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Darcy’s law is used widely to model flow in heterogeneous porous media via a spatially
varying conductivity field. The isotropic Darcy equation imposes significant constraints on
the allowable Lagrangian kinematics of the flow field and thus upon scalar transport. These
constraints stem from the fact that the helicity density in these flows is identically zero and
so the flow does not admit closed or knotted flow paths. This implies that steady Darcy
flow possesses a particularly simple flow topology which involves streamlines that do not
possess closed orbits, knots or linked vortex lines. This flow structure is termed ‘complex
lamellar’ and consists of fully integrable (in the dynamical systems sense) streamlines
which admit two analytic constants of motion and so preclude chaotic advection. In this
study we show that these constants of motion correspond to a pair of streamfunctions
which are single valued and topologically planar, and the intersections of the level sets of
these invariants correspond to streamlines of the flow. We show that the streamfunctions
and iso-potential surfaces of the flow form a semi-orthogonal coordinate system, that
naturally recovers the topological constraints imposed on the Lagrangian kinematics of
these flows. We use this coordinate system to investigate the impact of these constraints
upon the kinematics of Darcy flow, including the deformation of fluid elements and
transverse macrodispersion of solutes in the absence of local dispersion. These results
shed new light on the relevance and limitations of isotropic Darcy flow as a model of
transport, mixing and reaction in porous media.
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1. Introduction

Flow in porous media is central to a wide range of natural and man-made systems, from
groundwater hydrology and flow through biological tissues to packed bed reactors and
catalyst supports (Cushman 2013). These porous medium flows play host to a vast array of
physical, chemical and biological processes which are all partly controlled by the mixing,
dispersion and transport of solutes and colloids (Bear 1972). The interplay of molecular
diffusion and fluid advection governs these transport processes, where advection acts to
deform and distribute fluid elements, whilst diffusion continually acts to randomise the
location of colloids and solute molecules through Brownian motion (Kitanidis 1994). As a
result, transport in porous media cannot be understood or predicted without a quantitative
understanding of the advection process.

For example, statistical parameters for the distribution of fluid stretching rates act
as inputs for models of solute mixing and dilution (Villermaux & Duplat 2003; Le
Borgne, Dentz & Villermaux 2013, 2015; Dentz et al. 2016; Lester, Dentz & Le Borgne
2016a; Lester et al. 2018), whilst longitudinal and transverse dispersion is governed
by the shearing and stretching of fluid elements. These quantitative measures partially
describe the Lagrangian kinematics of the flow (Ottino 1989), which define the evolution,
deformation and distribution of fluid elements from the Eulerian flow properties. As such,
quantification of these kinematics and subsequent coupling with molecular or thermal
diffusion then provides a means to predict the mixing, dispersion (Dentz et al. 2018) and
reaction of solutes (Engdahl, Benson & Bolster 2014) and colloids. Often the link between
the Lagrangian kinematics and the Eulerian description of the flow can be very complex
(especially in the case of turbulent and chaotic flows) and often non-intuitive (Aref 1984;
Ottino 1989). These kinematics can place important constraints on the possible fluid
motions and deformations which in turn can constrain the mixing, dispersion and transport
processes. Hence, models of these transport processes must be conditioned by these
kinematics and model predictions must adhere to these imposed kinematic constraints.

The majority of macroscopic porous medium flows are modelled via the scalar Darcy
equation, where the fluid velocity is given as the product of the fluid pressure (or potential)
gradient and the local scalar hydraulic conductivity. The inherent heterogeneities of many
porous materials give rise to a spatially varying hydraulic conductivity field (Gelhar &
Axness 1983), which is often modelled as a random field that is conditioned with respect
to statistical information such as correlation structure and probability distribution. The
field of stochastic hydrogeology (Gelhar 1986; Dagan 1987; Neuman, Winter & Newman
1987; Dagan 1989; Gelhar 1993) seeks to make predictions of the transport, mixing and
dispersion of solutes over the ensemble of hydraulic conductivity fields which are defined
in terms of their statistical parameters.

It is important that any kinematic constraint of the flow must be enforced in a
stochastic model, otherwise there is a serious risk that the model may produce erroneous
predictions of flow and transport. Whilst these constraints are a direct outcome of
the governing flow equations, such stochastic models may involve implicit assumptions
or numerical approximations that may unwittingly violate these constraints. Although
stochastic hydrogeology models can generate a broad ensemble of possible streamlines
and fluid deformations, all realisations within this ensemble must adhere to the constraints
imposed by the Lagrangian kinematics.

These concepts are illustrated by consideration of transverse macrodispersion in a
steady, two-dimensional (2-D) heterogeneous Darcy flow in the absence of local dispersion
such as diffusion. In this example, streamlines of the flow are confined to the 2-D plane
and the topological constraint that streamlines cannot cross means that neighbouring
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streamlines cannot diverge or converge without bound. Hence, transverse macrodispersion
is zero for times much longer than the correlation time (Dentz & Carrera 2003; Attinger,
Dentz & Kinzelbach 2004). In this example, the kinematic constraint that streamlines are
bound to the 2-D plane is so obvious that little attention is ever paid to it, however, one
would immediately recognise that a proposed solution to a 2-D steady flow in a stochastic
hydrogeology model that allows streamlines to cross contains a fundamental error. This
error could then manifest as non-zero transverse macrodispersion, and so represents a
more serious error than that associated with e.g. numerical approximation or statistical
uncertainty.

Extending this concept to steady 3-D flows, it is currently unclear whether streamlines
can wander freely throughout the flow domain or whether there exist kinematic constraints
that confine their collective motion to coherent streamsurfaces. Similar to the 2-D
example, this behaviour has significant implications for the question of whether transverse
macrodispersion occurs in steady 3-D flows, as well as the nature of mixing and dilution
in these flows. The question of transverse macrodispersion which has been the subject
of ongoing debate over the past five decades (Dagan 1987; Gelhar 1993; Janković, Fiori
& Dagan 2003; Attinger et al. 2004; Janković et al. 2009; Beaudoin & de Dreuzy
2013). Hence, in both two and three dimensions, failure to identify and enforce kinematic
constraints can lead to fundamental errors that lead to unphysical behaviour. In the context
of stochastic hydrogeology, this can lead to spurious predictions of mixing, dispersion and
transport. Although uncertainty is inherent to all hydrological systems and there are many
sources of error in groundwater simulations, not all errors are equivalent. Errors such as
the violation of allowable kinematics are not just uncertainties, rather they alter the class
of allowable behaviour of solutions to a given model, fundamentally altering the way in
which we understand how these systems behave.

In this study we address this problem for steady, isotropic 3-D Darcy flow by considering
the kinematic constraints of these flows and their impacts upon mixing and dispersion.
This leads to four main questions: (i) What are these constraints and when do they
arise? (ii) What are their impacts on mixing and dispersion? (iii) Are these constraints
being observed in conventional groundwater simulations? And (iv) are these constraints
physically plausible? The last question is most fundamental as it goes to the heart of
whether such a model is appropriate for representing fluid flow and solute transport
in macroscopic porous media. The third question is more pragmatic in that resolving
it allows us to more clearly interpret the results of such simulations, and the first and
second questions allow us to directly interpret the implications of these constraints, and
in conjunction with (iii), results from numerical simulations. In this study we address
questions (i)–(iii) and provide grounding for question (iv), which shall be resolved in future
studies.

We investigate this problem in the context of steady 3-D Darcy flow in a porous medium
with isotropic, finite and smooth hydraulic conductivity, constant porosity, without sources
and sinks and away from boundaries. Although these assumptions do not necessarily
apply to practical groundwater scenarios, this scenario has been commonly used in order
to study the impact of spatial heterogeneity on longitudinal and transverse dispersion
(Janković et al. 2003; Attinger et al. 2004; Beaudoin & de Dreuzy 2013). These and many
other studies have omitted the impacts of other mechanisms such as boundary conditions
sources and sinks, stagnation points to clearly elucidate the mechanisms associated with
spatial heterogeneity. We study how the kinematic constraints associated with these flows
impact predictions of fluid dispersion, mixing and transport. To do this we consider
the Lagrangian kinematics of isotropic 3-D Darcy flow and derive the implications for
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mixing, dispersion and transport in random porous media. These results have significant
implications for the understanding and modelling of diffusive and non-diffusive flow and
transport in macroscopic porous media.

In § 2 we consider the kinematics of isotropic 3-D Darcy flow, and derive the governing
equations for the streamfunctions of these flows. In § 3 we numerically solve these
streamfunctions for an example problem of scalar heterogeneous 3-D Darcy flow and
discuss the implications for the development of highly accurate particle tracking methods.
In § 4 we use the streamfunction representation to develop a streamline coordinate system
for such flows. This streamline coordinate system is then used in § 5 to elucidate the impact
of these streamfunctions upon transverse dispersion in porous media with statistically
stationary random conductivity fields. Finally, conclusions are given in § 6.

2. Kinematics of scalar 3-D Darcy flow

2.1. Properties of scalar Darcy flow
In this section we consider the kinematics of steady 3-D Darcy flow in a heterogeneous
porous medium with constant porosity θ that is described by the Darcy equation

v(x) = −k(x)/θ∇φ(x), (2.1)

where x = (x1, x2, x3) denotes physical space in Cartesian coordinates, v(x) is the fluid
velocity, k(x) is the scalar hydraulic conductivity (which is smooth, positive and finite)
and φ(x) the pressure (or flow potential). Equation (2.1) represents a model for flow in
locally isotropic porous media as the tensorial conductivity representation of (2.1), v(x) =
−(K/θ) · ∇φ, where the hydraulic conductivity tensor K(x) is isotropic and so may be
represented as the scalar conductivity k as K = kI , leading to (2.1).

Note that the scalar conductivity field k(x) may be statistically anisotropic, in that
the correlation structure of the field is orientation dependent (Bear 1972). This is not
to be confused with locally anisotropic hydraulic conductivity, where the conductivity
is tensorial and K /= kI . This study pertains to the kinematics of Darcy flow in all
scalar conductivity fields, henceforth described as scalar Darcy flow, whether statistically
isotropic or anisotropic. It is also important to note that as this study is concerned with the
kinematics of steady Darcy flow, we are concerned with the trajectories (streamlines) of
fluid particles, where we consider a ‘particle’ not as a physical particle that may undergo
diffusion or finite-size effects (lift, drag, Basset forces or Magnus effects) but rather as an
idealised tracer particle that marks a material point in the fluid continuum.

As the velocity field v is divergence free, from (2.1) the flow potential φ satisfies an
advection–diffusion equation of the form

∇ · v = ∇2φ + ∇f · ∇φ = 0, (2.2)

where f ≡ ln k.
In Darcy flow in highly heterogeneous media (e.g. for log-Gaussian conductivity fields

with log variance σ 2
ln k > 4), strong variations in the hydraulic conductivity k are well

known to generate highly convoluted streamlines through high and low permeability
regions and ‘anomalous’ (non-Fickian) transport (Cortis & Berkowitz 2004), leading to
long residence times and heavy-tailed solute breakthrough curves. Less well recognised
is the fact that, despite these strong heterogeneities, Darcy flows in porous media with a
scalar conductivity field possess a remarkably simple Lagrangian structure. This is due to
two key properties of (2.1) that significantly constrain the Lagrangian kinematics of scalar
Darcy flow.
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The first defining characteristic of scalar Darcy flow is that it does not admit closed
streamlines in the flow field (Bear 1972) as the pressure field φ must both decrease with
advective distance but also be single valued along a streamline. As a consequence, in the
absence of domain boundaries and fluid sources and sinks, the fluid velocity field v(x)
does not admit stagnation points

v(x) /= 0 ∀x. (2.3)

This condition constrains the streamline topology to be open as recirculation regions
cannot occur in the flow. Although important transport kinematics can arise at stagnation
points (Bresciani, Kang & Lee 2019) in Darcy flow with boundary effects or in the
presence of sources and sinks, these flow features are beyond the scope of this study.

The second defining characteristic of scalar Darcy flow is that the helicity density h(x),
defined as the product of fluid velocity and vorticity (Moreau 1961; Moffatt 1969; Moffatt
& Tsinober 1992; Moffatt 2014), is everywhere zero, as shown by the vector identity

h ≡ v · ω = (k/θ)∇φ · (∇φ × ∇(k/θ)) = 0, (2.4)

where ω ≡ ∇ × v = ∇φ × ∇(k/θ) is the vorticity vector. Scalar Darcy flows are
characterised by having a helicity density that is everywhere zero, irrespective of the
correlation structure or degree of heterogeneity of the conductivity field or the nature of
the pressure field. Note that the zero helicity condition does not apply to Darcy flow in
porous media with a tensorial hydraulic conductivity field K (Holm & Kimura 1991) as in
general

h ≡ v · ω = (K/θ · ∇φ) · (∇ × (K/θ · ∇φ)) /= 0. (2.5)

The total helicity H, defined as the volume integral of the helicity density over the flow
domain Ω (Moffatt 1969)

H =
∫
Ω

h dΩ, (2.6)

is an invariant measure of the topological complexity of the flow. As shown in figure 1,
the helicity H is non-zero in the presence of topologically complex flow structures such as
knotted vortex lines or linked vortex rings. Conversely, an identically zero helicity density
indicates that a given flow has topologically simple flow structure (Moffatt & Tsinober
1992).

In the case of scalar Darcy flow, the absence of stagnation points and zero helicity
density means that streamlines in scalar Darcy flow are neither knotted nor closed. While
streamlines of scalar Darcy flow may be highly convoluted due to heterogeneities in the
hydraulic conductivity field, these streamlines are topologically equivalent to straight lines.
In the following we shall further show that these streamlines are organised into coherent
non-intersecting 2-D lamellar surfaces that foliate the flow domain.

In general, all vector fields (such as the velocity field of a scalar Darcy flow) that are
everywhere orthogonal to their curl are termed as complex-lamellar fields (Lamb 1932;
Bear 1972), and the vector lines (streamlines) of these flows are confined to lamellar
surfaces (Lamb 1932). This classification dates back to Kelvin (1884), where ‘complex’
refers to the convoluted structure of these surfaces, and ‘lamellar’ refers to their lamellar
foliation throughout the fluid domain. Poincaré (1893) and Piaggio (1952) have shown that
all complex-lamellar vectors must be of the form f ∇g (where f and g are smooth scalar
functions), hence, all complex-lamellar flows may be represented as scalar Darcy flows
and vice versa.
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C2C1

κ1

κ2

J2

J1

(a) (b)

Figure 1. (a) Moffatt & Tsinober (1992) show that two linked vortex rings J1 and J2 with respective closed
contours C1, C2 and circulation rates κ1 and κ2 have total helicity H = ±2nκ1κ2, where n is the linking number
(a topological invariant that characterises the number of times two closed curves cross) of the closed contours
C1, C2. (b) A trefoil knotted vortex generated by a suddenly accelerated trefoil wing, adapted from Kleckner &
Irvine (2013).

In a series of landmark papers, Sposito (1994, 1997, 1998, 2001) argued that the
helicity-free nature of steady scalar Darcy flow gives rise to ‘Lamb surfaces’; 2-D surfaces
which contain both vortex lines and streamlines. The Lamb surfaces are orthogonal to the
Lamb vector �, defined as the cross product of velocity and vorticity; � = v × ω. These
2-D surfaces foliate the flow domain in a lamellar fashion, and correspond to level sets of
a scalar function H which is invariant along a streamline, reflecting the integral nature of
the flow. As these 2-D surfaces are material surfaces, they render the kinematics of 3-D
scalar Darcy flow essentially equivalent to that of a steady 2-D flow.

The condition for the existence of such Lamb surfaces is that the Lamb vector � itself is
complex lamellar. However, we have recently shown (Lester et al. 2019) that this condition
is only met for a small subset of 3-D Darcy flows which are inherently two-dimensional in
nature such as axisymmetric flows and flows in stratified media. Hence, Lamb surfaces are
not ubiquitous to steady scalar Darcy flows in general. In the following, we show that while
scalar Darcy flows do not admit Lamb surfaces per se, the helicity- and stagnation-free
nature of these flows mean that they can admit a different set of invariant surfaces.

2.2. Integrability of scalar Darcy flow
Particle advection in these singularity- and helicity-free flows is recognised (Arnol’d 1965;
Hénon 1966; Holm & Kimura 1991) to be an integrable system in the dynamical systems
sense. Loosely speaking, integrability means that, for a system of differential equations,
there exist conserved quantities in the dynamical system, and that these conserved
quantities can be used to form a coordinate system where the evolution of the dynamical
system may be expressed as a definite integral (Arnol’d 1997). Typically, this means that
a dynamical system with n degrees of freedom requires the existence of at least n − 1
conserved quantities to allow the system to be reduced to an explicit 1-D integral. In
the case of particle advection in a d-dimensional flow field, this means that there must
exist d − 1 conserved quantities along streamlines if the advection dynamical system is
integrable. Hence, the advection equation for 3-D (d = 3) steady scalar Darcy flow

dx(t; X )
dt

= v(x(t; X )), x(t = 0; X ) = X , (2.7a,b)

possesses solution trajectories (streamlines) x(t; X ) with initial position X with d − 1 = 2
linearly independent invariants (constants of motion). Here, x and X respectively represent
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particle locations in the Eulerian and Lagrangian frames. These invariants, denoted ψi(x),
i = 1, 2 are smooth and regular functions of space that satisfy governing elliptic governing
partial equations that are derived in § 2.3 and ψi(x(t,X )) is constant along the trajectory
x(t,X ) for the entire advection time t.

As such, the linearly independent invariants ψ1, ψ2, act as the streamfunctions of the
flow, where the level sets of ψi form streamsurfaces of the flow, and the intersection of
a streamsurface of ψ1 with that of ψ2 forms a streamline of the flow. It is important to
note that for singularity- and helicity-free flows, these invariants are both single valued
(in contrast to e.g. the angular coordinate in polar coordinates, which is multi-valued at
the origin), and so the level sets (streamsurfaces) of (ψ1, ψ2) are topologically planar
(although possibly highly distorted due to heterogeneity of the hydraulic conductivity
field) in that they do not intersect with themselves (although the level sets of ψ1 and ψ2
intersect with each other), and correspond to the topological case of plane flows considered
by Greywall (1993).

It is important to note that not all steady 3-D flows possess streamfunctions. In § 2.3, we
show that only flows that have a velocity potential A (where the velocity field v = ∇ × A)
of the form A = ψ1∇ψ2 (for smooth scalars ψ1 and ψ2, i.e. the velocity potential itself
is complex lamellar) admits a pair of streamfunctions which are themselves ψ1, ψ2. The
existence of two such independent invariants in a 3-D flow renders the 1-D streamlines
integrable, but for more general velocity potentials (where A /=ψ1∇ψ2) the streamlines
are non-integrable and streamfunctions do not exist. Conversely, the 1-D streamlines in
all steady, incompressible 2-D flows are integrable as they possess a single invariant
(the streamfunction ψ which is related to the velocity potential as A = ψ∇n, with n the
coordinate normal to the 2-D plane) which is constant along streamlines.

From a kinematic perspective, integrable flows follow regular, well-defined streamlines
and so cannot admit chaotic advection (Aref 1984; Ottino 1989), whereby particle
trajectories form a space-filling tangle of chaotic orbits. This is immediately obvious
for steady 2-D flows, as particles follow regular streamlines that are level sets of the
streamfunction ψ and so cannot display chaotic behaviour. For 3-D integrable flows, 1-D
streamlines arise as the intersections of the smooth and regular 2-D level sets of the
streamfunctions ψ1, ψ2, and so these 1-D streamlines must also be smooth and regular,
and hence, non-chaotic. Non-integrability of a dynamical system is a necessary but not
sufficient condition for chaotic dynamics (Arnol’d 1997).

The constraint of integrability has an immediate impact on the Lagrangian kinematics of
these flows in that the length �(t) of fluid elements can only grow algebraically in time as
�(t) ∼ tr (Ottino 1989), whereas for chaotic orbits, fluid elements can grows exponentially
with time as �(t) ∼ exp(λt), where λ is the Lyapunov exponent of the flow (Dentz et al.
2016; Lester et al. 2018). As these stretching rates serve as inputs to models of mixing and
dilution (Villermaux 2012; Le Borgne et al. 2015; Lester et al. 2016a), then this constraint
immediately impacts the prediction of transport processes in Darcy flows.

The existence of the single-valued streamfunction pair (ψ1, ψ2) means that the
advection equation (2.7a,b) reduces to an explicit integral (mirroring the definition of the
term integrable above) along a streamline with initial position X and fixed ψi = ψi(X ) as

ds
dt

= v(s;ψ1, ψ2) ⇒ t(s) =
∫ s

0

1
v(s;ψ1, ψ2)

ds, (2.8)

where s the distance travelled along the streamline and v(s;ψ1, ψ2) is the magnitude of
the fluid velocity at distance s. Although it is tempting to believe that this construction
is possible for all steady 3-D flows, it is important to bear in mind that the condition
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of integrability refers to the existence of an analytic representation of the integral (2.8)
rather than a numerical construction, and so this requires the existence of the analytic
streamfunctions ψ1, ψ2 that satisfy smoothness and regularity conditions. Thus this
explicit representation in terms of the velocity magnitude is not possible for non-integrable
steady 3-D flows such as pore-scale 3-D Stokes flow or 3-D tensorial Darcy flow as
the helicity density h is non-zero for these flows, and so there do not exist a pair of
linearly independent invariants (ψ1, ψ2). Indeed, this property is a necessary condition
for pore-scale 3-D flow to exhibit chaotic advection (Lester, Trefry & Metcalfe 2016b).
Conversely, the helicity-free condition (2.4) is a necessary and sufficient condition for the
existence of a pair of 2-D streamfunctions in steady 3-D flow.

The existence of an explicit integral representation (2.8) for advection along a streamline
greatly simplifies particle tracking in integrable flows and restricts the set of admissible
particle trajectories. In the absence of such constraints, a steady, mean-translational 3-D
flow (where the spatially averaged flow field is a translational flow) can exhibit chaotic
advection if the streamlines undergo a non-trivial braiding motion (Boyland, Aref &
Stremler 2000; Finn & Thiffeault 2011) such as that shown in figure 2(a). Such non-trivial
braiding leads to exponential growth of a fluid material line that connects these streamlines
(and is oriented transverse to the mean flow direction) as it is advected downstream.
Conversely, the existence of a pair of topologically planar streamfunctions (ψ1, ψ2) in
steady, scalar Darcy flow precludes such braiding motion and chaotic advection in general.

Recent studies (Lester et al. 2016b; Turuban et al. 2018, 2019; Souzy et al. 2020) have
established that chaotic advection is inherent to steady 3-D Stokes flow at the pore-scale,
even in a medium that is homogeneous at the pore scale, providing a decisive link
between pore-scale structural properties and the Lagrangian kinematics of porous media
(Heyman et al. 2020; Heyman, Lester & Le Borgne 2021). This result is not surprising
as the Poincaré–Bendixson theorem states that only continuous systems with three or
more degrees-of-freedom (DOFs) can admit a chaotic dynamics, hence, chaos is possible
in three dimensions but not 2-D steady pore-scale flow. Typically, chaotic behaviour in
random systems with sufficient DOFs is the norm rather than the exception.

The same principles apply to steady heterogeneous 3-D Darcy-scale flows, where
chaotic mixing, knotted and/or braided streamlines may be expected due to the randomness
of the system and the presence of sufficient DOFs. Figure 2(b) shows qualitative evidence
of knotted streamlines in anisotropic Darcy flow with tensorial hydraulic conductivity K ,
taken from the numerical simulations of Cole & Foote (1990). Similarly, the helical flows
considered by Chiogna and co-workers (Chiogna et al. 2014, 2015; Ye et al. 2015, 2020)
in non-stationary anisotropic Darcy flows also show clear evidence of streamline braiding
(see figure 2c) under steady flow conditions. However, as per (2.5), these anisotropic Darcy
flows are not helicity free and so do not admit coherent streamsurfaces (as evidenced by the
knotted and braided streamlines shown in figure 2) and so are not subject to the kinematic
constraints associated with isotropic Darcy flow. These kinematic constraints effectively
remove one DOF from the three DOFs system, which then prohibits chaotic dynamics and
non-trivial streamline topology. It is illuminating to contrast the knotted and braided flow
topology shown respectively in figure 2(b) and figure 2(c) for anisotropic Darcy flow with
the trivial (unknotted) topology shown in figure 5(b) for isotropic Darcy flow that consists
of streamlines that are topologically similar to straight lines.

The existence of the streamfunction pair (ψ1, ψ2) imposes significant constraints on the
Lagrangian kinematics of scalar Darcy flow. In this study we seek a representation of these
flows in terms of these streamfunctions to uncover the kinematics of these flows and the
implications for fluid mixing, dispersion and transport. As the fluid velocity v must be
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Figure 2. Non-trivial streamline topology in non-zero helicity density flows. (a) Braiding motion of three
streamlines (red, yellow, cyan) in a chaotic steady 3-D flow (mean flow direction is bottom to top). Due to
the braiding motion of these streamlines, a material line (purple) connecting the yellow and cyan streamlines
must grow exponentially with downstream distance as this line cannot cross the streamlines. Note that the
exponential growth of this material line in a chaotic manner precludes the existence of analytic streamfunctions
ψ1, ψ2 for this non-integrable flow. Adapted from Boyland et al. (2000). (b) Knotted fluid particle trajectories
(white lines) in a steady anisotropic 3-D Darcy flow, with isopotential and isoconductivity surfaces shown.
Here, the tensorial nature of the conductivity field means this flow is not helicity free, and so can admit a richer
set of kinematics (such as the knotted flow structure shown) than isotropic Darcy flow. Adapted from Cole &
Foote (1990). (c) Braided streamlines (coloured red, white and green) in a steady non-stationary anisotropic
3-D Darcy flow with non-zero helicity (mean flow direction is left to right). Here, the tensorial conductivity
structure imparts helical streamlines that braid with each other and accelerate mixing and dispersion. Adapted
from Chiogna et al. (2015).

orthogonal to the streamfunction gradients ∇ψ1, ∇ψ2, a natural representation for this
velocity field is given by the Euler representation

v = −(k/θ)∇φ = ∇ψ1 × ∇ψ2, (2.9)

which has been used by several workers for both computation (Greywall 1993) and
visualisation (Panton 1978) of incompressible flows as this representation renders the
velocity v divergence free. Whilst a dual streamfunction representation is possible for
some non-integrable 3-D flows (such as some Euler flows), for these flows at least one of
the streamfunctions is multi valued (and so the level sets of this streamfunction intersect
themselves), whereas for scalar Darcy flow the streamfunctions must be single valued
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due to the lack of stagnation points in these flows (Bear 1972). As the velocity field
must be stagnation free, then from (2.9), the gradient of the streamfunctions must also
be everywhere non-zero

∇ψ1(x) /= 0, ∇ψ2(x) /= 0 ∀x. (2.10a,b)

2.3. Streamfunction governing equations
As the existence of a streamfunction pair in scalar Darcy flow constrains the kinematics
of these flows, these streamfunctions provide a convenient coordinate frame to analyse
fluid deformation and transport. Hence, both stochastic and deterministic models of fluid
deformation, mixing, transport and dispersion in such a coordinate system automatically
enforce the associated kinematic constraints. To develop a streamfunction coordinate
system, we use the singularity- and helicity-free nature of these flows to derive the
governing equations for these streamfunctions. We also note that the Euler representation
(2.9) of the Darcy flow equation is equivalent to the velocity potential representation
v = ∇ × A where

A = ψ1∇ψ2 + ∇S, (2.11)

and ∇S represents a gauge freedom associated with the vector potential A which renders
the streamfunction pair (ψ1, ψ2) non-unique for a given velocity field v. This gauge
freedom indicates the existence of a set of alternate streamfunction pairs (ψ ′

1, ψ
′
2), which

are defined by the generating function S(ψ2, ψ
′
2), where

ψ1 = − ∂S
∂ψ2

, ψ ′
1 = ∂S

∂ψ ′
2
, (2.12a,b)

and substitution of (2.12a,b) into (2.11) yields

A = ψ ′
1∇ψ ′

2. (2.13)

In addition, it is also possible to ‘renumber’ the streamfunctions (Panton 1978) via the
functions ψ1 = g1(ψ

′
1), ψ2 = g2(ψ

′
2) (where g1, g2 are smooth monotonic increasing

functions. Under this gauge freedom the velocity field may be expressed as

v(x) = ∇ψ1 × ∇ψ2 = g′
1(ψ

′
1)g

′
2(ψ

′
2)∇ψ ′

1 × ∇ψ ′
2, (2.14)

hence, the representation (2.9) is not unique in this sense. In contrast to (2.12a,b), this
gauge freedom does not alter the level sets of the streamfunctions, ensuring equivalence
with (2.9). Note that we reserve the terminology streamfunction for the invariants under
the Euler gauge which satisfy (2.14) with g′

1g′
2 equal to unity.

It is instructive to classify the various types of steady 3-D flows based on their
kinematics. Figure 3 depicts the various flow classes based upon compressibility,
integrability, stagnation free and helicity free. The results in this study pertain to steady
incompressible 3-D flows that are integrable and stagnation-point free (denoted by the
grey shaded area ‘SF’ in figure 3), not just helicity-free flows. However, as all scalar Darcy
flows are both helicity-free and stagnation-free (denoted by the grey shaded area ‘HF’ in
figure 3), this class is a subset of SF flows, and so all the results in this study pertain to
scalar Darcy flows.

Several authors (Hui & He 1997; Salta & Tataronis 2000) have argued that the gauge
freedom in (2.13) then admits a unique streamfunction pair (ψ ′

1, ψ
′
2) that are mutually

orthogonal, i.e. ∇ψ ′
1 · ∇ψ ′

2 = 0. This is an especially useful result as it leads to an
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The Lagrangian kinematics of three-dimensional Darcy flow

∇ · v = 0

∇ · v = 0 A = p∇q v = p∇qv = 0

‘C’

‘I’‘IC’ ‘SF’ ‘HF’

Figure 3. Classes of 3-D steady flow according to their kinematics, where p(x), q(x) are smooth scalar
functions, A is the smooth vector potential, ‘C’ denotes compressible flow, ‘IC’ denotes incompressible
flow, ‘I’ denotes integrable flow (that which can be represented by a pair of streamfunctions), ‘SF’ denotes
stagnation-free flow and ‘HF’ denotes helicity-free flow. The main results in this study pertain to stagnation-free
flows as indicated by the shaded grey region.

orthogonal coordinate system given by the streamfunctions and velocity potential. It has
also been argued by several authors (Klimushkin 1994) that these streamfunctions are
mutually orthogonal due to Dupin’s theorem (Kazarinoff 1919), which states: ‘In three
mutually orthogonal systems of surfaces, the lines of curvature on any surface in one of
the systems are its intersections with the surfaces of the other two systems’. These lines
of curvature are the principal curves, i.e. the lines of minimum and maximum curvature.
However, there is no reason that the streamfunctions must always align with these principal
curves. Indeed, it has been shown explicitly by way of counter-example (Hui & He 1997;
Salta & Tataronis 2000) that, in general, helicity-free flows do not admit a set of mutually
orthogonal streamfunctions, even under the gauge freedom (2.13). Thus the orthogonality
relationships between the streamfunctions ψ1, ψ2 and the flow potential φ are as follows:

∇φ · ∇ψ1 = 0 ∇φ · ∇ψ2 = 0 ∇ψ1 · ∇ψ2 /= 0. (2.15a–c)

In § 4 we use these relationships to define a semi-orthogonal streamline coordinate system
that shall be used to quantify mixing, dispersion and transport in scalar Darcy flow.

We derive governing equations for the streamfunctions by taking the curl of (2.9) to
yield an expression for the vorticity ω as

ω ≡ ∇ × v = ∇φ × ∇(k/θ)
= (∇ψ1 · ∇)∇ψ2 − (∇ψ2 · ∇)∇ψ1 + ∇ψ1∇2ψ2 − ∇ψ2∇2ψ1. (2.16)

The helicity-free condition (2.4) then ensures that the dot product of this expression with
the velocity field is everywhere zero, and so the following dot product must also be
everywhere zero:

B · (∇ψ1 × ∇ψ2) = 0, B ≡ (∇ψ1 · ∇)∇ψ2 − (∇ψ2 · ∇)∇ψ1. (2.17a,b)

Hence, the vector B does not have any component perpendicular to the gradients ∇ψ1,
∇ψ2, and so may be expressed in terms of these gradients as

(∇ψ1 · ∇)∇ψ2 − (∇ψ2 · ∇)∇ψ1 = a1∇ψ1 − a2∇ψ2, (2.18)

where the scalars a1, a2 then satisfy

a1 = (B × ∇ψ2) · v

v · v
a2 = (B × ∇ψ1) · v

v · v
. (2.19a,b)

Zijl (1986) performs a similar derivation for the streamfunctions and subsequently applies
this result to all smooth flows that admit streamfunction pairs (Zijl 1988). However, this
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result only holds for the streamfunctions of helicity-free flows, as reflected directly by
(2.17a,b), not the flows considered in Zijl (1988). Hence, (2.17a,b) represents a necessary
and sufficient condition for the associated velocity field to be helicity free. Matanga (1993)
also considers the streamfunctions associated with steady 3-D Darcy flow but this paper
contains a serious error (specifically (30) in Matanga (1993), which incorrectly equates
a tensor quantity (the Hessian matrix ∇(∇χ) of the scalar χ ) with a scalar quantity (the
scalar Laplacian ∇2χ = ∇ · ∇χ ) that is central to the main results of the study.

Governing equations for the streamfunctions are then obtained by expressing the
vorticity in (2.16) as ω = ∇f × (∇ψ1 × ∇ψ2) (where f = ln(k/θ)), and combining with
(2.18) then yields

∇ψ1

(
∇2ψ2 − ∇f · ∇ψ2 − a1

)
= ∇ψ2

(
∇2ψ1 − ∇f · ∇ψ1 − a2

)
. (2.20)

Taking the cross-product of (2.20) with respect to ∇ψ2 and ∇ψ1 then yields the governing
equations for the streamfunctions and potential as

∇2φ + ∇f · ∇φ = 0, (2.21)

∇2ψ1 − ∇f · ∇ψ1 = a1, (2.22)

∇2ψ2 − ∇f · ∇ψ2 = a2, (2.23)

where (2.22), (2.23) are coupled via the nonlinear terms a1, a2.

3. Numerical modelling of heterogeneous Darcy flow

To visualise the dual streamfunction structure common to all scalar Darcy flows and
illustrate the concepts outlined in § 2.3, we numerically solve (2.21)–(2.23) for the velocity
potential φ and streamfunctions ψ1, ψ2 for heterogeneous Darcy flow in an infinite porous
medium. To test the validity of the streamfunction solution, we independently solve the
Darcy velocity field v in terms of the velocity potential given by (2.1) (denoted vφ)
and streamfunctions given by (2.9) (denoted vψ ) and test for convergence between these
representations with increasing numerical resolution. We solve this flow over the triply
periodic unit cube (3-torus) T

3 : x ≡ (x1, x2, x3) = [0, 1] × [0, 1] × [0, 1] for the spatially
periodic hydraulic log-conductivity field

f (x) = ln(k(x)/θ) = sin(2πx1) cos(2πx2) sin(2πx3)+ 2
5 sin(2πx1) sin(8πx3) (3.1)

shown in figure 5(a). We note that this field is not presented as a realistic representation
of the conductivity field of a real geological formation, but rather we use this example to
show that in the limit of increasing numerical resolution, the velocity fields obtained via
solution of the potential field φ (2.21) and solution of the streamfunctions ψ1 (2.22), ψ2
(2.23) converge to the same solution. This triply periodic flow field v is driven by a unit
pressure gradient φ̄ in the x1 direction, hence, we decompose the potential φ = φ̄ + φ̃ into
a uniform gradient φ̄(x1) = −x1 plus a triply periodic fluctuation φ̃(x). From (2.2) this
fluctuation is governed by

∇2φ̃ + ∇f · ∇φ̃ = ∂f
∂x1

, (3.2)

where the mean gradient φ̄ acts as a source term to drive the flow. Similarly, we may also
decompose the streamfunctions ψ1, ψ2 into a periodic fluctuation ψ̃1, ψ̃2 plus a uniform
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The Lagrangian kinematics of three-dimensional Darcy flow

gradient ψ̄1 = −x2, ψ̄2 = −x3〈k/θ〉, such that the periodic fluctuations are given by the
governing equations (5.4) (5.5) driven by source terms given by the uniform gradients as

∇2ψ̃1 − ∇f · ∇ψ̃1 = a1 − ∂f
∂x2

, (3.3)

∇2ψ̃2 − ∇f · ∇ψ̃2 = a2 − 〈k〉 ∂f ′

∂x2
. (3.4)

We use a finite-difference (FD) method to solve the governing equations for both the
potential fluctuation φ̃ (3.2) and the streamfunction fluctuations ψ̃1 (3.3), ψ̃2 (3.4) on
the FD grid. To solve the potential fluctuation (3.2), we use a first-order finite difference
stencil to represent this equation, and an iterative Krylov method is used to solve the
FD representation of the linear system (3.2) to machine precision (10−16), such that the
divergence error is effectively zero with respect to the FD stencil. For the streamfunction
fluctuations (3.3), (3.4), we first linearise these equations by ignoring their respective
nonlinear contributions a1, a2 and then use the same approach as for the potential
fluctuation to generate approximate solutions to these equations. We then use these
approximate solutions as initial conditions to respectively solve (3.3), (3.4), via an explicit
first-order time-stepping method. Whilst inefficient, this method is robust and stable; we
are currently investigating advanced methods to solve the nonlinear equations (3.3), (3.4),
for more complex conductivity fields.

From these grid-based data, we then use periodic cubic spline interpolation to generate
periodic, smooth and continuous representations of the periodic functions φ̃(x), ψ̃1(x),
ψ̃2(x). These spline functions are then used to construct the potential-based vφ and
streamfunction-based vψ velocity fields as

vφ(x) = −k/θ∇(φ̄(x1)+ φ̃(x)), (3.5)

vψ(x) = ∇(ψ̄1(x2)+ ψ̃1(x))× ∇(ψ̄1(x2)+ ψ̃1(x)). (3.6)

We test for convergence between these solutions by using a series of FD grids of
increasing mesh resolution NΔ = 40, NΔ = 80, NΔ = 160, where NΔ is the number
of grid points in each coordinate direction. Figure 4(a) illustrates the convergence
of the divergence error dφ(x) ≡ ∇ · vφ(x) for the potential-based velocity field (note
the streamfunction-based velocity field is analytically divergence free) with increasing
resolution of the FD method, and figure 4(b) illustrates convergence between the
potential-based and streamfunction-based velocity fields given by the error

ε(x) ≡ arccos
(

vφ(x) · vψ(x)
‖vφ(x)‖ ‖vψ(x)‖

)
. (3.7)

The resultant isopotential surfaces and streamsurfaces are shown in figure 5(b), forming
a 3-D orthogonal grid which is distorted due to the heterogeneous conductivity field
(3.1). This orthogonal grid of isosurfaces would be perfectly rectangular in the case of
a homogeneous conductivity field, and would become more distorted with increasing
conductivity variance, but the planar topology and orthogonal geometry would persist so
long as the conductivity field can be represented as a scalar field. These streamsurfaces
clearly illustrate the topologically planar structure of the flow field, such that the
streamsurfaces (and indeed isopotential surfaces) foliate the flow domain in a lamellar
fashion without knots or stagnation points. Streamlines of the flow then arise as the
intersection of the ψ1 (red) and ψ2 (blue) streamsurfaces, and so these arise topologically
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Figure 4. (a) Convergence of the divergence error dφ of the potential velocity vφ(x) of the triply periodic
Darcy flow with increasing grid resolution NΔ. (b) Convergence of the streamfunction vψ(x) and potential
vφ(x) solutions for this flow with increasing grid resolution NΔ.
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Figure 5. (a) Contour plot of the hydraulic conductivity field f = ln k in the unit cube, (b) resultant level sets
of the flow potential φ (grey) and streamfunctions ψ1 (red) and ψ2 (blue).

as straight lines in the flow (as opposed to closed or knotted orbits). Hence, the streamlines
and kinematics of 3-D scalar Darcy flow is constrained by the topologically planar
structure of these flows.

Conventional methods to solve Darcy flow and perform particle tracking typically use a
FD or finite-volume method to solve the potential-based velocity field vφ(x) at a finite set
of points, which are then subject to piecewise-linear interpolation to generate a continuous
representation of the velocity field. The algorithm of Pollock (1988) is then typically used
to advect particles by exploiting the piecewise linear nature of the velocity field, allowing
solution of the particle position at cell faces via solution of algebraic equations rather than
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direct numerical solution of the advection ordinary differential equation (ODE) (2.7a,b).
Whilst efficient, this approach introduces several sources of numerical errors that can allow
numerically advected particles to ‘leak’ off their respective streamsurfaces, leading to
spurious numerical artefacts unless care is taken. We briefly review these potential sources
of error as follows and prescribe a simple solution to render particle tracking almost
exact.

First, linear interpolation of the grid-based velocity data introduces serious errors in
that the interpolated velocity field is no longer divergence free. Whilst such interpolation
renders the local velocity field divergence free within each grid cell (as the velocity
gradient is constant), there exist serious global divergence errors as the velocity gradient
must be discontinuous at cell boundaries for all non-trivial flows. In addition, the mapping
method inherent to the Pollock algorithm (Pollock 1988) introduces further errors as the
higher-order gradients of the velocity field are ignored, allowing computed trajectories
to deviate from their constraining streamlines. Such deviations then manifest as spurious
numerical dispersion of particle trajectories, which can have serious ramifications for the
study of e.g. solute dispersion in porous media. Whilst the divergence errors and velocity
gradient discontinuities can be remedied by the use of explicitly divergence-free cubic
interpolation schemes (Ravu et al. 2016), the issue of solving the advection ODE (2.7a,b)
whilst enforcing particles to remain on streamfunctions persists. Although explicitly
volume-preserving integration schemes (Wuispel 1995) ensure particle trajectories are
essentially volume preserving, and symplectic integration methods (Schlier & Seiter 2000)
ensure preservation of invariants in Hamiltonian systems (such as streamlines in 2-D
flows), there is no known numerical method to enforce particles remain on streamsurfaces
in steady 3-D flows. As such, the problem of spurious numerical dispersion persists even
when the latest numerical methods (Robinson, Dash & Srinivasan 2010; Suk 2012; Craig,
Ramadhan & Muffels 2020) are applied to particle tracking under the potential-based
velocity field vφ(x). Such dispersion acts to break the topological kinematic constraints
associated with scalar Darcy flow, hence care must be taken when interpreting results
from such simulations.

These kinematic constraints can be enforced simply by using the streamfunction-based
velocity field vψ(x) as the streamfunctions are explicitly resolved and the streamlines
are defined by the intersection of the streamfunctions ψ1, ψ2. In § 4 we develop a
semi-orthogonal streamfunction coordinate system that allows the advection ODE (2.7a,b)
to be expressed as the 1-D integral (2.8) along a streamline, explicitly eliminating the
possibility of numerical dispersion off streamlines. Whilst numerical solution of (2.8)
may still introduce numerical errors in the propagation distance along streamlines, these
errors do not alter the Lagrangian kinematics of the flow. Similarly, numerical solution
of the streamfunction equations (2.22), (2.23) may also introduce distortions in the
streamsurfaces and streamlines of the flow, so long as the no stagnation condition (2.10a,b)
is met, these distortions still adhere to the topological kinematic constraints of scalar Darcy
flow.

A failure to explicitly impose these constraints becomes important in the prediction of
transverse macrodispersion as such failure results in wandering of particle trajectories off
streamlines, leading to spurious transverse dispersion. This becomes especially important
when studying transverse macrodispersion in the case of zero local dispersion (i.e. to
ascertain the contribution of macroscopic heterogeneity to transverse dispersion) as we
show in § 5 that these kinematic constraints lead to zero macrodispersion in this case.
Failure to enforce these constraints in the case means the only contribution to the measured
transverse macrodispersion is numerical error.

918 A27-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

36
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.362


D.R. Lester, M. Dentz, A. Bandopadhyay and T. Le Borgne

4. Curvilinear streamline coordinates

As the magnitude of the Darcy velocity |v| (and the pressure gradient |∇φ|) must be
positive and finite, then from (2.9) the magnitude of the streamfunction gradients |∇ψ1|,
|∇ψ2| must also be everywhere positive and finite, as reflected by (2.10a,b). This condition
means that any point x0 in scalar Darcy flow is uniquely defined by the local values of the
fluid pressure and streamfunctions as (φ(x0), ψ1(x0), ψ2(x0)). From (2.15a–c), this set of
scalar functions represents a semi-orthogonal (in that some components are orthogonal but
the streamfunctions are not mutually orthogonal) curvilinear streamline coordinate system

(ξ1, ξ2, ξ3) ≡ (φ, ψ1, ψ2), ∇ξ1 · ∇ξ2 = ∇ξ1 · ∇ξ3 = 0, (4.1a,b)

which is invertible as the Jacobian J ≡ det[∂ξ i/∂xj] is everywhere non-zero. This
coordinate system forms a convenient basis for studying the kinematics of scalar Darcy
flow as it naturally encodes the kinematic constraints these flows as shall be shown in
the following sections. The mapping from Cartesian coordinates x0 = x1e1 + x2e2 + x3e3

(where x j, ej respectively are the Cartesian coordinates and associated orthonormal basis
vectors) to streamline coordinates

x0 = ξ1g1 + ξ2g2 + ξ3g3, (4.2)

defines the covariant basis vectors gi of the curvilinear coordinate system (Aris 1956) as

gi = ∂x j

∂ξ i ej, j = 1, 2, 3, (4.3)

where the Einstein summation convention is employed such that, unless indicated
otherwise, summation is applied to repeat indices. From (4.3), the covariant metric
coefficients are then given by gij = gi · gj = gji. The position vector x0 may also be
expressed in terms of the contravariant basis vectors gi as

x0 = ξ1g1 + ξ2g2 + ξ3g3, (4.4)

where ξi are the contravariant components of x0, and gi satisfy

gi = ∂ξi

∂x j ej, j = 1, 2, 3, (4.5)

with contravariant metric coefficients gij = gi · g j = gji. The covariant and contravariant
vectors are mutually orthogonal as gi · g j = δ

j
i , where δ j

i is the Kronecker delta. Thus the
contravariant and covariant basis vectors are respectively

g1 = ∇φ, g2 = ∇ψ1, g3 = ∇ψ2, (4.6a–c)

and

g1 = ∇φ
|∇φ|2 , g2 = ∇ψ1

|∇ψ2|2
v2 − ∇ψ2

∇ψ1 · ∇ψ2

v2 ,

g3 = ∇ψ2
|∇ψ1|2
v2 − ∇ψ1

∇ψ1 · ∇ψ2

v2 ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.7a–c)

where v ≡ |v| =
√

|∇ψ1|2|∇ψ2|2 − (∇ψ1 · ∇ψ2)2. As shown in figure 6, orthogonality
of the streamfunctions with respect to the flow potential renders the fluid velocity, v
and basis vectors g1, g1 collinear, whilst the remaining covariant and contravariant basis
vectors, along with the vorticity are all coplanar and perpendicular to these bases.
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g3 g2

g1
g3 =

�

ψ2
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g1 =

�

φ

ω
v

Figure 6. Streamline (blue), vorticity vector (red), covariant gi and contravariant gi basis vectors of the
streamline coordinate system. As indicated by the black ellipse, the contravariant and covariant vectors g2,
g3, g2, g3 and vorticity ω are all coplanar and perpendicular to the collinear velocity v, g1 and g1 vectors.

From (4.5), the components of the contravariant metric tensor M−1 may be written in
terms of the potential and streamfunction gradients as

M−1 ≡
⎡⎣ g11 0 0

0 g22 g23

0 g23 g33

⎤⎦ =
⎡⎣ |∇φ|2 0 0

0 |∇ψ1|2 ∇ψ1 · ∇ψ2
0 ∇ψ1 · ∇ψ2 |∇ψ2|2

⎤⎦ , (4.8)

and so the covariant metric tensor M is given by the inverse of (4.8) as

M ≡
⎡⎣ g11 0 0

0 g22 g23
0 g23 g33

⎤⎦ = 1
v2

⎡⎢⎢⎣
v2

|∇φ|2 0 0

0 |∇ψ2|2 −∇ψ1 · ∇ψ2
0 −∇ψ1 · ∇ψ2 |∇ψ1|2

⎤⎥⎥⎦ , (4.9)

and the Jacobian J and metric scalar g of the coordinate transform are then

J = √
g ≡

√
det[M] = 1

v|∇φ| . (4.10)

The above relationships can then be used to derive expressions for components of the
velocity gradient ε ≡ ∇v in the streamline coordinate system, where ε = εi

jgi ⊗ g j, and∑
i ε

i
j = ∇ · v = 0. In Appendix B we show that the diagonal components of ∇v are given

as

ε1
1 = ∂v

∂s
, ε2

2 = −1
2
∂v

∂s
− m, ε3

3 = −1
2
∂v

∂s
+ m, m ≡ vl2

2
∂

∂s
ln

|∇ψ1|
|∇ψ2| , (4.11a–d)

where l ≡ |∇ψ1| |∇ψ2|/v � 1, and s is the distance along a streamline. In streamline
coordinates these components represent the principal strains experienced by a fluid
element as it travels along a streamline, ignoring deformations arising from fluid shear
contributions. The component ε1

1 indicates that a fluid line element oriented along a
streamline increases its length in proportion to the local velocity magnitude v along a
streamline. Conversely, the transverse components ε2

2 , ε3
3 indicate that the length of fluid

elements oriented transverse to the local velocity coordinate fluctuates due to contributions
from the velocity fluctuations and changes in the streamfunction gradients as characterised
by m. Appendix B also shows that the velocity gradient tensor in streamline coordinates is
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upper triangular

ε =
⎛⎝ ε11 ε12 ε13

0 ε12 0
0 0 ε33

⎞⎠ , (4.12)

and the component ε23 = 0 as a direct result of the helicity-free condition (2.4) as

h ≡ v · (∇ × v) = v · (: v) = viεijkεjk = 0, (4.13)

where εijk is the Levi-Civita tensor. As v = −k/θg1, then (4.13) yields ε23 − ε32 = 0, and
since ε32 = 0, then ε23 = 0 also. In streamline coordinates ε23 represents the fluid shear (or
vorticity) transverse to the local flow direction, hence, ε23 = 0 corresponds directly to the
helicity-free condition. As shown in (Lester et al. 2018), the component ε23 plays a critical
role in coupling fluid deformation between the 1, 2- and 1, 3-planes in steady 3-D flows,
leading to chaotic advection and exponential stretching of fluid elements. Conversely, the
helicity-free condition ε23 = 0 in streamline coordinates effectively decouples the velocity
gradient into two superposed shear flows as

ε = ε(12) + ε(13) =

⎛⎜⎝
ε11

2
0 ε13

0 ε12 0
0 0 0

⎞⎟⎠ +

⎛⎜⎝
ε11

2
0 ε13

0 0 0
0 0 ε33

⎞⎟⎠ , (4.14)

where 〈ε11〉 = 〈ε22〉 = 〈ε33〉 = 0 and εi
i for i = 1 : 3 are given by (4.11a–d). As the

velocity gradient tensor governs the evolution of fluid deformation material line elements
in the 1, 2- and 1, 3-planes are stretched via shear deformation in a similar fashion to that
of steady 2-D flow. Whilst the coupling of intermittency, velocity fluctuations and shear
deformation can lead to nonlinear growth of line elements in such flows (Dentz et al.
2016), such growth is algebraic and range from sublinear to ballistic behaviour. Hence,
fluid deformation in steady 3-D scalar Darcy flow is analogous to that of steady 2-D flow
in that the helicity-free condition constrains fluid elements to deform in a similar manner
as two superposed 2-D shear flows.

5. Darcy flow kinematics of random porous media

5.1. Stationarity of streamfunctions
In § 4 we showed that the helicity-free condition constrains material elements to grow
algebraically in time in a similar manner to that of 2-D steady flows (Dentz et al. 2016),
rather than exponentially, as is the case for chaotic flows (Wiggins & Ottino 2004).
In this section we derive the result that the helicity-free condition renders transverse
hydrodynamic dispersion zero for porous media with a random hydraulic conductivity field
that is smooth, finite and statistically stationary. We consider 3-D steady scalar Darcy flow
in a porous medium with a heterogeneous conductivity field k(x) that is a random scalar
function of space x = {x1, x2, x3} that is statistically stationary in the mean flow direction
x1. We conceptualise the random conductivity field k(x) to be a single realisation of a
ensemble of fields that is described by a statistical conductivity model with prescribed
correlation and heterogeneity structure, and consider transverse macrodispersion of a
solute over the ensemble of realisations of k(x). It is important to note, however, that we
place no restrictions upon this statistical conductivity model beyond those of smoothness
and finiteness of k(x).
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The Lagrangian kinematics of three-dimensional Darcy flow

To remove boundary effects, we consider steady Darcy flow in an infinite 3-D domain
D : x = (x1, x2, x3) ∈ R

3 that is driven by a constant mean potential φ̄ = −Gx1 with G >

0 constant. The potential φ may then be decomposed into mean field φ̄ and fluctuating φ̃
components as

φ(x) = φ̄(x)+ φ̃(x), (5.1)

where the overbar denotes the spatial average

ā(x) ≡ lim
L→∞

1
L3

∫ L/2

−L/2

∫ L/2

−L/2

∫ L/2

−L/2
a(x) dx1 dx2 dx3, (5.2)

and the tilde the remaining fluctuation ã ≡ a − ā, hence ˜̄a = 0. We make the assumption
that as the conductivity field k(x) is random and statistically stationary in the mean flow
direction, then the corresponding velocity is also random and statistically stationary in this
direction and so may be represented as

v(x) = v̄ê1 + ṽ(x), (5.3)

where v̄ is the constant mean velocity in the direction of the mean potential gradient and
ṽ(x) is a statistically stationary fluctuating component of the flux, where ṽ = 0. The most
general representation of the streamfunctions that correspond to this flow is then

ψ1(x) = ψ̄1(x)+ ψ̃1(x) = α1,2x2 + α1,3x3 + ψ̃1(x), (5.4)

ψ2(x) = ψ̄2(x)+ ψ̃2(x) = α2,2x2 + α2,3x3 + ψ̃2(x), (5.5)

where αi,j are arbitrary constants and ψ̃1(x), ψ̃2(x) are random fluctuations that satisfy

ψ̃1 = 0, ψ̃2 = 0. The stagnation-free flow condition (2.10a,b) then corresponds to the
condition

∇ψ̃i(x) · ∇ψ̄i < C2
i ≡ ‖∇ψ̄i‖2, i = 1 : 2, ∀x ∈ D (5.6)

for the fluctuations ψ̃i(x) where Ci is a constant that characterises the magnitude of the
constant gradient ∇ψ̄i. Inserting (5.4), (5.5) into (2.9) then yields

v(x) = (α1,2α2,3 − α1,3α2,2)ê1 + ∇ψ̃1 × ∇ψ̃2

+ α1,2∇ × (ψ̃1ê2)− α2,2∇ × (ψ̃2ê2)+ α1,3∇ × (ψ̃1ê3)− α2,3∇ × (ψ̃2ê3).
(5.7)

From Stokes’ theorem, the spatial average of the terms ∇ × (ψ̃iêj) for i = 1 : 2, j = 2 : 3
in (5.7) may be expressed as

∇ × (ψ̃iêj) = lim
L→∞

1
L3

∫
VL3

∇ × (ψ̃iêj) dx3 = lim
L→∞

1
L3

∮
SL3

ψ̃iêj dx2 = 0, (5.8)

where VL3 denotes the volume of a cube of length L centred at x = 0 and SL3 denotes its

surface. As ψ̃i is finite the surface integral above scales as L2, and so ∇ × (ψ̃iêj) = 0 in the
limit L → ∞. Via similar reasoning and using (2.11), the spatial average of ∇ψ̃1 × ∇ψ̃2 =
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ψ2 ψ̄1

�

ψ̄1

ψ1

ψ̄2
x0

δ�1(x0)

x′0

Figure 7. Schematic of ψ1 (red, solid) and ψ2 (blue, solid) streamsurfaces (solid) and ψ̄1 (red, dashed) and ψ̄2
(blue, dashed) level sets in a plane of constant x1, depicting points x0, x′

0 and length δ�i(x0) as described in the
text.

∇ × (ψ̃1∇ψ̃2) in (5.7) is also zero

∇ψ̃1 × ∇ψ̃2 = lim
L→∞

1
L3

∫
VL3

∇ × (ψ̃1∇ψ̃2) dx3 = lim
L→∞

1
L3

∮
SL3

ψ̃1∇ψ̃2 dx2 = 0.

(5.9)
Hence, the mean of (5.7) is

v̄ = α1,2α2,3 − α1,3α2,2, (5.10)

and so the fluctuating component is then given by

ṽ(x) = ∇ψ̃1 × ∇ψ̃2 + α1,2∇ × (ψ̃1ê2)− α2,2∇ × (ψ̃2ê2)

+ α1,3∇ × (ψ̃1ê3)− α2,3∇ × (ψ̃2ê3). (5.11)

As ṽ is statistically stationary in the mean flow direction, the individual terms in (5.11)
are also statistically stationary in this direction, hence, the fluctuations ψ̃i(x) must also be
statistically stationary in this direction. As the level sets of the mean streamfunctions ψ̄i
correspond to the planes defined by the equations

ψ̄i(x2, x3) = αi,2x2 + αi,3x3, i = 1 : 2, (5.12)

then the level sets of the total streamfunctions ψi(x) fluctuate about these planes in a
statistically stationary manner as per figure 7. As shown in figure 7, we define δ�i(x0) as
the distance from the point x0 with streamfunction ψi,0 ≡ ψi(x0) and a point x′

0 on the
corresponding plane ψ̄i(x) = ψi,0 (given by (5.12)), where the straight line from x0 and x′

0
is collinear with ∇ψ̄i, i.e. it is normal to the level sets of ψ̄i. Thus the vector x0 − x′

0 may
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The Lagrangian kinematics of three-dimensional Darcy flow

be expressed as
x0 − x′

0 = a∇ψ̄i, (5.13)

where a is an arbitrary scalar. By rearranging, we find that

a = δ�i(x0)

Ci
= (x0 − x′

0) · ∇ψ̄i

∇ψ̄i · ∇ψ̄i
, i = 1, 2, (5.14)

and as
ψi,0 ≡ ψi(x0) = ψ̄i(x0)+ ψ̃i(x0) = ψ̄i(x′

0), (5.15)

then
ψ̃i(x0) = ψ̄i(x′

0)− ψ̄i(x0) = (x0 − x′
0) · ∇ψ̄i. (5.16)

Hence, the spacing δ�i(x) between the level set of the streamfunction ψi(x) and the planar
level set of its mean component ψ̄i(x) is just the rescaled fluctuation

δ�i(x0) = ψ̃i(x0)

Ci
, i = 1, 2. (5.17)

As ψ̃i(x) is statistically stationary, δ�i(x) is also a statistically stationary random variable
with zero mean, and so the streamsurfaces given by the level sets of ψi fluctuate about the
planar surfaces corresponding to the level sets of ψ̄i.

5.2. Spacing between streamfunctions
We may also derive an expression for the transverse distance (i.e. transverse to the mean
flow direction ê1) between two arbitrary streamlines a and b (shown in figure 8) denoted
respectively by the streamfunction pairs (ψ1,a, ψ2,a), (ψ1,b, ψ2,b). We denote the positions
of the a− and b−streamlines in the (x2, x3) plane (at an arbitrary value of x1 = X1) as xa
and xb, respectively, such that

ψi(X1, xa) = ψi,a, ψi(X1, xb) = ψi,b, i = 1, 2. (5.18a,b)

We also denote the positions of the intersections of the level sets of ψ̄1(x) and ψ̄2(x) that
correspond to ψ1, ψ2 respectively as x′

a and x′
b, such that

ψi(X1, xa) = ψ̄i(x′
a), ψi(xb) = ψ̄i(X1, x′

b), i = 1, 2. (5.19a,b)

Solving these equations for x′
a, x′

b then yields

x′
a = 1

v̄

(
0, α2,3ψ1,a − α1,3ψ2,a, α1,2ψ2,a − α2,2ψ1,a

)
, (5.20)

x′
b = 1

v̄

(
0, α2,3ψ1,b − α1,3ψ2,b, α1,2ψ2,b − α2,2ψ1,b

)
. (5.21)

From these coordinates, the coordinates of xa, xb are then

xa = x′
a + δ�1(xa)∇ψ̄1 + δ�2(xa)∇ψ̄2, (5.22)

xb = x′
b + δ�1(xb)∇ψ̄1 + δ�2(xb)∇ψ̄2, (5.23)

and so the points xa, xb essentially take a random walk around the fixed points x′
a, x′

b as
the a−, b−streamlines propagate in the 1-direction. Thus the distance �̄ab(X1) between
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ψ2,b

ψ2,a

ψ1,a

ψ1,b

�ab

�̄ab

x′b

x′axa

xb

Figure 8. Schematic of spacing �ab between streamlines located at xa and xb (with corresponding
streamfunction pairs (ψ1,a, ψ1,b), (ψ2,a, ψ2,b)) in a cross-sectional plane of constant x1. The points x′

a and
x′

b denote the intersection of the level sets of (ψ̄1,a, ψ̄1,b), (ψ̄2,a, ψ̄2,b)), respectively, and �̄ab is the spacing
between these points.

the points x′
a and x′

b in the x1 = X1 plane is given by the norm

�̄ab(X1) = ‖x′
a − x′

b‖ = 1
v

√(
α1,3Δψ2 − α2,3Δψ1

)2 + (
α2,2Δψ1 − α2,3Δψ2

)2
, (5.24)

where Δψi ≡ ψ2,a − ψ2,b for i = 1, 2. The distance �̄ab between the points xa and xb is
then

�ab(X1) = ‖xa − xb‖ = �̄ab(X1)+ �̃ab(X1), (5.25)

where �̃ab(X1) = F(ψ̃1(x), ψ̃2(x)) is the fluctuation in the transverse distance between
the a− and b−streamlines as they propagate in the 1−direction through the medium. As
�̃ab(X1) only depends upon the streamline fluctuations ψ̃1(x), ψ̃2(x), then the spacing
fluctuation �̃ab(X1) is also statistically stationary in the 1−direction. Thus, streamlines
neither diverge nor converge as they propagate with the mean flow in the 1-direction.

5.3. Transverse macrodispersion
We quantify the impact of this behaviour upon transverse macrodispersion by considering
evolution of the steady scalar concentration field c(x1, x2, x3) of a solute plume as it is
advected through the flow field in the absence of local dispersion (such as molecular
diffusion). We consider evolution of the concentration field of a solute plume under two
scenarios. These two scenarios involve the injection of a solute plume into the flow field
at the plane x1 = 0 as a Gaussian line source that is centred along either the line x2 = 0 or
x3 = 0 as per the inlet conditions

c(0, x2, x3) = c0,j(xj) = c0,max exp

(
−

x2
j

2σ 2
c,0

)
, j = 2, 3. (5.26)

The asymptotic transverse macrodispersion coefficient DT,∞,j in both the j = 2 and
j = 3 directions is then defined as the ensemble average (over the ensemble of scalar
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The Lagrangian kinematics of three-dimensional Darcy flow

conductivity fields) of the asymptotic growth rate of the transverse spatial variance (in
the xj coordinate) of the concentration field σ 2

c,j defined as

σ 2
c,j(x1) ≡

∫ ∞

−∞
c(x1, x2, x3)x2

j dxj, j = 2, 3, (5.27)

where from (5.26), σ 2
c,j(0) = σ 2

c,0. The asymptotic transverse macrodispersion coefficients
are then

DT,∞,j = lim
x1→∞

〈
dσ 2

c,j

dx1

〉
, j = 2, 3, (5.28)

where the angled brackets denote the ensemble average which, due to ergodicity of
the conductivity field and x1−j-independent nature of the inlet condition (5.26), may be
expressed as 〈

dσ 2
c,j

dx1

〉
= lim

L→∞

∫ L/2

−L/2

dσ 2
c,j

dx1
dx1−j. (5.29)

In § 4, the transform between the Cartesian (x1, x2, x3) and streamline (φ, ψ1, ψ2)
coordinate systems was shown to be unique, and so each Cartesian coordinate may be
uniquely expressed as

xi = xi(φ, ψ1, ψ2), i = 1 : 3. (5.30)

As ∂φ/∂x1 < 0 ∀x ∈ D, the coordinate x1 may be uniquely defined as x1 = x1(φ) along
a single streamline. It shall prove useful to then define the Lagrangian coordinates X2, X3
such that X2(x1;ψ1, ψ2), X3(x1;ψ1, ψ2) respectively denote the x2 and x3 coordinates of
a point at the x1 coordinate on a streamline that was initially at coordinate (0, x2, x3) at
x1 = 0, i.e.

X2(0;ψ1, ψ2) ≡ x2 X3(0;ψ1, ψ2) ≡ x3. (5.31a,b)

As the streamfunctions are invariant along a streamline, we shall henceforth express these
coordinates as X2(x1), X3(x1) with the understanding these coordinates refer to a unique
streamline. Similar to the streamfunctions, we may then decompose these Lagrangian
coordinates into mean field and fluctuating terms as

X2(x1) = X̄2 + X̃2(x1), X3(x1) = X̄3 + X̃3(x1), (5.32a,b)

where X̄2, X̄3 are invariant with x1. From (5.17), the fluctuations X̃j may then be related to
the streamfunction fluctuations as

X̃j(x1) =
2∑

i=1

δ�i(x)
Ci

∇ψ̄i · êj =
2∑

i=1

αi,j

C2
i
ψ̃i(x), j = 2, 3. (5.33)

Combining (5.31a,b)–(5.33), the Lagrangian coordinates Xj may then also be expressed in
terms of the streamfunction fluctuations as

Xj(x1) = xj − δxj(x1) = xj −
2∑

i=1

αi,j

C2
i

(
ψ̃i(0)− ψ̃(x1)

)
, j = 2, 3, (5.34)

where δxj(x1) ≡ X̃j(0)− X̃j(x1) and ψ̃i(x1) ≡ ψ̃i(x1,X2(x1),X3(x1)). These results shall
then be used to derive expressions for evolution of the transverse macrodispersion as
follows.
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In the absence of local dispersion, the solute concentration field c evolves according to
the steady advection partial differential equation (PDE)

v(x) · ∇c(x) = 0, c(x)|x1=0 = c0(x2, x3). (5.35a,b)

From this hyperbolic PDE, the scalar concentration c is constant along streamlines, hence,
the concentration field at arbitrary distances in the longitudinal coordinate x1 can be
mapped back to the initial concentration field c0(x2, x3) via the Lagrangian coordinates

c(x1, x2, x3) = c0(X2(x1;ψ1, ψ2),X3(x1;ψ1, ψ2)) = c0(X2(x1),X3(x1)). (5.36)

Inserting (5.34) and (5.36) into (5.27) then yields

σ 2
c,j(x1) =

∫ ∞

−∞
c0(X2,X3)x2

j dxj,

=
∫ ∞

−∞
c0(X2,X3)(Xj + δxj)

2 dXj,

= σ 2
c (0)+

∫ ∞

−∞
c0(X2,X3)(δx2

j + 2Xjδx2) dXj, j = 2, 3. (5.37)

Using (5.29) to take the ensemble average of (5.37) then yields 〈δxj〉 = 0 and

〈σ 2
c,j〉 = σ 2

c,0 + 〈δx2
j 〉 = σ 2

c,0 +
α2

1,j

C2
1

〈δψ2
1 〉 + 2

α1,jα2,j

C1C2
〈δψ1δψ2〉 +

α2
2,j

C2
2

〈δψ2
2 〉, j = 2, 3,

(5.38)
where

δψi(x1) ≡ ψ̃i(0)− ψ̃i(x1), i = 1, 2, (5.39)

and the ensemble average 〈δxj〉 = 0. Thus auto- and cross-correlation of the streamline
fluctuations lead to an increase of the transverse second central moment of the
concentration plume. Due to the random nature of the conductivity field, the
autocorrelation of streamline fluctuations must decay to zero along a streamline as

lim
x1→∞〈ψ̃i(x1)ψ̃i(0)〉 = 0, (5.40)

and we may approximate the evolution of this autocorrelation as a first-order process

〈ψ̃i(x1)ψ̃i(0)〉 ≈ σ 2
ψi

exp(−x1/ζ ), i = 1, 2, (5.41)

where the variance σ 2
ψ̃i

= 〈ψ̃i(x1)
2〉 is constant and the parameter ζ characterises the

decay of the autocorrelation. Without loss of generality we assume that the streamfunction
fluctuations are partially correlated as 〈ψ̃1ψ̃2〉 = β〈ψ̃2

1 〉 where β ≡ σ 2
ψ1
/σ 2
ψ1ψ2

is a
constant. Combining these results, we find

〈δψ2
i 〉 ≈ 2σ 2

ψi
(1 − exp(−x1/ζ )), 〈δψ1δψ2〉 ≈ 2σ 2

ψ12
(1 − exp(−x1/ζ )), (5.42a,b)

and so the transverse spatial variance of the solute plume evolves approximately as

〈σ 2
c,j〉 ≈ σ 2

c,0 + σ 2
ψ (1 − exp(−x1/ζ )) , j = 2, 3, (5.43)

where

σ 2
j,ψ ≡ 2σ 2

ψ1

α2
1,j

C2
1

+ 4σ 2
ψ1ψ2

α1,jα2,j

C1C2
+ 2σ 2

ψ2

α2
2,j

C2
2
, j = 2, 3. (5.44)

Hence, the streamfunctions act to increase transverse variance of the solute plume due to
the decay of auto- and cross-correlations between the streamfunction fluctuations. As these
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correlations must decay to zero, in the asymptotic limit we recover the exact result that the
transverse variance converges to a constant value

lim
x1→∞〈σ 2

c,j〉 = σ 2
c,0 + σ 2

j,ψ , j = 2, 3, (5.45)

as the streamfunction fluctuations ψ̃1, ψ̃2 are statistically stationary. Hence, asymptotic
transverse macrodispersion is zero in the absence of local dispersion

DT,∞,j = lim
x1→∞

〈
dσ 2

c,j(x1)

dx1

〉
= 0, j = 2, 3, (5.46)

in scalar 3-D Darcy flow with a random, statistically stationary conductivity field.
This is in direct contrast to non-integrable steady 3-D flows, where material elements

oriented transverse to the mean flow direction may continually grow without bound in the
mean flow direction (at e.g. an exponential rate in the case of chaotic flows). Such growth
is directly attributable to the absence of invariant streamfunctions for non-integrable 3-D
flows, and so the streamlines of the flow can wander throughout the flow domain without
being confined to coherent, topologically planar streamsurfaces.

It has been shown (Attinger et al. 2004) that steady 2-D flows with topologically
open streamlines also exhibit zero transverse hydrodynamic dispersion. For steady 2-D
flow (whether Darcy flow or otherwise), the topological constraints associated with the
foliation of streamlines within 2-D surface (such that streamlines cannot cross) combined
with conservation of mass ensures that the transverse separation between neighbouring
streamlines may only fluctuate about a mean value (Dentz et al. 2016). This constraint on
streamline behaviour then leads to zero transverse hydrodynamic dispersion in steady 2-D
Darcy flow. For the case of 3-D scalar Darcy flow, the existence of a pair of topologically
planar streamfunctions ψ1, ψ2 renders the kinematics of these flows very similar to that of
steady 2-D Darcy flow. This behaviour is a direct result of the integrable and helicity-free
nature of scalar Darcy flow.

From the result (5.46), a natural question is to ask what are the implications for
transverse dispersion in the presence of local scale dispersion? As significant transverse
hydrodynamic dispersion has been repeatedly observed in both numerical (Janković et al.
2003, 2009; Beaudoin, de Dreuzy & Erhel 2010) and experimental (Adams & Gelhar
1992) studies of macroscopic solute transport, in the absence of transverse hydrodynamic
dispersion for purely advective transport, suggest one of two possible scenarios.

The first scenario is that transverse local scale dispersion may play an important role in
triggering macroscopic transverse dispersion. This would imply that the limit of transverse
local scale dispersion to zero is singular in the following sense. Let us denote the transient
transverse dispersion coefficient by DT(t,D0), where D0 is the local scale dispersion
coefficient. Under this scenario, our results suggest that the limits of t → ∞ and D0 → 0
do not commute. This means that

lim
D0→0

lim
t→∞ DT(t,D0) = D∗

T,∞ > 0, (5.47)

while
lim

t→∞ lim
D0→0

DT(t,D0) = 0. (5.48)

However, recent studies (de Moura 2014; Cerbelli et al. 2017) have shown that the
advection–diffusion equation is only singular with respect to diffusion coefficient D0
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when the advection field is everywhere chaotic, otherwise the advection–diffusion is
non-singular in the limit D0 → 0. As the helicity-free nature of steady, scalar Darcy flow
renders it non-chaotic, it is possible that this first scenario may not hold. If this is the
case, the second scenario is that scalar Darcy flow is not a realistic model for flow and
transport in heterogeneous porous media. Under this scenario, the kinematic constraints
associated with scalar Darcy flow preclude macroscopic transverse dispersion in the limit
of vanishing local dispersion, i.e.

lim
D0→0

lim
t→∞ DT(t,D0) = 0. (5.49)

An inability to predict macroscopic transverse dispersion in the limit of vanishing local
dispersion would represent a significant failing of scalar Darcy flow and so it is important
to determine which of the above scenarios is correct. This is the topic of ongoing research
and is a question we aim to resolve in the near future.

This result is in contradiction with previous numerical studies (Janković et al. 2009;
Beaudoin & de Dreuzy 2013) that have reported non-zero transverse macrodispersion in
the purely advective case. A possible reason for this discrepancy is that these studies
involve numerical methods that do not explicitly conform to the kinematic constraints
associated with scalar Darcy flow, and so may involve spurious numerical dispersion.
Beaudoin & de Dreuzy (2013) observe that ‘in 3D, flow lines expand within a widening
cone and their extension in the direction transverse to the main flow direction is not
limited’, which is inconsistent with the kinematic constraint that streamlines in steady 3-D
Darcy flow in a statistically stationary, scalar conductivity field cannot diverge without
bound. Similarly, Janković et al. (2009) observe non-zero transverse dispersion in 3-D
Darcy flow with impermeable inclusions. Since the conductivity k is discontinuous at
the boundaries of these inclusions, the vorticity, and hence helicity, is undefined in
these flows. As such, these flows may exhibit the kinematics of non-zero helicity flow.
Janković et al. (2009) identify helical flow, described as ‘advective mixing’ and ‘complex
intertwining of streamlines’, as the generator of non-zero transverse macrodispersion.

We also note that several workers have shown numerically (Chiogna et al. 2015) and
experimentally (Ye et al. 2015) that Darcy flows in porous media with scalar conductivity
fields that are statistically anisotropic appear to exhibit streamlines that do not conform
to distinct topologically planar streamsurfaces but rather appear to twist and wander more
freely throughout the flow domain. We note, however, that these conductivity fields are
not smooth, and so the associated discontinuities in the velocity gradient field violate
the smoothness assumptions (Arnol’d 1965) associated with the existence of distinct
streamfunctions in the flow. More broadly, scalar Darcy flows in porous media with
discontinuous conductivity fields may not conform to the kinematic constraints inherent
to helicity- and stagnation-free flows.

These kinematic constraints also do not apply to porous media with tensorial hydraulic
conductivity. Fluid flow in such media is described by the tensorial Darcy equation

v = −K(x) · ∇φ(x), (5.50)

where K(x) is the tensorial hydraulic conductivity field. For (5.50), the helicity-free
condition (2.4) no longer applies (so long as K(x) /= k(x)I), hence, the flow is no longer
integrable and the invariant streamfunctions ψ1, ψ2 do not exist for these flows.

6. Conclusions

We have considered the Lagrangian kinematics of 3-D scalar Darcy flow, which are
characterised by their singularity- and helicity-free nature. We show that the integrable
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nature of these flows admits a pair of topologically planar invariant streamfunctions
that are single valued throughout the flow domain. We derive governing equations for
the streamfunction pair and use these streamfunctions to develop a semi-orthogonal
streamline coordinate system for these flows. Using this coordinate system, we show
that, for statistically stationary porous media, the transverse hydrodynamic dispersion for
purely advective transport is zero. These results stem from the fact that the kinematics
of scalar Darcy flow are overwhelmingly two-dimensional in character; here, streamlines
are confined to topologically planar 2-D streamsurfaces and so the only persistent fluid
deformation is in the longitudinal direction, where fluid elements grow algebraically in
time. These kinematics significantly constrain dispersion and mixing in 3-D porous media
and provide a basis for the derivation of 3-D stochastic transport and mixing models.
While we have investigated the impact of these kinematic constraints upon transverse
macrodispersion in the case of purely advective transport, an important outstanding
question is whether transverse macroscopic dispersion is zero in the limit of vanishing
local dispersion; this is a topic of ongoing research. These constraints upon the Lagrangian
kinematics have important implications for fluid deformation, solute transport, mixing
and dispersion in heterogeneous porous media, as well as other fluid-borne processes
such as chemical reactions and biological activity, colloid transport and deposition. In
particular, these kinematic constraints preclude the development of chaotic mixing in
steady 3-Dheterogeneous Darcy flows. While these constraints hold for any degree of
heterogeneity in the hydraulic conductivity field, they are derived for scalar conductivity
fields which are smooth (i.e. not discontinuous). Hence, steady 3-D Darcy flow in porous
media with discontinuous or tensorial hydraulic conductivity may exhibit non-zero helicity
and therefore potentially much larger mixing rates.

Acknowledgements. The authors thank the anonymous reviewers for their insightful comments and
constructive criticism.

Funding. This work was supported by the European Research Council (T.L.B., grant number 648377) and
the Spanish Ministry of Science and Innovation (M.D., grant number PID2019-106887GB-C31).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Daniel R. Lester https://orcid.org/0000-0003-2927-1384;
Marco Dentz https://orcid.org/0000-0002-3940-282X.

Appendix A. Differential operators in streamline coordinates

The gradient ∇ξ , divergence ∇ξ · a and Laplacian ∇2
ξ operators in streamline coordinates

are, respectively,

∇ξ = ĝ1

h1

∂

∂ξ1 + ĝ2

h2

∂

∂ξ2 + ĝ3

h3

∂

∂ξ3 , (A1)

∇ξ · a = 1
h1h2h3

[
∂

∂ξ1 (h2h3a(1))+ ∂

∂ξ2 (h1h3a(2))+ ∂

∂ξ3 (h1h2a(3))
]
, (A2)

∇2
ξ = 1

h1h2h3

[
∂

∂ξ1

(
h2h3

h1

∂

∂ξ1

)
+ ∂

∂ξ2

(
h1h3

h2

∂

∂ξ2

)
+ ∂

∂ξ3

(
h1h2

h3

∂

∂ξ3

)]
, (A3)
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where a = a(1)ĝ1 + a(2)ĝ2 + a(3)ĝ3, and (A1) simplifies the Darcy equation (2.9) to

v(φ, ψ1, ψ2) = −k/θ∇ξφ = k
θh1

ĝ1 = vĝ1, (A4)

= ∇ξψ1 × ∇ξψ2 = 1
h2

ĝ2 × 1
h3

ĝ3 = 1
h2h3

ĝ1. (A5)

The derivatives of the unit basis vectors ĝj in the orthogonal streamfunction coordinate
system are then

∂gj

∂ξ k = Γ i
kjgi ⇒ Γ i

kj
1
h2

i

∂gk

∂ξ j · gi, i = 1 : 3, j = 1 : 3, k = 1 : 3, (A6)

where Γ i
kj is the Christoffel symbol of the second kind. For orthogonal coordinate systems,

the six Christoffel symbols with distinct indices are zero

Γ k
ij = 0, i /= j /= k /= i, (A7)

as well as the three symbols with the same indices

Γ i
ii = 0. (A8)

There are only six distinct Christoffel symbols of the remaining 18 (from an original of
27) due to symmetry relations Γ i

ij = Γ i
ji, which are explicitly

Γ i
ij = 1

hi

∂hi

∂ξ j , (A9)

Γ i
jj = −hj

hi

∂hj

∂ξ i . (A10)

The streamline vector gradient operator is then given in terms of the Christoffel symbols
as

∇ξa = 1
h2

j

(
∂ai

∂ξ j + akΓ i
kj

)
gi ⊗ gj = hi

hj

(
∂ai

∂ξ j + akΓ i
kj

)
ĝi ⊗ ĝj, (A11)

and

∇∇ξ =
(

∂2

∂ξ i∂ξ j − Γ k
ij
∂

∂xk

)
ĝi ⊗ ĝj, (A12)

which we use to derive expressions for the deformation of fluid elements in scalar Darcy
flow.

Appendix B. Derivation of velocity gradient in streamline coordinates

To derive the velocity gradient in streamline coordinates we apply the gradient operator to
the arbitrary vector a which may be expressed in contra- or co-variant form, respectively,
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as a = aigi = aigi, which yields the velocity gradient equation

∇a =
(

ak,i − ajΓ
j

ik

)
gk ⊗ gi, (B1)

where Γ j
ik is the Christoffel symbol of the second kind

Γ
j

ik = 1
2

(
gip,k + gkp,i − gik,p

)
gjp. (B2)

As the velocity is v = k/θg1, then the components of ε ≡ ∇v = εijgi ⊗ g j are then

ε11 =
(
∂k/θ
∂φ

− k/θΓ 1
11

)
= 1

|∇φ|2
∂v

∂s
, Γ 1

11 = − 1
|∇φ|2

∂2φ

∂s2 , (B3a,b)

ε21 =
(

0 − k/θΓ 1
12

)
= k/θ

|∇ψ1| |∇φ|
∂

∂r

(v
k

)
, Γ 1

12 = − 1
|∇ψ1| |∇φ|

∂2φ

∂s∂r
, (B4a,b)

ε31 =
(

0 − k/θΓ 1
13

)
= k/θ

|∇ψ2| |∇φ|
∂

∂q

(v
k

)
, Γ 1

13 = − 1
|∇ψ2| |∇φ|

∂2φ

∂s∂q
, (B5a,b)

ε12 =
(
∂k/θ
∂ψ1

− k/θΓ 1
21

)
= 1

|∇ψ1| |∇φ|
∂v

∂r
, Γ 1

21 = − 1
|∇ψ1| |∇φ|

∂2φ

∂s∂r
, (B6a,b)

ε13 =
(
∂k/θ
∂ψ2

− k/θΓ 1
31

)
= 1

|∇ψ2| |∇φ|
∂v

∂q
, Γ 1

31 = − 1
|∇ψ2| |∇φ|

∂2φ

∂s∂q
, (B7a,b)

whilst all the remaining components are zero.
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