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TWO-VARIABLE LOGIC HAS WEAK, BUT NOT STRONG, BETH
DEFINABILITY

HAJNAL ANDRÉKA AND ISTVÁN NÉMETI

Abstract. We prove that the two-variable fragment of first-order logic has the weak Beth definability
property. This makes the two-variable fragment a natural logic separating the weak and the strong Beth
properties since it does not have the strong Beth definability property.

§1. Introduction. One of the many expressibility properties of first-order logic
with equality FO is the Beth definability property BDP. It states that if a relation
can be specified by some extra means then it can be specified explicitly without using
the extra means. In more detail, if Th is a first-order logic theory in a language L
and Σ is another first-order logic theory in the language L expanded with an extra
relation symbol R such that in each model of Th there is at most one relation R
satisfying Σ, then this unique relation can be defined in the original language L
without using the extra relation symbol, i.e., there is a formula ϕ in L such that
Th∪Σ |= ∀x(R(x) ↔ ϕ). In this context, Σ is called the implicit definition and ϕ is
called the explicit definition of R.

Investigating BDP for fragments of FO means showing that if all the formulas
of the theory and the implicit definition belong to the fragment, then the explicit
definition, too, belongs to it. Thus, having BDP or not shows a kind of “integrity”
of the fragment, and a kind of “complexity-property” of FO itself. For example,
the guarded fragment GF of FO has BDP [18]. Thus, if the theory Th and the
implicit definition Σ consist of guarded formulas, then the explicit definition can be
chosen to be guarded, too. We note that in the strict sense, GF does not have Craig
interpolation property, yet it is worth deciding when the interpolant belonging to
guarded Th and Σ can be chosen to be guarded itself [19]. For work of the similar
kind, see e.g., [5].

It is known that n-variable fragments FOn of FO do not have BDP, for all finite
n ≥ 2, see [1]. This means that if the theory Th and the implicit definition Σ all
use only n variables, the explicit definition ϕ may need more than n variables.
That the BDP fails for FO2 is kind of surprising, because FO2 usually behaves
“better” than FOn for n ≥ 3. For example, FO2 is decidable while FOn, for n ≥ 3
is not.
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786 HAJNAL ANDRÉKA AND ISTVÁN NÉMETI

The weak Beth definability property wBDP was introduced by Harvey Friedman
[12]. The definition of wBDP is the same as that of BDP except that only those
implicit definitions have to be made explicit which also have the existence property,
not only the uniqueness property. Let us call these strong implicit definitions. Thus
we require that R has an explicit definition only when in each model of Th there
is exactly one relation R satisfying Σ, as opposed to having at most one such
relation. (For formal definition see Definition 2 at the beginning of Section 3.) Thus,
BDP implies wBDP, since wBDP requires fewer definitions to be equivalent to an
explicit one. In mathematical practice, one almost always requires both existence
and uniqueness for an implicitly defined object. For this reason, wBDP sometimes is
considered to be a more natural definability property than BDP itself (see, e.g., [26,
p. 129]). We note that wBDP was intensely investigated in abstract model theory in
connection with logics stronger than FO, see, e.g., [6, 24].

It is known that FOn does not have wBDP either, whenever n ≥ 3 ([30] for n = 3,
[16] for n ≥ 5, and [3] for n ≥ 3). Proving failure of wBDP amounted to finding also
strong implicit definitions in FOn that could not be made explicit. It remained open
whether FO2 had wBDP or not.

In this paper we prove that FO2 does have wBDP, that is, in FO2 all strong
implicit definitions can be made explicit. This restores two-variable logic’s image
that it behaves better than n-variable logics for n ≥ 3. This theorem may also point
to wBDP being a more natural property than BDP.

As far as we know, the present paper contains the first proof for a logic to have
the wBDP not via showing that it has the stronger BDP. So, the difference between
BDP and wBDP was not tangible so far in the sense that there was no example for a
logic that distinguished the two properties. FO augmented with the quantifier “there
exists uncountable many”L(Q) was a good candidate for such a distinguishing logic,
since it does not have BDP [12] and it is consistent with set theory that it has wBDP
[26]. However, it is still an open problem whether wBDP can be proved for L(Q) in
set theory or not.

It is also satisfying that the distinguishing logic FO2 is a well-investigated, natural
logic. Luckily, we did not have to construct a logic to show that wBDP and BDP are
distinct properties, a well-known logic turned out to do the job for us. Two-variable
logic and its extensions are quite popular in computer science and in modal logic.

Our proof hinges on the fact that FO2 has a special property that FOn with n ≥ 3
do not have. Namely, each model of FO2 is FO2-equivalent with a model in which
elements of the same FO2-type also have the same automorphism-type (Theorems
1 and 2). FO3 does not have this property (Theorem 3).

The structure of the paper is as follows. In Section 2 we define the above kind
of models that we will call transitive and we prove the key property of FO2 about
the abundance of transitive models. In Section 3 we prove that FO2 has wBDP by
relying on these transitive models (Theorem 4). We close the paper with a remark
about some connections with algebra and the literature.

§2. Transitive models of FO2. We use the notation of [9], if not stated otherwise.
By FO we mean first-order logic with equality, but we do not allow function or
constant symbols.
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Let n be a finite number. By FOn we mean the fragment of FO that uses only
the first n variables. Strictly speaking, the fragment FOn of FO is defined by taking
for all languages L all the models of L but restricting the set of formulas of FO
to those that contain the first n variables only. Thus, relation symbols of arbitrarily
high rank can be allowed in FOn. For simplicity, in this paper in FOn we will allow
only languages with relation symbols of rank at most n. We go further, we allow
relation symbols of rank n only. These are not important restrictions. Usually, we do
not indicate the language, but we will always work with similar models, i.e., models
having the same language, if not stated otherwise.

We say that M and N are n-equivalent, in symbols M
n≡ N, when the same n-

variable formulas are true in M and in N. In this paper, we concentrate on n = 2.
By the type of an element in a model we understand the set of FO2-formulas true
of it. We say that M is transitive if whenever a and b are elements having the same
type in it, there is an automorphism of M taking a to b. In concise form:

(M,a)
2≡ (M,b) implies (M,a) ∼= (M,b).

A typical transitive model is the set of integers with the successor relation. A typical
non-transitive model is a connected graph on a set with more than three elements
in which there are nodes of distinct degree.

Let us call a model binary if all its basic relations are of rank 2. We prove in this
section that each binary model is 2-equivalent to a transitive model (Theorem 2). The
idea of the proof is that we construct a 2-equivalent version of any binary model via
replacing each binary relation in it with a suitable set of different successor relations.

A stronger version of the above will be proved in this section. We call a model
M 2-homogeneous if whenever a and b have the same type in it, to any element c ∈M
there is d ∈M such that (M,a,c)

2≡ (M,b,d ). This is a straightforward analogue
of the definition of α-homogeneity in [9] where α is any ordinal. We note that
transitivity implies 2-homogeneity, but not the other way round. Further, a finite
model is always 2-homogeneous (see the proof of Theorem 2).

Finally, we need the notion of 2-partial isomorphism. The notion of n-partial
isomorphism was defined in [7, p. 259] as a natural restriction of the usual notion
of partial isomorphisms between models of FO (see [9]). We recall the definition of
2-partial isomorphism in detail because we will rely on it.

Definition 1 (2-partial isomorphism). The set I is a 2-partial isomorphism
between models M,N if (i)– (iv) below hold:

(i) I relates elements as well as pairs of M and N, i.e., it is a subset of (M ×N )∪
(M 2 ×N 2),

(ii) local isomorphism property:
related pairs of I are isomorphisms between M and N restricted to the first
and second parts of the pair, respectively,

(iii) restriction property:
if 〈(a,a′),(b,b′)〉 ∈ I then 〈a,b〉 ∈ I and 〈a′,b′〉 ∈ I , and

(iv) back-and-forth property:
∀a ∈M∃b ∈N 〈a,b〉 ∈ I and vice versa, ∀b ∈N∃a ∈M 〈a,b〉 ∈ I ,
∀〈a,b〉 ∈ I∀a′ ∈M∃b′ ∈N 〈(a,a′),(b,b′)〉 ∈ I , and vice versa
∀〈a,b〉 ∈ I∀b′ ∈N∃a′ ∈M 〈(a,a′),(b,b′)〉 ∈ I .

https://doi.org/10.1017/jsl.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.7


788 HAJNAL ANDRÉKA AND ISTVÁN NÉMETI

Instead of 2-partial isomorphism we will simply say 2-isomorphism. It is known
that if two pairs are related by a 2-isomorphism, then the same FO2-formulas
are true of them, this is straightforward to show by induction. Thus, if there is a
2-isomorphism between two models, then they are 2-equivalent.

Being 2-isomorphic is stronger than being 2-equivalent. We are going to prove
that a binary model is 2-isomorphic to a transitive model if and only if it is
2-homogeneous. This stronger theorem will be used in the proof of weak Beth
definability property for 2-variable logic FO2 (Theorem 4).

Theorem 1. A binary model M is 2-isomorphic to a transitive model N if and only
if M is 2-homogeneous.

Proof. We prove sufficiency of 2-homogeneity first. Let M be any 2-
homogeneous binary model. We are going to define another model N and a
2-isomorphism I between them. N will be finite when M is so. Then we show that
N is transitive.

Some notation and terminology. The variables of FO2 will be denoted by x,y. By
the 2-type of a,b ∈M we understand the set of FO2-formulas �(x,y) that are true
for a,b in M. Formally,

Type(a,b,M) = {�(x,y) ∈ FO2 : M |= �[a,b]}.

Now we define

[a] = {b ∈M : Type(b,b,M) = Type(a,a,M)},
[a,b] = Type(a,b,M),
Types([a],[b]) = {[p,q] : p ∈ [a], q ∈ [b]}.

We call the elements of {[a] : a ∈M} 1-Types. Note that [a] is a subset of the model,
while [p,q] is a set of FO2-formulas.

The type [p,q] determines [q,p], and we call the latter the converse type [p,q]� of
[p,q]. Taking the converse is a bijection between Types([a],[b]) and Types([b],[a]).
We call a type [p,q] symmetric when [p,q] = [q,p], otherwise we call it asymmetric.
There is a unique element of Types([a],[a]) which contains x = y, we call this the
identity type on [a], it is denoted by id(a), and it is symmetric. A non-identity type is
a type which is not an identity type.

We begin the definition of N. A group G = 〈G,+〉 will be used in the definition of
N. That is, G is the universe of the group, and + is its group-operation. The identity
element (or zero-element) of + is denoted by 0, and the inverse of an element a is
denoted by – a. We call a group asymmetric when its zero-element is its only element
of order 2, i.e., when x + x = 0 implies x = 0 in it. Let G be any commutative
asymmetric group of size at least twice that of Types([a],[b]) for any a,b ∈M , i.e.,

|G | ≥ 2 · |Types([a],[b])| for all a,b ∈M. (g1)

There is such a G because for each odd number n the group Zn of integers smaller
than n and with addition modulo n is asymmetric, and then one can construct
an asymmetric group of any infinite size by taking an elementary submodel of a
sufficiently big ultraproduct of the Zn with odd n. Equivalently, use the upward
Löwenheim–Skolem–Tarski Theorem [9, Corollaries 2.1.5 and 2.1.6].
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The universe N of N is defined as

N = {([a],g) : a ∈M,g ∈G}.

Clearly, if M is finite, then G can be chosen to be finite, and then N is finite.
For the definition of the relations of N, let �= 〈�[a],[b] : a,b ∈M 〉 be a system of

functions mapping G to the types of M that satisfies the following conditions for all
a,b ∈M . We will write �a,b in place of �[a],[b], for easier readability.

�a,b :G → Types([a],[b]) is surjective,

�a,b(g) = �b,a(– g)� and �a,a(0) = id(a).

There is such a system � of functions, because of the following. When [a] 
= [b], take
any surjective �b,a : G → Types([b],[a]), there is such since |G | ≥ |Types([b],[a])|
by (g1), then define �a,b(g) = �b,a(– g)�, and this is also surjective because
Types([a],[b]) = {– t� : t ∈ Types([b],[a])}.

Assume now [a] = [b]. Since G is asymmetric, there is a set P ⊆ G such that P,
– P = {– g : g ∈ P} together with {0} form a partition of G. Let S denote the set
of all non-identity symmetric types in T = Types([a],[a]), then there is a set A⊆ T
such that A, A� = {t� : t ∈ A}, and S together with {id(a)} form a partition of T.
Now, |P| ≥ |S ∪A| by (g1), so there is a surjective function L : P→ (S ∪A). Define
now �a,a(g) = L(g) for g ∈ P, �a,a(g) = L(– g)� for g ∈– P, and �a,a(0) = id(a).
This function satisfies the required conditions (because both functions of taking
inverse in the group and taking converse in the types are their own inverses).

Now we define, for all a,b ∈M and g,h ∈G

ty(([a],g),([b],h)) = �a,b(h – g),

where h – g denotes h+ – g as usual in group theory. Then ty maps N ×N to the
types of M. Let R be an arbitrary binary relation symbol in the language of M. The
binary relation RN belonging to R in N is defined as

RN = {(p,q) ∈N ×N : R(x,y) ∈ ty(p,q)}.

By this, the model N has been defined.
Next, we exhibit a 2-isomorphism between M and N. We define I ⊆ (M ×N )∪

(M 2 ×N 2) by requiring for all a,b ∈M and p,q ∈N that

〈a,p〉 ∈ I iff p = ([a],g) for some g,
〈(a,b),(p,q)〉 ∈ I iff [a,b] = ty(p,q).

We now show that I is a 2-isomorphism between M and N. From the conditions
defining a 2-isomorphism, I clearly satisfies (i) by its very definition.

Next we show that the restriction property (iii) holds for I. Assume that
〈(a,b),(p,q)〉 ∈ I . This means that [a,b] = ty(p,q). Assume that p = ([c],g) and
q = ([d ],h). From the definition of ty(p,q) it is clear that ty(p,q) ∈ Types([c],[d ]).
Thus, [a,b] = [r,s] for some r ∈ [c] and s ∈ [d ]. But this implies that [a] = [r] = [c]
and [b] = [s] = [d ], hence 〈a,p〉 ∈ I and 〈b,q〉 ∈ I .

We show that I satisfies local isomorphism property (ii). Let R be an arbitrary
relation symbol in the language of M. Assume that 〈a,p〉 ∈ I . Then p = ([a],g) for
some g by the definition of I, and we have to show thatR(p,p) holds in N iffR(a,a)
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holds in M. By definition, R(p,p) holds in N iff R(x,y) ∈ ty(p,p) = �a,a(g – g) =
�a,a(0) = id(a), and R(x,y) ∈ id(a) iffR(a,a) holds in M, by the definition of id(a).

Assume that 〈(a,b),(p,q)〉 ∈ I . Then [a,b] = ty(p,q) by the definition of I. We
have to show that each of a = b,R(a,a), R(a,b), R(b,a), and R(b,b) holds in M iff
the same holds in N for p,q in place of a,b. Assume that p= ([c],g) and q = ([d ],h),
then ty(p,q) = �c,d (h – g) by the definition of ty. Now, a = b iff x = y ∈ [a,b] =
ty(p,q) = �c,d (h – g), and x = y ∈ �c,d (h – g) iff ( [c] = [d ] and h – g = 0) iff p = q.
Similarly, R(a,b) iff R(x,y) ∈ [a,b] = ty(p,q) iff R(p,q), by the definition of N. For
the next case, we want to show that

ty(p,q) = ty(q,p)�
. (t1)

Indeed, ty(p,q) = �c,d (h – g) = �d,c(g – h)� = ty(q,p)�, by the second condition
that � has to satisfy. By this, (t1) is proved.

Now,R(b,a) iff R(x,y) ∈ [b,a] = [a,b]� = ty(p,q)� = ty(q,p) iffR(q,p). Finally,
R(a,a) iff R(p,p) and R(b,b) iff R(q,q) hold by the first case of (ii), since we have
already shown the restriction property (iii). Thus, 〈(a,b),(p,q)〉 indeed specifies a
partial isomorphism between M restricted to {a,b} and N restricted to {p,q}.

We check the back-and-forth property (iv) for I. To check the first part, notice
that to any a ∈M there is at least one p = ([a],g) in N, because G is nonempty.
The second part is clear, since no 1-Type [a] is empty. To check the third and
fourth parts of the back-and-forth property, assume that 〈a,p〉 ∈ I with p= ([a],g).
Let b ∈M be arbitrary. We have to find a q ∈ N such that [a,b] = ty(p,q). By
surjectivity of �a,b , there is f ∈ G with [a,b] = �a,b(f). Let q = (b,f+ g). Then
ty(p,q) = �a,b(f+g – g) = �a,b(f) = [a,b] and we are done with the third part. Let
now q = ([b],h) ∈N be arbitrary. We have to find c ∈M such that [a,c] = ty(p,q).
Now, ty(p,q) ∈ Types([a],[b]) which means that there are a′ ∈ [a] and b′ ∈ [b] such
that ty(p,q) = Type(a′,b′,M). By a′ ∈ [a] we have Type(a′,a′,M) = Type(a,a,M),
so by 2-homogeneity of M there is c ∈M such that Type(a,c,M) = Type(a′,b′,M)
and this shows that [a,c] = ty(p,q). So, (iv) holds for I. We have seen that I is a
2-isomorphism between M and N.

We show that N is transitive. We have to show that if p,q ∈N are of the same type
in N, then there is an automorphism of N that takes p to q. Assume that p = ([a],g)
and q = ([b],h). Then 〈a,p〉 ∈ I and 〈b,q〉 ∈ I , by the definition of I. Since I is a
2-isomorphism between M and N, we get that the same formulas hold in N for p
as in M for a, and the same for q and b. Hence, a and b are of the same type in M

(since p and q are of the same type in N). It is easy to check that a and b are of the
same type in N iff [a] = [b]. Let k =– g+h and define α :N →N by

α(([c],f)) = ([c],f+k) for all c ∈M and f ∈G.

Now, α(p) = q by [a] = [b] and h = g+k. We show that α is an automorphism of
N. First, α is a permutation of N because G is a group. Let R be a binary relation
symbol in the language of N, and let r = ([c],i) ∈N , s = ([d ],j) ∈N . Now, R(r,s)
holds in N iff R(x,y) ∈ ty(r,s) = �c,d (j – i). Similarly, R(α(r),α(s)) holds in N

iff R(x,y) ∈ ty(α(r),α(s)) = �c,d (j+k – (i +k)). However, j – i = j+k – (i +k)
because G is commutative. Thus, α is indeed an automorphism, and we are done
with showing that N is transitive.
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We have seen that N is transitive, and this finishes the proof of one direction of
Theorem 1.

The other direction of Theorem 1, necessity of 2-homogeneity, follows from the
facts that a transitive model is always 2-homogeneous, and 2-isomorphisms preserve
being 2-homogeneous. In more detail, assume that I is a 2-isomorphism between
M and the transitive N. We have to show that M is 2-homogeneous. Let a,b,c ∈M
be such that [a] = [b]. By the back-and-forth property in the definition of a 2-
isomorphism, there are a′,b′,c′ ∈ N such that 〈a,a′〉, 〈b,b′〉, 〈(a,c),(a′,c′)〉 are all
in I. Then Type(a′,a′,N) = Type(b′,b′,N) since I is a 2-isomorphism and [a] = [b].
Since N is 2-transitive, there is an automorphism of N that takes a′ to b′. Let d ′

be the image of c′ under this automorphism. Then Type(a′,c′,N) = Type(b′,d ′,N)
since automorphisms preserve 2-types of elements. By the back-and-forth property
of I again, there is d ∈ M such that 〈(b,d ),(b′,d ′)〉 ∈ I . Then Type(a,c,M) =
Type(a′,c′,N) = Type(b′,d ′,N) = Type(b,d,M) and we are done. �

Next we state a corollary of Theorem 1.

Theorem 2. Each binary model is 2-equivalent to a transitive model. Each finite
binary model is 2-isomorphic to a finite transitive model.

Proof. For the definition of an �-saturated model see, e.g., [9]. First we prove

M is �-saturated implies that M is 2-homogeneous. (S)

Assume that M is �-saturated. Let a,b,c ∈ M be such that Type(a,a,M) =
Type(b,b,M). LetY = {b}⊆M and let Γ(x) = {�(x,b)∈FO2 : �(c,a) in M}. Then
Γ(x) is a set of formulas in the language of 〈M,b〉. We show that it is consistent
with the theory of 〈M,b〉. Let Δ be a finite subset of Γ(x), let �(y) denote the
formula ∃x

∧
Δ[b/y] that we get from ∃x

∧
Δ by replacing b everywhere with y.

Then M |= �(a) by the definition of Γ(x), and so M |= �(b) since a,b have the
same 1-Type in M. But M |= �(b) means that 〈M,b〉 |= ∃x

∧
Δ that shows that Δ is

consistent with the theory of 〈M,b〉. Since Δ is an arbitrary finite subset of Γ(x), this
means that Γ(x) is consistent with the theory of 〈M,b〉. Since M is�-saturated, then
there is d ∈M for which Γ(d ) holds. This means that Type(a,c,M) = Type(b,d,M)
and we are done with showing (S).

Now, Theorem 2 follows from (S) and Theorem 1 by using that each infinite
model is elementarily equivalent—hence 2-equivalent—with an �-saturated one
(see [9, Lemma 5.1.4]), that each finite model is �-saturated (see [9, Proposition
5.1.2]), and that the model N in the proof of Theorem 1 can be constructed to be
finite whenever M is finite. �

Theorem 3 below serves as a contrast to Theorem 2.

Theorem 3. There is a finite binary model that is not 3-equivalent to any transitive
model.

Proof. The binary model M has 45 elements and 4 basic relations S,G,R,B .
Let 〈Z5,+〉 denote the group of non-negative numbers smaller than 5 with addition
modulo 5, and let 9 = {0,1, ...,8} denote the set of non-negative integers smaller
than 9. We define

M = 5×9.
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Let s,g be permutations of 9 defined, in cycle form, as
s = (012)(345)(678) and g = (136)(147)(258),

and let r,b ⊆ 9×9 be defined as
r = {0,3,6}×{0,1,2}∪{1,4,7}×{3,4,5}∪{2,5,8}×{6,7,8} and
b = {0,4,8}×{0,5,7}∪{1,5,6}×{1,3,8}∪{2,3,7}×{2,4,6}.

Now, the basic relations of M are defined as

S = {〈(i,j),(i,s(j))〉 : i ∈ 5,j ∈ 9},
G = {〈(i,j),(i,g(j))〉 : i ∈ 5,j ∈ 9},
R = {〈(i,j),(i+ 1,k)〉 : i ∈ 5,(j,k) ∈ r},
B = {〈(i,j),(i+ 2,k)〉 : i ∈ 5,(j,k) ∈ b}.

We show that M is not 3-equivalent to any transitive model. Let us call a model
3,1-transitive when any two elements of the same 3-type can be taken to each other
by an automorphism. A transitive model N is 3,1-transitive, because let a,b ∈ N
have the same 3-types, then they have the same types in N, therefore there is an
automorphism taking a to b, by transitivity of N. Thus, it is enough to show that if
M is 3-equivalent to N then N is not 3,1-transitive.

Assume that M is 3-equivalent to N. For a first-order formula �(x,y) with free
variables among x,y let �(M) denote the relation that � defines in M, i.e., �(M) =
{(a,b) : M |= �[a,b]}. Let Ra(M) be the relation algebra of FO3-definable binary
relations of M, i.e., the universe of Ra(M) is {�(M) : �(x,y) ∈ FO3}, and the
operations of Ra(M) are the operations of taking union, converse, and relation
composition of binary relations together with the (base-sensitive) operations of
taking complement inM ×M and the identity constant {(u,u) : u ∈M} on M. Let
Ra(N) denote the similar algebra of FO3-definable binary relations of N. We show
the following:

M is 3-equivalent to N implies that Ra(M) is isomorphic to Ra(N). (1)

Indeed, it is easy to check that the relation {(�(M),�(N)) : �(x,y) ∈ FO3} is an
isomorphism between Ra(M) and Ra(N) when M is 3-equivalent to N.

A base-automorphism of Ra(N) is a permutation α of N that leaves all elements
of Ra(N) fixed when taking Z to {(α(u),α(v)) : (u,v) ∈ Z}. Now, Ra(N) is
called c-permutational iff any element of N can be taken to any other by a base-
automorphism.

N is 3,1-transitive implies that Ra(N) is c-permutational. (2)

To check (2), notice first that all elements in N have the same 3-type. This is
so because M is such and this property can be expressed with FO3 formulas
{∃x�(x,x) →∀x�(x,x) : �(x,y) ∈ FO3}. Therefore, N is 3,1-transitive means that
each element of N can be taken to any other element of N by an automorphism of
N. Finally, an automorphism α of N is a base-automorphism of Ra(N) and we are
done.

From now on, we will use [2].

Ra(M) is the algebra A defined in [2, section 2]. (3)
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Indeed, it can be checked that the basic relations S,G,R,B of M coincide with the
relations s,g,r0,b0 in [2, Section 2]. It is stated in [2, p. 375, line 16] thatA is generated
by these four elements, so each element of A is FO3-definable in M. In the other
direction, it is a theorem of relation algebra theory that all FO3-definable elements
of M can be generated from the basic relations of M with the operations of Ra(M),
see e.g., [32, Section 3.9] or [15, Theorem 3.32]. Thus, the elements of A are exactly
the FO3-definable binary relations of M and we are done.

In the proof of [2, Theorem 1] it is proved that A is not isomorphic to any c-
permutational algebra, and so N cannot be 3,1-permutational by (1) and (2). The
proof of Theorem 3 is complete. �

§3. Two-variable fragment of FO has the weak Beth definability property. We recall
the definition of when the two-variable fragment FO2 has the weak Beth definability
property (wBDP).

Definition 2 (wBDP for FO2). Let L be a language with relation symbols of
rank 2, and let Th be any set of formulas of FO2(L), the set of formulas of language
L that contain, bound or free, only the variables x,y. Assume that R is a binary
relation symbol not occurring in L, let L+ denote L expanded with R. Let Σ(R) be
a set of formulas of FO2(L+).

(i) We say that Σ(R) is a strong implicit definition of R w.r.t. Th when in each
model M of Th there is exactly one relationR⊆M ×M such that 〈M,R〉 |=
Σ(R). We say that Σ(R) is just a weak implicit definition of R w.r.t. Th when in
each model M of Th there is at most one relation R such that 〈M,R〉 |= Σ(R).
That is, with weak definitions it is allowed that in some models there is no
relation at all satisfying the implicit definition.

(ii) We say that Σ(R) can be made explicit w.r.t. Th, or that R has an explicit
definition over Th when there is a formula ϕ ∈ FO2(L) such that Th∪Σ(R) |=
∀x,y(R(x,y) ↔ ϕ). In this case, we say that ϕ is an explicit definition of R
in Th.

(iii) Now, FO2 has the weak Beth definability property means that each strong
implicit definition of FO2 can be made explicit.

It is proved in [1] that there is a weak implicit definition in FO2 that cannot be
made explicit. The question is whether there is also a strong implicit definition that
cannot be made explicit. The following theorem gives a negative answer to this.

Theorem 4. FO2 has the weak Beth definability property.

The proof of Theorem 4 uses the following two lemmas. We say that R⊆M ×M
does not cut 2-types inM if for all a,b,c,d ∈M we have (R(a,b) iffR(c,d )) whenever
the 2-type of (a,b) is the same as that of (c,d ) in M.

Lemma 1 (No-cut lemma). Assume that Σ is a weak implicit definition of R in Th
andTh∪Σ consists of FO2-formulas. Assume thatM is transitive and 〈M,R〉 |=Th∪Σ.
Then R does not cut 2-types in M.

Proof of Lemma 1. LetTh,Σ,M,R be as in the first two sentences of the statement
of Lemma 1. Assume that R cuts a 2-type in M. By using this, we are going to define
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a relation S distinct from R which also satisfies Σ in M, contradicting that Σ is an
implicit definition.

Assume that

R(a,b) and not R(c,d ) in M (a)

for some a,b,c,d such thatType(a,b,M) =Type(c,d,M). LetT =Type(a,b,M) and

t = {(m,n) ∈M ×M : Type(m,n,M) = T}.

We note that

T is not an identity type (d)

by (a) andM being transitive: assume (m,m)∈ t for somem ∈M , then (a,a),(c,c)∈
t and there is an automorphism α of M taking a to c. Hence (a,a) ∈ R iff (c,c) ∈
R because automorphisms preserve meanings of formulas and hence they leave
solutions of implicit definitions fixed. However, a = b and c = d by t being an
identity type, contradicting (a).

For a binary relation Z, let Z–1 = {(v,u) : (u,v) ∈ Z} denote its inverse, Z is
symmetric means that Z = Z–1. We define S ⊆M ×M as follows. If T 
= T� or
t∩R is symmetric, then we define S by “interchanging” t∩R with t \R, i.e.,

S = (R \ t)∪ (t \R).

If T = T� and t∩R is not symmetric then S is defined by “interchanging” (t∩R \
R–1) with its inverse (t∩R–1 \R), i.e.,

S = (R \ [t∩R \R–1])∪ (t∩R–1 \R).

Then S is distinct from R by t ∩R being nonempty in the first case, and by (t ∩R \
R–1)∪ (t∩R–1 \R) being nonempty in the second case. However,

S and R differ only inside t, (s)

that is, [R(m,n) iff S(m,n)] for all (m,n) ∈M ×M \ t. We are going to show that
〈M,S〉 |= Σ. We define J ⊆ (M ×M )∪ (M 2×M 2) by requiring for allm,n,p,q ∈M
that

〈m,p〉 ∈ J iff Type(m,m,M) = Type(p,p,M),
〈(m,n),(p,q)〉 ∈ J iff Type(m,n,M) = Type(p,q,M) and

[(m,n) ∈R↔ (p,q) ∈ S)] and [(n,m) ∈R↔ (q,p) ∈ S)].

We now show that J is a 2-isomorphism between 〈M,R〉 and 〈M,S〉. We check prop-
erties (i)–(iv) in the definition of a 2-isomorphism. (i) is satisfied by the definition
of J. Restriction property (iii) is satisfied, because if Type(a,b,M) = Type(p,q,M)
then Type(a,a,M) = Type(b,b,M) and Type(p,p,M) = Type(q,q,M).

Checking local isomorphism property (ii): Assume 〈(m,n),(p,q)〉 ∈ J . Then J
is a local isomorphism with respect to the language of M by Type(m,n,M) =
Type(p,q,M). We now check local isomorphism with respect to the new relation
symbol R. Indeed, R(m,m) iff S(p,p) holds because R(m,m) iff R(p,p) by the
restriction property, and R(p,p) iff S(p,p) by (s) and (d). We have R(m,n) iff
S(p,q) and R(n,m) iff S(q,p) by the definition of J. Thus property (ii) holds.
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Checking back-and-forth property (iv): The first line is satisfied by 〈a,a〉 ∈ J for
all a ∈M . For checking the second line, let m,n,m′ ∈M , 〈m,n〉 ∈ J . Let α be an
automorphism of M that takes m to n. There is such an α because 〈m,n〉 ∈ J and
M is transitive.

Assume that Type(m,m′,M) /∈ {T,T�}. Let n′ = α(m′). Then Type(n,n′,M) =
Type(m,m′,M) /∈ {T,T�}, because automorphisms do not change 2-types. By
(s) then R(e,f) iff S(e,f) for all (e,f) in {(m,m′),(m′,m),(n,n′),(n′,n)}, thus
〈(m,m′),(n,n′)〉 ∈ J by the definition of J.

Assume now that Type(m,m′,M) = T and T 
= T� or t ∩R is symmetric.
If R(m,m′), then let � be an automorphism that takes c to n and let n′ = �(d ).
Then (n,n′) ∈ (t \R) by (a), so (n,n′) ∈ S by the definition of S. Assume T 
= T�,
then (m′,m) ∈R iff (n′,n) ∈ S by (s). Assume that T = T� and t∩R is symmetric.
Then t ∩R–1 is also symmetric, hence (m′,m) ∈ R and (n′,n) /∈ R, so (n′,n) ∈ S.
Thus 〈(m,m′),(n,n′)〉 ∈ J . If notR(m,m′), then let � be an automorphism that takes
a to n and let n′ = �(b). From here on, the argument showing 〈(m,m′),(n,n′)〉 ∈ J
is completely analogous to the previous case.

Assume now that Type(m,m′,M) = T = T� and t ∩R is not symmetric, say,
(e,f) ∈ t ∩R \R–1. If (m,m′) ∈ (R∩R–1) then let n′ = α(m′). Then (n,n′) ∈ (R∩
R–1) by α(R) = R and so α(R–1) = R–1. Also, (n,n′) ∈ S ∩S–1 in this case, by
the definition of S. Hence 〈(m,m′),(n,n′)〉 ∈ J . The case (m,m′) /∈ (R ∪R–1) is
completely analogous. Assume (m,m′) ∈R\R–1. Let � be an automorphism taking
f to n, and let n′ = �(e). Then (n,n′) ∈R–1 \R, so (n,n′) ∈ S \S–1 by the definition
of S, and so 〈(m,m′),(n,n′)〉 ∈ J by the definition of J. The case (m,m′) ∈R–1 \R is
completely analogous.

The case when Type(m,m′,M) = T� can be proved in a completely analogous
way. By this, checking the second line is finished. The third line of (iv) follows in
our case from the second one by noticing that J is symmetric both inM ×M and
inM 2 ×M 2.

Thus J is a 2-isomorphism between 〈M,R〉 and 〈M,S〉, so 〈M,S〉 |= Σ. Thus both
R and the distinct S satisfy Σ, this contradicts Σ being an implicit definition. The
proof of Lemma 1 is complete. �

The next lemma is a kind of characterization of those implicit definitions that
cannot be made explicit.

Lemma 2 (Cut lemma). Assume that Σ is a weak implicit definition of R in Th,
and Th∪Σ consists of FO2 formulas. Statements (i)–(iii) below are equivalent.

(i) Σ can be made explicit in Th by an FO2-formula.
(ii) R does not cut 2-types in M whenever 〈M,R〉 |= Th∪Σ.

(iii) R does not cut 2-types in M whenever 〈M,R〉 |= Th ∪ Σ and M is
2-homogeneous.

Proof of Lemma 2. Clearly, (i) implies (ii) and (ii) implies (iii). To show that
(iii) implies (i), assume that (i) does not hold, we will infer the negation of (iii).

We will refer to the negation of (i) just as “R is not 2-definable”. Thus we want to
show that there is a model 〈M,R〉 |= Th∪Σ such that M is 2-homogeneous and R
cuts a 2-type in M.

By a 2-partition we understand a system 〈	i : i ≤ n〉 of FO2-formulas in the
language of Th such that Th∪Σ |= (

∨
{	i : i ≤ n}∧

∧
{¬(	i ∧	j) : i < j ≤ n}. We
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say that R cannot cut 	 when Th∪Σ |= ∀x,y(	(x,y) → R(x,y))∨ (∀x,y(	(x,y) →
¬R(x,y)). We say that R cannot cut into the 2-partition 〈	i : i ≤ n〉 when R cannot
cut any 	i for i ≤ n. We will use the following statement

R is 2-definable iff there is a 2-partition R cannot cut into. (L1)

Indeed, if R is definable by the FO2-formula �(x,y), then R cannot cut into 〈�,¬�〉.
In the other direction, assume that R cannot cut into 〈	i : i ≤ n〉. Let us treat natural
numbers in von Neumann’s sense, i.e., each natural number n is the set of smaller
natural numbers: n = {i ∈� : i < n}. For J ⊆ n let 	(J ) =

∧
{	j : j ∈ J}∧

∧
{¬	j :

j ∈ n \J}. By the assumption that R cannot cut into 〈	i : i < n〉 we have that R is a
union of some 	is in each model of Th∪Σ, i.e., Th∪Σ |=

∨
{R(x,y) ↔ 	(J ) : J ⊆ n}.

Since Σ is an implicit definition, we have Th∪Σ(R)∪Σ(R′) |= R(x,y) ↔ R′(x,y)
where R′ is a brand new binary relation symbol, so by compactness

Th∪Σ0(R)∪Σ0(R′) |= R(x,y) ↔ R′(x,y) for some finite Σ0 ⊆ Σ. (s)

Let 
(R) =
∧

Σ0(R) for a Σ0 satisfying (s). Assume that 〈M,R〉 |= Th∪Σ. Then
there is a unique J such that M |= R(x,y) ↔ 	(J ), since 	(J )∧	(K) is inconsistent
for distinct J and K. By 〈M,R〉 |= Σ and Σ0 ⊆ Σ we have that M |= 
(	(J )). Also,
M |= 
(	(K)) is not true for K 
= J by (s) since 	(J ) and 	(K) define distinct
relations in M. This shows that Th∪Σ |= R(x,y) ↔

∧
{
(	(J )) → 	(J ) : J ⊆ n},

and this is a 2-definition for R. Statement (L1) has been proved.
To prove (iii), we construct a 2-type T in the language of Th such that the set

Th∪Σ∪{R(x,y),¬R(z,v)}∪T (x,y)∪T (z,v) (L2)

of FO-formulas is consistent. That T is a 2-type means that either � ∈ T or ¬� ∈ T
for all FO2-formulas � in the language of Th. We say that a set of open FO-
formulas is consistent when there is a model and an evaluation that make the set
true. Equivalently, one can consider the free variables in the set to be constants, we
will use this second option.

Let � be an FO2-formula in the language of Th. A 2-partition of � is a system
〈	i : i ≤ n〉 such that Th∪Σ |= (�↔

∨
{	i : i < n})∧

∧
{¬(	i ∧	j) : i < j < n}. Let

T be a set of FO2 formulas in the language of Th. We say that T is good iff R can cut
into any 2-partition of

∧
T0, for all finite subsets T0 of T. Clearly, a directed union

of good sets is a good set again, so there is a maximal one among the good sets by
Zorn’s lemma. We will show that any maximal good set is a 2-type and that the set
in (L2) with any good T is consistent. We begin with this second statement.

Assume that T is good and let T0 ⊆ T be finite. Then R can cut into any
2-partition of

∧
T0, in particular R can cut into

∧
T0. This means that there is

a model of Th∪Σ∪{R(x,y),¬R(z,v)}∪T0(x,y)∪T0(z,v). By compactness, the set
in (L2) is consistent.

To show that a maximal good T is a 2-type, let T be any good set and let � be any
FO2 formula in the language ofTh. We show that eitherT ∪{�} is good orT ∪{¬�}
is good. Assume that neither of T ∪{�} and T ∪{¬�} is good. Then there are finite
subsets T0,T1 of T and 2-partitions 	= 〈	i : i ≤ n〉 of �∧

∧
T0 and � = 〈�j : j <m〉

of ¬�∧
∧
T1 such that R cannot cut into either of these two partitions. We can now

combine 	 and � to form a 2-partition 
 of
∧

(T0 ∪T1) by letting the members of
the partition 
 be 	i ∧

∧
T1 and �j ∧

∧
T0 for i < n,j < m. Clearly, R cannot cut
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into 
 by our assumption that R cannot cut into either of 	 and �; this contradicts
to T being good. With this, we have proved that any maximal good T is a 2-type.

By the above, we now have a 2-type T such that the set Δ = Th ∪ Σ ∪
{R(x,y),¬R(z,v)} ∪ T (x,y) ∪ T (z,v) is consistent. Let then 〈M,R〉 be any �-
saturated model of Δ. Then M is also �-saturated, and so it is 2-homogeneous
by statement (S) in the proof of Theorem 2. Also, R cuts the 2-type T in M by
〈M,R〉 |= Δ. We derived the negation of (iii) from the negation of (i), and this
finishes the proof of Lemma 2. �

Proof of Theorem 4. Assume that Σ is a strong implicit definition of R w.r.t. Th.
We are going to show that Σ can be made explicit, i.e., R has an explicit definition
over Th that uses only two variables.

Take any 2-homogeneous model M of Th, and let M be a transitive model with I
a 2-isomorphism between M and M. There are such M and I by Theorem 1. M is
a model of Th because 2-isomorphic models satisfy the same FO2-formulas. Since
Σ is a strong implicit definition of R in Th, there is R which satisfies Σ in M, i.e.,
〈M,R〉 |= Σ.

SinceM is transitive,R does not cut 2-types inM, by Lemma 1. We now “transfer”
R to the model M by the following definition: take any pair (a,b) in M. We define
R so that this pair is related by R if and only if there is a pair of the same type in M

which is related by R. Formally:

R = {(a,b) ∈M ×M : ∃c,d [R(c,d ) and Type(a,b,M) = Type(c,d,M)}.

We now show that with this definition, the 2-isomorphism I between M and M

remains a 2-isomorphism between 〈M,R〉 and 〈M,R〉. Since I is a 2-isomorphism
between M and M, it satisfies conditions (i), (iii), and (iv) in the definition of a
2-isomorphism, and it also satisfies condition (ii) for atomic formulas other than
R(v,z). Therefore, we only have to show that if 〈(a,b),(a′,b′)〉 ∈ I , then R(a,b) iff
R(a′,b′).

Assume that 〈(a,b),(a′,b′)〉 ∈ I . If R(a,b), then there are c,d ∈ M such that
R(c,d ) and Type(c,d,M) = Type(a,b,M), by the definition of R. The 2-type of
(a′,b′) is also the same as that of (a,b), since they are I-related by assumption.
Hence the 2-type of (c,d ) is the same as that of (a′,b′) (since they both equal the
2-type of (a,b)). ByR(c,d ) we now getR(a′,b′), since we have seen thatR does not
distinguish elements of the same 2-type. In the other direction, assume thatR(a′,b′).
Since (a,b) is I-related to (a′,b′), their 2-types equal, henceR(a,b) by the definition
of R. By this, we have seen that I is a 2-isomorphism between the expanded models
〈M,R〉 and 〈M,R〉. Since the latter is a model of Σ, we get that 〈M,R〉 is a model of
Σ, too. By its definition, R does not cut 2-types in M.

Since Σ is a weak definition over Th and the 2-homogeneous M |= Th was chosen
arbitrarily, we get that R does not cut 2-types in M whenever 〈M,R〉 |= Th∪Σ and
M is 2-homogeneous. Thus, Σ can be made explicit in Th, by Lemma 2 and this
finishes the proof of Theorem 4. �

§4. On some connections with algebra and the literature.
(1) There is an underlying algebraic intuition behind the proofs in the paper. For

example, one may wonder about the role of 2-homogeneity that shows up in
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Theorem 1. For any model of any logic, the concepts (that is, explicitly defined
notions) form a natural algebra with the connectives of the logic as operations,
this is called the concept algebra of the model. The “types” of a model form
a similar natural algebra only when some kind of homogeneity is satisfied. In
the case of FO2, this condition is 2-homogeneity. The algebra of types is an
atomic superalgebra of the concept algebra. A 2-partial isomorphism between
binary models induces an isomorphism between the respective algebras of
types, and vice versa, and any isomorphism between algebras of types induces
a 2-isomorphism between the respective models. All this is part of a general
approach to the “algebra behind logic”, for more on this see [4, Part II].

(2) A bridge between logic and algebra is elaborated in, e.g., [8], [14, Section 4.3],
or [4, Part II]. In this bridge, a class Alg(L) of algebras is associated with any
(decent) logic L. Namely, Alg(L) is the infinitary quasi-equational hull of the
class CA(L) of all concept algebras of models of logic. This correspondence
is used for stating equivalence theorems of the kind: L has logical property
LP if and only if Alg(L) has algebraic property AP. A satisfying fact is that,
usually, to natural logical properties natural algebraic properties correspond
this way (see the first sentence of [27]).

(3) To Beth definability BDP of a logic the corresponding algebraic property is
surjectivity of epimorphisms in Alg(L) considered as a category (ES), see
[14, Theorem 5.6] and [4, Theorem 6.11(i)]. Indeed, failure of the BDP for
n-variable logics was proved first via showing that ES fails in the category
of their concept algebras, see [1]. Failure of BDP for equality-free 2-variable
logic is proved also in algebraic form in [29].

(4) Weak Beth definability wBDP possesses several natural algebraic equivalent
properties, see [4, Theorems 6.11(iii) and 6.12] and [17]. Three of the
corresponding algebraic properties are (i) “surjectivity of CA(L)-extendible
epimorphisms”, (ii) “Alg(L) is the smallest full reflective subcategory
containing MA(L)”, and (iii) “MA(L) generates Alg(L) by taking limits
of diagrams of algebras”. Here, MA(L) is the class of maximal (with respect
to containment) members of CA(L).

(5) Craig Interpolation Property CIP and Beth definability property BDP are
related, for example, BDP is often proved from CIP. The interpolation
properties also have several variants that coincide in the case of FO while
happen to be distinct in other logics, e.g., in some modal logic. In the spirit
of the bridge theorems, to some interpolation property of a logic L some
kind of amalgamation property of Alg(L) corresponds, see, e.g., [4, Theorem
6.15]. A landmark paper on amalgamation and related properties in algebraic
versions of FO is [27].

(6) The algebraic equivalent of CIP is strong amalgamation property SAP. The
superamalgamation property SUPAP of Alg(L) is proved to correspond to a
stronger version sCIP of Craig interpolation property in [23, 25]. The question
whether they coincide for variants of FO is asked in [27]. This question is
answered in [28], where a variant of n-variable logic, for any finite n ≥ 3, is
constructed that has CIP but not sCIP. This is an analogous result to the one
in the present paper concerning Craig Interpolation Property in place of Beth
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definability property. We mention that all of the other questions in the two
diagrams in [27] have been answered in the meantime, see [22].

(7) There is an extended literature connecting logic and algebra. A tiny sample is
[10, 11, 13, 20, 21, 31].

In computer science, n-variable logic usually is used in a stronger version where it is
endowed with infinite conjunctions and disjunctions, see [16]. Let Ln∞,� denote this
logic as in [16]. Failure of wBDP for Ln∞,� in the case of n ≥ 3 is proved in [16], but
it also follows from [3] (since there the proof is based on finite counterexamples),
and failure of BDP for L2

∞,� follows from the proof in [1].

Question 1. Does L2
∞,� have weak Beth definability property?
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[3] H. Andréka and I. Németi, Finite-variable logics do not have weak Beth definability property, The
Road to Universal Logic (Festschrift for the 50th Birthday of Jean-Yves Beziau, Vol II) (A. Koslow and
A. Buchsbaum, editors), Studies in Universal Logic, Birkhäuser, Basel, 2015, pp. 125–133, Chapter 4.
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