−0.80 and the streak slope is R−0.38. The
maximal streamwise wave amplitude for the l mode, ‖Aw

l ‖∞ for l= 1, 2, 3 is shown
in figure 11(a,b) for two different values of α for both C1 and C2. Note that the l= 1
component for axial wave velocity scales somewhere between R−0.50 and R−0.52 for C1,
and R−0.54−R−0.55 for C2, though the log–log scale also shows that the curves are yet
to straighten completely for the larger l range, and hence R may not be large enough
to reach the asymptotic regime for the larger l cases. The mode dependence of the
asymptotic trends is not unexpected since the effective Reynolds number is smaller
for small scales, i.e. for larger l or k. For l = 2, the decay rate is approximately in
the R−0.51 − R−0.60 range. For l = 3 the apparent scale is R−0.5 for C1 at α = 0.624,
while it is R−0.71 for C2. Note that different l modes have approximately the same
decay rate in R, suggesting that wave nonlinearity is important as R→∞. In other
words, the numerical results do not appear to be consistent with the VWI scenario of
a dominating single wave mode.

On the other hand, figure 11(c,d), show the scaling of the perpendicular wave
amplitude A⊥l (r, θ) for C1 and C2. For l= 1, this scaling ranges between R−0.76 and
R−0.78 for both C1 and C2, while the l= 2 mode corresponds to a faster decay rate in
both cases; note l= 3 curve is not as straight, suggesting it is further from reaching
its asymptotic limit.
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FIGURE 11. Supremum over (r, θ) of Aw
l (r, θ) and A⊥l (r, θ) at l = 1 (blue lines),

2 (red lines), 3 (green lines) for (a,c) C1 and (b,d) C2 solutions for different
α. Solid lines correspond to α = 1.55, while dashed lines represent α = 0.624.
Dotted lines show linear fittings. Negative slopes of dotted lines (from top to bottom)
are (a) 0.50, 0.52, 0.51, 0.58, 0.50, 0.65, (b) 0.54, 0.54, 0.60, 0.59, 0.71, 0.70,
(c) 0.76, 0.76, 0.86, 0.80, 0.84, 0.83, (d) 0.78, 0.78, 0.88, 0.88, 0.69, 0.78.
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FIGURE 12. Scaled radial roll-amplitude function AU
k (r)/A

U
k,m versus r/rm for C1 solution

for k= 1, 2, 3 for different R. (a,c,e) α = 1.55, (b,d, f ) α = 0.624.

In figure 12, we plot AU
k (r)/A

U
k,m against r/rm for the C1 solution for two different

values of α in (a,c,e) and (b,d, f ). We notice that the curves have almost collapsed into
a single graph, as might be expected if a single collapsing scale exists. The collapse
is not as good for k= 3, apparently because the R→∞ asymptotic state has yet to
be achieved for the smaller scales corresponding to larger k. Note the decay of rolls
in r/rm. This is explained asymptotically in § 4.3.

Figure 13(a,b) shows AU
k,m against R on a log–log scale for different values of k for

two different values of α. The corresponding radial location (r= rm), where the max
AU

k,m is attained, is shown in figure 13(c,d) through a log–log linear fitting in the range
7× 104 < R< 2× 105.
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FIGURE 13. Maximal radial roll amplitude AU
k,m and its location rm for kth azimuthal

component versus R for C1 solution for α = 1.55 (a,c) and α = 0.624 (b,d) when k = 1
(cyan line), 2 (magenta line), 3 (green line). Dotted lines show linear fittings. Negative
slopes of dotted lines (from top to bottom) are (a) 0.78, 0.79, 0.67, (b) 0.84, 0.65, 0.66,
(c) 0.23, 0.21, 0.22, (d) 0.23, 0.22, 0.22.
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FIGURE 14. Scaled radial roll-amplitude function AU
k (r)/A

U
k,m versus r/rm for C2 solution

for k= 2, 4, 6 for different R. (a,c,e) α = 1.55, (b,d, f ) α = 0.624.

We note that for the most dominant mode (k = 2), the scaling curves in (a,b) are
close to straight lines in the range 5 × 104 < R < 2 × 105 with the approximate
behaviour R−0.78−R−0.84, consistent with the decay rate of ‖U‖∞ observed in figure 10.
Beyond the most dominant mode, the graphs for other modes have not yet approached
a straight line, suggesting that R is not large enough to reach the asymptotic scaling
regime for larger k.

Notice in figure 13(c,d) that for the largest azimuthal component (k= 2), shown in
magenta, rm scales approximately as R−0.23. This is nearly the same for other k values
(k= 1, 3) though the curves become linear for larger R.

Figures 14 and 15 give the same set of scaling results for the solution branch C2.
Note however that the odd values of k are missing from the graph. This is because
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FIGURE 15. Maximal radial roll amplitude AU
k,m and its location rm for kth azimuthal

component versus R for C2 solution for α = 1.55 (a,c) and α = 0.624 (b,d) when k = 2
(cyan line), 4 (magenta line), 6 (green line). Dotted lines show linear fittings. Negative
slopes of dotted lines (from top to bottom) are (a) 0.79, 0.71, 0.73, (b) 0.79, 0.74, 0.75,
(c) 0.23, 0.23, 0.22, (d) 0.23, 0.23, 0.23.
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FIGURE 16. Profile of C1-streak amplitude AS
k(r) versus r for different R and k for

given α. (a,c,e,g) α = 1.55, (b,d, f,h) α = 0.624.

those components (within small calculation error) are zero since the corresponding
solutions have the Ω2-symmetry (shift-and-rotate) defined by Pringle et al. (2009).

Figure 16 shows streak amplitude AS
k(r) for different R and k with α = 1.55 and

α = 0.624 for the C1 solution. It is to be noted that for k = 0, we have a very flat
profile (see § 4.4 for a theoretical explanation). Because the roll effect on the streak
is more global, AS

k(r) does not collapse in the same way for different R as do rolls,
though for k 6= 0, there is a slight tendency of the maximum of the pattern to shift
towards the origin for large R.

Figure 17(a,b) show the maximal streak amplitude AS
k,m against R for different

azimuthal wavenumber k for C1 solution, while figure 17(c,d) show maximal radial
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FIGURE 17. Maximal kth streak amplitude AS
k,m versus R and its location rm versus R

for C1 solution for k = 0 (cyan line), 1 (magenta line), 2 (green line), 3 (red line) for
α = 1.55 (a,c) and α = 0.624 (b,d). k = 0 is missing in (c,d) since it has a flat profile.
Dotted lines show linear fittings. Negative slopes of dotted lines (from top to bottom) are
(a) 0.37, 0.33, 0.47, 0.53, (b) 0.33, 0.29, 0.33, 0.28, (c) 0.07, 0.23, 0.24, (d) 0.07, 0.21,
0.22.
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FIGURE 18. Profile of C2 streak amplitude AS
k(r) versus r for different R and k for

given α. (a,c,e,g) α = 1.55, (b,d, f,h) α = 0.624.

location rm against R. Note the k = 0 curve is missing since rm is not well defined
for a flat profile (see figure 16). The streak amplitude for the dominant k = 0 mode
scales as R−0.37 − R−0.33, close to the scaling of ‖W‖∞ in figure 10.

Figure 18 shows the streak-amplitude function AS
k(r) for different R and k for α =

0.624 and α = 1.55 for C2 solution. Again for k= 0, we observe a very flat profile.
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FIGURE 19. Maximal kth streak amplitude AS
k,m versus R and and its location rm versus

R for C2 solution for k= 0 (cyan line), 2 (magenta line), 4 (green line), 6 (red line) for
α = 1.55 (a,c) and α = 0.624 (b,d). k = 0 is missing in (c,d) since it has a flat profile.
Dotted lines show linear fittings. Negative slopes of dotted lines (from top to bottom) are
(a) 0.35,0.31,0.40,0.45, (b) 0.28,0.26,0.33,0.45, (c) 0.07,0.19,0.23, (d) 0.07,0.17,0.22.
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FIGURE 20. Scaled axial wave amplitude wkl(r)/wk,l,m versus r/rm for C2 solution at l=
1 for different k for α = 1.55. (a) (k, l) = (1, 1), (b) (k, l) = (3, 1), (c) (k, l) = (5, 1),
(d) (k, l)= (7, 1).

Figure 19(a,b) show the scaling of maximal streak amplitude AS
k,m with R for

different azimuthal wavenumber k for the C2 solution, while figure 19(c,d) show the
scaling of corresponding maximal location rm with R. Once again the k = 0 mode
data is absent since rm is ill defined for a flat profile. The streak amplitude for the
most dominant mode (k = 0) scales as R−0.35, R−0.28 for α = 1.55, 0.624 respectively,
consistent with the scaling of ‖W‖∞ in figure 10. Note that like the C1 solution, the
maximal location rm is almost independent of R; this feature is explained theoretically
in § 4.4.

Figure 20 shows the collapse of the radial profile of the scaled axial wave amplitude
wk,l(r)/wk,l,m against r/rm (see (3.7c)) for l= 1 for different k and R for C2 solution
for α = 1.55. A similar collapse was observed for the C1 solution and for other l
modes. For the radial wave components, the collapse was worse, presumably because
of their smaller sizes and limitations in numerical accuracy. However, in all cases, we
noted that the location of maximum rm shifted towards the origin for larger and larger
Reynolds number at a rate similar to the collapse rate of rolls. Also note the rapid
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FIGURE 21. Scaling of maximal wave stresses S1,m, S2,m with R for (a) α= 1.55, (b) α=
0.624 for both C1 and C2 solutions.

decay of the solutions with large r̂. This is shown to be a general property of all such
states in § 4.5.

It is to be noted that the streak structure does not collapse with R, at least not at the
same rate as rolls and waves, and appears to extend to a region where r/rm is large.
We explain this theoretically in § A.2. This is similar to the streak features observed
in boundary-layer flows observed by Deguchi & Hall (2014a).

To distinguish between a collapsing VWI state, where the wave amplitude is large
in a critical layer only, and a nonlinear viscous core (NVC) state where axial wave
and streak amplitude are of the same order throughout a shrinking core similar to
the state discovered by Deguchi & Hall (2014a) in a different context, we present
the contour plots for Reynolds stresses. For a NVC state in a pipe (see § 4.1), we
have a core shrinking as R−1/4, with 1− c= O(R−1/2). The critical curve defined by
1− c− r2+W(r, θ)= 0 has no significance in contrast to a VWI state. The Reynolds
stresses S1 and S2 are defined as

S1(r, θ)=
√〈

w
∂u
∂z

〉2

+
〈

w
∂v

∂z

〉2

(3.8)

and

S2(r, θ)=
√〈

u
∂u
∂r
+ v

r
∂u
∂θ
− v

2

r

〉2

+
〈

u
∂v

∂r
+ v

r
∂v

∂θ
+ uv

r

〉2

. (3.9)

We define Sj,m :=max(r,θ) Sj(r, θ) and the corresponding maximal location (rm, θm) in
polar coordinates.

Figure 21 shows S1,m and S2,m against R for α = 1.55, 0.624 for the C1 and
C2 solutions. It is clear that S2,m > S1,m. Note for the C1 solution, S1,m, S2,m scale
approximately as R−1.27, R−1.29 respectively, while they scale as R−1.34−R−1.35 for the
C2 solution. For stress plots, linear fittings involved the range 5× 104 < R< 2× 105.
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FIGURE 22. S2 contours for C1 solution showing 0.9, 0.8, 0.7, 0.5 and 0.3×S2,m for three
different values of R for given α: α= 0.624 (a,d), 1.55 (b,e), 2.47 (c, f ). Critical curve is
shown in black, and location of S2,m shown in ∗. (a–c) Re= 10 420, (d–f ) Re= 191 020.

The red points in figure 22 identify the locations of (rm, θm) where S2 attains
a maximum for the C1 solution. Contour plots of S2(r, θ) where S2/S2,m =
0.9, 0.8, 0.7, 0.5, 0.3 are also shown in the same figure for different R and α.
Though the contours for higher values of S2/S2,m appear centred about the critical
curve (where 1− c− r2 +W(r, θ)= 0) shown in black, they are far more spread out
than expected for a critical curve (see Deguchi & Hall (2014b)). We observed similar
features for the C2 solution.

4. Large R asymptotics for travelling waves

We discuss possible large R asymptotic structure of travelling waves in a pipe when
the axial wavenumber α is independent of R. Assume we have a structure at the centre
of the pipe of width δ 6 1. Note δ = 1 corresponds to a non-collapsing structure
characterized by (1− c)−1=O(1). We introduce the rescaled radial variable r̂ so that

r= δr̂. (4.1)

Then, on subtracting Poiseiulle flow (1− r2)ẑ, and decomposing the remaining velocity
into its axial component and its complement

v = w̃ẑ+ v⊥ (4.2)

it may be checked from the Navier–Stokes equation that v satisfies

(1− c− δ2r̂2 + w̃)∂zv + δ−1(v⊥ · ∇⊥)v − 2δr̂(v · r̂)ẑ

=−δ−1
∇⊥p̃− ∂ p̃

∂z
ẑ+ δ−2R−1∆⊥v + R−1 ∂

2

∂z2
v, (4.3)

δ−1
∇⊥ · v⊥ + ∂w̃

∂z
= 0. (4.4)

We now introduce scaled variables

v⊥ = δ1U(r̂, θ)+ δ2u(r̂, θ, z), (4.5)
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α δc δ3 δ1 δ δ2 δ4

Figure 3 Figure 10 Figure 10 Figures 13 and 15 Figure 11 Figure 11

1.55 C1 0.38 0.38 0.78 0.23 0.76 0.52
C2 0.38 0.34 0.79 0.23 0.77 0.54

0.624 C1 0.38 0.34 0.74 0.23 0.75 0.49
C2 0.32 0.29 0.79 0.23 0.78 0.54

TABLE 1. Estimated γ values in a R−γ scaling.

where U is the scaled roll and u the scaled wave components. The decomposition
is made unique by requiring the axial wavelength average 〈u〉 = 0. Similarly, we
decompose the axial velocity

w̃= δ3W(r̂, θ)+ δ4w(r̂, θ, z), (4.6)

where W is the scaled streak and w is the scaled axial wave velocity. We make the
mild assumption that δ2δ

−1 is of the same order of or smaller than δ3, which without
loss of generality implies

δ2δ
−1 6 δ3. (4.7)

(Note replacing any δ by 2δ or similar multiple of δ has no effect on the argument
since this is equivalent to replacing the variable multiplying δ by a constant multiple,
which does not affect the argument about the existence of the solution.) As will be
seen later, δ4 6 δ2/δ, and so condition (4.7) requires that the largest possible scale of
the axial wave amplitude does not exceed the streak. We make no further a priori
assumption regarding the scales. We decompose pressure as

p̃= δ5P(r̂, θ)+ δ6p(r̂, θ, z) (4.8)

and define c1 =Os(1), i.e. strictly of order one, so that

1− c= δcc1. (4.9)

The estimated negative exponents of δc, δ, δ1–δ4 in powers of R are obtained from
data in R ∈ (5× 104, 2× 105) for C1, C2 states and are displayed in table 1.

Now, we return to theoretical arguments. Axial averaging 〈·〉 of (4.3) and (4.4), the
projection in the orthogonal plane, results in

δ−1δ2
1U · ∇⊥U =−δ5δ

−1
∇⊥P+ δ1δ

−2R−1∆⊥U − δ−1δ2
2〈u · ∇⊥u〉 − δ4δ2

〈
w
∂

∂z
u
〉
(4.10)

∇⊥ ·U = 0. (4.11)

In order to enforce the divergence condition (4.11), P must appear in the leading-order
asymptotics in (4.10). (We could have instead balanced pressure and viscous terms
by taking δ5= δ1δ

−1R−1, in which case δ1= 1/δ is the distinguished scale that brings
inertial terms to the same order as viscous terms. However, this is equivalent to (4.12)
and (4.13).) This implies

δ5 = δ2
1 . (4.12)
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For the solutions with collapsing structure for which δ� 1, we impose the property
U→ 0 as r̂→∞ (in the inner radial scale). On the other hand, for δ= 1, the solution
satisfies the homogeneous boundary condition U = 0 at r = 1. In either case, the
leading-order balance in (4.10) as R→∞ must involve the viscous term for the steady
non-trivial solution. Thus,

δ1δ = R−1. (4.13)

Using (4.12) and (4.13), (4.10) reduces to

U · ∇⊥U =−∇⊥P+∆⊥U − δ2
2δ
−2
1 〈u · ∇⊥u〉 − δ4δδ

−2
1 δ2〈w∂zu〉. (4.14)

We are constrained to choose without any loss of generality

max
{
δ2,
√
δ4δδ2

}
> δ1 (4.15)

since otherwise U =Os(1) is inconsistent with the homogeneous boundary conditions
and asymptotically small forcing in (4.10) and (4.14) when R � 1. We note that
the equality in (4.15) will hold if there is no critical layer and the wave magnitude
is of the same order whenever r̂ = O(1). If there is a critical layer of thickness
δ̂ � 1 in the r̂ scale, since wave (u, w) = O(δ̂) outside the critical layer, then
max{δ2

2/δ
2
1, δ4δδ2/δ

2
1} � 1 in (4.14). In the limit when δ̂→ 0, the forcing reduces to

a delta function at the critical curve; consistent with U =Os(1) in (4.14) provided a
constraint between δ̂, δ2, δ1 is satisfied, which will be discussed in § 4.2.

Consider now the axial component of v in (4.3). Using (4.5) and (4.6), we obtain
by axial averaging 〈·〉 and using (4.13), the following equation for streak:

U · ∇⊥W =∆⊥W + δ
2

δ3
2r̂U · r̂ − δ2δ4

δ1δ3
〈u · ∇⊥w〉. (4.16)

Requiring solution W = Os(1) in (4.16) with homogeneous boundary conditions
implies that either the roll or wave term enters into the equation at the leading order,
i.e.

δ3 = δ2, or
δ2δ4

δ1δ3
> 1, δ2 6 δ3, (4.17a,b)

where the latter possibility will be ruled out in the ensuing discussions. Consider now
the equation for the wave (u,w) defined uniquely by the property 〈(u,w)〉= 0, where
u is the projection in the perpendicular plane, with radial and azimuthal components
(u, v). From the axial component of (4.3), using (4.5), (4.6), (4.13) and (4.16), we
obtain

(δcc1 − δ2r̂2 + δ3W + δ4w)∂zw+ δ1δ
−1(U · ∇⊥)w+ δ2δ

−1u · ∇⊥w

=− δ2

δδ4
u · ∇⊥(−δ2r̂2 + δ3W)− δ6

δ4

∂p
∂z
+ δ−2R−1∆⊥w+ R−1∂2

z w+ δ2δ
−1〈u · ∇⊥w〉.

(4.18)

For the components of the wave perpendicular to the cylinder, (4.3), with (4.5), (4.6),
(4.13) and (4.14) imply

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

75
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.751


Travelling wave states 305

(δcc1 − δ2r̂2 + δ3W + δ4w)∂zu+ δ1δ
−1(U · ∇⊥)u+ δ1δ

−1(u · ∇⊥)U + δ2δ
−1u · ∇⊥u

=− δ6

δ2δ
∇⊥p+ δ−2R−1∆⊥u+ R−1∂2

z u+ δ2δ
−1〈u · ∇⊥u〉 + δ4〈w∂zu〉, (4.19)

together with the divergence condition (4.4), which now implies:

∇⊥ · u+ δ4δ

δ2

∂w
∂z
= 0. (4.20)

Without any loss of generality,

δ4 6
δ2

δ
(4.21)

as otherwise (4.20) results in w being independent of z to leading order, which from
〈w〉 = 0, implies w = 0, which is inconsistent. Also, note that with condition (4.21),
(4.15) implies

δ2 > δ1. (4.22)

The parameter c1 in the system of (4.18)–(4.20) must appear in the leading-
order equation since it acts as an eigenvalue for non-zero solution to a system
of homogeneous equations for (u, w) with homogenous boundary conditions.
Furthermore, the pressure must come into the leading-order balance in (4.19) as
otherwise one cannot satisfy (4.20). Next, the term δ2r̂2 + δ3W must appear in the
leading-order balance as otherwise using

1
Rδ2
= δ1δ

−1 6 δ2δ
−1 6 δ3� δc, (4.23)

the resulting leading-order equations c1∂zw=−δ2∂zp̃, c1∂zu=−∇⊥p̃ (for some rescaled
pressure p̃), together with (4.20) have no non-trivial solution. Thus, δc =Os(δ3) since
the possibility δ3 � δ2 is ruled out in (4.17a,b). Therefore, without any loss of
generality, we have

δc = δ3. (4.24)

Other terms appearing in each of (4.18) and (4.19) have to be of the same or of lower
order than this term. For the pressure term to appear at the leading order in (4.19),
as it must,

δ6 = δ2δδ3. (4.25)

Further, all the other terms appearing in each of (4.18) and (4.19) cannot be any larger
than δc (or δ3), which on using (4.13), (4.21), (4.22) and (4.25) implies without any
loss of generality

1
Rδ2
= δ1δ

−1 6 δ2δ
−1 6 δ3, δ2 6 δ3, and

δ3δ2

δδ4
6 δ3. (4.26a,b)

Note that the last inequality gives δ4 > δ2/δ, which together with (4.21) implies

δ4 = δ2

δ
. (4.27)
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Using (4.22), (4.24) and (4.27) and (4.25), we may rewrite (4.18) and (4.20) as(
c1 − δ

2

δ3
r̂2 +W + δ2

δδ3
w
)
∂zw+ 1

Rδ2δ3
(U · ∇⊥)w+ δ2

δδ3
u · ∇⊥w+ u · ∇⊥

(
W − δ

2

δ3
r̂2

)
=−δ2 ∂p

∂z
+ 1

Rδ2δ3
∆⊥w+ 1

Rδ3
∂2

z w+ δ2

δδ3
〈u · ∇⊥w〉 (4.28)(

c1 − δ
2

δ3
r̂2 +W + δ2

δδ3
w
)
∂zu+ 1

Rδ2δ3
(U · ∇⊥)u+ 1

Rδ2δ3
(u · ∇⊥)U + δ2

δδ3
u · ∇⊥u

=−∇⊥p+ 1
Rδ2δ3

∆⊥u+ 1
Rδ3

∂2
z u+ δ2

δδ3
〈u · ∇⊥u〉 + δ2

δδ3
〈w∂zu〉, (4.29)

∇⊥ · u+ ∂w
∂z
= 0. (4.30)

There are now two distinct possibilities:

(i)
1

Rδ2δ3
= 1, (ii)

1
Rδ2δ3

� 1. (4.31a,b)

4.1. Case (i): 1/Rδ2δ3 = 1, (nonlinear viscous core (NVC))
If we assume (i), then it follows from (4.24) and (4.26a,b) that

1
Rδ2
= δ1

δ
= δ2

δ
= δ3 = δc. (4.32)

With the above scaling, and (4.27), the equations for rolls, streaks and waves from
(4.14), (4.16), (4.28) and (4.29) become

U · ∇⊥U =−∇⊥P+∆⊥U − 〈u · ∇⊥u〉 − 〈w∂zu〉 (4.33)
U · ∇⊥(W − Rδ4r̂2)=∆⊥W − 〈u · ∇⊥w〉 (4.34)

(c1 − Rδ4r̂2 +W +w)∂zw+ (U · ∇⊥)w+ u · ∇⊥w+ u · ∇⊥(W − Rδ4r̂2)

=−δ2 ∂p
∂z
+∆⊥w+ δ2∂2

z w+ 〈u · ∇⊥w〉 (4.35)

(c1 − Rδ4r̂2 +W +w)∂zu+ (U · ∇⊥)u+ (u · ∇⊥)U + u · ∇⊥u
=−∇⊥p+∆⊥u+ δ2∂2

z u+ 〈u · ∇⊥u〉 + 〈w∂zu〉, (4.36)

along with the divergence conditions (4.11) and (4.30). From (4.17a,b), (4.32), we
obtain

Rδ4 6 1. (4.37)

In this case, viscosity and nonlinearity come at the same order in a coupled system
of roll, streak and wave equations above. The distinguished scale in (4.33)–(4.36) is
clearly

δ = R−1/4 (4.38)
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since it brings the Poiseuille deviation of axial velocity from unity to the same order
as W and allows far-field matching. With this choice of δ, we obtain from (4.27)
and (4.32)

δ1 = R−3/4 = δ2, δ3 = R−1/2 = δ4, δc = R−1/2. (4.39a−c)

Since (4.33)–(4.36) with Rδ4 = 1 is a completely coupled system of roll, streak and
wave equations, it is not necessary to separate roll, streak and wave components to
obtain parameter-free leading-order asymptotic equations. One can directly look for
travelling wave solutions to (4.3) using the scales in (4.39a−c):

1− c= R−1/2c1, v = w̃ẑ+ v⊥, (4.40a,b)

w̃= R−1/2ŵ, v⊥ = R−3/4v̂⊥, and p̃= R−3/2p̂. (4.41a−c)

This gives rise to the parameter-free canonical nonlinear eigenvalue problem presented
in § 4.6. The far-field conditions on different azimuthal Fourier components are readily
deduced from discussions in the §§ A.2 and A.4. Unlike roll and wave components,
we find the remarkable feature that certain azimuthal streak components do not decay
as r̂→∞. This is similar to what was observed earlier by Deguchi & Hall (2014a)
in a different context.

4.2. Case (ii): 1/Rδ2δ3� 1 (VWI: vortex wave interacting states)
We now consider the full implications of assumption (ii). A priori, this involves two
sub-cases (ii.a) δ2/δ= δ3 with (u,w)=Os(1) when r̂=Os(1), i.e. there is no critical-
layer phenomena in the scaled (r̂, θ) variables and wave nonlinearity is important
everywhere in this region; and case (ii.b) where (u,w)� 1 outside a critical layer of
thickness δ̂� 1 (in the r̂ variable) in the vicinity of the critical curve. In case (ii.a),
the only choice of distinguished scale in δ that brings viscous term to the same order
as the nonlinearity corresponds to 1/Rδ2δ3 = 1, which is the case already discussed
in (i).

Therefore, we are only left with case (ii.b). It is clear that (4.28) and (4.29) reduce
to the following leading-order linear wave equations(

c1 − δ
2

δ3
r̂2 +W

)
∂zw+ u · ∇⊥

(
W − δ

2

δ3
r̂2

)
=−δ2 ∂p

∂z
, (4.42)(

c1 − δ
2

δ3
r̂2 +W

)
∂zu=−∇⊥p (4.43)

except in a neighbourhood of µ= 0 where

µ := c1 − δ
2

δ3
r̂2 +W. (4.44)

It is possible to eliminate u and w altogether from (4.42) and (4.43) using (4.30)
and the following Rayleigh equation for pressure to the leading-order outside the
critical layer:

∇⊥ ·

 ∇⊥p(
c1 − δ

2

δ3
r̂2 +W

)2

+ δ2(
c1 − δ

2

δ3
r̂2 +W

)2

∂2p
∂z2
= 0. (4.45)
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It is known that when the critical curve is approached, the inviscid (u, w) blows up
like the distance from the critical curve. More precisely u · es and w blows up like
1/µ. Note that the scales δ2 and δ4 = δ2/δ for perpendicular components u = (u, v)
and axial components w are based on the maximal value that these attain anywhere
in the domain; in particular this is based on their sizes in the critical layer, if there
is one. Outside the critical layer, they must drop by a factor of δ̂, i.e.

(u,w)=O(δ̂) outside the critical-layer. (4.46)

Using (4.21), this implies that the size of the forcing in the roll equation (4.14) is
δ2

2/δ
2
1 � 1 inside the critical curve of width δ̂, whereas it is O((δ2

2/δ
2
1)δ̂

2) outside
the critical layer. Therefore, in the asymptotic limit R→∞, when the critical-layer
thickness δ̂→ 0, the forcing is in the form δ2

2δ
−2
1 F([x − Xc(s)]/δ̂), which reduces to

a delta function at the critical curve Xc(s) provided

δ2
2

δ2
1
= 1

δ̂
, or δ2 = δ1δ̂

−1/2. (4.47a,b)

Now consider the critical-layer thickness δ̂. Within the layer, µ = O(δ̂), whereas
nonlinear terms are of size δ̂−1δ2δ

−1δ−1
3 and viscous terms are O(δ̂−2(Rδ3δ

2)−1).
Viscous effects are brought to the same order as the inviscid terms when we assume

δ̂ = δ−1/3
3 δ−2/3R−1/3. (4.48)

If we brought nonlinearity to the leading order within the critical layer, then we
are forced to assume δ̂ = (δ2δ

−1δ−1
3 )

1/2, which on using (4.47a,b), (4.13) implies
δ̂ = (Rδ2δ3)

−2/5, which is far smaller than the expression in (4.48). Therefore, as we
approach the critical layer, viscous effects show up before any possible nonlinear
effect and the correct expression for critical-layer thickness is given by (4.48). This
also implies wave nonlinearity to be small in the critical layer. Note that (4.47a,b)
and (4.48), together with (4.13) imply

δ2 = δ1δ̂
−1/2 = R−5/6δ

1/6
3 δ−2/3. (4.49)

Thus, using (4.13), (4.27) and (4.49), (4.14) and (4.16) reduce to

U · ∇⊥U =−∇⊥P+∆⊥U − R1/3δ2/3δ
1/3
3 〈u · ∇⊥u〉 − R1/3δ2/3δ

1/3
3 〈w∂zu〉,

and ∇⊥ ·U = 0 (4.50a,b)

U · ∇⊥W =∆⊥W + δ
2

δ3
2r̂U · r̂ −

(
1

Rδ2δ3

)2/3

〈u · ∇⊥w〉. (4.51)

With the assumption in this case, it is clear that the wave-averaged term 〈·〉 = o(1) in
(4.51). Therefore, it is clear from the streak equation that W =Os(1) implies

δ3 = δ2. (4.52)

Therefore, from the scale information gathered thus far, we have

v⊥ = δ−1R−1U(r̂, θ)+ R−5/6δ−1/3u(r̂, θ, z) (4.53)
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w̃= δ2W(r̂, θ)+ R−5/6δ−4/3w(r̂, θ, z) (4.54)

p̃= R−2δ2P(r̂, θ)+ R−5/6δ8/3p(r̂, θ, z) (4.55)

and
1− c= δ2c1. (4.56)

From (4.49) and (4.52), the critical-layer thickness in the r̂ variable becomes

δ̂ = (Rδ4)−1/3. (4.57)

Note that δ thus far is arbitrary except that (4.52) and 1/Rδ3δ
2� 1 imply

δ� R−1/4. (4.58)

The restriction on δ when δ� 1 arises from higher-order solvability as will be seen
shortly. With the scalings derived thus far, from definitions of Reynolds stresses S1

and S2 in (3.8) and (3.9), it follows that

S1, S2 =Os(R−5/3δ−5/3). (4.59)

Using the scalings inferred in (4.53)–(4.56), (4.28)–(4.29) become

µ∂zw+ u · ∇⊥µ− ε∆⊥w= F3, (4.60)

µ∂zu+∇⊥p− ε∆⊥u= F, (4.61)

where

ε = 1
Rδ4

, µ= c1 − r̂2 +W (4.62a,b)

F3 =−δ2∂zp− εU · ∇⊥w− ε5/6[u · ∇⊥w+w∂zw− 〈u · ∇⊥w〉] + εδ2∂2
z w (4.63)

F=−εU · ∇⊥u− ε5/6[u · ∇⊥u+w∂zu− 〈u · ∇⊥u+w∂zu〉] + εδ2∂2
z u. (4.64)

It is convenient to define X = (u, w), which is in the space of divergence-free
functions, satisfying zero boundary conditions. Note that the full equations (4.60)
and (4.61), without any approximation, may be compactly written as

L X = R (4.65)

where R = (F, F3), and the projection [L X]⊥ is given by left-hand side of (4.61),
while the axial component of [L X]‖ is given by (4.60). Note that the pressure p,
up to an unimportant additive constant, is implicitly determined in terms of X by
requiring X to be divergence free. We define the space of functions {Y}, where Y =
(ũ, w̃) satisfies zero boundary condition, and is dual to the space of functions {X}
through the non-degenerate pairing

(Y, X)=
∫
Ω

(ũ∗ · u+ w̃∗w) dV, (4.66)
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where Ω is the domain inside the cylinder domain truncated to a z-period. It is not
difficult to note that the adjoint L † defined so that its projection in the perpendicular
plane and along the pipe axis are defined by

[L †Y]⊥ =−µ∂zũ− ε∆⊥ũ−µ∇⊥w̃+∇⊥q (4.67)

and the axial component of [L †Y]‖ is given by

[L †Y]‖ =−2µ∂zw̃− ε∆⊥w̃+ ∂zq, (4.68)

where the dual space is constrained by the two-dimensional divergence equation

∇⊥ · ũ= 0, (4.69)

which determines q in terms of (ũ, w̃) up to a constant. Noting the scaling (4.46) of
the waves outside the critical layer of thickness δ̂, given by (4.48), it follows that the
contribution of waves to F3 and F given in (4.63) and (4.64) is relatively small and
to the leading order, we have the linear eigenvalue problem

L X = 0. (4.70)

Without loss of generality, we may seek a leading-order solution in the form

X = eiαz(u(0),w(0))+ c.c. (4.71)

Note that ε∆⊥ term is retained in L to provide a uniformly valid representation as
ε → 0 in the critical and boundary layers. It is convenient to denote the leading-
order eigenvalue and eigenvectors as (c1,0, X(0)) which itself will have an asymptotic
expansion in ε, which poses no problem in the following argument. The behaviour of
X(0) outside the critical and boundary layers is inviscid to the leading order and given
by

X(0) ∼ δ̂eiαz(u(I),w(I))+ c.c., (4.72)

where they satisfy

iαµ0u(I) =−∇⊥p(I) (4.73)
iαµ0w(I) =−u(I) · ∇⊥µ (4.74)
∇⊥ · u(I) + iαw(I) = 0, (4.75)

with
µ0 = c1,0 − r̂2 +W. (4.76)

It is possible to eliminate (u(I), w(I)) from (4.73)–(4.75) in terms of scaled pressure
which satisfies the Rayleigh equation

∇⊥ ·
(
∇⊥p(I)

µ2
0

)
= 0. (4.77)

Within the inviscid approximation, appropriate boundary conditions for p(I) inherited
from u(I) · r̂ = 0 at the wall, would require

∂rp(I)(δ−1, θ)= 0. (4.78)
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The Rayleigh problem can also be posed in a slightly more convenient manner by
introducing the conjugate variable Φ so that

−iαµ0u(I) = ∂r̂p(I) = µ
2
0

r̂
∂θΦ, −iαr̂µ0v

(0) = ∂θp(0) =−r̂µ2
0∂r̂Φ. (4.79a,b)

Then, Φ satisfies the elliptic equation

∇⊥ · (µ2
0∇⊥Φ)= 0 (4.80)

with wall boundary conditions now translating to the Dirichlet condition

Φ(δ−1, θ)= 0. (4.81)

From this, it easy to see that when the critical curve is approached, i.e. µ0→ 0, then
the component of wave velocity tangent to the critical curve u(I) · es blows up as
1/µ0 while es · ∇⊥p(I) = O(1) and the normal component eN · ∇⊥p(I) = O(µ0). Also
from the inviscid equation (4.74) for w(I), it follows that w(I) also blows up as µ−1

0 .
This information allows one to construct an inner equation when µ0=O(δ̂)=O(ε1/3)

where es · u(I), w(I) = O(δ̂−1) = ε−1/3, implying from (4.72), and matching with the
inner solution involving Airy functions, that X(0) must be O(1) in the critical layer,
while X(0) = O(ε1/3) outside. There is also a boundary layer at the wall where the
inviscid behaviour of X(0) is modified, but this does not play a role in the argument
below since waves decay fast in r̂ (see § A.4) and therefore, the wall boundary layer
for waves is weak. Note that the leading-order analysis does not constrain δ or α. For
this, a higher-order correction needs to be included.

It is convenient to expand X and the corresponding scaled wave speed c1:

X = X(0) + X(1) + · · ·, c1 = c1,0 + c1,1 + · · ·. (4.82a,b)

Aside from assuming that X(1) � X(0), c1,1 � c1,0, it is convenient not to assume
particular scalings in the higher-order correction at this stage. Then, it is clear from
(4.65) that X1 satisfies

L (0)X(1) = R(0) − c1,1∂zX(0), (4.83)

where L (0) is the operator L with µ=µ0 and

[R(0)]⊥ = F(0) = eiαz(−εU · ∇⊥u(0) − εα2δ2u(0))
− ε5/6e2iαz(u(0) · ∇⊥u(0) + iαw(0)u(0))+ c.c. (4.84)

[R(0)]‖ = F(0)
3 = eiαz(−iαδ2p(0) − εU · ∇⊥w(0) − εδ2α2w(0))

− ε5/6e2iαz(u(0) · ∇⊥w(0) + iα[w(0)]2)+ c.c. (4.85)

The solvability condition (we are assuming, as expected, that the null space of L † is
orthogonal to the range of L ) implies

c1,1(Y, ∂zX(0))= (Y, R(0)), (4.86)

where Y = (ũ, w̃) is any solution to the adjoint problem

L †Y = 0, (4.87)
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where the perpendicular and parallel projections of L †Y are defined by (4.67)
and (4.68), with µ=µ0. We now look at the null space of L †.

The leading-order behaviour of the solution to L †Y = 0 as ε→ 0 is discussed in
§ A.1. It emerges that if we rescaled variables so that Y = (ũ, w̃)= Os(1) inside the
critical layer of thickness δ̂ = ε1/3, then outside the critical layer,

Y = (ũ, w̃)=O(δ̂2)=O(ε2/3). (4.88)

Now, we are ready to estimate the terms on the left- and right-hand side of (4.86).
Because of (4.46) and (4.88), with δ̂ = ε1/3, it follows that the contribution from
outside the critical layer to (Y, ∂zX(0)) is O(ε), which is far smaller than the O(ε1/3)

contribution from the critical layer, noting the integrand to be Os(1) and the thickness
to be O(δ̂)=O(ε1/3). Therefore

(Y, ∂zX(0))=Os(ε
1/3). (4.89)

Now, we consider the scaling of the right-hand side in (4.86). We note that inside
the critical layer, U · es = O(1) and U · eN = O(δ̂)= O(ε1/3), which follows from the
continuity equation (4.11). Therefore,

〈e−iαz[R(0)]⊥〉 =−εU · ∇⊥u(0) =O(ε), (4.90)

whereas it is O(ε4/3) outside the layer. On the other hand, we have inside the critical
layer

〈e−iαz[R(0)]‖〉 =−iαδ2p(0) − εU · ∇⊥w(0) =O(δ2, ε), (4.91)

whereas outside it is O(δ2, ε4/3). Note that the pressure term outside remains of the
same order as inside the critical layer. Therefore, from expression of the inner product,
it follows that

(Y, R(0))=O(δ2ε1/3, ε4/3) (4.92)

is dominated by the contribution from the critical layer. It follows from (4.86) that
c1,1 = O(δ2, ε), with the O(δ2) term including α dependence, whereas there is no α

dependence in the O(ε) term. Note that this calculation must result in

Im c11 = 0. (4.93)

With the normalization already chosen, the complex coefficients of δ2 and ε on the
right-hand side of (4.92) are completely determined by the eigensolutions of the
leading-order equation both for the original as well as the adjoint problems. (We are
assuming, as might be expected, the non-degeneracy of the eigenvalues.) Therefore,
the only generic way in which (4.93) can be enforced is by requiring

δ2 = ε = 1
Rδ4

, implying δ = R−1/6. (4.94)

Note that from the same equation, since α appears together with δ2 in the O(δ2) term,
the constraint (4.93) also constrains α.
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4.3. Far-field roll behaviour

Using δ3 = δ2 in (4.50a,b) and taking the curl ∇⊥×, we obtain the two-dimensional
roll-vorticity equation:

∆⊥ω=U · ∇⊥ω+ (Rδ4)1/3 ẑ · (∇⊥ × 〈u · ∇⊥u+w∂zu〉), (4.95)

where the roll velocity U = (U, V)= ((1/r̂)ψθ , ψr̂). Here ψ is related to streamwise
vorticity ω through

−∆⊥ψ =ω. (4.96)
It has been argued in § A.2 that in the far field, where r̂� 1, the contribution from
the wave terms in (A 32) are negligible and systematic analysis of (A 32) suggests that
if we express

ψ =
∞∑

n=1

ψm0n sin(m0nθ), (4.97)

then for rolls with 4-fold (i.e. m0 = 4 in (4.97)) azimuthal symmetry, as observed for
the C2 solution, we have

ψ4n ∼ r̂−2n for n > 1. (4.98)

This implies that the corresponding roll velocity components

(U4n, V4n)∼ r̂−2n−1 for n > 1, (4.99)

On the other hand, for only 2-fold azimuthal symmetry (m0= 2) of rolls, as observed
for the C1 solution, we argue in § A.2 that

ψ2, ψ4 ∼ r̂−2 and ψ2n ∼ r̂−2n+2 ln r̂ for n > 3, (4.100a,b)

implying

(U2, V2), (U4, V4)=O(r̂−3) and (U2n, V2n)∼ r̂−2n+1 ln r̂ for n > 3. (4.101a,b)

4.4. Far-field streak behaviour
Note that the streak satisfies

∆⊥W =−2r̂U +∇⊥ · (UW)+ (Rδ4)−2/3〈∇⊥ · (uw)〉. (4.102)

Once again the wave contribution is argued to be sub-dominant in this equation in the
far field, and using the far-field behaviour of rolls, it has been shown in § A.3 that if
we express

W(r̂, θ)=
∞∑

n=0

Wnm0(r̂) cos(nm0θ), (4.103)

then in the case of streaks with 4-fold symmetry (m0 = 4),

W0 ∼ r̂−2, W4n ∼ r̂−2n+2 for n > 1, (4.104a,b)

so that the r̂ � 1 behaviour of W is dominated by the n = 1 mode resulting in
W(r̂, θ)∼W4(r̂) cos(4θ)∼ cos(4θ). On the other hand, when m0 = 2,

W0(r)∼ r̂−2, W2 ∼ ĉ2,W4 ∼ ĉ4 and W2n ∼ r̂4−2n ln r̂ for n > 3, (4.105a−c)

for some constant c2, c4. In this case, the r̂� 1 asymptotics are dominated by the 2
and 4 modes resulting in W(r̂, θ)∼ ĉ2 cos(2θ)+ ĉ4 cos(4θ).
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4.5. Far-field wave behaviour

In the regime δ−1(1− R−1/2+ε)� r̂� 1, when nonlinearity as well as wall boundary-
layer effects are absent, the equation for pressure (4.45) with the representation

p=
∞∑

m=0

pm(r̂, z) cos(mθ), (4.106)

satisfies the following equation to leading order:

∂2
r̂ pm − 3

r̂
∂r̂pm − m2

r̂2
pm + δ2∂2

z pm = 0. (4.107)

It has been shown in § A.4 that

pm(r̂, z)∼ D̂l,meilαz(r̂)2−
√

m2+4 + c.c., (4.108)

from which it may be deduced that the m-azimuthal mode for m > 2

(um, vm)∼ r̂−
√

m2+4−1. (4.109)

By using (4.74), it may be deduced that the corresponding streamwise component

wm ∼ r̂−
√

m2+4−2. (4.110)

The results (A 74) and (A 75) are valid for any l> 1, though the constants omitted in
the ∼ relation can depend on l.

4.6. The canonical parameter-free problem for NVC states
Using scaled variables (4.40a,b) and (4.41a−c), (4.3) transforms into the following set
of scaled nonlinear equations

(c1 − r̂2 + ŵ)∂zv̂⊥ + v̂⊥ · ∇⊥v̂⊥ =−∇⊥p̂+∆⊥v̂⊥ + δ2∂2
z v̂⊥ (4.111)

(c1 − r̂2 + ŵ)∂zŵ+ v̂⊥ · ∇⊥(c1 − r̂2 + ŵ)=−δ2∂zp̂+∆⊥ŵ+ δ2∂2
z ŵ (4.112)

∇⊥ · v̂⊥ + ∂ŵ
∂z
= 0. (4.113)

To the leading order, δ2=O(R−1/2) and thus it might appear that all terms involving δ
should be ignored. However, the streamwise momentum equation (4.112) along with
(4.113) implies

d
dz

{∫ 2π

0

∫ ∞
0
(c1 − r̂2 + ŵ)ŵr̂ dr̂ dθ

}
=−δ2∂z

{∫ 2π

0

∫ ∞
0

p̂r̂ dr̂ dθ
}
. (4.114)

As δ→ 0, we see no reason for the left-hand side to be zero; thus we have to account
for the singular limit: δ2∂zp̂→H′(z) as δ→0 for some periodic function H(z). (Recent
numerical calculations suggest that this is indeed the case.) This leads to the following
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fully-nonlinear parameter-free eigenvalue problem in the infinite domain 0 < r̂ <∞,
2π-periodic in both θ and αz describing limiting NVC states in a pipe:

(c1 − r̂2 + ŵ)∂zv̂⊥ + v̂⊥ · ∇⊥v̂⊥ =−∇⊥p̂+∆⊥v̂⊥ (4.115)

(c1 − r̂2 + ŵ)∂zŵ+ v̂⊥ · ∇⊥(c1 − r̂2 + ŵ)=−H′(z)+∆⊥ŵ (4.116)

has to be solved together with divergence condition (4.113), which is qualitatively
analogous to a problem in boundary-layer flow studied by Deguchi & Hall (2014a).
The far-field behaviour of rolls, streaks and wave components of the travelling wave,
discussed in §§ 4.3 and 4.5 gives the relevant far-field condition for different Fourier
components of v̂⊥ and ŵ.

5. Comparison between numerical computation and asymptotics

First, for VWI states when δ= 1, the R−1 scale for rolls, O(1) scale for streaks and
a maximal wave amplitude of O(R−5/6) occurring in a critical layer of width R−1/3

are, as expected, the same as Hall & Sherwin (2010) theory for channels. Because
(1− c)−1 =O(1), and the critical layer is not close to the pipe centre, the geometric
difference between a pipe and channel does not make any difference to the scale
prediction. Indeed, the reported scale for rolls and critical-layer thickness from direct
numerical calculation by Viswanath (2009) for the S antisymmetric state is consistent
with this prediction. Since asymptotic theory predicts that the wave-amplitude scaling
R−5/6 only persists over a layer of thickness R−1/3, and drops down to O(R−7/6)
outside the layer, it is clear that the kinetic energy of the waves is dominated by
the critical-layer contribution and scales as R−2. The square root of the kinetic
energy for l = 1, which is the dominant contribution, reported in Viswanath (2009)
is R−0.97, not far from asymptotic theory. As mentioned before, we were unable to
achieve numerical convergence for WK solutions for values of R much larger than
approximately 11 000 and so the agreement with the asymptotic scaling results for
VWI-states is only qualitative.

On the other hand, the numerically computed C1, C2 solutions appear to suggest a
shrinking structure near the centre of the pipe as R increases. For such cases, we have
identified two theoretical possibilities in the § 4 as R→∞:

Case (i) corresponds to a nonlinear viscous core with radial scaling δ = R−1/4,
with axial component of both streak and waves scaling as δ3 = δ4 = δ2 = R−1/2 while
perpendicular components of both rolls and wave-velocity scaling as δ1 = δ2 = δ3 =
R−3/4. In this case, the wave speed perturbation 1− c scales as δc = δ2 = R−1/2. The
canonical equations that arise have been presented in § 4.6.

Case (ii) corresponds to a shrinking VWI state where δ=R−1/6, δ3= δc= δ2=R−1/3,
δ1 = R−5/6, δ2 = R−5/6δ−1/3 = R−7/9, δ4 = R−5/6δ−4/3 = R−11/18.

We notice from table 1 that δ1δ ≈ 1/R, and δc ≈ δ3 as expected from the theory
in either case (i) or (ii) though for the smaller α value, C2 solution shows a marked
departure. We also notice that δ4≈ δ2/δ as expected from theory. However, δ2≈R−0.46

is not as close to δ3≈R−0.36 as expected from R→∞ consistent scaling. Nonetheless,
the observed wave stress S1, S2 scaling in figure 21 is consistent with asymptotic
scaling argument R−5/3δ−5/3. Since our numerical results on improved resolution did
not change the scales significantly, our conclusion is that the R→∞ asymptotic has
been attained for some, but not all quantities. This should not be too surprising since,
for instance, the scaling of the radial roll component seen in figure 15 shows that in
some instances the largest-amplitude azimuthal component has a steeper slope than the
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second largest. Clearly, if the same slopes persist, the one which does not decay as
rapidly with R will have to dominate eventually. In this connection, it is to be noted
further that Deguchi & Walton (2013) numerical scaling results for spiralling centre
modes in a pipe were in agreement with Smith & Bodonyi (1982) asymptotics for
R > 108; hence it is not unexpected that our finite R scaling results for R 6 2× 105

should deviate from R→∞ asymptotics.
To the extent that the observed core scaling δ (see table 1) in the numerically

calculated range of R is much closer to the theoretical R−1/4 scale for NVC states
than the R−1/6 predicted for shrinking VWI states, we believe that the C1–C2 solutions
are finite R realizations of the NVC states. There is of course significant discrepancy
between the numerically computed and asymptotically predicted δ3, δc, but we believe
this is because the R range of calculations is not sufficiently large. It is noteworthy
that 1 − c versus R curve consistently drifts towards a steeper slope for larger α,
suggesting that this is indeed the case since in the wave analysis, αR, appears as
a single large parameter. In this context, it may be pointed out that the (1 − c) ∼
R−1/3 asymptotic prediction of spiral states of Smith & Bodonyi (1982) is not realized
accurately in numerical observations until R > 108. Also, the Reynolds stress contour
curves in figure 22 show that they are significantly spread out from the critical curve,
which is quite different from the typical clustering observed in the VWI solution
(Deguchi & Hall 2014b).

6. Discussion and conclusion

In this paper, we report the numerical computation of travelling wave solutions
with shift-and-reflect symmetry through a numerical continuation process involving
small alternate wall suction and injection in the azimuthal direction. Through linear
stability analysis of the base state in the presence of suction–injection at a critical
Reynolds number, a neutrally stable mode was used to determine an initial guess
in a Newton iteration procedure to determine the finite-amplitude travelling wave
solution. Far from the Hopf-bifurcation point in the parameter space, solutions were
continued until suction–injection was completely turned off. This allowed recovery of
previous solutions of Wedin & Kerswell (2004), which provided an additional check
on the numerical code. Though restricted only to solutions with 2-fold azimuthal
symmetry, the process of calculation also resulted in the discovery of two previously
unrecognized solution branches, marked by a collapsing structure near the centre
of the pipe. We present many features of these solutions, identified as C1 and
C2, including scaling of the lower branch with Reynolds number in the range
5× 104 <R< 2× 105. The C2 branch of solution possesses shift-and-rotate symmetry,
besides the shift-and-reflect symmetry, resulting in streaks and rolls having 4-fold
azimuthal symmetry.

We also presented general asymptotic arguments for R→∞ to identify all possible
scalings as R→∞. For asymptotic states where the axial wavenumber is independent
of R, we identify two possible classes of solution. The first is a nonlinear viscous
core (NVC), with core radius δ = R−1/4, where axial components of fluid velocity
scale as R−1/2, while velocity components perpendicular to the pipe axis scale as R−3/4.
In this case, the wave speed c satisfies (1 − c) ∼ c1R−1/2 as R→∞, where c1 is
some order one constant. In the shrinking core, the inner equation is a fully nonlinear
eigenvalue problem with c1 as the eigenvalue; the equation resembles a fully-nonlinear
Navier–Stokes with R= 1. This nonlinear viscous-core state is similar in many respect
to the ones discovered by Deguchi & Hall (2014a) in a boundary-layer flow. While the
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wave and roll components are localized in the shrinking core with algebraic decay as
one moves away from the core, the streak component, though small, is the same size
inside and outside the core, until wall effects become important. Unlike the boundary-
layer flows of Deguchi & Hall (2014a), there is no exponential growth of streak
magnitude; instead some azimuthal component remains constant. We present evidence
to suggest that the computed C1–C2 solutions are actually a finite R realization of the
NVC states with 2-fold azimuthal symmetry.

A second possibility is a class of vortex wave (VWI) states, which have rather
different asymptotic structures from NVC. We identify, two sub-classes of VWI states,
with core width δ = 1 or δ = R−1/6 depending on whether or not the vortex wave-
structure collapse towards the pipe centre. For a vortex wave (VWI) solution, small
linear waves of amplitude O(R−5/6δ−4/3) concentrated mostly in a critical layer of
width δδ̂= δ(Rδ4)−1/3 drive rolls of magnitude O(R−1δ−1/3) which generate streaks of
magnitude δ2. In this case (1− c)=O(δ2). Outside the critical layer, where viscosity
is important but nonlinear interactions are still small, the wave components become
smaller by a factor of δ̂ = (Rδ4)−1/3. When δ = 1, the scalings of these vortex wave
solutions match those of Hall & Sherwin (2010) in a channel flow, and comparison
with the so-called S-antisymmetric numerical solution of Viswanath (2009) suggests
that his solution is a finite R realization of VWI states. Qualitative comparison with
data suggests that the same is likely true for the Wedin & Kerswell (2004) solution,
though a more quantitative comparison is hampered by our inability to continue the
Wedin & Kerswell (2004) solution beyond about R=11 000. In the case of a shrinking
core δ� 1, the conclusion that δ=R−1/6 is the only possibility requires us to consider
how neutral modes are perturbed by higher-order effects, and the viscous critical layer
plays a paramount role in this consideration.

To the extent that both VWI and NVC states arise from asymptotically small
perturbations of the basic Poiseuille flow, their relevance to transition in turbulence
is already recognized. In this context, we note that the shrinking core states have
waves and rolls scaling with larger magnitude than for δ= 1, in that sense, it takes a
larger perturbation from Poiseuille to reach these new states. On the other hand, these
shrinking core states have less interaction with the pipe boundaries, and are therefore
likely more robust to perturbations at the boundaries. The stability and control of these
states, which are likely to have slow and low-dimensional unstable manifolds, are
important matters for further research with both theoretical and practical implications.
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Appendix A
A.1. Adjoint equation analysis

Here we determine ε→ 0 asymptotic behaviour of null-space solutions to the adjoint
operator L † defined in (4.67) and (4.68).

Note L †ũ= 0 implies

µ0∂zũ+ ε∆⊥ũ=−µ0∇⊥w̃+∇⊥q (A 1)
2µ0∂zw̃+ ε∆⊥w̃= ∂zq (A 2)
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along with the 2-D divergence equation (4.69). From (4.84) and (4.85), it is clear that
non-trivial condition in (4.86) can arise only when the z-dependence is either in the
form e±iαz or e±2iαz. We will only consider e±iαz dependence since the inviscid adjoint
problem is, with change of variable, the same as the Rayleigh equation for pressure
where the eigenfunctions have eiαz dependence. We need not consider eigenfunctions
with e−iαz dependence since they do not produce an independent relation.

Outside the critical layer, using 〈q〉 = 0= 〈w̃〉, the inviscid leading-order balance in
(A 1) and (A 2) implies

−µ0iαũ=µ0∇⊥w̃−∇⊥q (A 3)
−2µ0iαw̃=−iαq. (A 4)

Substituting q= (2/µ0)q̃, (A 4) into (A 3) and (A 4), it is clear that ∇⊥ · ũ= 0 implies

∇⊥ ·
(
∇⊥q̃
µ2

0

)
= 0 (A 5)

and that
µ0iαũ= 1

µ0
∇⊥q̃. (A 6)

The condition ũ= 0 on the wall immediately implies the Neumann condition

∂r̃q̃(δ−1, θ)= 0. (A 7)

The inviscid approximation (A 5) with boundary condition (A 7) to the adjoint problem
is, as expected, the same as for the original pressure function because the Rayleigh
equation is in the self-adjoint form. Therefore, from previous arguments for pressure
p, as the critical layer is approached

es · ∇⊥q̃∼−A1(s), eN · ∇⊥q̃∼−
(

A1(s)
A0(s)

)′
µ0 where A0 = |∇⊥µ0|, (A 8a,b)

where s denotes the coordinate orthogonal to ∇µ0 and es and eN denote unit vectors
in the direction of increasing s and increasing µ0. From the inviscid adjoint equation,
the following behaviour is implied as the critical layer is approached

w̃∼ Aw(s)
µ2

0
, where A′w(s)=−A1(s) (A 9)

ũ · es ∼ AS

µ2
0
, where AS(s)=−A1(s)

iα
(A 10)

ũ · eN ∼ AN

µ2
0
, where AN =− 1

iα

(
A1(s)
A0(s)

)′
. (A 11)

We introduce critical-layer inner variables

µ0 = A2/3
0 δ̂n (A 12)

ũ · es ∼ As

A4/3
0 δ̂2

V , ũ · eN ∼ AN

A2/3
0 δ̂

U , Ŵ ∼ AW

A4/3
0 δ̂2

W , q∼ 2AW

A2/3
0 δ̂

Q. (A 13a−d)
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The axial velocity results in

2iαnW + ∂2
n W = 2iαQ. (A 14)

The velocity component in the perpendicular plane in the direction of increasing µ0
results in the following leading-order balance

−n∂nW + 2∂nQ= 0. (A 15)

Equations (A 14) and (A 15) are self contained and come with the matching condition

W ∼ 1
n2
, Q∼ 1

n
as n→±∞. (A 16a,b)

The tangential velocity equation in the perpendicular plane in the inner-scale becomes

iαnV + ∂2
n V = iαR(n, s), (A 17)

where
R(n, s)= (2Q− nW )+ B(s)∂2

n W , (A 18)

with

B(s)= 2A′0AW

3α2A0AS
. (A 19)

We note that the term independent of s in (A 18) has the asymptotic behaviour 1/n
which dominates B(s)∂2

n W ∼ 6B(s)/n4 as n→±∞, while divergence equation implies

∂nU + V + B1(s) (2V + n∂nV )+ B0(s)∂sV = 0, (A 20)

where

B0(s)= AS(s)
A0(s)AN(s)

, B1(s)=−2A′0(s)B0(s)
3A0(s)

. (A 21a,b)

Note that Q can be eliminated from (A 14) using (A 15) implying

∂3
n W + iαn∂nWn + 2iαW = 0. (A 22)

The solution with asymptotic behaviour W ∼ 1/n2 has the representation

W (n)= e−iπ/3α2/3F(e−iπ/6α1/3n), (A 23)

where F satisfies
zF′′ − F′ − z2F=−1. (A 24)

This has a unique solution with behaviour F(z)∼ 1/z2 as eiπ/6z→±∞ given by

F(z)= 4π

(−√3+ i)z

{
Ai′(ω−1z)

∫ 1

∞

Ai′(zτ)
τ 2

dτ −Ai′(z)
∫ 1

ω∞

Ai′(ω−1zτ)
τ 2

dτ
}
,

where ω= e2iπ/3. (A 25)

To check that (A 25) is regular at z = 0, we integrate by parts and use the Airy
equation to obtain

F(z)= 4π

(−√3+ i)

(
Ai′
( z
ω

) ∫ z

∞
Ai(z′) dz′ −ωAi′(z)

∫ z

ω∞
Ai
(

z′

ω

)
dz′
)
, (A 26)
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which is manifestly regular at z= 0. Further, from the form of F, it is clear that it is
a derivative of a function G(z), whose asymptotic behaviour as eiπ/6z→±∞ is given
by G(z)∼−1/z. Thus it follows that

∫∞
−∞W (n) dn= 0. Once W is determined, (A 14)

is used eliminate Q from (A 18). Defining

V (n, s)=W (n)+ iαB(s)e−iπ/3α2/3H(e−iπ/6α1/3n), (A 27)

it follows that H(z) satisfies
H′′ − zH = F′′. (A 28)

The solution for H(z) that decays like z−5 as eiπ/6z→±∞ is given by

H(z)= 4π

(
√

3+ i)

(
Ai
( z
ω

) ∫ z

∞
Ai(z′)F′′(z′) dz′ −Ai(z)

∫ z

ω∞
Ai
(

z′

ω

)
F′′(z′) dz′

)
.

(A 29)

Note that the fast decay of H(z) ensures V (n, s)∼W (n)∼ 1/n2 as n→±∞. Once
V is known, then (A 20) may be used to determine U .

The upshot of this calculation is to demonstrate that inner–outer matching is
possible for the adjoint problem and that if we rescaled our adjoint velocity variables
so that within the critical layer,

(ũ, w̃)=Os(1) (A 30)

then outside the critical layer of thickness δ̂ = ε1/3 = (Rδ4)−1/3, we must have

(ũ, w̃)=O(ε2/3). (A 31)

A.2. Analysis of far-field rolls
Here we give the details of the consistent asymptotic behaviour of rolls U for large r̂.
This will be used in the following section to confirm that streak terms do not decay
with r̂, explaining the numerical observation that for C1–C2 states, streaks do not have
the collapsing structure as R→∞ as do rolls and waves. The ensuing argument is
restricted to flows where the rolls have m0-fold azimuthal symmetry for m0 = 2 or
4, corresponding to the C1 and C2 solutions computed numerically. Also, it is to be
noted that the same analysis is valid for nonlinear viscous core (NVC) states, i.e. when
δ = R−1/4 in the regime δ−1� r̂� 1.

Using δ3= δ2 in (4.50a,b) and taking the curl ∇⊥×, we obtain the two-dimensional
roll-vorticity equation:

∆⊥ω=U · ∇⊥ω+ (Rδ4)1/3 ẑ · (∇⊥ × 〈u · ∇⊥u+w∂zu〉), (A 32)

where roll velocity U = (U, V)= (1/r̂ψθ ,−ψr̂) is related to ω by

−∆⊥ψ =ω. (A 33)

This is supplemented by regularity at the origin and wall boundary condition
ψ(δ−1, θ) = 0 = ∂r̂ψ(δ

−1, θ). Recall the property (4.46) of the waves outside the
critical layer of thickness δ̂=O((Rδ4)−1/3)�1, then the forcing from the wave outside
the critical layer in (A 32) is O((Rδ4)−1/3), and therefore small when δ � R−1/4. In
all cases, it is at most O(1).
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In the far field r̂� 1, as will be determined in § A.4, the wave components decay
rapidly (see (A 74) and (A 75)), which is consistent with numerical calculations of
C1–C2 states. Because of this rapid decay, it is consistent to neglect the contribution
of waves to the Reynolds stress terms in (A 32) since the particular solution to
this forced equation decays much more rapidly than the solution to the associated
homogeneous equation whose decay properties we now investigate. If U = o(r̂−1),
then it is consistent to assume that the large r̂ behaviour is dominated by solutions
of Laplace’s equation for vorticity ω, and hence a biharmonic equation for ψ . In that
case, the streamfunction ψ is expected to be dominated by the least decaying solution
in r̂ of the biharmonic equation which is a multiple of r̂−m0+2 sin(m0θ). For m0 = 4,
this assumption is self consistent since the corresponding U =O(r̂−3)= o(r̂−1).

On the other hand, if m0 = 2, if we assumed that the streamfunction ψ is
dominated by the least decaying solution of the biharmonic equation, then we
arrive at U =O(r̂−1), implying U · ∇⊥ω is of the same order as ∆⊥ω in (A 32). This
is inconsistent with neglecting U · ∇ω. Nonetheless, it is to be recognized that the
non-generic situation ψ ∼ r̂−2 sin(2θ) for the biharmonic solution is a possibility for
m0 = 2, in which case it is consistent to ignore U · ∇⊥ω.

In order to recognize the role of forcing and wall boundary conditions and
determine this non-generic situation where the least decaying behaviour is suppressed
for any particular m0, it is better to formulate an integral equation approach. The
equation for coefficient of sin(mθ) for streamfunction ψ may be written as

−
(

d2

dr̂2
+ 1

r̂
d
dr̂
− m2

r̂2

)2

ψm = [∇⊥ · (Uω)]m + (Rδ4)1/3(∇⊥ × 〈u · ∇⊥u+w∂zu〉)m
=: Fm(r̂) (A 34)

with the polar coordinate representation of the mth azimuthal mode

U = (U, V)=
(m

r̂
cos(mθ)ψm(r̂),−ψ ′m(r̂) sin(mθ)

)
. (A 35)

The solution to (A 34) satisfying the no-slip condition at the walls, ψm(δ
−1) = 0 =

ψ ′m(δ
−1), and which is regular at the origin is given by

ψm(r̂) = 1
8m(m2 − 1)

{
(m+ 1)r̂m

∫ r̂

δ−1
Fm(t)t3−m dt+ (m− 1)r̂−m

∫ r̂

0
Fm(t)t3+m dt

− (m− 1)r̂m+2
∫ r̂

δ−1
Fm(t)t1−m dt− (m+ 1)r̂2−m

∫ r̂

0
Fm(t)t1+m dt

}
+Amr̂m + Bmr̂m+2, (A 36)

where

Am =−δ
2m

8m

∫ δ−1

0
Fm(t)t3+m dt+ δ2m−2

8(m− 1)

∫ δ−1

0
Fm(t)tm+1 dt (A 37)

Bm = δ2m+2

8(m+ 1)

∫ δ−1

0
t3+mFm(t) dt− δ

2m

8m

∫ δ−1

0
tm+1Fm(t) dt. (A 38)

Thus, since the Reynolds stress term from waves is negligible, we have Fm ∼ [∇⊥ ·
(Uω)]m. Now, we have ∇⊥ω= (∂r̂ω, (1/r̂)∂θω).
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A.2.1. Leading-order roll asymptotics for 4-fold (m0 = 4) symmetric solution
For a state, such as the C2 state, where we have shift-and-rotate symmetry besides

shift-and-reflect symmetry, there is a 4-fold symmetry for rolls and streaks, though
not for waves, in which case the streamfunction corresponding to the rolls may be
expressed as ψ =∑∞j=1 ψ4j sin(4jθ). It follows that

ω=
∞∑

j=1

ω4j(r̂) sin(4jθ), where −ω4j(r̂)=ψ ′′4j(r̂)+
1
r̂
ψ ′4j(r̂)−

16j2

r̂2
ψ4j(r̂), (A 39)

and

U · ∇⊥ω=
∞∑

j,k=1

(
4k
r̂
ψ4k(r̂)ω′j(r̂) sin(4jθ) cos(4kθ)− 4j

r̂
ψ ′4k(r̂)ω4j(r̂) sin(4kθ) cos(4jθ)

)
.

(A 40)
It is consistent to assume (see (A 74) and (A 75) in the ensuing) that the wave
contribution to Fm (m= 4n) is small and so

Fm ∼ [U · ∇⊥ω]m =
n−1∑
j=1

{
2(n− j)

r̂
ψ4(n−j)(r̂)ω′4j(r̂)−

2j
r̂
ψ ′4(n−j)(r̂)ω4j(r̂)

}

+
∞∑

k=1

{
2k
r̂
ψ4k(r̂)ω′4n+4k(r̂)+

2(n+ k)
r̂

ψ ′4k(r̂)ω4n+4k(r̂)
}

−
∞∑

j=1

{
2(n+ j)

r̂
ψ4n+4j(r̂)ω′4j(r̂)+

2j
r̂
ψ ′4n+4j(r̂)ω4j(r̂)

}
. (A 41)

It is clear from the above expression that the contribution to Fm for m> 4 in the range
1� r̂� δ−1 must come from the first term while for m= 4, there is no contribution
from the first term. It is not difficult to conclude that for n>1, ψ4n∼ r̂−2n, ω4n∼ r̂−2−2n,
while F4∼ r̂−10, and for n> 2, F4n∼ r̂−4−2n. In particular, for n= 1 (m= 4), we obtain
from (A 36) that

ψ4(r̂)= 1
480

{
−5r̂−2

∫ δ−1

0
F4t5 dt+ 3r̂−4

(∫ δ−1

0
F4t7 dt

)
+O(r̂−6)

}
, (A 42)

which implies that the leading-order behaviour of the roll in the far field is

U = (U, V)∼ 1
r̂3
(4c4 cos(4θ), 2c4 sin(4θ)), (A 43)

where c4 is the coefficient of r̂−2 in (A 42) where the higher-order harmonics decay
even faster.

A.2.2. Leading-order roll asymptotics for 2-fold (m0 = 2) symmetric solution
Now, consider the asymptotics for states with 2-fold azimuthal symmetry, so that

m= 2n for integer n> 1. We mentioned earlier that the least decaying solution to the
biharmonic equation corresponds to ψ = sin(2θ), which is not consistent with neglect
of U · ∇⊥ω.
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Therefore if U=O(r̂−1) for r̂� 1, we have to seek the leading-order streamfunction
solution of the fully-nonlinear equation (A 32) (neglecting the wave contribution) in
the form

ψ = F(θ), (A 44)

where the corresponding velocity (U, V) = 1/r̂(F′(θ), 0) having π-periodicity in θ .
This leads to the nonlinear ODE

2F′(θ)F′′(θ)+ 4F′′(θ)+ F(iv)(θ)= 0. (A 45)

The first integral gives

G′′ =−A1

2
+ 6G2, where F′ + 2=−6G (A 46)

implying on integration
G′2 = 4G3 − A1G− A0. (A 47)

This has a solution in terms of the Weirstrass elliptic function P(z + C, ω1, ω2).
Requiring π periodicity of a real-valued solution gives rise to a one-parameter solution
family characterized by a1 in the following representation:

G(θ)=
∞∑

k=0

ak cos(2kθ). (A 48)

However, any such solution must correspond to no net radial flux through a cylinder
r̂ = r̂0 since the flux through the other boundary r̂ = δ−1 is zero. This implies that
F(θ) must be also π-periodic in θ , implying that∫ π

0
(6G(θ)+ 2) dθ = 0 implying a0 =−1

3
. (A 49)

The only solution that corresponds to this is a1 = 0. This can be seen easily through
a perturbation expansion in the parameter a1. Straightforward perturbation expansion
and requirement of periodicity shows

G(θ) = −1
3
+ a1 cos(2θ)+ a2

1

8
(−2 cos(4θ)+ 1)+ 3

64
a3

1 cos(6θ)

+ a4
1

512
(−4 cos(8θ)+ 4 cos(4θ)+ 1)+ a5

1

4096
(5 cos(10θ)− 9 cos(6θ))

+ a6
1

2048

(
−3

8
cos(12θ)+ cos(8θ)− 3

4
cos(4θ)− 3

16

)
+O(a7

1). (A 50)

There is no freedom left in satisfying a0=−1/3 when a1 6= 0 but small. The same is
true when a1 is not small, but this requires using the elliptic function representation.

We are forced to conclude that the assumption that U =O(r̂−1) is inconsistent with
no flux through the surface r̂= r̂0, which in turn is necessary for no flux through the
boundary walls. Instead, we have to look for non-generic solutions of the biharmonic
equation ∆2ψ = 0 in the far field for which ψ(r̂, θ) ∼ 1/r̂2 sin(2θ), in which case
it is consistent to ignore U · ∇⊥ω in (A 32). With this assumption we return to
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the integral equation (A 36), now with the representation ψ = ∑∞j=1 ψ2j(r̂) sin(2jθ).
It follows that

ω=
∞∑

j=1

ω2j(r̂) sin(2jθ), where −ω2j(r̂)=ψ ′′2j(r̂)+
1
r̂
ψ ′2j(r̂)−

4j2

r̂2
ψ2j(r̂), (A 51)

implying

U ·∇⊥ω=
∞∑

j,k=1

(
2k
r̂
ψ2k(r̂)ω′2j(r̂) sin(2jθ) cos(2kθ)− 2j

r̂
ψ ′2k(r̂)ω2j(r̂) sin(2kθ) cos(2jθ)

)
.

(A 52)
It is consistent to assume that the wave contribution towards Fm is small (see (A 74)
and (A 75) in the ensuing); this implies

Fm ∼ [U · ∇⊥ω]m =
n−1∑
j=1

{
(n− j)

r̂
ψ2(n−j)(r̂)ω′2j(r̂)−

j
r̂
ψ ′2(n−j)(r̂)ω2j(r̂)

}

+
∞∑

k=1

{
k
r̂
ψ2k(r̂)ω′2n+2k(r̂)+

(n+ k)
r̂

ψ ′2k(r̂)ω2n+2k(r̂)
}

−
∞∑

j=1

{
(n+ j)

r̂
ψ2n+2j(r̂)ω′2j(r̂)+

j
r̂
ψ ′2n+2j(r̂)ω2j(r̂)

}
. (A 53)

It is consistent to assume F2, F4, F6 ∼ r̂−8, F2n ∼ r̂−(2n+2) log r̂ and ψ2, ψ4 ∼ r̂−2 and
ψ2n ∼ r̂−2n+2 ln r̂ for n > 3, provided we satisfy the non-generic condition∫ δ−1

0
F2(t)t3 dt= 0. (A 54)

Then, in particular for m= 2 (n= 1) from (A 36), we obtain

ψ2(r̂)∼ 1
48

{
r̂−2

(∫ δ−1

0
F2(t)t5 dt

)
+O(r̂−4)

}
. (A 55)

The non-generic assumption (A 54) is forced on us, as otherwise a fully-nonlinear
analysis with the ansatz ψ =F(θ) in the roll-equation revealed no acceptable solution.
Therefore, we conclude that with 2-fold symmetry (m0 = 2), we must have

U = (U, V)∼ 1
r̂3
(2c2 cos(2θ), 2c2 sin(2θ)), (A 56)

where c2 is the coefficient of r̂−2 in (A 55).

A.3. Analysis of far-field streaks and absence of log correction to leading order
Now, we present the details of the behaviour of streaks in the far field. Consider the
full streak equation, which on using the divergence equation, may be written in the
form

∆⊥W =−2r̂U +∇⊥ · (UW)+ (Rδ4)−2/3〈∇⊥ · (uw)〉. (A 57)
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Now, we have

W(r̂, θ)=
∞∑

k=0

Wkk0(r̂) cos(kk0θ) (A 58)

and therefore, in particular

W0(r̂)= 1
2π

∫ 2π

0
W(r̂, θ) dθ =:W. (A 59)

Since U0(r̂)= 0, it follows from (A 57) that W0(r̂) satisfies

1
r̂

d
dr̂

(
r̂

d
dr̂

W0

)
=∇⊥ · (UW)+ (Rδ4)−2/3〈∇⊥ · (uw)〉 =:M0(r̂). (A 60)

Therefore, using regularity at the origin, and W0(δ
−1)= 0, we have from integration

of (A 60)

W0(r̂) =
∫ r̂

δ−1

dr′

r′

∫ r′

0
sM0(s) ds=

∫ r̂

δ−1
(ln r̂− ln s)sM0(s) ds

+
(∫ δ−1

0
sM0(s) ds

)
(ln r̂− ln δ−1). (A 61)

However, using the divergence condition and pipe-wall boundary condition at
r̂= δ−1, the expression (A 60) for M0(r̂) implies∫ δ−1

0
sM0(s) ds = 1

2π

∫ δ−1

0
r̂ dr̂

∫ 2π

0
dθ∇⊥ · (UW)

+ (Rδ4)−2/3 α

4π2

∫ 2π/α

0
dz

[∫ δ−1

0
r̂ dr̂

∫ 2π

0
dθ∇⊥ · (uw)

]
= 0. (A 62)

It follows that W ′0(δ
−1)= 0. This implies that the period-averaged friction at the wall

remains the same as for Poiseuille flow. However, since the calculation is with a fixed
pressure gradient, the flux for these new travelling states is smaller, and hence the
friction factor is higher. On integration by parts, and using the expression for M0,
(A 61) implies

W0(r̂)=
∫ r̂

δ−1
(UW + 〈uw〉)(s) ds. (A 63)

The integral representation (A 63) also explains the flatness of the k= 0 mode of the
streak in the neighbourhood of the origin as the integrand is small when both rolls
and waves are small, as found in the numerical calculations. Now, consider the mth
azimuthal component of the wave which in scaled form satisfies(

d2

dr̂2
+ 1

r̂
d
dr̂
− m2

r̂2

)
Wm =−2r̂Um + [∇⊥ · (UW)]m +

(
1

Rδ4

)2/3

〈∇ · (uw)〉m =:Mm(r),

(A 64)
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where the subscript m denotes cos(mθ) Fourier-component for m > 2. Therefore, by
requiring Wm to be regular at r̂= 0 and to be zero at r̂= δ−1, we have

Wm(r̂)= r̂m

2m

∫ r̂

δ−1
ρ1−mMm(ρ) dρ − r̂−m

2m

∫ r̂

0
ρ1+mMm(ρ) dρ + Bmr̂m, (A 65)

where

Bm = δ
2m

2m

∫ δ−1

0
ρ1+mMm(ρ) dρ. (A 66)

A.3.1. Far-field behaviour of streak for 4-fold symmetry (m0 = 4)
We now consider the behaviour of Mm using the behaviour of the rolls Ûm =

(Um, Vm) derived earlier, for m = 4n, n > 1. These are the 4-fold azimuthally
symmetric roll and streaks for states such as C2 that we have computed. We
have already deduced that ψ4n(r̂) ∼ r̂−2n for n > 1 and therefore, it will follow
that (U4n, V4n) ∼ r̂−2n−1. It is consistent to assume (see (A 74) and (A 75) in the
ensuing) that the wave contribution to M4n is negligible and hence from the decay
of (U4n, V4n) it follows at once that M4n ∼ r̂−2n, W4n ∼ r̂−2n+2 for n > 1. We also note
that this implies that M0, which has no contribution from the 2rU0 term, will have
the asymptotic behaviour r̂−4 and therefore the asymptotic behaviour of W0(r)∼ r̂−2

in the regime 1� r̂� δ−1. In particular, we note that the streak has a dominating
contribution like W(r̂, θ)∼W4(r̂) cos(4θ)∼ cos(4θ) in the asymptotic regime. In other
words, the streak does not decay and continues to the far field, until the wall effect
becomes important. This is seen in figure 18, though limitations in the largeness of
R, the regime 1� r̂� δ−1 is not quite visible.

A.3.2. Far-field behaviour of streak for 2-fold symmetric states
We now consider the behaviour of Mm, using the behaviour of rolls Ûm= (Um, Vm)

derived earlier, for m = 2n, n > 1. These are the 2-fold azimuthally symmetric roll
and streaks for states such as C1 that we have computed. Recall, we derived ψ2,
ψ4 ∼ r̂−2, ψ2n ∼ r̂−2n+2 ln r̂ for n > 3. This implies (U2, V2), (U4, V4) = O(r̂−3) and
(U2n, V2n)∼ r̂−2n+1 ln r̂ for n> 3, implying from neglect of the wave contribution (see
(A 74) and (A 75)) that M2,M4∼ r̂−2 and M2n∼ r̂−2n+2 ln r̂, for n> 3. This implies that
W2 ∼ ĉ2, W4 ∼ ĉ4, which are constants, and W2n ∼ r̂4−2n ln r̂ for n > 3. We also note
that M0, which has no contribution from the 2rU0 term since U0 = 0, has asymptotic
behaviour r̂−4 and therefore the asymptotic behaviour of W0(r) ∼ r̂−2 in the regime
1� r̂� δ−1. In particular, we note that the streak has a dominating contribution like
W(r̂, θ)∼ ĉ2 cos(2θ)+ ĉ4 cos(4θ) in the asymptotic regime. In other words, the streak
does not decay and continues to the far field, until the wall effect becomes important.
However, this behaviour is not clear in figure 16, because the behaviour becomes
more complicated by the expected occurrence of r̂−1 sin(4θ) in the roll streamfunction
appearing in a higher-order analysis and the fact that δ is not so small in the numerical
calculations.

A.4. Analysis of far-field wave equation
Substituting

p=
∞∑

m=0

pm(r̂, z) cos(mθ) (A 67)
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into (4.45) (with δ3= δ2), which is valid in the far field for both NVC and VWI states,
it is clear that pm(r̂, z) will satisfy

∂2
r̂ pm + 1

r̂
∂r̂pm − m2

r̂2
pm −

[
2

(c1 − r̂2 +W)
(−2r̂+ ∂r̂W)∂r̂p

]
m

− 1
r̂2

[
2∂θW

(c1 − r̂2 +W)
∂θp
]

m

+ δ2∂2
z pm = 0. (A 68)

If Wr � r̂ and Wθ � r̂2, which is the case both for 2-fold and 4-fold azimuthally
symmetric streaks, then the behaviour in the regime 1� r̂� δ−1(1−R−1/2+ε) is given
by

∂2
r̂ pm − 3

r̂
∂r̂pm − m2

r̂2
pm + δ2∂2

z pm = 0 (A 69)

with corresponding radial and azimuthal velocities satisfying ∂zum ∼ r̂−2∂r̂pm and
∂zvm =±mr̂−3pm and axial wave velocity component satisfying ∂zwm ∼−2r̂−1um. The
general solution of (A 69) is given in terms of Bessel functions:

pm(r̂, z)= r̂2
∑

l

eiαlz(Cl,mI√
4+m2(lδαr̂)+Dl,mK√

4+m2(lδαr̂)). (A 70)

The equations have to be modified in the regime δr̂− 1=O(R−1/2) to account for the
wall boundary layer. However, the radial component um of the wave velocity must
be zero to the leading order as the wall boundary layer is approached; hence the only
consistent solution corresponds to the choice Cl,m= 0. Now, since δ� 1, in the regime
1� r̂� δ−1, the expected behaviour of pm is given by

pm(r̂, z)∼ D̂l,meilαz(r̂)2−
√

m2+4 + c.c. (A 71)

Using (4.73), this gives the leading-order decay rate for wave velocity components
perpendicular to the axis

(u, v)∼− 1
iα

eiαzr̂−2(
√

2−1)−3((2
√

2− 2) sin(2θ), 2 cos(2θ))+ c.c. (A 72)

Using (4.74), it follows that the axial velocity behaves as

w∼− 1
α2

eiαzr̂−2(
√

2−1)−4(2
√

2− 2) sin(2θ)+ c.c. (A 73)

Also, it may be deduced that the m-azimuthal mode for m > 2 satisfies

(um, vm)∼ r̂−
√

m2+4−1 (A 74)

wm ∼ r̂−
√

m2+4−2. (A 75)

This is quite consistent with the numerical profiles for waves corresponding to the C2
solution shown in figure 20. Similar decay is observed for the C1 mode as well.
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