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Abstract

In analogy with the lower Assouad dimensions of a set, we study the lower Assouad
dimensions of a measure. As with the upper Assouad dimensions, the lower Assouad dimen-
sions of a measure provide information about the extreme local behaviour of the measure.
We study the connection with other dimensions and with regularity properties. In particular,
the quasi-lower Assouad dimension is dominated by the infimum of the measure’s lower
local dimensions. Although strict inequality is possible in general, equality holds for the
class of self-similar measures of finite type. This class includes all self-similar, equicontrac-
tive measures satisfying the open set condition, as well as certain “overlapping” self-similar
measures, such as Bernoulli convolutions with contraction factors that are inverses of Pisot
numbers.

We give lower bounds for the lower Assouad dimension for measures arising from a
Moran construction, prove that self-affine measures are uniformly perfect and have posi-
tive lower Assouad dimension, prove that the Assouad spectrum of a measure converges to
its quasi-Assouad dimension and show that coincidence of the upper and lower Assouad
dimension of a measure does not imply that the measure is s-regular.

2010 Mathematics Subject Classification: Primary 28C15; Secondary 28A80, 37C45

1. Introduction

The upper and lower Assouad dimensions of a metric space provide quantitative infor-
mation about the extreme local geometry of the set. The analogous notion of the Assouad
dimensions of a measure also quantifies, in some sense, the extreme local behaviour of the
measure. These dimensions were extensively studied by Käenmäki et al., in [12] and [13],
and Fraser and Howroyd, in [5], where they were called the upper and lower regularity
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dimensions. It was shown that the upper Assouad dimension of a measure is finite if and
only if the measure is doubling, while the lower Assouad dimension is positive if and only
if the measure is uniformly perfect. Käenmäki et al. focused their investigations on dou-
bling measures supported on uniformly perfect complete metric spaces, whereas Fraser and
Howroyd computed the upper Assouad dimension for a large class of examples, as well as
establishing links to other notions of regularity. As many interesting measures are not dou-
bling, such as is typically the case for self-similar measures that fail the open set condition,
the weaker notion of the quasi-Assouad dimension of a measure is more appropriate and
was studied in [10]. There it was shown, for example, that self-similar measures that are suf-
ficiently regular (but not necessarily satisfying the open set condition), not only have finite
quasi-upper Assouad dimension, but in fact this dimension coincides with the maximal local
dimension of the measure.

In this paper, we investigate the lower Assouad dimension for measures and introduce
the quasi-lower Assouad dimension. The (quasi-) lower Assouad dimension of a measure
is easily seen to be dominated by the (quasi-) lower Assouad dimension of the support of
the measure. It is also dominated by the infimum of the lower local dimensions (and hence
the Hausdorff dimension) of the measure. Although these dimensions are equal for self-
similar measures satisfying the strong separation condition, in general all the aforementioned
inequalities can be strict. We give various examples to show this. We also give an example to
show that equality of the upper and lower Assouad dimensions does not imply s-regularity
of the measure. In analogy with what was shown for sets in [2] and [4], we prove that the
quasi-lower and quasi-upper Assouad dimensions of measures can be recovered from the
Assouad dimension spectrum of a measure under the assumption that the measure is quasi-
doubling, i.e., has finite quasi-upper Assouad dimension. These results can all be found in
Sections 2 and 6. In the Appendix, we simplify the proof given in [2] that the quasi-lower
Assouad dimension of a doubling metric space is the limit of the dimension spectrum and
remove their assumption that the metric space is uniformly perfect.

In Section 3 we establish a lower bound on the lower Assouad dimension for uniformly
perfect measures and show that certain Moran constructions, such as self-similar and self-
affine measures, have positive lower Assouad dimension. For these sets, we give a lower
bound for the dimension in terms of the parameters of the Moran construction. We also
calculate the (quasi-) lower Assouad dimension of Bedford–McMullen carpets.

In Section 4 we prove the equality of the quasi-lower Assouad dimension with the infi-
mum of the set of lower local dimensions for self-similar measures of finite type. This class
of measures includes equicontractive, self-similar measures satisfying the open set condi-
tion, as well as certain measures that only satisfy the weak separation condition, such as
Bernoulli convolutions with contraction factor the inverse of a Pisot number. Our proof is
constructive; we exhibit a sequence of points such that the lower local dimension of the
measure at these points tends to the quasi-lower Assouad dimension of the measure.

A measure is said to be L p-improving if it acts by convolution as a bounded map from
L2 to L p for some p> 2. It is known that L p-improving measures have positive Hausdorff
dimension, thus it is natural to ask if they must also have positive lower Assouad dimen-
sion. In Section 5, examples are given to show that even the quasi-lower Assouad dimension
of an L p-improving measure can be zero, although its local dimensions must be bounded
away from zero. In fact, we show that there exist measures whose Fourier transform is
p-summable for some p<∞, with zero quasi-lower Assouad dimension.
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2. Definitions and basic properties of the lower Assouad type dimensions

2·1. Assouad dimensions of sets

Given a compact metric space X , we write Nr (E) for the least number of sets of diameter
at most r that are required to cover E ⊆ X . Given δ > 0, let

h(δ) = inf

{
α : (∃c, c2 > 0)(∀0< r ≤ R1+δ ≤ c1) sup

x∈E
Nr (B(x, R)∩ E)≤ c2

(
R

r

)α}
,

h(δ) = sup

{
α : (∃c1, c2 > 0)(∀0< r ≤ R1+δ ≤ c1) inf

x∈E
Nr (B(x, R)∩ E)≥ c2

(
R

r

)α}
.

The upper Assouad and lower Assouad dimensions of E are given by

dimA E = h(0), dimA E = h(0),

while the quasi-upper Assouad and quasi-lower Assouad dimensions are given by

dimqA E = lim
δ→0

h(δ), dimqA E = lim
δ→0

h(δ).

2·2. Assouad dimensions of measures

By a measure we will mean a Borel probability measure on X with compact support. The
analogue of the upper Assouad and lower Assouad dimensions for measures was studied
in [5], [12] and [13] (where they were called upper and lower regularity dimensions). The
analogue of the quasi-upper Assouad dimension for measures was introduced in [10]. This
paper is primarily concerned with the (quasi)-lower Assouad dimension for measures.

Given a measure μ and δ ≥ 0, set

H(δ)= inf

{
s : (∃c1, c2 > 0)(∀0< r ≤ R1+δ ≤ c1) sup

x∈suppμ

μ(B(x, R))

μ(B(x, r))
≤ c2

(
R

r

)s}
and

H(δ)= sup

{
s : (∃c1, c2 > 0)(∀0< r ≤ R1+δ ≤ c1) inf

x∈suppμ

μ(B(x, R))

μ(B(x, r))
≥ c2

(
R

r

)s}
.

Definition 1. The upper Assouad and lower Assouad dimensions of μ are given by

dimA μ= H(0), dimA μ= H(0).

The quasi-upper Assouad and quasi-lower Assouad dimension of μ are given by

dimqA μ= lim
δ→0

H(δ), dimqA μ= lim
δ→0

H(δ).

Remark 2. We note that these dimensions are known under various names and many differ-
ent notations are in common use. The upper Assouad dimension is often referred to as the
Assouad dimension, the lower Assouad dimension sometimes simply as lower dimension,
and the measure theoretic versions as the upper and lower regularity dimensions. We have
opted to use a bar to denote upper or lower Assouad dimension instead of dimA and dimL ,
(as dimL is sometimes used to refer to the Lyapunov dimension of a measure).
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2·3. Relationships between these dimensions

It is clear from the definitions that

0 ≤ dimA E ≤ dimqA E ≤ dimqA E ≤ dimA E ≤ ∞
and

0 ≤ dimA μ≤ dimqA μ≤ dimqA μ≤ dimA μ≤ ∞.

It was shown in [5] and [10] that

dimA μ≥ dimA suppμ and dimqA μ≥ dimqA suppμ.

It is known that dimA μ<∞ if and only if μ is doubling, meaning there is a constant C > 0
such that

μ(B(x, R))≥ Cμ(B(x, 2R)) for all x, R. (2·1)

See [5] for a proof.
Recall that the lower local dimension of μ at x is defined as

dimlocμ(x)= lim inf
r→0

logμ(B(x, r))

log r
,

with the upper local dimension, dimlocμ(x), defined similarly but with lim sup replacing
lim inf. Fraser and Howroyd in [5] also showed that

dimqA μ≥ sup
x∈suppμ

{dimlocμ(x)}.

Similar relations hold for the (quasi-)lower Assouad dimensions.

PROPOSITION 3. (i) If μ is a doubling measure, then

dimA μ ≤ dimA suppμ and dimqA μ ≤ dimqA suppμ.

(ii) For any measure μ,

dimA μ ≤ dimqA μ ≤ inf
x∈suppμ

{dimlocμ(x)} ≤ dimH μ.

(iii) If μ is a self-similar measure associated with an IFS that satisfies the strong
separation condition, then

dimA μ= inf
x

{dimloc μ(x)}.

Proof. (i) The fact that dimA μ ≤ dimA suppμwas observed in [12]. To see that dimqA μ ≤
dimqA suppμ, let t = dimqA suppμ and C be the doubling constant of (2·1). For any ε > 0
and suitable δ > 0, there are xi ∈ suppμ, Ri → 0 and ri ≤ R1+δ

i such that Nri (B(xi , Ri)∩
suppμ)≤ (Ri/ri )

t+ε. Together with the doubling property, this implies
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μ(B(xi , 2Ri)∩ suppμ) ≤ C−1μ(B(xi , Ri )∩ suppμ)

≤ C−1 Nri (B(xi , Ri )∩ suppμ) max
y∈B(xi ,Ri )

μ(B(y, ri)∩ suppμ)

≤ C−1(Ri/ri )
t+εμ(B(yi , ri)∩ suppμ)

for a suitable yi ∈ B(xi , Ri). Now B(yi , Ri)⊆ B(xi , 2Ri ) and thus

μ(B(yi , Ri)∩ suppμ)

μ(B(yi , ri )∩ suppμ)
≤ μ(B(xi , 2Ri)∩ suppμ)

μ(B(yi , ri)∩ suppμ)
≤ C−1(Ri/ri )

t+ε.

That suffices to show dimqA μ≤ t . A similar argument shows dimA μ≤ dimA suppμ.
(ii) The only new statement here is the inequality dimqA μ≤ infx{dimlocμ(x)} and this

follows in the same manner as [10, proposition 2·4].
(iii) The proof of this is essentially the same as given in [5, theorem 2·4] for the fact that

dimA μ= supx{dimloc μ(x)}.
Remark 4. In [10, proposition 4·2] it is shown that if dimqA μ<∞, then for each ε > 0
there is a constant c> 0 such that μ(B(x, R))≥ cRεμ(B(x, 2R)) for all x, R. The reader
can check that this weaker condition suffices to ensure dimqA μ≤ dimqA suppμ.

Remark 5. Strict inequalities are possible between all these dimensions. Indeed, in [10,
example 2·3] it is explained how to construct examples with dimqA suppμ< dimA suppμ<
dimqA μ< dimA μ and dimqA suppμ< dimqA μ< dimA suppμ< dimA μ. It is easy to
modify these to produce analogous examples for the lower Assouad dimensions. In par-
ticular, one can have dimA μ= 0, dimA μ= ∞, but 0< dimqA μ< dimqA μ<∞. Below
we give an example where dimqA μ< infx{dimlocμ(x)}. Another example is Example 29.
In Section 4 we prove that the equality does hold for a large class of self-similar measures,
which need not satisfy the open set condition.

Example 6. A measure μ on R with dimqA μ= 0 and infx{dimlocμ(x)} = 1: we construct a
probability measure μ with support [0, 1] defined iteratively on the dyadic intervals. Label
the dyadic intervals of length 2−n (step n) from left to right as I (i)n , i = 1, . . . , 2n , so I (1)n ,

I (2)n are the two descendants of I (1)n−1, for example. Let {n j } be an integer sequence with
n j+1 ≥ 3n j . Choose a sequence 1/2 ≤ q j ↑ 1 and put t j = q

−n j

j 2−(1+n j ). Assuming μ has
been defined on the dyadic intervals of step n − 1, we define μ on the dyadic intervals of
step n in the following fashion:

μ(I (1)n ) = t jμ(I
(1)
n−1) and μ(I (2)n )= (1 − t j )μ(I

(1)
n−1) if n = n j ,

μ(I (1)n ) = q jμ(I
(1)
n−1) and μ(I (2)n )= (1 − q j )μ(I

(1)
n−1) if n = n j + 1, . . . , 2n j .

All other dyadic intervals of step n will have measure 1/2 that of their parent interval.
We even have h(1/2)= 0, and thus dimqA μ= 0, because

μ(B(0, 2−n j ))

μ(B(0, 2−2n j ))
= 1

q
n j

j

=
(

2−n j

2−2n j

)t

for t = − log q j/ log 2 and t → 0 as q j → 1.
To see that dimlocμ(x)≥ 1 for all x ∈ suppμ,we first consider x 
= 0. Choose N0, depend-

ing on x such that x > 4 · 2−N0 . If 2−(n+1) < r ≤ 2−n for n ≥ N0, then B(x, r) is contained in
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the union of four consecutive dyadic intervals of length 2−n , none of which intersect the two
left-most intervals of step N0. Thus

μ(B(x, r))≤ 4 · 2N0−n max
(
μ(I (i)N0

) : i ≥ 3
)

= C2N0−n,

so

logμ(B(x, r))

log r
≥ log C2N0−n

log 2−(n+1)
→ 1 as n → ∞.

Finally, consider x = 0. The choice of t j ensures that μ(B(0, 2−n))≤ 2−n for all n and that
certainly implies dimlocμ(0)≥ 1. That completes the proof.

2·4. Lower dimension and regularity

A measure μ is called s-regular if there exists a uniform constant c> 0 such that

c−1r s ≤μ(B(x, r))≤ crs

for all x ∈ suppμ and 0< r < diam suppμ. It is easy to show from the definitions that if
μ is s-regular then dimA μ= dimA μ= s, see e.g. [12] and [13]. However, it is not true
that coinciding lower and upper Assouad dimension implies s-regularity, as the following
example illustrates.

Example 7. Let Mv be the collection of triadic intervals labelled by finite words on the
letters {0, 1, 2}. We construct a finite measure μ on [0, 1] as follows:

μ(Mv) = (k + 1)3−(k+1) if v = 1(k)0 or v = 1(k)2,

μ(M1(k) jv) = k + 1

3k+1+l
if j ∈ {0, 2} and v ∈ {0, 1, 2}l, (2·2)

μ(M1(k) ) = 2
∞∑

i=k+1

i

3i
= 3−k(3/2 + k).

One can easily check that μ is well defined and upon normalizing by μ([0, 1])=
2
∑∞

i=0(i + 1)/3i+1 = 3/2, we obtain a probability measure.
We now estimate the ratio between any triadic interval and its descendants. Consider

Mv and Mvw for v ∈ {0, 1, 2}k and w ∈ {0, 1, 2}l , where l ≥ 1. If v 
= 1(k), then μ(Mv)/

μ(Mvw)= 3l , using (2·2). If, however, v = 1(k), then

k + 1

3k+l
=μ(Mv0(l) )≤μ(Mvw)≤μ(M1(k+l) )= 3−(k+l)(3/2 + (k + l)). (2·3)

Note also that for j ∈ {0, 2} and k ≥ 1,

μ(M1(k) )

μ(M1(k−1) j )
= 3−k(3/2 + k)

k3−k
= 3/2 + k

k
≤ 5

2
. (2·4)

The inequalities (2·3) and (2·4) show that neighbouring triadic intervals of the same length
differ by at most a factor of 5/2.

Now let J ⊆ I ⊆ [0, 1] be intervals. Write k and l for the unique integers satisfying
3−(k−1) ≤ diam I ≤ 3−(k−2) and 3−(k+l−1) ≤ diam J ≤ 3−(k+l−2). Thus I contains a triadic
interval of length 3−k and is contained within 10 intervals of length 3−k . Analogously, J
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contains an interval of length 3−(k+l) and is contained in 10 intervals of the same length. We
can therefore find Mv and Mvw, v ∈ {0, 1, 2}k , w ∈ {0, 1, 2}l such that

μ(Mv)≤μ(I )≤
(

5

2

)10

μ(Mv) and μ(Mvw)≤μ(J )≤
(

5

2

)10

μ(Mvw),

and hence

μ(I )

μ(J )
∼ μ(Mv)

μ(Mvw)

where ∼ denotes uniform comparability. But

μ(Mv)

μ(Mvw)
≤ max

{
3l,

3−k(3/2 + k)

(k + 1)3−(k+l)

}
= 3l 3/2 + k

k + 1
≤ 3

2
3l

and

μ(Mv)

μ(Mvw)
≥ min

{
3l,

3−k(3/2 + k)

3−(k+l)(3/2 + (k + l))

}
= 3l 3/2 + k

3/2 + (k + l)
≥ 3l 5/2

5/2 + l
.

So (
5

2

)11

3l ≥ μ(I )

μ(J )
≥
(

5

2

)−10 5/2

5/2 + l
3l .

Further, (diam I )/(diam J )∼ 3l and so for every δ > 0 there exists C > 0 such that

C
diam I

diam J
≥ μ(I )

μ(J )
≥ C−1

(
diam I

diam J

)1−δ
.

In particular this holds for I = B(x, R) and J = B(x, r) and so the upper and lower Assouad
dimension of μ is 1. But μ(B(1/2, 3−k))=μ(M1(k) )= 3−k(3/2 + k) and there is no con-
stant K > 0 such that μ(B(x, r))≤ Kr , so μ is not 1-regular. Since it cannot be s-regular
for any s 
= 1, the measure μ is not s-regular for any s ≥ 0.

3. Uniformly perfect measures

Analogous to the metric space properties, it is known that a measure has positive lower
Assouad dimension if and only if it is uniformly perfect, c.f. [12]. We exhibit a general
Moran type construction of a measure that has positive lower Assouad dimension and give a
lower bound on the lower Assouad dimension in terms of the Moran construction data. We
show that many commonly considered fractal measures satisfy the construction constraints.
In particular, self-affine measures are seen to have positive lower Assouad dimension, and
hence are uniformly perfect, as long as they are not a degenerate point mass.

3·1. Characterising positive lower Assouad dimension

Definition 8. Let μ be a compactly supported Borel probability measure. If there exist
positive constants c, γ such that

μ(B(x, R) \ B(x, cR))≥ γμ(B(x, R)) (3·1)

for all x ∈ suppμ and R ≤ diam(suppμ), we say that μ is uniformly perfect1.

1This condition is also known as “inverse doubling”.
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Of course (3·1) is equivalent to the statement that

μ(B(x, R))

μ(B(x, cR))
≥ (1 − γ )−1. (3·2)

We have opted to state our definition to mirror the metric space definition of uniformly
perfect, which states that a metric space is uniformly perfect if for every centred ball, the
annulus must be non-empty. From the definition of uniformly perfect for measures it is
immediate that the support of a uniformly perfect measure must also be uniformly perfect.
However, the converse may not be true; it is possible to construct a measure which is not
uniformly perfect, but supported on an uniformly perfect set.; c.f., Example 6 where the
measure μ has support equal to [0, 1].

THEOREM 9. Let μ be a compactly supported Borel probability measure. Then dimA μ>

0 if and only if μ is uniformly perfect. More precisely, if μ is uniformly perfect with positive
constants c, γ as in (3·1), then dimA μ≥ log(1 − γ )/ log c.

Proof. First, assume μ is uniformly perfect. Let c, γ be as (3·1). For r < R, choose n
such that cn−1 R > r ≥ cn R. Without loss of generality, n ≥ 2 and repeatedly applying (3·2)
gives

μ(B(x, R))

μ(B(x, r))
≥ μ(B(x, R))

μ(B(x, cn−1 R))
≥ μ(B(x, R))

μ(B(x, cR))

μ(B(x, cR))

μ(B(x, c2 R))
· · · μ(B(x, cn−2 R))

μ(B(x, cn−1 R))

≥ (1 − γ )−(n−1) ≥ (1 − γ )(1 − γ )log(R/r)/ log c = (1 − γ )

(
R

r

) log(1−γ )
log c

.

Thus dimA μ≥ log(1 − γ )/ log c> 0.
The other direction is straightforward and follows directly from the definition.

3·2. Moran constructions

Let�= {1, . . . , N } be a finite alphabet with 2 ≤ N <∞ letters and write�k for all words
of length k, �∗ for the collection of all finite words including the empty word ε0, and �N

for all infinite words. A countable subset S ⊆�∗ is called a section if for every long enough
word w ∈�∗ there exists u ∈ S and v ∈�∗ such that w= uv, i.e., every long enough word
has an ancestor in S. A section S is minimal if no proper subset of S is a section.

For every word v ∈�∗, let Mv ⊂ X be an arbitrary set satisfying the following conditions:

(a) Mvw ⊆ Mv for all v, w ∈�∗;
(b) maxv∈�k diam Mv → 0 as k → ∞;
(c) diam(Mv j )≥ C1 diam(Mv) for all v ∈�∗, j ∈�, and C1 > 0 not depending on v

and j ;
(d) for every v ∈�∗ there exist i, j ∈� such that d(Mvi , Mv j )≥ C2 diam(Mv), where

C2 > 0 does not depend on v, i, j and d(A, B) denotes the distance of sets A and B.

Finally, let M be the lim sup set of {Mv}:

M =
∞⋂

n=1

∞⋃
k=n

⋃
v∈�k

Mv.
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Let m be a weight function on the collection {Mv : v ∈�∗} satisfying the following
conditions:

(A) m(Mε0)= 1;
(B) m(Mv)=∑N

i=1 m(Mvi);
(C) m(Mvi)≤ C3m(Mv) for some uniform 0<C3 < 1.

For E ⊆ X , let �∗(E) be the collection of all words v ∈�∗ such that Mv ∩ E 
= ∅. We
let μ be the measure2 induced by the weight function. In other words, writing S for the
collection of all minimal sections of �∗, the measure μ is given by

μ(E)= inf
A∈S

{∑
v∈A′

m(Mv) : A′ = A ∩�∗(E)

}
, (3·3)

for all E ⊆ X . In particular, our conditions give suppμ= M .

LEMMA 10. The set function μ, as constructed above, is an outer measure.

Proof. Clearly,�∗(∅)= ∅ and thusμ(∅)= 0. For monotonicity, let D ⊆ E ⊆ M and observe
that for every ε > 0 there exists a section Aε such that

μ(E)≤
∑
v∈A′

ε

m(Mv)≤μ(E)+ ε,

where A′
ε = Aε ∩�∗(E). Now D ⊆ E and so �∗(D)⊆�∗(E). Therefore,

μ(D)≤
∑

v∈A∩�∗(D)

m(Mv)≤
∑
v∈A′

ε

m(Mv)≤μ(E)+ ε.

Since ε was arbitrary we obtain the required μ(D)≤μ(E).
Finally, for countable subadditivity, let Ei , i ∈N, be a sequence of subsets of M . Let ε > 0

be arbitrary and define εi = ε/2i . Let Ai be a section such that

μ(Ei )≤
∑
v∈A′

i

m(Mv)≤μ(Ei)+ εi ,

where A′
i = Ai ∩�∗(Ei). Let B ′′ =⋃

A′
i and let B ′ ⊆ B ′′ be a minimal subset, meaning that

if v ∈ B ′, then there does not exist non-empty w ∈�∗ such that vw ∈ B ′. Note that
⋃

Ai is
a countable section, though not necessarily minimal, and must contain a minimal section B
that contains B ′.

We now show that if v ∈ B and Mv ∩⋃
Ei 
= ∅, then v ∈ B ′. So assume that for some

v ∈ B there exists x ∈ Mv ∩⋃
Ei . Then there exists j such that x ∈ E j and a coding

vw ∈�N such that
⋂∞

i=1 M(vw)|i = x . Since A j is a section there must exist k such that
(vw)|k ∈ A j . Further, as x ∈ Mvw|k we have (vw)|k ∈�∗({x})⊆�∗(E j ) and so (vw)|k ∈ A′

j

and (vw)|k ∈ B ′′. Since B ′ is a minimal section it must contain (vw)|l for some l ≤ k. We
cannot have l > |v| as then (vw)|l has the ancestor v in B and B is not minimal. Further, we

2Strictly speaking, μ is an outer measure, as proven in Lemma 10. We will consider μ as a set function,
and when using properties of measures we will assume, without further mention, measurability of the sets
being considered.
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cannot have l < |v| for then v ∈ B has an ancestor in B, again breaking minimality. Hence
l = |v| and v = (vw)|l ∈ B ′, as required.

We can now bound the measure of
⋃

Ei :

μ
(⋃

Ei

)
≤
∑
v∈B ′

m(Mv)≤
∑
v∈B ′′

m(Mv)≤
∑
i∈N

∑
v∈A′

i

m(Mv)

≤
∑
i∈N
(μ(Ei)+ εi )=

∑
i∈N

μ(Ei)+ ε.

Letting ε→ 0 gives the required subadditivity.

Using this construction and Theorem 9 we can prove the following theorem3.

THEOREM 11. Let � be a finite alphabet and Mv, v ∈�∗ and m satisfy the conditions
above. Then

dimA μ≥ log(1 − C3)

log C1
> 0

and hence μ is uniformly perfect.

Proof. Let x ∈ M and R > 0 be arbitrary. We define

C = {v ∈�∗ : diam(Mv)≤ C1 R, diam(Mv−) >C1 R, Mv ⊆ B(x, R)}.
Note that, by definition,

⋃
v∈C Mv ⊆ B(x, R). Let m be large enough that Cm

1 + C1 < 1.
Choose n so large such that e−n ≤ Cm

1 , so any w ∈�∗ for which Mw ∩ B(x, e−n R) 
= ∅
and diam Mw ≤ e−n R must have an ancestor w′ such that diam Mw′ ≤ C1 R but diam Mw′− >

C1 R. Therefore

d(x, y) < e−n R + C1 R ≤ (Cm
1 + C1)R < R

for all y ∈ Mw′ and Mw′ ⊆ B(x, R). Hence, w′ ∈ C and, in particular, every word in

B = {v ∈�∗ : diam(Mv)≤ e−n R, diam(Mv−) > e−n R, Mv ∩ B(x, e−n R) 
= ∅}
must have an ancestor in C. Let k be the maximal integer such that C2Ck+2

1 R > 3e−n R and
temporarily fix v ∈ C. Note that for all 1 ≤ j ≤ k, there exist two words α, β ∈� j such that
diam Mvα, diam Mvβ > e−n R and further that d(Mvα, Mvβ) > 3e−n R. Hence, at most one of
Mvα, Mvβ can intersect B(x, e−n R) and for every j there exists at least one w j ∈� such that
Mvz1z2...z j−1w j ∩ B(x, e−n R)= ∅ where z1 
=w1, z2 
=w2, etc. Since m(Mw) <C3m(Mw−),
we further get

m

⎛⎝ ⋃
i∈�\w1

Mvi

⎞⎠≤ (1 − C3)m(Mv)

3Independently, Rossi and Shmerkin [17, section 4·2] also proved that a similar Moran construction is
uniformly perfect.
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and, inductively, for W = (� \w1)× (� \w2)× · · · × (� \wki ),

m

(⋃
u∈W

Mvu

)
≤ (1 − C3)

km(Mv).

Observe that by construction Mvw ∩ B(x, e−n R)= ∅ for all v ∈ C andw 
∈ W . Further, every
word in B must have an ancestor in C × W and so μ(B(x, e−n R))≤∑

vw∈C×W m(Mvw).
Also, note that μ(B(x, R))≥∑

v∈C m(Mv) since Mvu ⊆ B(x, R) for all v ∈ C and u ∈�∗.
Hence,

μ(B(x, R))

μ((B(x, e−n R))
≥

∑
v∈C m(Mv)∑

vw∈C×W m(Mvw)
≥

∑
v∈C m(Mv)

(1 − C3)k
∑

v∈C m(Mv)
≥ (1 − C3)

−k

and we can take γ to be 1 − (1 − C3)
k . Now k is maximal and

C−k
1 <

C2
1C2

3

R

e−n R
= C2

1C2

3e−n
.

So,

k ≥ log
(
C2

1C2/3
)− log e−n

log(1/C1)
− 1 = n

log(1/C1)
+ log

(−C2
1C2/3

)
log(1/C1)

− 1.

We now apply Theorem 9 to get

dimA μ≥ log(1 − C3)
−k

log en
≥ − log(1 − C3)

n

(
n

log(1/C1)
+ log

(
C2

1C2/3
)

log(1/C1)
− 1

)
.

Since n was arbitrary, taking n large gets the required bound on the lower Assouad dimension
and thus the measure is uniformly perfect.

This result can be applied to a variety of measures. For instance, suppose we are given
an iterated function system (IFS) of similarities {Sj }N

j=1 on Rd and probabilities {p j }N
j=1,

with p j > 0 and
∑N

i=1 p j = 1. The self-similar set associated with the IFS is the unique non-
empty compact set K such that K =⋃N

j=1 Sj (K ) which, without loss of generality, can be
assumed to be contained in [0, 1]d . We will further assume that K is not a singleton and thus
perfect. The self-similar measure μ is the unique probability measure satisfying

μ=
N∑

j=1

p j (μ ◦ S−1
j ).

Given v = (v j )
n
j=1 ∈ {1, . . . , N }n, we let Sv = Sv1 ◦ Sv2 ◦ · · · ◦ Svn . If we put Mv =

Sv([0, 1]d), then the collection of sets {Mv} satisfies the first two requirements of the Moran
set construction above. Condition (d) may not be satisfied, but by taking iterates of the IFS
it is eventually satisfied. If we also define the weight function m by m(Mv j )= p j m(Mv),

then the three conditions on the weight function are also fulfilled. The self-similar measure
is the measure μ arising from the weight function m as in (3·3). Consequently, applying
Theorem 9 we obtain

COROLLARY 12. The lower Assouad dimension of any non-degenerate self-similar
measure is positive.

https://doi.org/10.1017/S0305004119000458 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000458


390 KATHRYN E. HARE AND SASCHA TROSCHEIT

Remark 13. This formula for the lower bound on the dimension is by no means sharp. For
an IFS that satisfies the strong separation condition and contraction factors r j , the approach
gives log(1 − max pi )/ log(min ri). The same methods as used in [5, theorem 2·4] for the
upper Assouad dimension show that the actual value of the lower Assouad dimension is
min(log pi/ log ri ), the same as the minimal lower local dimension (see [1]).

One can further extend Corollary 12 to equilibrium Gibbs measures and quasi-Bernoulli
measures on self-conformal sets in general. A quasi-Bernoulli measure μ on the symbolic
space {1, . . . , N }N is any probability measure that satisfies

c−1 ≤ μ([v1, . . . , vk])
μ([v1, . . . , vl])μ([vl+1, . . . , vk]) ≤ c

for all vi ∈ {1, . . . , N } and 1 ≤ l ≤ k, where

[v1, . . . , vk] = {w ∈ {1, . . . , N }N : wi = vi for all 1 ≤ i ≤ k}
and c> 0 is a uniform constant.

Self-conformal sets satisfy the bounded distortion condition and expressing them as such
a Moran construction is straightforward, see e.g. [14]. Similarly, the conditions on the mass
functions are easily seen to be satisfied.

COROLLARY 14. The lower Assouad dimension of the push-forward of a quasi-Bernoulli
measure onto non-degenerate self-conformal sets is positive.

3·3. Self-affine measures

The Moran construction detailed above is very flexible and also encompasses self-affine
measures. Showing this needs some extra work and our approach here is similar to that of
Xie, Jin and Sun [19] who proved that self-affine sets are uniformly perfect. The approach
relies chiefly on the following easy lemma that only uses basic linear algebra. This lemma
appears in a slightly different form as [19, lemma 2·1], but for self-containment we have
chosen to include its proof.

LEMMA 15. Let E = {e1, . . . , ed} be an orthonormal basis of Rd , let A, B be d × d
matrices of which A is invertible. Then there exists a constant αA > 0 depending only on A
and d such that

max
e∈E

{|B A e|} ≥ αA‖B‖,

where ‖B‖ denotes the operator norm of B acting as a linear transformation on Rd .

Proof. First note that there exists x0 =∑d
i=1 ci ei for some scalars ci with

∑
i |ci | = 1, such

that ‖B A‖ = |B Ax0|. By linearity,

‖B A‖ = |B Ax0| = |c1 B Ae1 + · · · + cd B Aed | ≤ d max
1≤i≤d

|B Aei |. (3·4)

Thus the submuliplicativity of the matrix norm ‖.‖ gives

max
e∈E

{|B A e|} ≥ d−1‖B A‖ = ‖B A‖‖A−1‖
d‖A−1‖ ≥ ‖B‖

d‖A−1‖ .

Letting αA = (d‖A−1‖)−1 completes the proof.
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Let fi(x)= Ai x + ti , i = 1, . . . , N , be affine maps such that Ai is non-singular and
‖Ai‖< 1 for all i . The self-affine set associated with { fi } is the unique compact set K that
satisfies

K =
N⋃

i=1

fi(K ).

We will assume that the attractor is not a singleton, which amounts to at least two fi , f j

having distinct fixed points, and prove

THEOREM 16. Let μ be the push-forward of a quasi-Bernoulli measure on the self-affine
set F. If F is not a singleton, the measure μ has positive lower dimension and thus is
uniformly perfect.

Proof. Without loss of generality we can assume that K is not contained in any proper
subspace of Rd , redefining the affine maps with projections otherwise. So there exist
y1, . . . , yd ∈ K such that {y1, . . . , yd} is linearly independent. Let Y be the linear trans-
formation that maps ei onto yi . As this is a change of basis, Y must be invertible.

Let BR = B(0, R) be the closed ball of radius R and choose R large enough such that
fi(BR)⊂ BR for all i . Then, f j ( fi(BR))⊂ f j (BR), and generally fvw(BR)⊂ fv(BR) for all
non-empty v, w ∈ {1, . . . , N }∗. Observe that the composition of affine maps is itself affine
and diam fv1...vk (B1)= 2‖A‖, where A = Av1 . . . Avk is the linear component of fv1...vk . Let
K be the minimal integer such that (maxi {‖Ai‖})K <αY/(6R) where αY is as in Lemma
15. Let �= {1, . . . , N }K and define M∅ = BR and Mv = fv(BR), bearing in mind that a
word v ∈�k is of length k · K . This definition clearly satisfies (a) and (b) in the Moran
construction definition.

For (c) we note that for all v ∈�k and j ∈�,

diam Mv j = diam(Av1 · · · Av(kK ) A j1 · · · A jK (BR))= 2R
∥∥Av1 · · · Av(kK ) A j1 · · · A jK

∥∥
≥ 2R

∥∥Av1 · · · Av(kK )

∥∥ ∥∥(A j1 · · · A jK )
−1
∥∥−1

= ∥∥(A j1 · · · A jK )
−1
∥∥−1

diam(Av1 · · · Av(kK ) (BR))

= ∥∥(A j1 · · · A jK )
−1
∥∥−1

diam Mv.

Since � is finite and all Ai are invertible, there exists a constant

C1 = min
v∈�

∥∥(Av1 · · · AvK )
−1
∥∥−1

> 0

such that (c) is satisfied.
Finally we check (d). Let v ∈�k and recall that Y maps the basis E onto a linearly

independent set of points in K . Using Lemma 15 we obtain,

max
e∈E

{|Av1 · · · Av(kK )Y e|} ≥ αY

∥∥Av1 · · · Av(kK )

∥∥= αY

2R
diam Mv.

But then

diam fv(Y E)≥ αY

2R
diam Mv

and as Y ei = yi , we have Y E ⊂ F and fv(Y E)⊂ K . Thus there exist two points in Mv ∩ F
that are at least (αY/(2R)) diam Mv apart. Since these two points must be contained in Mvi
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and Mv j , respectively, and diam Mvi , diam Mv j ≤ (αY/(6R)) diam Mv we must have i 
= j ,
and further

d(Mvi , Mv j )≥ (αY/(3R)) diam Mv.

Thus Condition (d) is satisfied.
Letting m(Mv)=μ([v]) for all v ∈�∗ gives the correct measure on M = F . Checking

the conditions on the weight function is straightforward and left to the reader.

Remark 17. It was observed by Käenmäki and Lehrbäck, see [12, lemma 3·1], that any dou-
bling measure supported on a uniformly perfect metric space has positive lower dimension.
Our results above show that there are many measures with positive lower Assouad dimension
that are, in general, far from doubling.

3·4. Lower dimension of Bedford–McMullen carpets

One example of a class of self-affine measures are the pushforward measures given by a
Bernoulli probability measure on Bedford–McMullen carpets. In this subsection we com-
pute the exact lower Assouad dimension of these measures. The result is analogous to the
upper Assouad dimension for sponges given in [5] and due to its similarity we will only give
a brief sketch of its proof.

Let 2 ≤ m < n be integers and consider maps of the form fi (x)= Ax + ti , where 1 ≤ i ≤
N , A is the diagonal matrix A = Diag(1/m, 1/n) and ti = [ai/m bi/n]� for some integers
0 ≤ ai <m and 0 ≤ bi < n. The attractor of the IFS { f1, . . . , fN } is known as a Bedford–
McMullen carpet. If there exists ε > 0 such that all fi([−ε, 1 + ε]2) are pairwise disjoint,
we say that the iterated function system satisfies the very strong separation condition.

Given pi > 0 such that
∑

pi = 1, let μ be the pushforward measure of the Bernoulli
measure on {1, . . . , N }N under the IFS. The lower Assouad dimension of this self-affine
measure is characterised by finding a minimising column. We write

pcol(i)=
∑

j∈{1,...,N }
a j =ai

p j

for the measure of the column containing fi([0, 1]), that is

pcol(i)=μ([ai/m, (ai + 1)/m] × [0, 1]).
THEOREM 18. Let μ be the self-affine measure of Bedford–McMullen type with asso-

ciated probabilities pi and contractions fi . If the very strong separation condition holds,
then

dimA μ= min
1≤ j≤N

− log pcol( j)

log m
+ min

1≤i≤N

log pcol(i)/pi

log n
. (3·5)

Furthermore, H(t)= dimA μ for small enough t and so dimqA μ= dimA μ.

Proof. The key idea to establishing this dimension result are “approximate squares”, see
[5] for details. Heuristically, an approximate square is a collection of words such that the
corresponding set has uniformly comparable base and height, i.e. is ‘almost’ a square. We
will construct approximate squares below and check that they give rise to the dimension
formula. The details that allow us to transition from nested approximate squares to balls are
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based on the very strong separation condition and contained in [5]; we decided to omit them
for brevity.

Let k1(R) and k2(R) be the unique integers such that m−k1(R) ≤ R <m−k1(R)+1 and
n−k2(R) ≤ R < n−k2(R)+1. Due to the common diagonal structure of the linear part of fi ,
the image fv([0, 1]2) will be a rectangle aligned with the first and second coordinate. If
v has length k2(R), the rectangle fv([0, 1]2) will have height in (n−1 R, R]. Similarly, for
any word of length k1(R), the corresponding rectangle will have base in (m−1 R, R]. Given
0< r < R < 1 let vr ∈�k2(r) and wr ∈�∗ such that vrwr ∈�k1(r) and consider the set

Qr =
⋃
w∈�∗

{ fvrw([0, 1]2) : vrw ∈�k1(r) and a(vrw)i = a(vrwr )i for all 1 ≤ i ≤ k1(r)},

that is the set of all images of words that have vr as the ancestor (whose rectangle has height
comparable to r ) such that each rectangle associated with vrw has base comparable to r
and the horizontal translations all agree so all fvrw([0, 1]2) align in the same column as
fvrwr ([0, 1]2). Therefore Qr must have height and base comparable to r and is a (generic)
approximate square. Its parent approximate square of size R is denoted by Q R and is the set
given by

Q R =
⋃
w∈�∗

{ fvRw([0, 1]2) : vRw ∈�k1(R) and a(vRw)i = a(vrwr )i for all 1 ≤ i ≤ k1(R)},

where vR ∈�k2(R) is the parent word of vr .
As mentioned above, it is sufficient to check μ(Q R)/μ(Qr ) for all arbitrary approximate

squares of the above form. Their measures are

μ(Q R)=
k2(R)∏
i=1

p(vrwr )i

k1(R)∏
i=k2(R)+1

pcol((vrwr )i)

and

μ(Qr )=
k2(r)∏
i=1

p(vrwr )i

k1(r)∏
i=k2(r)+1

pcol((vrwr )i).

Notice that by definition we must either have

k2(R) < k1(R) < k2(r) < k1(r) or k2(R) < k2(r) < k1(R) < k1(r). (3·6)

In the first case we get

μ(Q R)

μ(Qr )
=

k1(R)∏
i=k2(R)+1

pcol((vrwr )i)/p(vrwr )i

(
k2(r)∏

i=k1(R)+1

p(vrwr )i

k1(r)∏
i=k2(r)+1

pcol((vrwr )i)

)−1

≥
(

min
1≤ j≤N

pcol( j)

p( j)

)k1(R)−k2(R)−1 (
min

1≤ j≤N
p( j)−1

)k2(r)−k1(R)−1

×
(

min
1≤ j≤N

pcol( j)−1

)k1(r)−k2(r)−1

≥ C

(
min

1≤ j≤N

pcol( j)

p( j)

)k1(R)−k2(R) (
min

1≤ j≤N
pcol( j)−1

)k1(r)−k2(r)

,
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for some C > 0. Note that k1(t)− k2(t)∼ log(1/t) and so the lower bound increases to
infinity as R → 0 and r → 0, irrespective of R/r . On the other hand, in the second case, we
obtain

μ(Q R)

μ(Qr )
=
(

k1(R)∏
i=k2(R)+1

pcol((vrwr )i)

)(
k2(r)∏

i=k2(R)+1

p(vrwr )i

k1(r)∏
i=k2(r)+1

pcol((vrwr )i)

)−1

=
(

k2(r)∏
i=k2(R)+1

pcol((vrwr )i)

)(
k2(r)∏

i=k2(R)+1

p(vrwr )i

k1(r)∏
i=k1(R)+1

pcol((vrwr )i)

)−1

=
k2(r)∏

i=k2(R)+1

pcol((vrwr )i)/p(vrwr )i

k1(r)∏
i=k1(R)+1

pcol((vrwr )i)
−1

≥ C

(
min

1≤ j≤N

pcol( j)

p j

)k2(r)−k2(R) (
min

1≤ j≤N
pcol( j)−1

)k1(r)−k1(R)

= C

(
min

1≤ j≤N

pcol( j)

p j

)log(R/r)/ log n (
min

1≤ j≤N
pcol( j)−1

)log(R/r)/ log m

= C

(
R

r

)s

for some uniform C > 0 and s as in (3·5). This shows that dimA μ≥ s.
Lastly, the second behaviour in (3·6) occurs when r > R1+δ, where 1 + δ = log n/ log m.

Therefore there exists a word such that this minimum is achieved and we obtain H(t)≤ s
and H(t) is constant for 0< t < δ.

4. The lower Assouad dimension for self-similar measures of finite type

4·1. Finite type measures

In this section, we will prove that for a class of self-similar measures on R, called finite
type, the lower Assouad dimension coincides with the minimal lower local dimension of
the measure (Theorem 25). Many interesting self-similar measures that fail the open set
condition are of finite type, such as Bernoulli convolutions with Pisot contractions. We begin
by explaining what is meant by finite type.

Assume we are given an IFS of similarities, Sj (x)= r j x + d j :R→R for j = 1, . . . , N ,
where N ≥ 2 and 0<

∣∣r j

∣∣< 1, and probabilities {pk}N
j=1. By rescaling and translation, there

is no loss in assuming the convex hull of the self-similar set K is [0, 1]. We let μ denote the
self-similar measure, μ(E)=∑N

j=1 p jμ(S
−1
j (E)).

Given any integer n and v= (v j )
n
j=1 ∈ {1, . . . , N }n, we let v− = (v1, . . . , vn−1), rv =∏n

i=1 rvi and pv =∏n
j=1 pv j . Put

λ= min
j=1,...,N

∣∣r j

∣∣
and

�n = {v ∈ {1, . . . , N }∗ : |rv| ≤ λn and |rv−|>λn}.
The notion of finite type was introduced by Ngai and Wang in [15]. The definition we

will use is slightly less general, but is simpler and includes all the examples in R that we are
aware of.
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Definition 19. Assume {Sj } is an IFS of similarities. The words v, w ∈�n are said to be
neighbours if Sv(0, 1)∩ Sw(0, 1) 
= ∅. Denote by N (v) the set of all neighbours of v. We
say that v ∈�n and w ∈�m have the same neighbourhood type if there is a map f (x)=
±λn−m x + c such that

f ◦ Sv = Sw and { f ◦ Su : u ∈N (v)} = {St : t ∈N (w)}.
The IFS is said to be of finite type if there are only finitely many neighbourhood types. Any
associated self-similar measure is also said to be of finite type.

It was shown in [16] that an IFS of finite type satisfies the weak separation condition, but
not necessarily the open set condition. For instance, the IFS given by Sj (x)= ±ρ−n j x + b j

where ρ is a Pisot number4, n j ∈N and b j ∈Q[ρ], was shown to be of finite type in [15,
theorem 2·9], but fails the open set condition. The Bernoulli convolutions with contraction
factors that are inverses of Pisot numbers are self-similar measures associated with an IFS
of this form. As integers are also Pisot numbers, the self-similar measures coming from
an IFS {Sj (x)= x/d + j (d − 1)/d}m−1

j=0 , for integer d ≥ 3, such as m-fold convolutions of
the uniform Cantor measure on the Cantor set of ratio 1/d, are another class of finite type
measures.

Definition 20. For each positive integer n, let h1, . . . , hsn be the collection of elements of
the set {Sv(0), Sv(1) : v ∈�n}, listed in increasing order. Set

Fn = {[h j , h j+1] : 1 ≤ j ≤ sn − 1 and (h j , h j+1)∩ K 
= ∅}.
Elements of Fn are known as the net intervals of level n.

For each � ∈Fn , n ≥ 1, there is a unique element �̂ ∈Fn−1 which contains �, called
the parent (of child �). Given �= [a, b] ∈Fn , we denote the normalised length of � by
�n(�)= λ−n(b − a). By the neighbour set of � we mean the ordered tuple

Vn(�)= ((a1, L1), (a2, L2), . . . , (a j , L j )),

where for each i there is some v ∈�n such that λ−nrv = Li and λ−n(a − Sv(0))= ai .
Suppose � ∈Fn has parent �̂. If �̂ has multiple children with the same normalized
length and neighbourhood set as �, order them from left to right as �1, �2, . . . , �T . Let
tn(�) ∈ {1, . . . , T } be the integer t such that �t =�.

Definition 21. The characteristic vector of � ∈Fn is defined to be the triple

Cn(�)= (�n(�), Vn(�), tn(�)).

A very important fact, shown in [9, theorem 2·7], is that an IFS of finite type admits only
finitely many characteristic vectors. The characteristic vectors are of fundamental impor-
tance because, as we will see, we can obtain key information about the local behaviour of
any associated self-similar measure from them.

4A Pisot number is an algebraic number greater than one, all of whose Galois conjugates are strictly less
than one in modulus. An example is the golden mean.
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By the symbolic representation of a net interval � ∈Fn we mean the (n + 1)-tuple
(C0(�0), . . . , Cn(�n)), where �0 = [0, 1], �n =�, and for each j = 1, . . . , n, � j−1 is the
parent of � j . Similarly, for each x ∈ K = suppμ the symbolic representation of x will be
the sequence of characteristic vectors [x] = (C0(�0), C1(�1), . . . ) where x ∈�n ∈Fn for
each n and � j−1 is the parent of � j . Conversely, every sequence of characteristic vectors
(γ0, γ1, . . . ) where γ0 = C0(�0) and γ j is the parent of γ j+1 is the symbolic representation
of a unique x ∈ K . We will write �n(x) for a net interval of level n containing x .

By a path we mean a segment of a symbolic representation. A loop class is a set of
characteristic vectors L with the property that given any χ, ψ ∈L there is some finite path
η in L so that (χ, η, ψ) is a path (in L).

Definition 22. Let �= [a, b] ∈Fn and let �̂= [c, d] ∈Fn−1 denote its parent net inter-
val. Assume Vn(�)= ((a1, L1), . . . , (aI , L I )) and Vn−1(�̂)= ((c1, M1), . . . , (cJ , MJ )).
The primitive transition matrix, denoted

T (Cn−1(�̂), Cn(�)),

is the I × J matrix (Ti j ) which encapsulates information about the relationship between
the (ci , Mi ) ∈ Vn−1(�̂) and (a j , L j ) ∈ Vn(�). To be precise, let σ j ∈�n−1 be such that
λ−n+1(c − Sσ (0))= ci and λ−n+1rσ = Mi . Let Ti, j be the set of all ω such that σω ∈�n ,
λ−n(a − Sσiω(0))= a j and λ−nrσiω = L j . Notice that Ti, j depends only on Sσi (or equiva-
lently on ci and Mi ), and not on the choice of σi . We define Ti, j =∑

ω∈Ti, j
pω where the

empty sum is taken to be 0.

Given a path (γJ , γJ+1, . . . , γN ), we write T (γJ , γJ+1, . . . , γN ) for the product

T (γJ , γJ+1, . . . , γN )= T (γJ , γJ+1)T (γJ+1, γJ+2) · · · T (γN−1, γN ).

For brevity we write
∥∥(Ti j)

∥∥=∑
i, j

∣∣Ti j

∣∣ and note the following critical fact proven in [9,
section 3·2].

LEMMA 23. There are constants a, b> 0 such that whenever�n is a net interval of level
n with symbolic representation (γ0, γ1, . . . , γn), then

a ‖T (γ0, γ1, . . . , γn)‖ ≤μ(�n)≤ b ‖T (γ0, γ1, . . . , γn)‖ .
This lemma is useful because the lower Assouad dimensions for self-similar measures of

finite type can be deduced from the knowledge of the measure of net intervals, as we see
next.

LEMMA 24. If μ is of finite type and dimA μ≤ d, then for each ε > 0 there are xi ∈
suppμ and net intervals �Ni (xi )⊇�ni (xi) with ni − Ni → ∞ such that

μ(�Ni (xi))

μ(�ni (xi))
< λ(d+ε)(Ni −ni ). (4·1)

Proof. Suppose the statement above is false. As there are only finitely many characteristic
vectors, all normalized lengths of net intervals are comparable. Thus we may choose c> 0
so that diam(�n)≥ cλn for all net intervals�n of level n. Given any net interval,�n, of level
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n, we will write �R
n and �L

n for the adjacent net intervals of level n to the right and left of
�n respectively, should these exist.

Let x ∈ suppμ and consider r < R where R/r → ∞. Choose N , n such that 3λN ≤ R <
3λN−1 and cλn+1 < r ≤ cλn . Then n − N → ∞ and

μ(B(x, R))

μ(B(x, r))
≥ μ(B(x, 3λN ))

μ(B(x, cλn))
.

As all net intervals of level n have diameter between cλn and λn , for any x ∈ suppμ we
have

B(x, 3λN )∩ suppμ⊇ (�N (x)∪�R
N ∪�L

N )∩ suppμ

and

B(x, cλn)∩ suppμ⊆ (�n(x)∪�R
n ∪�L

n )∩ suppμ.

Thus

μ(B(x, 3λN ))≥ max{μ(�N (x)), μ(�
R
N ), μ(�

L
N )},

while

μ(B(x, cλn))≤ 3 max{μ(�n(x)), μ(�
R
n ), μ(�

L
n )}.

First, suppose μ(B(x, cλn))≤ 3μ(�n(x)). Since we are assuming (4·1) fails,

μ(B(x, 3λN ))

μ(B(x, cλn))
≥ μ(�N (x))

3μ(�n(x))
≥ 1

3
λ(d+ε)(N−n) ≥ C

(
R

r

)d+ε

for a suitable constant C, independent of x, R, r .
Otherwise, without loss of generality, μ(B(x, cλn))≤ 3μ(�L

n ). Notice that �L
n is either a

child of �N (x) or �L
N . If �L

n ⊆�N (x) and we let y ∈�L
n ∩ suppμ, then �N (x)=�N (y)

and �L
n =�n(y), so we have

μ(B(x, 3λN ))

μ(B(x, cλn))
≥ μ(�N (y))

3μ(�n(y))
≥ 1

3
λ(d+ε)(N−n) ≥ C

(
R

r

)d+ε
.

If, instead�L
n ⊆�L

N the arguments are similar, just take y to be the right endpoint of�L
n and

then �L
N =�N (y) and �L

n =�n(y).
Consequently,

μ(B(x, R))

μ(B(x, r))
≥ C

(
R

r

)d+ε

for all x ∈ suppμ and r < R with R/r → ∞ and that implies dimA μ≥ d + ε; a
contradiction.

4·2. Lower Assouad dimension for measures of finite type

We are now ready to prove the main result of this section.

THEOREM 25. If μ is any self-similar measure of finite type, then

dimA μ= inf{dimlocμ(x) : x ∈ suppμ}.
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Proof. Throughout the proof C will denote a positive constant that may change from
one occurrence to another. Let d = infx{dimlocμ(x)} and assume for a contradiction that
dimA μ< d, say dimA μ< d − 3ε for ε > 0. We will show that this implies the existence of
points which have local dimension strictly less than d.

By Lemma 24, there are xi ∈ suppμ and Ni < ni such that ni − Ni → ∞ and

μ(�Ni (xi ))

μ(�ni (xi))
< λ(d−2ε)(Ni −ni ) for all i .

It follows from Lemma 23 that there is a constant C such that if �ni (xi) has symbolic
representation (γ0, γ

(i)
1 , . . . , γ (i)ni

), then

Cλ(d−2ε)(Ni −ni ) ≥ C
μ(�Ni (xi))

μ(�ni (xi))
≥

∥∥∥T (γ0, γ
(i)
1 , . . . , γ

(i)
Ni
)

∥∥∥∥∥∥T (γ0, γ
(i)
1 , . . . , γ

(i)
ni )

∥∥∥
≥

∥∥∥T (γ0, γ
(i)
1 , . . . , γ

(i)
Ni
)

∥∥∥∥∥∥T (γ0, γ
(i)
1 , . . . , γ

(i)
Ni
)

∥∥∥ ∥∥∥T (γ (i)Ni
, . . . , γ

(i)
ni )

∥∥∥ .
Thus ∥∥∥T (γ (i)Ni

, . . . , γ (i)ni
)

∥∥∥≥ Cλ(d−2ε)(ni −Ni ). (4·2)

The path, (γ (i)Ni
, . . . , γ (i)ni

), can be rewritten as (χ(i)0 , σ
(i)
1 , χ

(i)
1 , . . . , σ

(i)
ki
), where for each

j ≥ 1, σ (i)j is a path in a distinct maximal loop class L (i)j , χ
(i)
j is a minimal length path joining

the last letter of σ (i)j (a characteristic vector in Li
j ) to the first letter of σ (i)j+1 (a characteristic

vector in Li
j+1), and χ(i)0 is a path from the first letter of γ (i)Ni

to the first letter of σ (i)1 .
The finite type property ensures that there are only finitely many maximal loop classes and

only finitely many characteristic vectors in each loop class. Hence there can only be finitely
many of these minimal joining paths χ(i)j over all i, j . Thus supi, j ‖T (χ(i)j )‖ is bounded and

supi {sup j length(χ(i)j )} ≤ supi A(i) <∞. Since it is not possible to return to a maximal loop
class after leaving it, the numbers ki are bounded, say by k. Hence there is a constant C such
that ∥∥∥T (γ (i)Ni

, . . . , γ (i)ni
)

∥∥∥≤
ki −1∏
j=0

∥∥∥T (χ(i)j )

∥∥∥ ki∏
j=1

∥∥∥T (σ (i)j )

∥∥∥≤ Ck
ki∏

j=1

∥∥∥T (σ (i)j )

∥∥∥ . (4·3)

Let l(i)j denote the length of the path σ (i)j . Then

ki∑
j=1

l(i)j ≤ ni − Ni =
ki∑

j=1

l(i)j +
ki−1∑
j=0

length(χ(i)j )≤
ki∑

j=1

l(i)j + k A(i), (4·4)

so
∑ki

j=1 l(i)j → ∞ as i → ∞. Putting together these observations we see that for large
enough ni − Ni , (4·2) gives

log
∥∥∥T (γ (i)Ni

, . . . , γ (i)ni
)

∥∥∥
ni − Ni

≥ (d − 2ε)(ni − Ni ) log λ+ log C

ni − Ni

≥ (d − 2ε) log λ− ε

2
| log λ|,
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while (4·3-4·4) imply

log
∥∥∥T (γ (i)Ni

, . . . , γ (i)ni
)

∥∥∥
ni − Ni

≤
log Ck + log

ki∏
j=1

∥∥∥T (σ (i)j )

∥∥∥∑ki

j=1 l(i)j

≤
∑ki

j=1 log
∥∥∥T (σ (i)j )

∥∥∥∑ki

j=1 l(i)j

+ ε

2
| log λ|.

Hence ∑ki

j=1 log
∥∥∥T (σ (i)j )

∥∥∥∑ki

j=1 l(i)j

≥ (d − ε) log λ, for large i, (4·5)

and that implies that log
∥∥∥T (σ (i)j )

∥∥∥≥ (d − ε)l(i)j for some j = ji . There is no loss of

generality in assuming ji = 1. Thus∥∥∥T (σ (i)1 )

∥∥∥≥ λl(i)1 (d−ε). (4·6)

We will now construct x ∈ suppμ with dimlocμ(x)≤ d − ε/2 by constructing a symbolic
representation from the symbolic representations of a suitable subsequence of the (xi). We
will rely on the fact that there will be a subsequence of (the symbolic representations for) xi

and index ji such that all σ (i)ji belong to the same loop class and their lengths are unbounded
in i .

As there are only finitely many maximal loop classes, there must be some subsequence
such that all σ (i)1 (for i in the subsequence) belong to the same maximal loop class.

Suppose supi �
(i)
1 <∞. As there are finitely many characteristic vectors, there can be only

finitely many paths of length at most supi �
(i)
1 and hence supi

∥∥∥T (σ (i)1 )

∥∥∥<∞. Consider again

inequality (4·3) with this additional information∥∥∥T (γ (i)Ni
, . . . , γ (i)ni

)

∥∥∥≤ Ck
ki∏

j=1

∥∥∥T (σ (i)j )

∥∥∥≤ Ck+1
ki∏

j=2

∥∥∥T (σ (i)j )

∥∥∥ .
Since

ki∑
j=2

l(i)j ≤ ni − Ni = �
(i)
1 +

ki∑
j=2

l(i)j +
ki−1∑
j=0

length(χ(i)j )≤
ki∑

j=2

l(i)j + �
(i)
1 + k A(i)

and k A(i) + �
(i)
1 is bounded over i , the same reasoning as used to deduce (4·6) shows that for

some further subsequence and index ji ∈ {2, . . . , k}, which we can assume without loss of
generality is 2, we have ∥∥∥T (σ (i)2 )

∥∥∥≥ λl(i)2 (d−ε)

with all σ (i)2 belonging to the same maximal loop class.
If supi �

(i)
2 <∞, we repeat the argument. As there are only finitely many maximal loop

classes, we must eventually find a subsequence of the indices i and index j such that the
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paths σ (i)j = ρi , all are in the same maximal loop class �, their lengths �(i) = �
(i)
j → ∞ as

i → ∞ and

‖T (ρi )‖ ≥ λ�(i)j (d−ε).

We will now ‘stitch’ these paths together to obtain the x ∈ suppμ required for the contra-
diction. For each pair of characteristic vectors, χ, ψ, in �, choose a path ηχ,ψ (in �) with
first letter χ and last letter ψ . Choose, also, a path ηψ from γ0 to each ψ ∈�. Let S denote
the finite set consisting of the chosen paths ηχ,ψ , ηψ . Since a transition matrix contains a non-
zero entry in each column, there is some constant c0 > 0 such that ‖T (η, σ )‖ ≥ c0 ‖T (σ )‖
for all η ∈ S and all admissible paths σ (meaning, (η, σ ) is a path). Choose i1 such that

|log c0|
�(ii )

<
ε| log λ|

2

and select a path ν1 ∈ S joining γ0 to the path ρi1 .
Next, as ν1, ρi1 are fixed and S is finite, we can choose c1 > 0 such that∥∥T (ν1, ρi1, η, σ )

∥∥≥ c1 ‖T (σ )‖
for all admissible paths η ∈ S and σ . Then choose i2 > i1 such that

|log c1|
�(i2)

<
ε| log λ|

2
.

As ρi1 and ρi2 belong to the same maximal loop class �, there is some path ν2 joining the
last letter of ρi1 to the first letter of ρi2 . Having found such a path, choose c2 > 0 so∥∥T (ν1, ρi1, ν2, ρi2, η, σ )

∥∥≥ c2 ‖T (σ )‖ (4·7)

for all admissible paths η ∈ S and σ . Repeat this procedure to construct ν j , ρi j , j = 1, 2, . . .
and then let x be the element of suppμ with symbolic representation

[x] = (ν1, ρi1, ν2, ρi2, . . . ).

It only remains to verify that dimlocμ(x)≤ d − ε/2. Towards this, let Mn(x)=
μ(�n(x))+μ(�R

n )+μ(�L
n ). As was essentially observed in [8, theorem 2·6],

dimlocμ(x)= lim inf
n

log Mn(x)

n log λ
.

If n =∑J
j=1(length(ν j )+ �(i j )), then �n(x)= (ν1, ρi1, ν2, ρi2, . . . , ρi J ). Thus (4·7) yields

Mn(x)≥μ(�n(x))≥ C
∥∥T (ν1, ρi1, ν2, ρi2, . . . , ρi J )

∥∥≥ CcJ−1

∥∥T (ρi J )
∥∥

and so

log Mn(x)

n log λ
≤ log C + log cJ−1 + log

∥∥T (ρi J )
∥∥

n log λ
.

Recall that ‖T (ρi )‖ ≥ λ�(i)(d−ε) , hence as n ≥ �(i J )

log
∥∥T (ρi J )

∥∥
n log λ

≤ (d − ε).
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Furthermore, the choice of i J ensures that∣∣∣∣ log cJ−1

n log λ

∣∣∣∣≤ ∣∣∣∣ log cJ−1

�(i J ) log λ

∣∣∣∣< ε

2
.

Consequently, for large enough n of this form,

log Mn(x)

n log λ
≤ ε

4
+ ε

2
+ d − ε≤ d − ε

2
.

That proves dimlocμ(x)≤ d − ε/2 as we claimed, contradicting the initial assumption of the
proof that d = infx{dimlocμ(x)}.
Remark 26. Although we know from Example 6 that this result is not true for all measures,
it would be interesting to know if was true for all self-similar measures.

5. L p-improving results

A measure μ on [0, 1]d is said to be L p-improving if there is some p> 2 so that μ ∗ f ∈
L p whenever f ∈ L2. An application of the open mapping theorem implies that in this case
there is a constant C such that ‖μ ∗ f ‖p ≤ C ‖ f ‖2 for all f ∈ L2. The Hausdorff-Young
inequality shows that any measure μwhose Fourier transform μ̂ ∈ �q for some q <∞ is L p-
improving. The uniform Cantor measures on Cantor sets with ratios of dissection bounded
away from zero are also L p-improving (but their transforms need not tend to zero) [3].
Conversely, a point mass measure is not L p-improving since it acts as an isometry on the L p

spaces.
It is known that if μ is L p-improving, then the Hausdorff and energy dimensions of

μ are positive [11]. It is natural to ask if a similar statement can be made about the
lower Assouad dimension of μ. In this section, we will show that while it is true that
infx{dimlocμ(x)}> 0 for an L p-improving measure, it is not necessary for dimqA μ> 0, or
even for dimqA suppμ> 0.

PROPOSITION 27. If μ : L2([0, 1]d)→ L p([0, 1]d) for p> 2, then dimlocμ(x)≥ d(1/2 −
1/p) for every x ∈ suppμ.

Proof. Suppose this is not true, say dimlocμ(x)= ε for some ε < d(1/2 − 1/p). Then for
any δ > 0 there are rn → 0 such that μ(B(x, rn))≥ r ε+δn . Let fn = 1B(x,2rn), so ‖ fn‖2 ∼√

rd
n .

Note that if z ∈ B(0, rn) and t ∈ B(x, rn), then z − t ∈ B(x, 2rn) soμ ∗ fn(z)≥μ(B(x, rn)).
Hence for some constants C1,C2,C3 (independent of n) and all rn ,

C1rd/2
n ≥ C2 ‖ fn‖2 ≥ ‖μ ∗ fn‖p ≥μ(B(x, rn))m(B(0, rn))

1/p ≥ C3r ε+δn rd/p
n .

But this is impossible as ε+ d/p + δ < d/2 for small δ > 0.

We will give two examples to see this does not extend to the quasi-lower Assouad
dimension.

Example 28. A set E ⊆ [0, 1] with dimqA E = 0 and a measure μ supported on E that is
L p-improving: In [18, theorem 2], Salem proved that the Fourier transform of the uniform
Cantor measure supported on suitable random Cantor sets is almost surely in �p for some
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p<∞. Such a measure is L p-improving. We will show that we can construct a suitable
Cantor set so that its quasi-lower Assouad dimension is zero.

We will follow the notation of Salem’s paper. To begin, choose a rapidly growing sequence
{n j } and put m j ∼ n j log 3/ log log n j . For k ∈� j = {n j , . . . , n j + m j }, j = 1, 2, . . . , put
ak = 1/ log k, bk = 2/ log k, and otherwise put ak = 1/3 + 1/log k, bk = 1/3 + 2/log k. The

sequence {n j } should be sufficiently sparse that n j+1 � n j + m j and
n j∏

k=1
ak ≥ 3−n j . Now

construct a random Cantor set with ratio of dissection at step k equal to ξk where ξk is
chosen uniformly over the interval [ak, bk]. We have bk − ak = 1/ log k and (log log k)/k →
0. Furthermore, it is easy to see that lim inf(a1 · · · an)

1/n > 0. Consequently, it follows from
[18] that if μ is the associated (random) uniform Cantor measure, then almost surely μ̂ ∈ �p

for some p<∞.
It only remains to check that for all such random Cantor sets E, we have dimqA E = 0.

This is also easy to verify. Just take R to be the length of the Cantor intervals at step n j in
the construction, r the length of the Cantor intervals at step n j + m j and x to be an endpoint
of a step n j interval. Then there is a δ > 0 such that r ≤ R1+δ . As well, Nr (B(x, R))= 2m j ,
while R/r ≥ (log n j )

m j .

Example 29. An L p-improving measure μ with dimqA μ= 0 and dimA suppμ> 0: By
modifying Salem’s construction in [18, theorem 2] we can also give an example of an L p-
improving measure of quasi-lower Assouad dimension zero, whose support has positive
lower dimension.

We will put ak = 1/4, bk = 1/4 + 1/ log k and construct the random Cantor sets with ratio
of dissection ξk at step k, as before. Certainly all such sets will have positive lower Assouad
dimension. The random measure μω will be the weak∗ limit of the measures

μ(N )ω =
N∏

k=1

(
pkδ0 + (1 − pk)δξ1···ξk−1(1−ξk )

)
,

where pk = 1/j if k = n j + 1, . . . , 2n j and pk = 1/2 otherwise. Again, {n j } will be a very
rapidly growing sequence with n j+1 � 2n j . Note that∣∣∣μ̂(N )ω (n)

∣∣∣≤ N∏
k=1

k /∈{n j +1,...,2n j }

|cos(πnξ1 · · · ξk−1(1 − ξk)| .

Let εs = 1/π
∫ π

0 |cos x |s dx and temporarily fix integer n. Take N = N (n)= �log |n| /
log 3� so

|n| a1 · · · aN−1/ log N = |n| 3N−1 ≥ n2.

By the same reasoning as in Salem’s argument,∫ 1

0

∣∣∣μ̂(N )ω (n)
∣∣∣s dω≤

N∏
k−1

k /∈{n j +1,...,2n j }

(
1 + 1

k2

)
εN−MN

s ,

where MN is the number of indices from the sets {n j + 1, . . . , 2n j } that are at most N . If
{n j } is sufficiently sparse and N ∈ (n J , n J+1], then one can easily check that N − MN ≥
N/6, thus
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0

∣∣∣μ̂(N )ω (n)
∣∣∣s dω≤ Cεlog|n|/(6 log 3)

s

for a universal constant C . Since εs → 0, we can choose it so small that εlog|n|/(6 log 3)
s ≤ n−2.

For this choice of s,

∞∑
n=−∞

∫ 1

0
|μ̂ω(n)|s dω≤

∞∑
n=−∞

∫ 1

0

∣∣∣μ̂(N )ω (n)
∣∣∣s dω≤ C

∞∑
n=−∞

n−2 <∞.

Consequently, the series
∑∞

n=−∞
∫ 1

0 |μ̂ω(n)|s dω converges and hence μ̂ω ∈ �s for a.e. ω.
Any such μω is L p-improving.

To see that dimqA μ= 0, consider R the length of a Cantor interval of step n j + 1, x its
right hand endpoint and r the length of a Cantor interval of step 2n j . Then R/r ≥ 4n j while

μ(B(x, R))

μ(B(x, r))
=
(

1 − 1

j

)−n j

,

from which it follows that dimqA μ= 0. Being L p-improving, infx{dimlocμ(x)}> 0 and
hence is not equal to dimqA μ.

Remark 30. The fact that there are measures μ with zero quasi-lower Assouad dimension,
but μ̂ ∈ �p for some p<∞ is surprising in light of the general principle that one cannot
have a measure small in both its time and frequency domains.

6. The Assouad spectrum and quasi-Assouad dimensions of measures

In [6] and [7], Fraser and Yu introduced the notion of the Assouad spectrum of a bounded
set E ⊆Rd . These are the functions

θ �→ dim
=θ
A E = inf

{
s : (∃c)(∀0< R ≤ 1) sup

x∈E
NR1/θ (B(x, R)∩ E)≤ c

(
R1−1/θ

)s
}

and

θ �→ dim =θ
A E = sup

{
s : (∃c)(∀0< R ≤ 1) sup

x∈E
NR1/θ (B(x, R)∩ E)≥ c

(
R1−1/θ

)s
}

for θ ∈ (0, 1), which differ from the previously considered Assouad dimensions by fixing
the relationship of r and R. In this section, we study the corresponding notion for measures
on fairly general metric spaces.

Definition 31. The upper and lower Assouad spectrum of the measure μ are the
functions defined on (0, 1) by

θ �→ dim
=θ
A μ= inf

{
s : (∃c) (∀0< R ≤ 1) sup

x∈suppμ

μ(B(x, R))

μ(B(x, R1/θ ))
≤ c

(
R1−1/θ

)s
}

and

θ �→ dim =θ
A μ= sup

{
s : (∃c) (∀0< R ≤ 1) inf

x∈suppμ

μ(B(x, R))

μ(B(x, R1/θ ))
≥ c

(
R1−1/θ

)s
}
.
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This fixes the relationship of r and R as r = R1/θ . Another way to define the spectrum is by
only requiring an upper bound, i.e. we set r ≤ R1/θ . These “less than or equal” spectra will be

denoted by dim
≤θ
A and dim ≤θ

A . Note that we have already defined this notion when introduc-

ing the quasi-Assouad dimension and dim
≤θ
A μ= H(1/θ − 1) and dim ≤θ

A μ= H(1/θ − 1).
Clearly, for ψ ≤ θ we have

dimqA μ≥ dim
≤θ
A μ≥ dim

=ψ
A μ,

dimqA μ≤ dim ≤θ
A μ≤ dim =ψ

A μ.

In [4] it was shown that h(1/θ − 1)= sup0<ψ≤θ dim
=ψ
A E for subsets of Rd, although

the same proof holds for any doubling metric space E, i.e. spaces where dimA E <∞.
Consequently,

lim
θ→1

dim
=θ
A E = lim sup

θ→1
dim

=θ
A E = dimqA E .

The corresponding result was later proved for the quasi-lower Assouad dimension in [2]
(with the additional assumption that the space E was uniformly perfect). It is straightfor-
ward to obtain the analogous result for doubling measures, that is measures μ for which
dimA μ<∞. But this is a stringent condition for measures. However, it is possible to
obtain the same conclusion for measures which only satisfy the weaker (quasi-doubling)
condition, dimqA μ<∞ and this we do in Theorem 32 below. The general scheme of the
proof is essentially the same as in [4], but new technical complications arise. Examples
of such measures include equicontractive, self-similar measures that are regular, meaning
the probabilities associated with the right and left-most similarities are equal and minimal.
These measures are typically not doubling if they fail the open set condition. For a proof that
such measures are quasi-doubling and specific examples of quasi-doubling, but not doubling,
measures, we refer the reader to [10].

THEOREM 32. Suppose μ is a probability measure and dimqA μ<∞. Let θ ∈ (0, 1).
(i) Then

dim
≤θ
A μ= sup

0<ψ≤θ
dim

=ψ
A μ and dim ≤θ

A μ= inf
0<ψ≤θ

dim =ψ
A μ.

(ii) Moreover, limθ→1 dim =θ
A μ= dimqA μ and limθ→1 dim

=θ
A μ= dimqA μ.

We remark that, in particular, the quasi-Assouad dimensions of a doubling measure can
be recovered from the limiting behaviour of the Assouad spectrum.

The proof will proceed as follows: We first prove an elementary technical result, followed
by the proof of part (i) of the theorem. We will then show that for quasi-doubling measures,

the maps θ �→ dim =θ
A or dim

=θ
A are continuous for all θ ∈ (0, 1). Lastly, this fact will be used

in proving part (ii) of the theorem.

LEMMA 33. Let 0<β < θ < 1 and assume log θ/ log β /∈Q. Let

L = {m log β + n log θ : m, n ∈N} = {y j }∞
j=1,
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where y j is ordered decreasingly (to −∞). Then lim j→∞ y j − y j+1 = 0. Furthermore,
assume (θi ) is a sequence tending to 0 with θi > 0. Then, given small η > 0, there is an
index i0 such that for all i ≥ i0 there exist positive integers m, n such that

η

2θi
≤ 1

θi
− 1

θnβm
≤ 4η

θi
. (6·1)

Proof. The fact that y j − y j+1 → 0 is well known, so we will only prove the second
statement.

Fix small 0<η < 1 and choose J such that |y j − y j+1|<η for all j ≥ J . Choose i0 such
that log 1/θi ≥ |yJ | + 1 for all i ≥ i0. Temporarily fix such an i and choose the maximal
index k such that log 1/θi > |yk | + η. Note that k ≥ J . As k is maximal, it must be that either
|yk+1| ≥ log 1/θi or 0< log 1/θi − |yk+1|<η. In either case, the fact that |yk − yk+1|<η
ensures that

η < log 1/θi − |yk |< 2η.

It is now a routine calculation to see that if yk = m log β + n log θ , then eη < βmθn/θi < e2η.
Thus for all i ≥ i0, we have

η

2θi
≤ ηe−2η

θi
≤ η

βmθn
<

1

θi
− 1

βmθn
<

4η

βmθn
≤ 4η

θi
.

Proof of Theorem 32. (i). First, consider the upper Assouad spectrum. There is no loss of

generality in assuming s = dim
≤θ
A μ> 0 for otherwise dim

=ψ
A μ= 0 for all ψ ≤ θ as well.

Fix 0< ε < s and obtain xi ∈ suppμ, Ri → 0 and ri = R1/θi

i ≤ Ri , with θi ≤ θ and

μ(B(xi , Ri))

μ(B(xi , R1/θi

i ))
≥
(

Ri

R1/θi

i

)s−ε
.

Without loss of generality, we can assume θi →ψ whereψ ∈ [0, θ] and that the convergence
is monotonic.

Case 1. We will first assume ψ > 0. If (θi ) is a decreasing sequence (so R1/θi

i ≥ R1/ψ
i ),

then we have

μ(B(xi , Ri))

μ(B(xi , R1/ψ
i ))

≥ μ(B(xi , Ri))

μ(B(xi , R1/θi

i ))
≥
(

Ri

R1/θi

i

)s−ε
.

As 1 − 1/θi → 1 − 1/ψ, it follows that

μ(B(xi , Ri ))

μ(B(xi , R1/ψ
i ))

≥ R
(1−1/ψ)

(
1−θi
1−ψ

)
(s−ε)

i ≥ R(1−1/ψ)(s−ε/2)
i

if i is sufficiently large. That implies dim
=ψ
A μ≥ s − ε/2 and as ε > 0 was arbitrary we

deduce that dim
=ψ
A μ≥ s. Thus sup0<ψ≤θ dim

=ψ
A μ= s.

Otherwise, we can assume (θi) increases to ψ ≤ θ < 1. Choose ni ∈N so that

2−(ni +1) < R1/ψ
i ≤ 2−ni

(where we choose a subsequence of {Ri }, if necessary, to ensure the sequence {ni } is strictly
increasing) and define a function g on N by g(n)= R1/θi

i 2ni if ni ≤ n < ni+1. Then log Ri ∼
ni and
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log 1/2 +
(

1

θi
− 1

ψ

)
log Ri ≤ log g(ni )≤

(
1

θi
− 1

ψ

)
log Ri .

Hence if ni ≤ n < ni+1,

|log g(n)|
n

≤ |log g(ni )|
ni

→ 0 as n → ∞ (equivalently, i → ∞).

As proven in [10, proposition 4·2], the assumption that dimqA μ<∞ ensures that for each
q > 1 there is a constant c such that for all i ,

μ(B(xi , R1/θi

i ))=μ(B(xi , g(ni )2
−ni ))≥ cq−niμ(B(xi , 2−ni ))≥ cq−niμ(B(xi , R1/ψ

i )).

Thus (
Ri

R1/θi

i

)s−ε
≤ μ(B(xi , Ri))

μ(B(xi , R1/θi

i ))
= μ(B(xi , Ri))

μ(B(xi , R1/ψ
i ))

μ(B(xi , R1/ψ
i ))

μ(B(xi , R1/θi

i ))

≤ qni

c

μ(B(xi , Ri))

μ(B(xi , R1/ψ
i ))

.

As (
R1/ψ

i

)log q/ log 2 ≤ (
2−ni

)log q/ log 2 = q−ni ,

that shows

μ(B(xi , Ri))

μ(B(xi , R1/ψ
i ))

≥ cR(1−1/θi )(s−ε)
i q−ni ≥ cR(1−1/θi )(s−ε)

i Rlog q/(ψ log 2)
i = cR(1−1/ψ)ti

i

where

ti =
(

1 − 1/θi

1 − 1/ψ

)
(s − ε)+ log q

(ψ − 1) log 2
.

Since θi →ψ ∈ (0, 1) as i → ∞,

ti → s − ε− log q

(1 −ψ) log 2
.

As q > 1 and ε > 0 are arbitrary, we again deduce that dim
=ψ
A ≥ s and that gives the desired

result.

Case 2. Now suppose ψ = 0. We will make use of Lemma 33 and choose β ∈ (0, θ) such
that log θ/ log β is irrational. Suppose for a contraction that

max{dim
=θ
A , dim

=β
A } ≤ s − 3ε.

For all small enough R and x ∈ suppμ we have for γ = θ, β,

μ(B(xi , Ri))

μ(B(xi , R1/γ
i ))

≤
(

Ri

R1/γ
i

)s−2ε

. (6·2)
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Fix η > 0 small, to be specified later. Choose m, n ∈N as in (6·1) with this choice of η. By
repeated application of (6·2) and a telescoping argument, we see that

μ(B(xi , Ri))

μ(B(xi , R1/θnβm

i ))
≤
(

Ri

R1/θnβm

i

)s−2ε

.

The second part of the claim yields that

1

θi
(1 − η/2)≥ 1

θnβm

for all i sufficiently large. Thus R1/θi

i ≤
(

R1/(θnβm )

i

)1/(1−η/2)
. It follows that if d = dimqA μ,

ε > 0 and η is sufficiently small, there is a constant c such that

μ(B(xi , R1/θnβm

i ))

μ(B(xi , R1/θi

i ))
≤ c

(
R1/θnβm

i

R1/θi

i

)d+ε
.

Thus (
Ri

R1/θi

i

)s−ε
≤ μ(B(xi , Ri))

μ(B(xi , R1/θi

i ))
≤ μ(B(xi , Ri))

μ(B(xi , R1/θnβm

i ))

μ(B(xi , R1/θnβm

i ))

μ(B(xi , R1/θi

i ))

≤ c

(
Ri

R1/θnβm

i

)s−2ε (
R1/θnβm

i

R1/θi

i

)d+ε
,

and this implies that if we put

ti =
(

1

θi
− 1

)
(s − ε)+ (1 − 1

θnβm
)(s − 2ε)+

(
1

θnβm
− 1

θi

)
(d + ε)

= −ε+ (s − ε)

(
1

θi
− 1

θnβm

)
+ ε

θnβm
+
(

1

θnβm
− 1

θi

)
(d + ε),

then

cRti
i ≥ 1 for all large i. (6·3)

Using the bounds from (6·1) we deduce that for small enough η,

ti ≥ −ε+ (s − ε)η/(2θi )+ ε(1 − 4η)/θi − 4η(d + ε)/θi

= −ε+ 1

θi
((s − ε)η/2 + ε(1 − 4η)− 4η(d + ε))≥ −ε+ ε/(2θi )→ ∞

as i → ∞. But that means Rti
i → 0 and hence (6·3) cannot be satisfied for all large i

(whatever the choice of constant c). This proves the result for the upper Assouad spectrum.

We now turn to the proof for the lower Assouad spectrum. Let s = dim ≤θ
A μ≤ dimqA μ<

∞. Fix ε > 0 and obtain xi ∈ suppμ, Ri → 0 and ri = R1/θi

i ≤ Ri , with θi ≤ θ and

μ(B(xi , Ri))

μ(B(xi , R1/θi

i ))
≤
(

Ri

R1/θi

i

)s+ε
.
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As before, without loss of generality we can assume θi →ψ where ψ ∈ [0, θ] and that the
convergence is monotonic.

Case 1. We will first assume ψ > 0. If (θi ) is an increasing sequence (so R1/θi

i ≤ R1/ψ
i ),

then, similar to the first step in the upper Assouad spectrum argument, we have

μ(B(xi , Ri))

μ(B(xi , R1/ψ
i ))

≤ μ(B(xi , Ri))

μ(B(xi , R1/θi

i ))
≤
(

Ri

R1/θi

i

)s+ε
≤
(

Ri

R1/ψ
i

)s+2ε

for large enough i . That implies dim =ψ
A μ≤ s + 2ε and hence inf0<ψ≤θ dim =ψ

A μ= s.
Now suppose (θi ) decreases to ψ . As each θi ≤ θ < 1, the same is true for ψ and R1/θi

1 ≥
R1/ψ

i . In a similar fashion to the second step in case 1 above, we choose ni so that 2−(ni +1) <

R1/θi

i ≤ 2−ni and define g by g(n)= R1/ψ
i 2ni if ni ≤ n < ni+1. As before, one can easily check

that log g(n)/n → 0, hence the fact that dimqA μ<∞ implies that for any fixed q > 1 and
suitable constant c we have

μ(B(xi , Ri))

μ(B(xi , R1/ψ
i ))

≤ cqni

(
Ri

R1/θi

i

)s+ε
≤ cR− log q/(θi log 2)

i R(1−1/θi )(s+ε)
i = R(1−1/ψ)ti

i

for

ti = − log q

θi log 2(1 − 1/ψ)
+ (1 − 1/θi )(s + ε)

1 − 1/ψ
→ log q

log 2(1 −ψ)
+ s + ε.

Since q > 1 and ε > 0 are arbitrary, we deduce that inf0<ψ≤θ dim =ψ
A μ= s.

Case 2. Now suppose ψ = 0. Choose 0<β < θ < 1 with log θ/ log β /∈Q and suppose
for a contradiction that

min{dim =θ
A μ, dim =β

A μ} ≥ s + 3ε.

Then for all small enough R, x ∈ suppμ and γ = θ, β we have

μ(B(x, R))

μ(B(x, R1/γ ))
≥ R(1−1/γ )(s+2ε)

Fix η > 0 small, to be specified later and choose m, n ∈N as in (6·1) with this choice of η.
A telescoping argument gives

μ(B(xi , Ri))

μ(B(xi , R1/θnβm

i ))
≥
(

Ri

R1/θnβm

i

)s+2ε

.

Since 1/θi ≥ 1/(θnβm), R1/θi ≤ R1/θnβm

i and therefore(
Ri

R1/θi

i

)s+ε
≥ μ(B(xi , Ri ))

μ(B(xi , R1/θi

i ))
≥ μ(B(xi , Ri))

μ(B(xi , R1/θnβm

i ))
≥

(
Ri

R1/θnβm

i

)s+2ε

.

Equivalently, 1 ≥ cRti
i for all large i where

ti =
(

1

θi
− 1

)
(s + ε)+

(
1 − 1

θnβm

)
(s + 2ε).
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But the properties of θ and β ensure that for small enough η, ti ≤ ε− ε/(2θi )→ −∞ and
that’s a contradiction.

This completes the proof of the lower Assouad spectrum result and thus part (i).

LEMMA 34. Assume dimqA μ<∞. Then for each θ ∈ (0, 1) the functions θ �→ dim =θ
A μ

and θ �→ dim
=θ
A μ are continuous.

Proof. We will give the complete proof for the continuity of the lower Assouad spectrum
and leave the analogous proof of the continuity of the upper Assouad spectrum to the reader.

Fix θ ∈ (0, 1) and let t = dim =θ
A μ. We proceed by contradiction. If θ �→ dim =θ

A μ is not
continuous at θ, then there is some ε > 0 and a sequence θ j → θ such that

| dim =θ
A μ− dim

=θj

A μ| ≥ 3ε for all j.

Suppose that there is a subsequence such that θ j → θ and dim
=θj

A μ≥ t + 3ε for all j .
Then for each j there is some R( j) > 0 such that for all R ≤ R( j) and for each x ∈ suppμ
we have

μ(B(x, R))

μ(B(x, R1/θ j ))
≥ R(1−1/θ j )(t+2ε). (6·4)

If a further subsequence satisfies θ j ≥ θ for all j , then fix small δ > 0 and choose j such
that

∣∣1 − 1/θ j

∣∣≥ (1 − δ) |1 − 1/θ |. Since R1/θ j ≥ R1/θ , we have

μ(B(x, R))

μ(B(x, R1/θ ))
≥ μ(B(x, R))

μ(B(x, R1/θ j ))
≥ R(1−1/θ j )(t+2ε) ≥ R(1−1/θ)(t+2ε)(1−δ) ≥ R(1−1/θ)(t+ε),

for all x and R ≤ R( j), provided we choose δ small enough, and that contradicts the
assumption that t = dim =θ

A μ.
So assume that θ j ≤ θ for all j . Since t = dim =θ

A μ, we can choose a sequence x j and
R j ≤ R( j), R j → 0, such that

μ(B(x j , R j ))

μ(B(x j , R1/θ
j ))

≤ R(1−1/θ)(t+ε/4)
j . (6·5)

By passing to a further subsequence, if necessary, we can assume there is a sequence of
integers, (n j ), strictly increasing to infinity, such that

2−(n j +1) < R1/θ
j ≤ 2−n j .

Define

g(n)= R
1/θ j

j 2n j if n ∈ [n j , n j+1).

As in the proof of the first part of theorem, log g(n)/n → 0, thus by the quasi-doubling
property of μ, (the assumption that dimqA μ<∞) for each q > 1 there is a constant Cq

such that

μ(B(x j , R1/θ
j )) ≤ μ(B(x j , 2−n j ))≤ Cqqn jμ(B(x j , g(n j )2

−n j ))= Cqqn jμ(B(x j , R
1/θ j

j ))

≤ Cq R
− log q
θ log 2

j μ(B(x j , R
1/θ j

j )).
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Choose q > 1 such that log q/(θ log 2)≤ (1/θ − 1)ε/4. With this fixed choice of q we see
that

μ(B(x j , R1/θ
j ))≤ Cq R(1−1/θ)ε/4

j μ(B(x j , R
1/θ j

j )).

Together with (6·5) we deduce that

R(1−1/θ)(t+ε/4)
j ≥ μ(B(x j , R j ))

μ(B(x j , R1/θ
j ))

= μ(B(x j , R j ))

μ(B(x j , R
1/θ j

j ))

μ(B(x j , R
1/θ j

j ))

μ(B(x j , R1/θ
j ))

(6·6)

≥ μ(B(x j , R j ))

μ(B(x j , R
1/θ j

j ))
C−1

q R−(1−1/θ)ε/4
j .

Now choose j1 such that for all j ≥ j1,

1 − 1/θ j

1 − 1/θ
(t + 2ε)≥ t + ε.

Combining (6·4) and (6·6) gives

R(1−1/θ)(t+ε)
j ≤ R

(1−1/θ j )(t+2ε)
j ≤ μ(B(x j , R j ))

μ(B(x j , R
1/θ j

j ))
≤ Cq R(1−1/θ)(t+ε/2)

j ,

for all j ≥ j1. But since Cq is fixed, the outer most inequalities clearly cannot hold for
all R j → 0. This contradiction shows that we cannot have a sequence θ j → θ such that
dim

=θj

A μ≥ t + 3ε for all j .
Otherwise, there must be a subsequence such that θ j → θ and dim

=θj

A μ≤ t − 3ε for all j .
In this case, there must be x j ∈ suppμ and a decreasing sequence R j → 0 such that

μ(B(x j , R j ))

μ(B(x j , R
1/θ j

j ))
≤ R

(1−1/θ j )(t−2ε)
j , (6·7)

for all j .
If θ j ≤ θ, then as R

1/θ j

j ≤ R1/θ
j ,

μ(B(x j , R j ))

μ(B(x j , R1/θ
j ))

≤ μ(B(x j , R j ))

μ(B(x j , R
1/θ j

j ))
≤ R

(1−1/θ j )(t−2ε)
j ≤ R(1−1/θ)(t−ε)

j ,

for j sufficiently large (R j small) and that contradicts the assumption that t = dim =θ
A μ.

So we may assume θ j ≥ θ . The arguments are similar to the case θ j ≤ θ above. Without
loss of generality, there is a strictly increasing sequence (n j ) satisfying

2−(n j +1) < R
1/θ j

j ≤ 2−n j .

Put

g(n)= R1/θ
j 2n j if n ∈ [n j , n j+1).
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The quasi-doubling property of μ ensures that for each q > 1 there is a constant cq > 0 such
that

μ(B(x j , R1/θ
j )) = μ(B(x j , g(n j )2

−n j ))≥ cqq−n jμ(B(x j , 2−n j ))

≥ cqq−n jμ(B(x j , R
1/θ j

j ))≥ cq R
log q
θ j log 2

j μ(B(x j , R
1/θ j

j )).

Hence from (6·7),

R
(1−1/θ j )(t−2ε)
j ≥ μ(B(x j , R j ))

μ(B(x j , R
1/θ j

j ))
= μ(B(x j , R j ))

μ(B(x j , R1/θ
j ))

μ(B(x j , R1/θ
j ))

μ(B(x j , R
1/θ j

j ))

≥ cq R
log q
θ j log 2

j

μ(B(x j , R j ))

μ(B(x j , R1/θ
j ))

,

so that

μ(B(x j , R j ))

μ(B(x j , R1/θ
j ))

≤ c−1
q R

(1−1/θ j )(t−2ε)
j R

− log q
θ j log 2

j = c−1
q R

(1−1/θ)
(
(t−2ε)

(
1−1/θ j
1−1/θ

)
− log q
θ j (1−1/θ) log 2

)
j .

Choose j2 such that for all j ≥ j2 we have (t − 2ε)
(
1 − 1/θ j

)
/(1 − 1/θ)≤ t − ε

and
∣∣θ j (1 − 1/θ)

∣∣≥ |θ − 1| /2 and then choose q sufficiently close to 1 so that
2 log q/(|θ − 1| log 2)≤ ε/2. We conclude that for j ≥ j2,

μ(B(x j , R j ))

μ(B(x j , R1/θ
j ))

≤ c−1
q R(1−1/θ)(t−ε/2)

j

and, again, this contradicts the assumption that t = dim =θ
A μ.

That completes the proof for the continuity of the lower Assouad spectrum.

We are now ready to complete the proof of the theorem.

Proof of Theorem 32. (ii). It follows directly from the first part of the theorem that

lim inf
θ→1

dim =θ
A μ= dimqA μ and lim sup

θ→1
dim

=θ
A μ= dimqA μ.

Furthermore, an immediate consequence of the factorization

μ(B(x, R))

μ(B(x, R1/θ ))
= μ(B(x, R))

μ(B(x, R1/θ1/n
))

μ(B(x, R1/θ1/n
))

μ(B(x, R1/θ2/n
))

· · · μ(B(x, R1/θ(n−1)/n
))

μ(B(x, R1/θ ))

is that dim =θ1/n

A μ≤ dim =θ
A μ and dim

=θ1/n

A μ≥ dim
=θ
A μ for all n ∈N.

These observations, together with the continuity result of the previous lemma, allow
one to use the same argument as given directly after in [4, lemma 3·1] to show that
lim infθ→1 dim =θ

A μ= limθ→1 dim =θ
A μ and similarly for the upper Assouad spectrum.

That completes the proof of Theorem 32.

We can use Theorem 32 to state an analogue of the notion of uniformly perfect for the
quasi-lower Assouad dimension.
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COROLLARY 35. Suppose μ is doubling. If there exists t > 0 such that for every δ < 0,
all x ∈ suppμ and all sufficiently small R,

μ(B(x, R) \ B(x, R1+δ))≥ (1 − Rδt)μ(B(x, R)),

then dimqA μ≥ t .

Proof. The hypothesis of the corollary is equivalent to the statement

μ(B(x, R))

μ(B(x, R1+δ))
≥ R−δt .

Thus H(1/δ − 1)≥ t for all δ > 0 and hence dim ≤θ
A μ≥ t for all θ > 0. As μ is doubling,

dimqA μ= infθ>0 dim ≤θ
A μ≥ t .

Acknowledgements. Both authors thank F. Mendivil and Acadia University for hosting
a sabbatical visit for K.H. and a short-term visit for S.T. when some of this material was
developed. We also thank K.G. Hare for showing us Claim 33.

Appendix A. Lower Spectrum for Sets

In [2] it was shown that dim ≤θ
A := h(1/θ − 1)= inf0≤ψ≤θ dim =ψ

A under the assumption
that the metric space is doubling and uniformly perfect. In this section we will give a shorter
proof of this fact that does not require the uniformly perfect assumption.

To begin, we note that if a metric space X is doubling, then there is a constant c such that
for all x, r, R and subsets E ⊆ X ,

Nr (B(x, R)∩ E)≤ N16r (B(x, R)∩ E) sup
y

Nr (B(y, 16r))≤ cN16r (B(x, r)∩ E).

For any subset F, let Mr (F) be the maximal number of disjoint balls of radius r, centred in
F . Since we have

N16r (F)≤ M4r (F)≤ N4r (F)≤ Mr (F)≤ Nr (F)≤ cN16r (F),

we can replace the covering numbers in the definition of the Assouad spectrum and
dimensions with packing numbers.

We will also require the following observation:

LEMMA 36. For 0< r = rk < rk−1 < · · ·< r1 < R,

Mr (B(x, R))≥ Mr1(B(x, R − r1)) inf
y1

Mr2(B(y1, r1 − r2)) · · · inf
yk

Mr (B(y1, rk−1 − r)).

Proof. Let t1 = infy1 Mr2(B(y1, r1 − r2)) and suppose {B(x j , r1) : j = 1, . . . , J } is a set of
disjoint balls with centres in B(x, R − r1) (and thus contained in B(x, R)). There are at least
t1 disjoint balls centred in each B(x j , r1 − r2) with radius r2. These balls are each contained
in the (disjoint) sets B(x j , r1), so that all J · t balls are disjoint. Hence if k = 2 (r2 = r ),
then we have produced J · t1 disjoint balls of radius r centred in B(x, R) and that proves the
result in this case. If k > 2 we repeat the construction.
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THEOREM 37. Let E be a doubling metric space. Then for any θ ∈ (0, 1),

dim ≤θ
A E = inf

0<ψ≤θ
dim =ψ

A E .

Further,

dimqA E = lim
θ→1

dim =ψ
A E . (A·1)

Remark 38. The analogous result was proved for the Assouad dimension in [4] for subsets
of Rd, but the same proof applies in any doubling metric space.

Proof. Our argument is similar to the proof of the corresponding result for the lower spec-
trum of measures. Let s = dim ≤θ

A E . This dimension is finite since the metric space E is
doubling and hence its upper Assouad dimension is finite. Fix ε > 0 and obtain xi ∈ E ,
Ri → 0 and θi ≤ θ such that

MR1/θi (B(xi , Ri))≤ R(1−1/θi )(s+ε)
i . (A·2)

Without loss of generality, we can assume θi →ψ whereψ ∈ [0, θ] and that the convergence
is monotonic.

Case 1. We will first assume ψ > 0. If (θi ) is an increasing sequence, then R1/θi ≤ R1/ψ

and thus

NR1/ψ (B(xi , Ri ))≤ NR1/θi (B(xi , Ri))≤ R(1−1/θi )(s+ε)
i ≤ R(1−1/ψ)(s+ε/2)

i for large i.

Otherwise, (θi) decreases to ψ . As each θi ≤ θ < 1, the same is true for ψ and further-
more, R1/θi

1 ≥ R1/ψ
i . Let D be the upper Assouad dimension of E . For small enough Ri we

have

NR1/ψ (B(xi , R1/θi

i ))≤ R(1/θi −1/ψ)(D+ε)
i ,

hence

NR1/ψ (B(xi , Ri )) ≤ NR1/θi (B(xi , Ri))NR1/ψ (B(xi , R1/θi

i ))

≤ R(1−1/θi )(s+ε)+(1/θi −1/ψ)(D+ε)
i .

Since θi →ψ , and ε > 0 was arbitrary, we again deduce that dim
=ψ
A E = s.

Case 2. ψ = 0. As in the proof of Theorem 32, choose 0<β < θ < 1 with log θ/ log β /∈
Q and suppose for a contradiction that

min{dim =θ
A (E), dim =β

A (E)} ≥ s + 3ε.

This inequality implies that for all x , small enough R and γ = θ, β,

MR1/γ (B(x, R))≥ R(1−1/γ )(s+5ε/2) (A·3)

Let η > 0 and choose n,m as in Claim 33. Appealing to Lemma 36 we see that

MR1/θnβm

i
(B(xi , Ri))≥ MR1/θ

i
(B(xi , Ri − R1/θ

i ) · Ai,n · Bi,m, (A·4)
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where

Ai,n =
n−1∏
k=1

inf
yk

M
R1/θk+1

i
(B(yk, R1/θ k

i − R1/θ k+1

i )

and

Bi,m =
m∏

k=1

inf
zk

M
R1/θnβk

i
(B(zk, R1/θnβk−1

i − R1/θnβk

i ).

The doubling condition combined with property (A·3) implies that there is a constant
c> 0 such that whenever 1 ≤ α ≤ 2, γ = θ or β and R is small enough (depending only on
ε, γ and c), then

MαR1/γ (B(x, R))≥ cMR1/γ (B(x, R))≥ cR(1−1/γ )(s+5ε/2) ≥
(

R

R1/γ

)s+2ε

.

Since

R1/θ j−1

i − R1/θ j

i ≤ R1/θ j

i ≤ 2(R1/θ j−1

i − R1/θ j

i )1/θ

and

R1/θnβ j−1

i − R1/θnβ j

i ≤ R1/θnβ j

i ≤ 2(R1/θnβ j−1

i − R1/θnβ j

i )1/β,

it follows that if we simplify the notation by putting

Pi, j = R1/θ j−1

i − R1/θ j

i and Qi, j = R1/θnβ j−1

i − R1/θnβ j

i ,

then

MR1/θnβm

i
(B(xi , Ri))≥

⎛⎝ n∏
j=1

Pi, j

P1/θ
i, j

m∏
j=1

Qi, j

Q1/β
i, j

⎞⎠s+2ε

.

It is helpful to isolate the first term of the numerator together with the last term of the
denominator and then pair up the remaining terms giving the expression

MR1/θnβm

i
(B(xi , Ri))

≥
⎛⎝ Ri − R1/θ

i

(R1/θnβm−1

i − R1/θnβm

i )1/β

n∏
j=2

Pi, j

P1/θ
i, j−1

R1/θn

i − R1/θnβ

i

(R1/θn−1

i − R1/θn

i )1/θ

m∏
j=2

Qi, j

Q1/β
i, j−1

⎞⎠s+2ε

.

Using a Taylor series expansion for (1 − x)1/θ for x near 0, one can check that

Pi, j

P1/θ
i, j−1

,
Qi, j

Q1/β
i, j−1

and
R1/θn

i − R1/θnβ

i

(R1/θn−1

i − R1/θn

i )1/θ
≥ 1.

Hence we deduce that

MR1/θnβm

i
(B(xi , Ri ))≥

(
Ri − R1/θ

i

(R1/θnβm−1

i − R1/θnβm

i )1/β

)s+2ε

≥
(

Ri

2R1/θnβm

i

)s+2ε

(A·5)

once Ri is small enough. But since R1/θi

i ≤ R1/θnβm

i we have

MR
1/θi
i
(B(xi , Ri))≥ MR1/θnβm

i
(B(xi , Ri )).
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Combining these observations with (A·2) gives the inequality

R(1−1/θi )(s+ε)
i ≥ cR(1−1/θnβm )(s+2ε)

i .

But as we saw in the conclusion of the proof of Theorem 32, it is not possible for this
inequality to be true for Ri tending to zero and that contradiction completes the first part of
the proof.

To see that (A·1) holds, assume dim =θ
A = t . Repeat the argument starting at (A·4) with

m = 0 to obtain

MR1/θn (B(x, R))≥ c

(
R

R1/θn

)t−ε

as in (A·5), for all x ∈ E and R > 0 small enough. This shows dim =θn

A E ≥ t − ε for all
ε > 0 and so dim=θn

A E ≥ dim =θ
A E . According to [6, theorem 3·10] the function dim =θ

A E is
continuous for θ ∈ (0, 1). Following the argument found in [4, section 3·2], limθ→1 dim =θ

A E
exists and hence limθ→1 dim =θ

A E = lim infθ→1 dim =θ
A E = infθ∈(0,1) dim =θ

A E .
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