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The concept of available energy in a stratified fluid is revisited from the point of
view of non-canonical Hamiltonian systems. We show that the concept of available
energy arises when we minimize the energy subject to the constraints associated
with the existence of Lagrangian invariants. The non-canonical structure implies
that there exists a class of dynamically equivalent Hamiltonians, related by a local
(in phase space) gauge symmetry. A local diagnostic energy can be defined via
the Hamiltonian density chosen imposing a specific gauge-fixing condition on the
class of dynamically similar Hamiltonians. The gauge-fixing condition that we
introduce selects a specific local diagnostic energy which is well suited to study
the effect of diabatic processes on the evolution of the available energy. Non-inertial
effects, which are notoriously elusive to capture within an energetic framework, are
naturally included via conservation of potential vorticity. We apply the framework
to stratified flows in inertial and non-inertial frames. For stratified Boussinesq flows,
when the initial distribution of potential vorticity is even around the origin, our
framework recovers the available potential energy introduced by Holliday & McIntyre
(J. Fluid Mech., vol. 107, 1981, pp. 221–225), and as such, depends only on the
mass distribution of the flow. In rotating flows, the isopycnals of the ground state
are generally not flat, and the ground state may have kinetic energy. We finally
demonstrate that flows in non-inertial frames characterized by a low Rossby number
(Ro), the local diagnostic energy has, to lowest order in Ro, a universal character.

Key words: geophysical and geological flows, Hamiltonian theory, stratified flows

1. Introduction

Insight into turbulent buoyancy-driven geophysical processes often rely on
energy-based arguments. The nature and evolution of spatio-temporal processes that
transfer energy between different reservoirs, and of the sources and sinks of energy
can provide considerable insights on the processes that link geophysical motions
over a range of scales. (In this paper, we take a ‘Boussinesq’ point of view, which
relegates the internal energy as a purely passive form of energy. Thus, for us, energy
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Stratified mixing in inertial and non-inertial frames 609

means the sum of kinetic and potential energy, which is not conserved under diabatic
effects.)

For homogeneous (constant density), incompressible fluids contained in a rigid
vessel, gravity can be eliminated from the equations by a redefinition of the pressure,
leaving the kinetic energy density ρ0u2/2, where ρ0 is the uniform density and u
the velocity field as the lone contributor to the total energy. Writing its evolution
along Lagrangian trajectories highlights the role of ε ≡ 2SijSji (where Sij is the
symmetric component of the velocity gradient tensor), which quantifies the rate at
which frictional forces convert kinetic energy into heat. The energetics framework
becomes less obvious for variable-density fluids where gravitational effects become
a source of vorticity, and thus cannot be ‘hidden’ into a redefined pressure. Indeed,
the evolution of the potential energy density ρgZ, where ρ is the spatially variable
density of the fluid, g the local acceleration of gravity and Z the geopotential height,
along Lagrangian trajectories does not illuminate how mixing, i.e. the irreversible
loss of the variance of the active tracer, affects the energetics. Yet, we know that to
homogenize an active tracer whose concentration varies along the vertical direction
in such a way that density decreases with height requires a larger input of energy
than it would be required if the tracer was purely passive. (For simplicity here we
consider a single stratifying agent.) From this point of view, the problem consists in
finding ‘recipes’ to relate the rate of dissipation of variance of the stratifying agent
to its impact on the energetics (Ivey, Winters & Koseff 2008). Often, one way to
measure such impact is to look at how irreversible mixing raises the centre of mass
of the system. However, it is easy to conceive cases where mixing does not raise the
centre of mass of the system, yet it still affects the energetics of the system, e.g. by
diminishing the amount of useful work that can be extracted from the system. For
example, consider a simple fluid set-up such that at a given time the isopycnals are
vertical: vigorous diapycnal mixing across the vertical isopycnals does not change
the elevation of the centre of mass, yet it reduces, and in the limit of infinitely fast
mixing, all but eliminates any energy that can be extracted from the system by, e.g.
deploying a turbine in the fluid. Indeed, this example highlights the guiding principle
of this paper, namely to define a framework that can be used to answer, inter alia,
the following question: How do diabatic processes (irreversible mixing and viscous
dissipation) impact the amount of work that can be extracted from a system under
certain limiting conditions? Conversely, how much external work is needed to bring a
system to a given (mixed) state? How much energy needs to be supplied to a system
to be kept in a statistically stationary state if the latter does not coincide with a state
of minimum energy compatible with the appropriate constraints?

The inadequacy of the standard energetic framework based on ρgZ as a definition
of potential energy in answering these questions was recognized long time ago, and
a solution was proposed by Margules (1903) at the beginning of the last century. In
a nutshell, Margules’ idea was to (i) calculate a minimum-energy state (or ground
state) compatible with certain constraints and (ii) use the energy of such state to
‘gauge’ the amount of energy effectively available to the system. This pioneering
framework amounts to the first definition of the available energy for a given system.
While Margules was thinking about isolated atmospheric storms, his theory required
a closed system. Half a century later, Lorenz (1955) applied Margules’ idea to the
entire atmosphere, assuming that the flow is a perturbation of a minimum-energy state
that depends only on the mass distribution. That the reference state may depend on
factors other than the mass distribution was not lost on Lorenz. In the introduction
to his 1955 seminal paper, he wrote: ‘There is no assurance in any individual case
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610 A. Scotti and P.-Y. Passaggia

that all the available potential energy will be converted into kinetic energy. For
example, if the flow is purely zonal, and the mass and momentum distributions are
in dynamically stable equilibrium, no kinetic energy at all can be realized. It might
seem desirable to redefine available potential energy, so that, in particular, it will
be zero in the above example. But the available potential energy so defined would
depend upon both the mass and momentum distributions (Lorenz 1955)’.

While attempts to introduce more general reference states have been proposed in
the atmospheric literature (see, e.g. Codoban & Shepherd 2003), following the work
of Winters et al. (1995), Lorenz’s bias in favour of a reference state at rest still
dominates the literature (Tailleux 2018), especially the one concerned with mixing
in the ocean (see, e.g. von Storch et al. 2012; Zemskova, White & Scotti 2015;
MacCready & Giddings 2016). Since in this case the ground state is characterized
by flat isopycnals, and it is at rest, the available energy is de facto measured by
the available potential energy (APE), i.e. the potential energy gauged to the potential
energy of the reference state.

By focusing on the APE, as opposed to the traditional potential energy definition,
Winters and coworkers showed that it was possible to construct a positive definite
quantity, the dissipation rate of APE, analogous to the dissipation rate of kinetic
energy, ε. The use of the dissipation rate of APE makes it possible to separate the
reversible exchange between kinetic energy (KE) and APE due to internal waves
from the irreversible exchange due to irreversible turbulent fluctuations. It also shows
that APE is lost whenever there is diabatic flux across isopycnals, regardless of the
orientation of the latter (Winters & D’Asaro 1996), thus it can be naturally applied
to the vertical isopycnals example discussed earlier.

Winters et al.’s approach considers the global effects of mixing (i.e. diabatic
effects) on a closed system. For this, it relies on a definition of APE for the system
as a whole. There are however situations that call for a definition that applies to
localized regions of the domain, e.g. when measuring the energy carried by nonlinear
internal waves (Scotti, Beardsley & Butman 2006; Lamb 2008), when partitioning
energy between mean and fluctuating components in a cyclone (Kucharski & Thorpe
2000), in determining the efficiency of different mixing systems (Scotti & White
2014) and in studying mixing and turbulence in spatially inhomogeneous systems
(Passaggia, Scotti & White 2017). Recently, Venaille, Gostiaux & Sommeria (2017)
applied mathematical tools traditionally used in the context of statistical mechanics
to the APE framework. This alternative approach allowed them to derive bounds on
mixing efficiency for decaying flows but the main advantage is their coarse-grained
computational technique, used to compute the partition between the mean flow and
the fluctuations, which could be robust enough to be extended to large Reynolds
or Péclet numbers where the available data might be under-resolved. In all these
studies, the starting point is the local definitions of APE developed in the early
1980s by Holliday & McIntyre (1981) for incompressible flows and by Andrews
(1981) for compressible flows, based on a reference state that depends only on the
mass distribution. Interestingly, the fact that the global APE introduced by Winters
et al. (1995) coincides with the volume integrated local APE based on Holliday &
McIntyre (1981) was not realized until much later (Winters & Barkan 2012), although
in hindsight it should have been clear that they must be equal (or at least related by
a gauge symmetry), since the volume averaged transport equation for the Holliday
& McIntyre local APE (see, e.g. Scotti et al. (2006), for a derivation) coincides,
up to boundary terms, with the equation derived by Winters et al. (1995) for the
global APE. While Winters & Barkan’s proof of equivalence is rather convoluted and
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Stratified mixing in inertial and non-inertial frames 611

specific to the Holliday and McIntyre APE, within the framework that we develop in
this paper the proof is almost trivial.

Our framework is built in two steps: first we generalize Margules’ intuitive notion
of available energy of a system as the energy that can be realized given a set of
constraints; we then introduce a local quantity E , the local diagnostic energy, whose
evolution along Lagrangian trajectories quantifies how diabatic processes modify
the available energy of the system. It is important to note that in our framework
E , while having the dimension of an energy, cannot be in general interpreted as a
local available energy. For us, available energy remains a property of the system as
whole, even though there are special cases when E can be modified to become a
local available energy. Essentially this occurs for those systems where our formalism
recovers Winters et al. theory, which is included as a special case.

Our point of departure is Shepherd’s observation that, because of the non-canonical
nature of the Hamiltonian mechanics that describes the evolution of these flows in
the inviscid limit (Littlejohn 1982; Salmon 1988; Shepherd 1993), the Hamiltonian
possesses a local (in phase space) gauge symmetry, related to the existence of
so-called Casimir functions (In modern algebraic terms, non-canonicity means that
the Poisson algebra that underpins the Hamiltonian structure has a non-trivial centre.).
From this point of view, the problem of defining a suitable diagnostic framework
reduces to the problem of selecting a specific gauge condition that accounts for
the appropriate constraints on the system. Following Shepherd (1993), we first lay
down in § 2 the general theoretical framework that applies to generic systems that
in the adiabatic limit have a non-canonical Hamiltonian description. From there, we
introduce the specific gauge-fixing condition that, when applied to the equivalence
class of Hamiltonians, identifies the one whose density is the local diagnostic energy
that we seek. In practice, the gauge-fixing condition identifies which Casimir needs
to be the added to the original Hamiltonian (i.e. the sum of kinetic and potential
energy) to obtain E . At the same time, we also obtain the equations that specify
the appropriate reference state. In practice E is the sum of the traditional energy
functional, the sum of kinetic and potential, and the gauge-fixed Casimir. Changes
in available energy due to diabatic effects are due to changes in the energy of the
flow and changes in the energy of the ground state, since the latter evolves in time
responding to changes in the constraints due to diabatic processes (e.g. mixing). The
gauge-fixed Casimir measures changes of the latter. In particular, it is possible to
envision scenarios where at times, diabatic effects may lessen the constraints acting
on the system and thus may increase the amount of available energy.

What differentiates our approach from these past studies is that we do not specify
a priori the form of the ground state. Rather, our approach seeks (numerically, if
necessary) the ground state which is compatible with the constraints imposed on the
system, the latter being related to quantities that are conserved along Lagrangian
trajectories by the adiabatic dynamics (Lagrangian invariants). Our approach bears
similarities to the work of Renaud, Venaille & Bouchet (2016) and Venaille et al.
(2017). In these works, the authors approached the problem of generating extremal
states of fluid systems from a statistical mechanics point of view, subject to additional
constraints: the distribution of potential vorticity moments in a shallow water system
in the former, conservation of volume (buoyancy) in a stratified Boussinesq flow in
the latter. The statistical nature of these approaches can only be applied to studying
the properties of the final states of a nominally adiabatic dynamics (i.e. a dynamics in
the limit of infinite Reynolds number and finite Prandtl number). These works show
that under the conditions specified above, the systems are attracted to a state in which
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612 A. Scotti and P.-Y. Passaggia

energy is split between a coarse grained profile and fine-grained fluctuations. For a
stratified Boussinesq flow, Venaille et al. show that the attractor consists of a stable
buoyancy profile with a lower overall potential energy relative to the initial state (the
statistical mechanics nature of the analysis allows irreversible mixing in the absence
of an explicitly irreversible microscopic dynamics), and that fine-grained fluctuations
carry kinetic energy. A similar split exists in the shallow water case: in particular,
absent rotation or bottom topography, the coarse-grained state is quiescent, and the
fine-grained field carries energy as inertia–gravity waves. Here, we consider the
possibility that multiple constraints may exists, and we take a deterministic approach,
so that we can study diabatic effects at finite values of the relevant-order parameters,
even though we do not need to specify a priori a particular dissipative mechanism.
Since the approach is deterministic, we can in principle apply the framework to study
the impact of specific mixing processes acting at any given time on the system. Here,
we apply our method to Boussinesq flows in inertial and non-inertial channels.

The rest of the paper is organized as follows: the framework is developed in
§ 2 in rather general terms. In § 3 we specialize it to consider Euler equations in
the Boussinesq approximation for a continuously stratified flow. Both inertial and
non-inertial (i.e. rotating) frames are considered. We give general properties for both
the gauge-fixed Casimir and the reference state. In simple geometric configurations,
we calculate analytically the solution or a suitable approximation, and we show
under what conditions our framework recovers the traditional Winters et al. approach.
An interesting result that applies to the rotating Boussinesq equations is that the
local diagnostic energy associated with low Rossby number reference states has a
universal character. This has potential application to study the turbulent energetics of
submesoscale fronts, a topic that has generated a considerable amount of attention
recently (DAsaro et al. 2011; Arobone & Sarkar 2015; Haney et al. 2015; Marino,
Pouquet & Rosenberg 2015). In § 4 we provide an example of how the gauge-fixed
Casimir can be calculated analytically, followed by our conclusions. We provide
mathematical details in the appendix A.

2. Theoretical background: non-canonical Hamiltonian systems, local gauge
symmetries and Casimirs

We begin this section with a brief review of the basic elements that enter the
Hamiltonian formulation of mechanical systems. For an in depth review of the
Hamiltonian formulation of fluid systems the reader is referred to Salmon (1988).
The three basic ingredients are: (i) a phase space whose points q describe the state
of the system; (ii) a vector space of functionals on the phase space (i.e. real-valued
functions on the phase space) with a suitable algebraic structure, the Poisson bracket;
and finally (iii) a specific functional, the Hamiltonian. For example, consider a point
unit mass constrained to move along a straight line: the phase space consists of
the pairs q = (p, x) where p is the momentum and x the position on the line. The
Poisson bracket {F[q], G[q]} = ∂(F, G)/∂(p, x) is the standard Jacobian determinant.
Different motions are described by different Hamiltonians: Hf [p, x] = p2/2 describes
a free particle, while Hs[p, x] = (p2

+ x2)/2 describes a point mass attached to a
linear spring. However, even in this simple example, the choice of Hamiltonian is not
unique. Indeed, H′[p, x] =H[p, x] + f (t), where f (t) is an arbitrary function of time,
is dynamically indistinguishable from H[p, x], regardless of how the latter depends on
its arguments. This is an example of a global symmetry, since Hamiltonians belonging
to the same equivalence class differ by a quantity which is constant over the entire
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Stratified mixing in inertial and non-inertial frames 613

phase space. Note that the existence (and character) of the symmetry is determined
by the Poisson bracket. In the particular example considered here, solutions of

{f [q],G[q]} = 0, ∀G[q] (2.1)

are those functionals f that are constant on the phase space (though may depend on
time). In this case, we say that the algebra is non-degenerate. In general, solutions to
(2.1) are called Casimirs.

If, however, the Poisson algebra is degenerate (this can happen both in finite- and
infinite-dimensional phase spaces, see Littlejohn (1982)), i.e. there are non-constant
solutions to (2.1), then the equivalence class for Hamiltonians can be much wider. If
that is the case, the global symmetry, manifested by the invariance of the dynamics
under the addition of a (time varying) constant to the Hamiltonian at every point in
phase space, widens to a local (in phase space) symmetry, i.e. the Hamiltonian can be
altered by the addition of a Casimir that can depend on the location in phase space,
and still yield the same dynamical equations. From a field-theoretical point of view,
the Hamiltonian in this case possesses a local gauge symmetry.

It is important to remark that the existence of non-trivial Casimirs depends on
the degeneracy of the Poisson algebra, rather than on the particular choice of the
Hamiltonian. If the algebra is degenerate, equilibrium solutions need not be (and in
general, are not) extrema of the Hamiltonian.

For notational purposes, here and thereafter we will denote with H[q] the ‘naive’
Hamiltonian, which for the systems considered here can be considered to be the sum
of kinetic and potential energy, while H[q] will denote a member of the class of
equivalent Hamiltonians, which can be written as H[q] = H[q] + C[q], the sum of
the naive Hamiltonian and a Casimir. Since we are interested in systems where the
phase space is infinitely dimensional, it is also convenient to introduce the following
notation: to any functional F[q] we associate the corresponding density F(q), i.e.

F[q] =
∫
D

F(q)dV, (2.2)

where D is the manifold that contains the flow. To summarize, square brackets [·]
denote a manifold integrated quantity, with the corresponding local density indicated
by the use of (·).

For fluid systems, Casimirs can be constructed as follows (see Shepherd (1990),
Abarbanel et al. (1986), for an exhaustive compilation of Hamiltonians and Casimirs
associated with flows of geophysical relevance): let s1(x), . . . , sp(x) be p Lagrangian
invariants, by which we mean they are intensive quantities constant along Lagrangian
trajectories, i.e.

Dsi

Dt
= 0, i= 1, . . . , p, (2.3)

with D/Dt being the material derivative. We also need a conserved density D, that is
an extensive quantity which is also materially conserved, that is

∂D

∂t
+∇ · (vD)= 0. (2.4)

Then
C[q] =

∫
D

C(s1(x), . . . , sp(x))DdV, (2.5)
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614 A. Scotti and P.-Y. Passaggia

where C(s1, . . . , sp) is any real-valued function which depends on its arguments alge-
braically (i.e. we are not allowing C to depend on derivatives of the si). It is trivial
to verify that dC/dt∼= 0 (here and thereafter ∼= means equality up to boundary terms).
Note that there may be more general classes of Casimirs (e.g. which may depend on
derivatives of the conserved quantities). However we limit this paper to Casimirs that
can be written as (2.5).

2.1. Holonomic brakes and available energy
It is straightforward to reformulate Margules’ intuitive idea of available energy within
the framework of a non-canonical Hamiltonian system.

Consider a system described at time t = 0 by a point q0 in phase space. Under
adiabatic conditions, the system is described by a trajectory q(t) in phase space such
that along the trajectory H[q(t)] =H[q0], where H[q] is any member of the class of
equivalent Hamiltonian functionals.

Gay-Balmaz & Holm (2013) modified the underlying Hamiltonian geometry so
that Casimirs are not conserved. Here, we consider the complementary approach, i.e.
we modify the dynamics so that it is the naive energy that is dissipated, while still
conserving the Casimirs. We do this following an idea first introduced by Vallis,
Carnevale & Young (1989), later expanded by Shepherd (1990), which involves
modifying the system by adding what here we call a holonomic brake.

The idea behind this strategy is to reduce the total energy of the system as
quantified by H[q(t)] (hence a brake) while ensuring that the si remain Lagrangian
invariants (hence the brake is holonomic), and D remains materially conserved,
i.e. (2.3) and (2.4) are still satisfied. Thus, the holonomic brake leaves the Casimirs
invariant. We will show later how holonomic brakes can be realized in actual systems.
Of course, realistic diabatic processes modify both the naive energy as well as the
Casimirs. The holonomic brake is an expedient that allows one to separate the
action of diabatic processes on the naive energy from their effect on the dynamical
constraint, since both determine the evolution of the available energy of the system.

With the brake turned on, it follows that dH[q(t)]/dt 6 0 and, since the brake
is holonomic, any decrease in H[q(t)] is entirely due to a decrease in the ‘naive’
Hamiltonian H[q(t)]. We assume that, in the limit t→∞, the application of the brake
causes the system to relax to a stationary ‘ground’ state q∗. If such a ground state
exists, the energy extracted by the holonomic brake from the system which is initially
at q0, is the difference EAE[q0] ≡ H[q0] − H[q∗]. We identify EAE with the available
energy envisioned by Margules. In other words, this is the maximum amount of energy
that can be extracted from the system under the constraint that Lagrangian invariants
are conserved. We therefore have the following definition: the available energy is the
energy of the system referenced to the energy of the ground state, the latter being the
state that the system settles to when subjected to a holonomic brake.

We shall see presently that, in the process of determining q∗, a gauge-fixing
condition will naturally arise which selects an element H∗ of the equivalence class
of Hamiltonians. The rate of change in time of H∗[q(t)] measures the loss or gain of
available energy when q(t) evolves under full diabatic conditions. It is worth noticing
that the rest state obtained with the resorting method proposed by Winters et al.
(1995) can be obtained solving the viscous equations in the limit of infinite Prandtl
number, the viscous term ν∇2u acting as a brake. With the diffusivity turned off,
buoyancy is still conserved along trajectories. However, this specific brake does not
conserve the other Lagrangian invariant of the system, the potential vorticity. We will
go back to this point in § 3.
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2.2. A special family of Casimirs: the mass distribution function
The main postulate of our approach is that the ground state q∗ to which the system
relaxes after the holonomic brake is turned on is the point that minimizes the naive
Hamiltonian subject to a set of constraints required by the conservation of the si along
trajectories, which are not affected by the brake. Thus, the extremal point of H[q]
must be sought among the points that satisfy an extra set of conditions, the definition
of which is the subject of this section.

Consider a Lagrangian set of coordinates α = (α1, . . . , αn). A Lagrangian particle
characterized by a p-tuple s= (s1, . . . , sp) of Lagrangian invariants retains its identity.
The mass of all Lagrangian particles whose p-tuple falls between s and s+ ds is given
by

1M(s)=

(∫
D

[
p∏

i=1

δ(si(α)− si)

]
D(α)dVα

)
ds, (2.6)

where D(α) is the density expressed in Lagrangian coordinates, dVα is the volume
element in Lagrangian coordinates and δ is Dirac’s delta (not to be confused with the
δ used to denote variations). Integrating 1M over the p-tuples, from si to its maximum
value Si ≡max{si(α), α ∈D} for each i, we obtain the mass distribution function

M(s)=
∫ S1

s1

· · ·

∫ Sp

sp

1M(s′)=
∫
D

[
p∏

i=1

θ(si(α)− si)

]
D(α)dVα, (2.7)

where

θ(s)=
∫ s

∞

δ(t) dt, (2.8)

is the Heaviside function and dVα is the volume element in Lagrangian coordinates.
It represents the mass of all Lagrangian particles with values of the p-tuple greater
than (s1, . . . , sn). (Methven & Berrisford (2015) used a similar approach to construct
a background state in an atmospheric context.) If we wish to express the theory in
Eulerian coordinates, we just need to replace Eulerian coordinates xi

= xi(α, t) in (2.7)
and integrate over the corresponding Eulerian density

D(x)=
(
ρ(α)

∂(α1, . . . , αn)

∂(x1, . . . , xn)
(t)
)
. (2.9)

By construction, the mass distribution function is a p-parameter family of Casimirs,
one for each p-tuple. Mass distribution functions introduce a phase space ‘foliation’:
with the holonomic brake turned off, q(t) moves on a leaf of the foliation along
isolines H[q]; when the brake is turned on, q(t) still moves on the same leaf, but
crosses the isolines of H[q] on its way to q∗, which, by our hypothesis, is where the
naive Hamiltonian attains its minimum on the leaf (see figure 1).

Two remarks are in order: while it may be possible to use (2.6) to quantify the
constraints, the integral version (2.7) has the advantage of including bulk constraints,
such as conservation of total mass; also, for incompressible flows in the Boussinesq
approximation, we can replace the density D with a function constant and equal to 1,
since Boussinesq flows conserve volume, in which case we should properly speak of
a volume distribution function. For simplicity, we will still refer to M(s) as the mass
distribution function.
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Leaf

Leaf

H(q) = const.

FIGURE 1. Sketch of phase space with two leaves. The dashed line shows a trajectory
under the action of a holonomic brake.

To solve the minimization problem, we introduce a suitable Lagrange multiplier
ψ(s), defined on the support of the mass distribution function M0(s) that specifies
the leaf. That is, we seek to render the Lagrangian functional

L[q, ψ] ≡H[q] +
∫
ψ(s)

[∫
D

p∏
i=1

θ(si(x)− si)D(x)dVx −M0(s)

]
ds (2.10)

stationary, by varying both q and ψ (recall that si(x) is the value of the ith Lagrangian
invariant at x calculated from the fields in q), that is we seek the solution q∗, ψ∗ of

δL
δq
∼= 0,

δL
δψ
= 0. (2.11a,b)

(Although we should admit the possibility that more than one extremal (minimal)
solution exists, for simplicity we assume that the minimal solution is unique.) If all
the si depend algebraically on the field in q, then the ∼= 0 can be replaced by equality
stricto sensu. From now on, q∗ will be referred to as the ‘ground state’.

2.3. The gauge-fixing condition
Let

Ψ [q] ≡

∫
D

[∫
ψ(s)

(
p∏

i=1

θ(si(x)− si)

)
ds

]
D(x)dVx, (2.12)

be the Casimir associated with the Lagrange multiplier and let

H[q] =H[q] +Ψ [q]. (2.13)

By switching the integral over the p-tuples s with the integral over the manifold D,
the Lagrange functional can be rewritten as

L[q, ψ] =H[q] −
∫
ψ(s)M0(s)ds. (2.14)

Since the last term in (2.14) does not depend on q, the Lagrangian multiplier ψ∗
associated with the ground state q∗ can be used to define the following gauge-fixing
condition to the equivalence class of Hamiltonians

δH
δq

∣∣∣∣
q∗

∼= 0, (2.15)
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Stratified mixing in inertial and non-inertial frames 617

which is satisfied when E[q]=H[q]+Ψ∗[q], where the Casimir Ψ∗[q] is related to the
Lagrange multiplier ψ∗ by (2.12). We leave to the reader to verify that for any two
states q1 and q2 belonging to the same leaf (i.e. having the same mass distribution
function)

Ψ∗[q1] =Ψ∗[q2]. (2.16)

We are now in a position to define the local diagnostic energy as follows: the local
diagnostic energy E is the scalar density of the Hamiltonian which satisfies the gauge-
fixing condition (2.15), with the ground state q∗ obtained from (2.11), i.e.

E(q)=H(q)+Ψ∗(q). (2.17)

In terms of the local diagnostic energy, the available energy is

EAE[q] ≡ E[q] − E[q∗] =H[q] −H[q∗], (2.18)

where the last equality follows from (2.16), since q and q∗ belong to the same leaf.
Later we will show that the local APE of Holliday & McIntyre (1981) is a particular
solution of the gauge-fixing condition when the mass distribution function satisfies
certain symmetries. Then, the equivalence between the global APE of Winters et al.
(1995) and the volume integrated local APE of Holliday & McIntyre, the latter being
E(q) − E(q∗), follows trivially from (2.18), itself a consequence of (2.16) which is
true when the two states belong to the same leaf.

Thus, the gauge-fixing condition selects, out of the class of dynamically equivalent
Hamiltonians, the one that returns the same available energy as the naive Hamiltonian,
when referenced to the ground state. Of course, the naive Hamiltonian is physically
interpreted as being the energy of the system. What makes the local diagnostic energy
interesting is how the evolution of the available energy under full diabatic conditions
is related to the local diagnostic energy.

2.4. Evolution of the available energy under diabatic conditions
The Hamiltonian selected by the gauge-fixing condition (2.15) acquires a special role
when we apply non-holonomic forces which break the invariance of the si values along
Lagrangian trajectories. Without brakes, the motion occurs on a leaf along trajectories
of constant energy. With a holonomic brake, the motion still occurs within the leaf,
crossing the isolines of the naive Hamiltonian. Finally with the full non-holonomic
brake on, the mass distribution function becomes time dependent and q(t) drifts across
leaves. At each time, we can still calculate a ground state solving (2.10)–(2.11) with
M0(s) replaced by its instantaneous value Mt(s) calculated from q(t). Thus, starting
from a time series of q(t) states, we obtain a sequence of ground states q∗(t) with
the corresponding Lagrange multipliers ψ∗(s, t). Note that (2.16) still holds on the
pairs (q(t), q∗(t)).

Based on our definition of local diagnostic energy,

E(q∗(t))=H(q∗(t))+Ψ∗(q∗(t), t), (2.19)

where the second argument in Ψ∗(·, t) is a reminder that the time dependence of the
Casimir is due both to the time dependence of the ground state as well as to the
intrinsic time dependence of ψ∗. The rate of change of the integrated local diagnostic
energy of the ground state is

dE[q∗(t)]
dt

=

(
δH
δq
+
δΨ∗

δq

)∣∣∣∣
(q∗(t),t)

[
dq∗
dt

]
+
∂Ψ∗

∂t

∣∣∣∣
(q∗(t),t)
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618 A. Scotti and P.-Y. Passaggia

∼=
∂Ψ∗

∂t

∣∣∣∣
(q∗(t),t)

, (2.20)

where the last equality is made possible by the gauge-fixing condition. Note that the
last partial derivative only applies to the explicit dependence on time in the gauge-
fixed Casimir. (In the following, when we speak of the Casimir, we will intend the
gauge-fixed Casimir, as opposed to a generic Casimir. The context will usually suffice
to make the distinction clear.) Since q(t) and q∗(t) are on the same leaf, we have

dE[q∗(t)]
dt

∼=
∂Ψ∗

∂t

∣∣∣∣
(q(t),t)

, (2.21)

where now the Casimir is evaluated on q(t), rather than on the ground state q∗(t).
Therefore, the rate of change of the available energy

dEAE[q(t)]
dt

∼=
δE
δq

∣∣∣∣
(q(t),t)

[
dq
dt

]
∼=

(
δH
δq
+
δΨ∗

δq

)∣∣∣∣
(q(t),t)

[
dq
dt

]
, (2.22)

can be expressed solely in terms of the rate of change of the local diagnostic energy
evaluated on q.

The rate of change of the naive Hamiltonian reflects the action of the holonomic
and non-holonomic components of the diabatic processes, while the change in the
Casimir is due solely to the non-holonomic component. From a local point of view,
how H evolves along Lagrangian trajectories is usually well known. For example, for
a Boussinesq fluid, the loss of energy due to diabatic effects is quantified by ε, the
rate of loss of kinetic energy. Usually, the latter is mediated by turbulent cascade, but
our framework will work regardless of the precise nature of the diabatic effects.

The local evolution of the Casimir Ψ∗ along trajectories quantifies how (non-
holonomic) diabatic effects modify the available energy. Interestingly, such effects
may actually increase the available energy, at least temporarily. We will return to
this point in the discussion. What is important to remember is that the (potentially,
time-varying) gauge-fixed Casimir is the quantity that needs to be analysed in order
to understand how diabatic processes modify the available energy. To study such
processes we do not need to know what the ground state is. Knowledge of the
latter is required only if we actually want to calculate the total available energy.
For systems that are maintained by external factors away from a state of minimum
energy, the information we are often after is the energetic cost of keeping the system
away from equilibrium, that is the rate of change of available energy. In this case,
the gauge-fixed Casimir is the quantity of interest. It is for this reason that in the
following section we will mostly focus on the gauge-fixed Casimir.

3. A specific flow model: Boussinesq fluids

The theory developed in the preceding sections is quite general, and applies to
any type of system that can be described in the adiabatic limit with a non-canonical
Hamiltonian structure. In this section, we apply the theory to continuously stratified
flows in the Boussinesq approximation. The two Lagrangian invariants are the relative
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Stratified mixing in inertial and non-inertial frames 619

concentration of the stratifying agent and the Potential Vorticity. Within the confines
of the Boussinesq approximation, we can replace the former with the buoyancy.

The main result of this section, that in strongly rotating systems, to leading order,
the Casimir is independent on the details of the mass distribution function, relies on
the fact that the Casimir is related via a simple transformation to the Bernoulli head
of the ground state.

3.1. Stratified Boussinesq flows
A continuously stratified flow in the Boussinesq approximation is described by the pair
q≡ (b, v), where b≡ g(ρ0 − ρ)/ρ0 is the buoyancy, v is the velocity field. Together,
they satisfy

∂v

∂t
=−v×ω−∇(P+ Ek)+ b∇Z, (3.1a)

∂b
∂t
+ v · ∇b= 0, (3.1b)

∇ · v = 0, (3.1c)

where P is the pressure, Z the geopotential height and Ek = v2/2 the kinetic energy
per unit mass.

The total vorticity ω≡∇× v+ f is the sum of the relative vorticity ∇× v and the
frame vorticity f . Let (x1, x2, x3) be a set of geometric coordinates and g = gijdxi

⊗

dxj
= gij∂ i ⊗ ∂ j be the metric tensor. Einstein convention (summation over repeated

indexes) is implied, and we follow modern notation by denoting with ∂ i = ∂/∂xi,
i= 1, . . . , 3 the elements of a basis fitted to the coordinates in a local patch.

There are two independent Lagrangian invariants: the buoyancy b itself and the
potential vorticity q ≡ ∇b · ω. (if f (b) is any (smooth) function of b, then f (b) is
also a Lagrangian invariant, and so is (∇f (b) · ω). This will be reflected in certain
degrees of freedom available in the definition of the gauge-fixed Casimir.)

The naive Hamiltonian is

H[q] =
∫
D
(Ek− bZ)dV, (3.2)

while Casimirs have the general form

Ψ [q] =

∫
D
Ψ (b, q)dV. (3.3)

In terms of the Lagrange multiplier, the density of the gauge-fixed Casimir is

Ψ (b, q)=
∫ b

bmin

∫ q

qmin

ψ(q′, b′)dq′db′. (3.4)

3.1.1. The gauge-fixing condition
The Frèchet derivatives of the naive energy with respect to v and b are trivial. We

concentrate here on the variations of the Casimir written as in (3.3). The variation
with respect to b is given by

δΨ

δb
δb = (Ψ,bδb+Ψ,qδq)
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620 A. Scotti and P.-Y. Passaggia

= (Ψ,bδb+Ψ,q(∇(δb) ·ω))
∼= Ψ,bδb−∇ · (Ψ,qω)δb
= [(Ψ − qΨ,q),b −Ψ,qq(∇q ·ω)]δb, (3.5)

while the variation with respect to v is given by

δΨ

δv
· δv =Ψ,q

δq
δv
· δv =Ψ,qq(∇q×∇b) · δv. (3.6)

Note that to avoid notational clutter we use the comma derivative notation, i.e.

f,a ≡
∂f
∂a
, f,ab ≡

∂2f
∂a∂b

, . . . (3.7a,b)

Given the mass distribution function V(q, b), the ground state and the gauge-fixed
Casimir are found solving

δH
δb
∼= [−Z + (Ψ − qΨ,q),b] −Ψ,qq(∇q ·ω)= 0, (3.8a)

δH
δv
∼= v +∇× (Ψ,q∇b)= 0, (3.8b)

δH
δψ
=

∫
D
[θ(q(x)− q)θ(b(x)− b)]dV = V(q, b). (3.8c)

An attentive reader may have wondered why we did not enforce the incompressibility
condition via an explicit Lagrangian multiplier. This is not necessary, as (3.8b)
guarantees that the velocity field of the ground state is solenoidal. Indeed, conservation
of volume is implied a fortiori by conservation of the mass (volume in this particular
case) distribution function.

3.1.2. Non-quiescent ground states and natural coordinates
While our theory recovers Winters et al.’s quiescent ground state (i.e. having zero

KE) as a special case, we are mainly interested in characterizing ground states with
non-zero kinetic energy, and in which streamlines do not end in stagnation points,
which requires Ψ∗,qq 6= 0 and ∇q∗ × ∇b∗ 6= 0 or else from (3.8b) v∗ = 0. Also, we
assume that the mass distribution function is a continuous and differentiable function,
i.e. buoyancy and potential vorticity are continuously distributed. More complicated
cases consisting of layers where buoyancy and/or potential vorticity are interleaved
with layers where one or the other are constant will not be considered here.

The form of the equations, and the fact that buoyancy and potential vorticity are
an obvious choice for Lagrangian coordinates, suggest that the ground state is more
conveniently expressed with a ‘natural’ set of coordinates which is given by buoyancy,
potential vorticity and a third coordinate t. The latter is defined so that the relationship
between ‘geometric’ (x1, x2, x3) and natural coordinates (q,b, t) is such that the volume
element becomes √

|g|dx1dx2dx3
=Ψ∗,qqdbdqdt. (3.9)

This can be achieved if locally the relationship between geometric and natural
coordinates is obtained by integrating the Pfaffian system

dxi
= vi

∗
dt, i= 1, . . . , 3 (3.10)
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Stratified mixing in inertial and non-inertial frames 621

where v∗ =−∇× (Ψ∗,q∇b∗) is the velocity field of the ground state, i.e. the solution
of (3.8b) and the subscript ∗ reminds us that these are ground state fields (see § A.2 for
a derivation of (3.9) from (3.10)). In the following sections, we explore some of the
general properties of the ground states that are solutions of (3.8a)–(3.8c). The analysis
relies on the following general property: if v∗, b∗ are solutions of (3.8a)–(3.8c), the
Casimir Ψ∗ of the ground state, is related to the Bernoulli head

B∗(q, b)= v∗(q, b)2/2− bZ∗(q, b)+ P∗(q, b) (3.11)

of the ground state expressed in natural coordinates, via

Ψ ∗ ≡ qΨ∗,q −Ψ∗ = B∗(q, b), (3.12)

whose general solution is

Ψ∗ = q
∫ q

qmin

B∗(q′, b)
q′2

dq′ (3.13)

(see § A.1).

3.1.3. Apedic ground states and their properties
As a first application of our framework, we wish to characterize under what

conditions we recover Winters et al. APE definition.
Let us start with a general definition: an apedic (from the Greek ἄπεδος, meaning

level, flat) ground state is a ground state such that b∗ = b∗(Z). By extension, the leaf
in phase space to which an apedic ground state belongs is called an apedic leaf.

If we express the absolute vorticity of a ground state as

ω∗ =ω
t
∇b×∇q+ωb

∇q×∇t+ωq
∇t×∇b, (3.14)

then the ground state is apedic if and only if

ωq
,t = 0, (3.15a)
ωt
,t = 0, (3.15b)

that is, the absolute circulation over loops embedded in surfaces of constant potential
vorticity and the circulation over loops embedded in surfaces of constant t must be
independent on t for a ground state to be apedic. This follows from taking the curl
of (3.1a) (assuming stationarity) and since ∇ · ω = 0, we obtain after some simple
algebra

∇Z ×∇b+ωt
,t∇b×∇q+ωq

,t∇t×∇b= 0, (3.16)

which the ground state must satisfy. This equation is satisfied if and only if (3.15a)–
(3.15b) hold, since ∇b×∇q and ∇t×∇b are independent vectors, and on an apedic
manifold ∇b×∇Z = 0 by definition.

Let us now explore some more properties of apedic ground states. Let ∇v∗v∗ be the
acceleration along streamlines, where ∇ is the Levi-Civita connection on the manifold,
i.e.

∇v∗v∗ =
[
xj
,tt + Γ

j
mpxm

,t x
p
,t

]
∂ j, (3.17)

where the xj(t) are the coordinates along streamlines parameterized with t, i.e.
the solution to dxi

= vi
∗
dt and Γ i

mp are the Christoffel symbols of the Levi-Civita
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connection. Then it is a matter of straightforward algebra (see § A.3) to show that
for a ground state to be apedic the conditions (3.15a)–(3.15b) require(

∂

∂b
· ∇v∗v∗

)
,q

=

(
∂

∂q
· ∇v∗v∗

)
,b

, (3.18a)(
∂

∂b
· ∇v∗v∗

)
,t

= Ek∗,tb. (3.18b)

Thus, a sufficient condition for a ground state to be apedic is that streamlines are
geodesics in an inertial frame and the kinetic energy depends only on either q and t
or q and b.

Also, it is worth remarking that the notion of apedicity, depends on the local
direction of the plumb line, and thus it is not frame independent. Thus, a flow in
solid body rotation will appear apedic to an observer in solid body rotation with the
flow, but not to an inertial observer.

3.1.4. The Casimir of inertial apedic ground states
Under the assumption that the ground state is apedic in an inertial system, we can

make further analytic inroads. Let Ek∗= gijxi
,tx

j
,t/2= gtt/2 be the kinetic energy of the

ground state. Assuming that apedicity is due to the trajectories being inertial, we have
(see § A.3)

ωb
∗
= Ek∗,q, (3.19)

ωq
∗
= −Ek∗,b, (3.20)

that is
ω∗ =∇× (Ek∗∇t)+ωt

∗
∇b×∇q, (3.21)

which, substituted in (3.1a) (recall that v∗ is parallel to ∇t)

∇(P∗)= b∗∇Z =∇
(∫ Z

b∗ dZ
)
, (3.22)

indicates that the pressure distribution in apedic ground states is hydrostatic.
The definitions of local available potential energy proposed in the past that rely

on a Casimir (e.g. Holliday & McIntyre 1981), usually, (but not always, see, e.g.
Codoban & Shepherd (2003)) include only the potential and pressure term, combined
in
∫ b Zdb. This is not surprising, since the traditional available energy approach is

to define the background potential energy as the energy of the restratified flow. In
our formalism, it can be recovered by enforcing only conservation of buoyancy when
we seek the ground state. Indeed, in this case, Ψ∗ depends only on buoyancy, and
(3.8a)–(3.8b) show that Z∗= Z∗(b) and v∗= 0. Of course, this is a solution of the full
problem if the state q has zero potential vorticity throughout. If we want to enforce
both buoyancy and potential vorticity conservation, the corresponding ground state in
general must have kinetic energy, and thus the system will have a lower available
energy. Superficially, it would seem that enforcing potential vorticity conservation on
the ground state would necessarily lead to ground states with kinetic energy, thus
lowering the amount of available energy, unless q has zero potential vorticity. In fact,
the set of states whose ground state is described by the Winters et al. ground state is
wider, and they will be discussed in the next section, where we apply the theory to
simple channel geometries, both inertial and rotating.
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3.1.5. Boussinesq channel flows
For arbitrary mass distribution functions and geometries, (3.8a)–(3.8c) constitute

a formidable nonlinear optimization problem for the ground state. It is therefore of
advantage to solve this optimization problem by other means, for instance, integrating
numerically the Euler equations with a holonomic brake to find the ground state.
Once the pair b∗, v∗ is known, the Casimir can be calculated from its Bernoulli head.

Nevertheless, analytic progress can be made if we are willing to sacrifice
geometric complexity. We consider simple ‘open’ channel geometries, which can
be geometrically described by Cartesian coordinates. For definiteness, let 0 6 Z 6 Lz
be the vertical direction, 0 6 y 6 Ly the spanwise direction and 0 6 x 6 Lx the
streamwise direction. The bottom, top and side walls are free-slip boundaries, while
the flow is periodic in the streamwise direction. For simplicity, we limit the search of
ground states to states that are 2.5-dimensional: these are states defined by Z=Z(b, q)
and y= y(b, q), and such that the velocity, which depends on two dimensions (b, q)
is normal to the Z, y plane (the 1/2 dimension).

3.1.6. Apedic ground states in inertial channels
In this section, we prove that 2.5-dimensional ground states (as defined above)

in inertial channels are apedic. Further if, for any value of b, the mass distribution
function V is such that V,qb is an even function of q, the kinetic energy of the ground
state is zero.

The method to construct an apedic ground state for simple flow geometries is a
natural extension of the technique introduced by Winters et al. (1995) and consists of
three steps:

(i) Determine the resorted height Z∗(b) solving (3.8c) in the limit q→ qmin. This
coincides with the restratification of the fluid.

(ii) Compute the resorted distribution of potential vorticity along the spanwise
direction y∗(q).

(iii) Finally, determine the kinetic energy Ek∗ of the ground state.

Later, we will modify this recipe to calculate the ground state and associated
Casimir of rotating flows characterized by a low Rossby number ground state, with
the Rossby number being defined as Ro= O(|(∇ × v) · ∇b|/f · ∇b), in other words,
flows in which the leading-order contribution to potential vorticity is provided by the
frame vorticity.

It is straightforward to verify that 2.5-dimensional ground states in inertial channels
are apedic. In geometric coordinates, the components of the velocity vector are
[0, 0, v∗(b(Z, y), q(Z, y))], thus dx= v(b, q)dt and dy= dZ= 0, which implies that the
velocity is uniform along geodesics. Rather than working in ‘natural’ coordinates, we
work with ‘hybrid’ coordinates (b, q, x). Being apedic Z∗ = Z∗(b), (here, as we have
done before, quantities used as coordinates will not carry the ∗ subscript) which can
be calculated from the limit q→ qmin of (3.8c)∫

θ(b∗(Z)− s)dZdydx = −LyLx

∫ bMax

bmin

θ(b− s)
dZ∗
db

db

= V(qmin, s), (3.23)

whose solution is

Z∗(b)= Lz

(
1−

V(qmin, b)
V(qmin, bmin)

)
. (3.24)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

91
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.915


624 A. Scotti and P.-Y. Passaggia

Its functional inverse b∗(Z) is the buoyancy distribution of the ground state. From
this, we can calculate the hydrostatic pressure of the ground state. Also, for later
convenience, we define N−2

∗
≡ Z∗,b(b).

Next, consider the volume element

V= dZdydx=
∣∣∣∣∂(Z, y)
∂(b, q)

∣∣∣∣ dbdqdx. (3.25)

Using again (3.8c) ∣∣∣∣∂(Z, y)
∂(b, q)

∣∣∣∣= V,qb

Lx
, (3.26)

we obtain y= y(q, b) solving

V,qb

Lx
=

∣∣∣∣∂(Z, y)
∂(b, q)

∣∣∣∣= ∣∣∣∣V,b(qmin, b)
LxLy

∂y
∂q

∣∣∣∣ . (3.27)

The solution that spans the domain is

y∗ = Ly
V,b(qmin, b)− V,b(q, b)

V,b(qmin, b)
. (3.28)

Note that in this apedic ground state, isopycnals are flat, whereas surfaces of
constant potential vorticity are not and the relationship between natural and geometric
coordinates is invariant under the dilation V→ esV .

At this point, all we have left is to calculate the kinetic energy of the ground state.
By construction, we must have v = F∂/∂x and ∇ × v = F,b∇b × ∇x + F,q∇q × ∇x.
Using the definition of potential vorticity (A 6) and (3.26) we may try as a first ansatz
a solution to

F,q =
qV,qb

Lx
, (3.29)

with the constant of integration set along planes of constant buoyancy so that the total
momentum along the x direction is conserved. In the special case

V,qb = δ(q)Ṽ,b, (3.30)

which corresponds to a leaf characterized by a uniformly zero distribution of potential
vorticity, F and the kinetic energy of the ground state are zero. The Casimir then
reduces (up to a factor qf (b) which does not concern us) to

Ψ∗ =

∫ b

bmin

Z(s)ds, (3.31)

and the ground state to a quiescent fluid restratified according to (3.24). Two-
dimensional flows contained in a vertical plane have zero potential vorticity, and
thus satisfy (3.30). In this case, as mentioned earlier, we recover the same definition
of available energy used by Winters et al. (1995).

Consider a three-dimensional flow at time t which evolved from an initially two-
dimensional flow contained in the vertical plane seeded with random infinitesimal
perturbations along the third dimension. At t= 0 the mass distribution function is very
well approximated by V,q = Ṽ,bδ(q). As the flow develops instabilities, the delta-like
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Stratified mixing in inertial and non-inertial frames 625

distribution in the mass distribution function develops tails. Let us assume that in
the absence of any mechanism that breaks the symmetry, the potential vorticity that
the diabatic processes generate ex nihilo is equally distributed around the origin. In
other words, we assume that whatever mechanism generates potential vorticity, it is
not biased against either positive or negative potential vorticity. While this hypothesis
seems reasonable, and it is supported by analysis of numerical experiments of different
flow configurations, where a stretched exponential appears to give a good fit (figure 2),
we cannot prove it. Thus, it must be considered as a conjecture. Here, we explore its
consequences. Without loss of generality, we can assume that at time t

V,qb '
LyLxN−2

∗
(b)

σ (b)
w
(

q
σ(b)

)
, (3.32)

where w(x) is a suitable even function. As long as it decays sufficiently rapidly, we
can replace pmin with −∞ and pMax with +∞. σ(b) measures the spread (i.e. the
variance if the distribution was Gaussian) in potential vorticity near a given buoyancy
level. Let W(x)=

∫ x
−∞

tw(t)dt and Wn =
∫
∞

−∞
Wn(t)dt. Integration of (3.29) yields for

the velocity the following expression (setting the integration constant to zero for the
moment)

F(q, b)=
∫ q

−∞

q
V,qb

Lx
dq= LyW

(
q

σ(b)

)
N−2
∗
(b)σ (b), (3.33)

from which the kinetic energy per unit volume of the ground state can be easily
calculated

Ek∗ =
∫
+∞

−∞

(∫ bMax

bmin

F2

2
V,bq db

)
dq
/∫

+∞

−∞

(∫ bMax

bmin

V,bq db
)

dq

=
L2

y

2

(
W2

Lz

∫ Lz

0
N−2
∗
(b∗(Z)σ (b∗(Z)))2dZ

)
, (3.34)

the inescapable consequence of which is that the kinetic energy per unit volume of
this point on the leaf grows with the width Ly of the channel squared. While we have
derived this result assuming that the mass distribution function has the particular form
given by (3.32), it fundamentally rests on the fact that under the dilation V→ esV we
have F→ esF and Ek→ e2sEk. Therefore, what we have derived cannot be the ground
state that we are seeking. To understand what went wrong, and to find a cure for it, in
figure 3 we plot F calculated using (3.29) where the mass distribution function was
obtained from a direct numerical simulation of stratified Couette flow (Scotti 2015)
(indicated with the label (1)).

In this set-up, the Lagrangian parcels with high negative potential vorticity are
shunted on one side of the domain, most of the domain is filled by the (many)
particles with little potential vorticity, while the parcels with large positive vorticity
are pushed to the other side of the physical domain. We can see immediately two
problems with this approach: first, having separated the large negative from the large
positive potential vorticity particles, we have created a large, sustained shear that
forces the velocity to reach a large value in the centre of the domain. Second, while
this set-up does not violate a free-slip boundary condition at the side walls, it cannot
accommodate periodic boundary conditions.

Indeed, no matter what the details of the mass distribution function are, a single
(b, q, x)

ξ
→ (z, y, x) chart cannot cover the manifold if the latter is periodic in the
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FIGURE 2. (Colour online) Value of log10(V,qb) in stratified shear flows. (a) A stratified
Couette flow: the inset shows V,qb(q, 0.5) (blue line) superimposed to a stretched
exponential exp−|q/0.3|0.6 (orange line). (b) A time-evolving shear layer, after the initial
break-up of the Kelvin–Helmholtz instabilities. In this case too, a stretched exponential
with a similar exponent fits the profile (exp−|q/4.5|0.6). Note how, in both cases, profiles
of Vqp along lines of constant buoyancy are symmetric around the origin.

y direction. Let us explore then what happens if we allow two charts to cover the
manifold. The first chart maps the (b, q, x) space to the half of the channel such
that 0 6 y 6 Ly/2, while the second covers the other half. Further, since the mass
distribution function is an extensive quantity by definition, we require that each half of
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FIGURE 3. (a) Value of F(b0, q) versus q where F is obtained solving (3.29) in a time-
evolving stratified shear layer, where b0 = (bmin + bMax)/2 is the midplane buoyancy. (b)
Value of F(b0, q) versus y(b0, q) obtained using one (1), two (2) or four (4) charts to
cover the domain.

the physical domain contributes exactly one half to the total mass distribution function.
In each half, we proceed exactly as we did before, and since F(q, b)

q→±∞
−→ 0 it is

possible to stitch together the velocity at the edge of every subdomain to obtain the
profile shown on figure 3(b) labelled (2). Because in each half the mass distribution
function is half of the original one, the energy per unit volume in each half (an
intensive quantity) is now 25 % of the energy per unit volume obtained using only
one chart. As a bonus, the velocity field is now periodic. Again, what makes this
possible is the fact that V,qb is an even function of q.

Of course, there is no reason to stop at two charts. The procedure can be repeated
with 4, 8, . . ., charts, each covering 1/4, 1/8, . . . of the channel, and each time obtain-
ing a field with a kinetic energy per unit volume 1/16, 1/64, . . . of the previous
(figure 3 shows the profiles obtained using one, two and four charts). Thus, we
generate a sequence of velocity fields in which potential vorticity is interleaved at
finer and finer scales, while at the same time reducing the overall kinetic energy by a
factor 4 with each iteration. Barring the existence of a cutoff scale, this shows how to
construct a sequence of states which in the limit approaches a ground state with zero
kinetic energy. These ground states are also obviously global minima on their leaf,
since the only way to further lower the total energy would break the conservation of
volume constraint.

Naturally, it is possible to consider initial conditions in which the symmetry in q
is broken ab initio, even in the absence of rotation. For example, consider filling a
channel, which, as before, has dimensions (Lz, Ly, Lx) with a fluid whose buoyancy
has a uniform gradient along the spanwise direction ∇b=N2

0∂/∂y, and flowing (in a
way consistent with Boussinesq dynamics) such that v=1v0(Z/Lz)∂/∂x, so that Ω =
−1v0/Lz∇x×∇Z. Thus, the potential vorticity is uniform and equal to −N2

01v0/Lz.
We can handle this singular limit by ‘smearing’ the potential vorticity distribution
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around its constant value by an amount O(ε), carry out the calculation and finally
taking the ε→ 0 limit. In this case, the buoyancy of the ground state is such that
∇b∗=N2

0(Ly/Lz)∂/∂Z and v∗=1v0(y/Ly)∂/∂x. Interestingly, the ground state contains
as much kinetic energy as the initial state, and thus the available energy per unit
volume is simply the difference between the potential energy of the initial and ground
state (1bLz/12). (It is important to realize that this ground state, like any other ground
state as defined in our theory, is stable relative to perturbations that belong to the same
leaf of the ground state. The ground state considered in the last example belongs to a
class of flows whose stability has been studied by Deloncle, Chomaz & Billant (2007).
The potential vorticity of the unstable modes is such that the unstable modes can be
excited in the rest state only via the action of non-holonomic forces (forces that alter
the potential vorticity distribution). This example confirms that non-holonomic forces
can increase the available energy, which is used by the unstable modes to grow. In
other words, the introduction of unstable modes moves the state to a different leaf, on
which the ground state has a lower energy.) We must however emphasize that when
the mass distribution function symmetry in q is broken, the global apedic minimum
on the leaf could be three-dimensional.

3.1.7. Rotating channels in the low Rossby number limit: geostrophic ground states
Another class of ground states that is amenable to analytic treatment are the ground

states of flows contained in rotating channels where the frame vorticity is much larger
than the relative vorticity. In other words, we look for ground states characterized by a
small value of the Rossby number (as defined earlier). We also assume that the Burger
number Bu= (N∗H/fL)2 is kept finite, and as such we drop it from the asymptotics.
We call low-Ro ground states geostrophic ground states. We work with natural (b, q, t)
coordinates assuming that the ground state is 2.5-dimensional.

Under these assumptions, the main source of non-inertiality along trajectories in the
ground state is due to the frame vorticity Ξ = f∇y×∇x, which we write as

Ξ =Ξ t
∇b×∇q+Ξ b

∇q×∇t+Ξ q
∇t×∇b, (3.35)

with

Ξ t
= f (y,bx,q − y,qx,b), (3.36a)

Ξ b
= fy,qx,t, (3.36b)

Ξ p
= −fy,bx,t, (3.36c)

where f is the Coriolis parameter (recall that y,t = 0).
Under the 2.5-dimensional assumption and in the limit of vanishing Rossby

numbers, x,t =
√

2Ek, and the steady state version of (3.1a) becomes (Pedlosky
1986, p. 45)

∇Ψ = f
√

2Ek∇y− Z∇b+O(Ro), (3.37)

where we made use of (3.36b)–(3.36c). Thus, to O(Ro) the integrability condition

f
√

2Ek,Z∇Z ×∇y= b,y∇Z ×∇y, (3.38)

shows that the ground state is in the so-called thermal wind balance. As we did for
flows in inertial channels, we endeavour to construct the ground state explicitly by
seeking first the coordinate maps Z∗ = Z(b, q) and y∗ = y(b, q). The solution can be
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expressed as (for details see § A.4)

Z∗ =
∞∑

n=1

Zn(q)(b− bmin)
n, (3.39a)

y∗ =
∞∑

n=0

yn(q)(b− bmin)
n, (3.39b)

√
2Ek∗ =

∞∑
n=0

vl(q)(b− bmin)
n. (3.39c)

Writing V,bq as a power series in b− bmin

V,qb = Lx

∞∑
n=0

Fn(q)(b− bmin)
n, (3.40)

the coefficients of (3.39a)–(3.39c) are given by

yn = f−1
∫ q

qmin

sFn(s)ds, (3.41a)

Z1 =
f
q
, Zl+1 =

lZ1,qyl −

l∑
n=2

(nZnyl+1−n,q − (l+ 1− n)Zn,qyl+1−n)

(l+ 1)y0,q
, (3.41b,c)

v0 = v1 = 0, vl+1 =

−Zl,q + f
l∑

n=1

(nvl+1−n,qyn − (l+ 1− n)vl+1−nyn,q)

f (l+ 1)y0,q
. (3.41d)

With the complete solution in hand, it is now time to revisit the small-Ro
assumption made at the beginning. The goal is to characterize the mass distribution
functions that lead to small-Ro ground states. It is straightforward to calculate the
relative vorticity of the ground state (It follows from the fact that the infinitesimal
contribution to the circulation is v · dl =

√
2Ekdx3

= 2Ekdt, from which we can
calculate the curl.)

ω∗ =−(2Ek),b∇t×∇b+ (2Ek),q∇q×∇t. (3.42)

Let us start from the special case that leads to (A 34). The most stringent condition
is

Ro=O
(
(
√

2Ek∗),Z
f

)
=

Lz

f 2qF0(q)
� 1. (3.43)

We can estimate
O(qF0)= q

LyLz

1q1b
= q

Ly

1pN2
, (3.44)

where N2
= 1b/Lz. Here 1q is a measure of the spread of potential vorticity, e.g.

the root-mean-square (r.m.s.) of the fluctuations, 1b is a measure of the spread of
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buoyancy and q the mean potential vorticity (which, when needed, can be estimated
as fN2). Thus, the ground state satisfies the low-Ro condition if the following condition
on the spread of potential vorticity

1q
q
�

LyLz

L2
R
, (3.45)

where LR ≡ LzN/f is the internal Rossby radius of deformation, is satisfied.
Let us now consider the more general case of a mass distribution function which

is not linear in the buoyancy, but which still satisfies (3.45). We have

O(qFn)= Ro−1 L2
R

1b
(1b)−n, (3.46)

whence

O( fyn) = O(1q qFn)= fLy(1b)−n, (3.47a)

O( fyn,q) = O(qFn)= Ro−1 L2
R

1b
(1b)−n. (3.47b)

Using (A 29), we have

O(Z2(b− bmin)
2)= Ro

LyLz

L2
R

Lz. (3.48)

Given the nature of the recurrence relation (A 29), it follows that all the other terms
in the series for Z are O(Ro), and thus

Z∗ =
f
q
(b− bmin)+O(Ro). (3.49)

Along essentially the same lines we have that
√

2Ek∗=O(Ro), and thus to O(Ro) the
pressure in the ground state is hydrostatic. Hence

Ψ =−
f
2
(b− bmin)

2

q
+O(Ro), (3.50)

and

Ψ∗ =
f
4
(b− bmin)

2

q
+O(Ro), (3.51)

which shows that the Casimir of geostrophic leaves, defined as leaves characterized
by a geostrophic ground state (i.e. a low-Ro state) does not depend, to leading order,
on the details of the mass distribution function that defines the leaf to which the
ground state belongs. A field on a geostrophic leaf does not need to be in geostrophic
equilibrium, but the ageostrophic component must be such that the overall spread in
potential vorticity is small when looked over the entire field. As long as the diabatic
dynamics does not cause a significant spread in potential vorticity, the flow remains on
a geostrophic leaf and the diagnostic energy E is to leading order independent of the
mass distribution function. Thus, the local diagnostic energy has, to O(Ro) a universal
character.

3.2. The non-holonomic dynamics of Casimirs in Boussinesq flows
Once the gauge-fixed Casimir is known, non-holonomic effects on the available
energy can be analysed by considering how the Casimir evolves along Lagrangian
trajectories. In apedic manifolds characterized by an even distribution of potential
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vorticity, our theory recovers the standard local APE formulation based on Holliday
& McIntyre (1981) (here, we reinstate the qualified potential, since the ground state
has no kinetic energy). In particular, under the Boussinesq approximation, the sink of
APE is quantified by −κψ ,bb|∇b|2, where κ is the diffusivity of the stratifying agent.
Archetypal flows for small-scale mixing (e.g. shear layers, Couette flows,. . . ) fall
into this category. On geostrophic manifolds, the evolution of the Casimir depends
on the details of the non-holonomic brake. Assuming a standard diffusion term in the
buoyancy equation, the sink term due to mixing of the stratifying agent −κψ ,bb|∇b|2

is equal to κf /q|∇b|2 + O(Ro). However, diabatic momentum fluxes will change
the potential vorticity along trajectories and thus can either increase or decrease
the available energy. In light of the discussion regarding the Casimir associated
with states with a symmetric distribution of potential vorticity around the origin,
it becomes clear how diabatic processes that tend to drive the potential vorticity
of a flow which originally had a skewed potential vorticity distribution toward a
distribution symmetrical around the origin, such as winds blowing down front along
oceanic fronts (Thomas 2005; Taylor & Ferrari 2010) have the effect of increasing the
available energy of the flow. The existence of a skewed potential vorticity distribution
requires the background state to have KE, and thus lowers the available energy of
the system.

4. An example
As an application of the framework discussed in the preceding sections, we calculate

the available energy and the gauge-fixed Casimir of an oceanic-type front. The
dynamics of submesoscale fronts has received widespread attention recently since
it provides routes for energy dissipation in the world’s oceans (Nikurashin, Vallis
& Adcroft 2013; Callies et al. 2015; McWilliams 2016; Thomas 2017). Mesoscale
fronts also provide a mechanism for driving vertical mixing through submesoscale
and small-scale turbulent processes and power the biological pump by exchanging
nutrients, marine geochemical species and biology (Lévy et al. 2012; Mahadevan
2016).

Here, we consider a simple set-up, consisting of a channel periodic in the y
direction, bounded by vertical walls located at x = ±Lx/2, and extending from
z = −H, where the isopycnals are flat, to the surface z = 0. The initial stratification
consists of a linear profile with a x-dependent vertical length scale

b(z)≡ g(ρ0 − ρ)/ρ0 =HN2 (z+H)
`(x)

,

`(x)=H(1+ ε tanh(x/∆)),

 (4.1)

resulting in isopycnals outcropping at the surface. The characteristics of the frontal
region (∆= 30H and ε= 0.2), and the ratio of stratification to Coriolis force N/f = 60
are illustrative of mid-latitude oceanic fronts (Simpson & Lynn 1990; Zhang, Wang &
Qiu 2014). The width of the channel Ly = 12∆ is large enough to avoid end-channel
effects. To calculate the available energy and the Casimir, we solve numerically the
Navier–Stokes equations in the Boussinesq approximation with a holonomic brake
added as a body force to the right-hand side

∂u
∂t
= −u× (ω+ f k)−∇p+ bk+ ν∇2u−

α

fN2
(u · ∇b)∇b, (4.2a)
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Db
Dt
= κ∇2b, (4.2b)

∇ · u = 0. (4.2c)

Here we take the holonomic brake to be of the form −τ(|u|, b)(u · j)j, with
j = ∇b/|∇b| and τ > 0 a time scale function, so that its effect on the evolution of
vorticity is limited to the components normal to ∇b. Here we choose τ = α|∇b|2/fN2.
Physically, it siphons energy whenever there is a component of the flow normal to
the isopycnals. Note that there are other possible classes of holonomic brakes that
can be applied, e.g. the ones investigated by Vallis et al. (1989). We use this form
since it does not change the nature of the advecting field, and it is thus easier to
implement in an existing numerical model.

The viscosity ν and diffusivity κ are taken equal, and chosen so that the Reynolds
number NH2/ν = 1.5 × 105 is large enough to ensure numerical stability without
significantly affecting the mass distribution function and overall energy of the system
over the time required to bring the system to rest. Since we seek a 2.5-dimensional
ground state, the equations are solved in the (x, z) plane on a uniform grid 512× 64,
starting from a quiescent initial condition with buoyancy distribution given by (4.1).
We keep the solution 2.5-dimensional for two reasons: consistent with the approach
taken so far, we assume that on a given leaf the extremal point is unique and for these
simple systems 2.5-dimensional, although, in principle, the extremal point may be a
saddle, rather than a (local) minimum; also, since the numerical discretization is not
guaranteed to conserve the Lagrangian invariants, we want to minimize the possibility
that instabilities not belonging to the leaf (i.e. with a different mass distribution
function) be introduced by numerical noise. We experimented with different values
for the non-dimensional strength of the holonomic brake α. Ideally, α should be
set to achieve critical damping. Here we show results with α = 16.7, which is still
below the critical value. For more complex situations, a feedback method based on the
optimization of the low pass filter should be implemented to achieve optimal damping
(Åkervik et al. 2006; Cunha, Passaggia & Lazareff 2015), but we leave this to a future
publication. Under the action of the holonomic brake, the system converges in about
4 inertial periods to the ground state (figure 4), which, as expected, is characterized
by a zonal jet in thermal-wind balance with the front (figure 5). The kinetic energy
of the front in the ground state is approximately 37 % of the difference 1PE between
the potential energy associated with the initial profile and the potential energy of the
ground state, the rest being dissipated by the holonomic brake. Thus, in this case, the
available energy of the initial state is 63 % of 1PE, much less than what one would
infer by using as ground state the restratified fluid, (see for instance the example
computed in Simpson & Lynn (1990)). Furthermore, it seems reasonable to assume
that the ground state calculated by evolving the initial condition with the holonomic
brake on does not depend on the meridional (i.e. along the x direction) extent of the
channel, whereas the restratified ground state would. In other words, it is reasonable
to assume that the available energy and the Casimir converge to a finite value as
Lx→∞.

Finally, the actual Casimir (as given by the Bernoulli Head) compares well with the
approximated Casimir derived in the preceding section under geostrophic conditions
(figure 6).

5. Conclusions
In this paper, we have developed a framework to diagnose diabatic effects on flows

that can be described by a non-canonical Hamiltonian formalism in the adiabatic limit.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

91
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.915


Stratified mixing in inertial and non-inertial frames 633

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
tf/2π

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Ek
/N

2 H
2

FIGURE 4. Evolution of the kinetic energy of an initially unbalanced front under the
action of a holonomic brake.
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FIGURE 5. (Colour online) The ground state for an initial out of balance front, calculated
evolving the initial front with a holonomic brake. The curtain plot shows the intensity of
the zonal jet. The solid lines show the position of representative isopycnals of the ground
state, while the dashed lines show the isopycnals of the initial front. Here, L= 30H is the
horizontal scale of the front. The zonal velocity is shown as a local Rossby number.

Margules’ available energy concept in our framework becomes the energy that can
be extracted from the system by any mechanism that does not violate the conservation
of the Lagrangian invariants. It is a property of the system as a whole.

We show that a specific gauge-fixing condition can be imposed to select a specific
Hamiltonian that can be used to define a local diagnostic energy with the following
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FIGURE 6. (Colour online) (a) The Casimir, i.e. the Bernoulli head expressed in
buoyancy–potential vorticity coordinates, associated with the ground state shown in
figure 5. (b) The Casimir of the same ground state approximated using (3.50).

property: the temporal rate of change of the available energy under diabatic conditions
is given by the diabatic evolution of the local diagnostic energy.

When the framework is applied to fluid described by the Boussinesq approximation,
it recovers Winters et al.’s global APE and Holliday & McIntyre’s local APE as
special cases which apply to non-rotating flows, provided the distribution of potential
vorticity in the flow is even around the origin. Most archetypal flows used to study
small-scale mixing start as two-dimensional flows contained in a vertical plane. For
such flows, under the assumption that the diabatic dynamics does not favour negative
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over positive potential vorticity, approaches based on the Holliday & McIntyre APE
definition (e.g. Winters et al. 1995; Scotti & White 2014) remain correct.

Our definition of local diagnostic energy extends naturally to rotating Boussinesq
flows. Under the effect of rotation, the conservation of potential vorticity imposes
a strong constraint, which is not accounted for by approaches based on Holliday
& McIntyre’s APE. In particular, when the flow is obtained from a general-form
perturbation which preserves both the potential vorticity and the buoyancy distribution
of a low Rossby number state in near-geostrophic equilibrium, to lowest order in the
Rossby number, we show that the expression for the local diagnostic energy has a
universal character.

Once the functional form of the local diagnostic energy is known (i.e. when the
right Casimir is found via the gauge-fixing condition), it can be used to study the
effect of diabatic processes. The effect of these processes, which in general break the
conservation of the Lagrangian invariants, on the change of the available energy can
be studied following the evolution of the local diagnostic energy along Lagrangian
trajectories. Such processes can locally increase the available energy. This is not too
surprising, since diabatic processes erode the potential vorticity constraint, which is
what in general keeps energy locked up in the ground state field.

Our framework provides a unified procedure to calculate the available energy for a
given state. Also, we show how for such a defined available energy, it is possible to
introduce a local diagnostic quantity to study how local diabatic effects modify the
available energy. The analysis shows that the evolution of the gauge-fixed Casimir
under non-holonomic forces is essential in describing how the latter modify the
available energy via the erosion of the constraints.

It is also important to emphasize some of the limitations of the current analysis.
The results were derived under the assumption that the ground state is unique. Of
course, we can envision situations where there exists multiple minima of the energy
for a given set of constraints. In this case, it cannot be ruled out that the application
of different holonomic brakes may lead to different ground states, especially if the
system is close to the separatrix between the basins of attraction. On the other hand,
if the system is not too far from a minimum, then it is not unreasonable to assume
that most holonomic brakes will lead to the same extremal point, even though there
may exist other ground states with overall less energy. Related to this issue, we have
considered here only very simple geometries. Since the theory relies on a number
of equalities that contain boundary terms that were neglected, it is possible that
topographic boundaries may introduce an extra level of complexity. As an example,
consider a basin which is divided in two sub-basins by a submerged ridge. Even
restricting ourselves to apedic cases, one can imagine multiple local minima obtained
filling the two sub-basins with a different combinations of less buoyant fluid.

While in simple inertial channels we showed that the global minimum is indeed
2.5-dimensional if the mass distribution function enjoys certain properties, it is
possible that in more general situations the global minimum may be three-dimensional.
Indeed, Renaud et al. (2016) showed in that in the shallow water case bottom
topography modifies the circulation of the ground state and we therefore expect a
similar behaviour in the Boussinesq case. In order to answer these questions, we
need to develop a robust algorithm to calculate extremal points, which is the subject
of ongoing investigation.

In conclusion, the formalism presented in this paper extends Margules’ original idea
to include the role that multiple constraints play in the available energetics framework.
Since the mass distribution function, or, for incompressible flows, the volume
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distribution function plays a central role in defining the gauge-fixing condition,
our approach applies to flows contained on a finite volume. However, the possibility
that other ways to enforce the constraints, not dependent on the system having a finite
volume, exist should not be discarded. Since the applicability of any local diagnostic
tool is constrained by the data available for the analysis, it can rarely be considered
independent from the flow data themselves.
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Appendix A
We provide in the next sections results that were used in the paper. In the first

two sections we use exterior calculus. While these statements can be considered with
standard vector calculus (see, e.g. Holm (2008), for a proof of (6.3)), exterior calculus
provides much shorter and elegant proofs. We hope that the reader may be motivated
to explore further the potential of modern geometric tools, which have recently found
application in fluid mechanics problems (Besse & Frisch 2017; Gilbert & Vanneste
2018). To fix the notation, d denotes the exterior derivative, ∧ the exterior product,
ivα the interior product of the vector field v with the form α and ? the Hodge star (i.e.
the isomorphism between n-forms and (D−n)-forms, where D is the dimension of the
manifold and n= 0, . . . ,D). (We do not intend to provide an exhaustive introduction
to the calculus of exterior differential forms. The reader is referred to the appendix in
Besse & Frisch (2017) and Gilbert & Vanneste (2018, §2) for a more comprehensive
treatment. The topics is also covered in a number of excellent textbooks, such as
Frankel (2011) and Sternberg (2012).) The volume 3-form of the manifold in arbitrary
coordinates (x1, x2, x3) is

V=
√

gdx1
∧ dx2

∧ dx3, (A 1)

where
√

g is the square root of the determinant of the metric tensor. In the following,
the property of the Hodge star that we need is

?V= 1. (A 2)

Since the Hodge star, like any other operator in exterior calculus, is coordinate
independent, equation (A 2) holds in any coordinate system.

A.1. The gauge-fixed Casimir dependence on the Bernoulli head of the ground state
We intend to prove the following: up to an inconsequential constant, the gauge-fixed
Casimir for the ground state of a flow described in the inviscid limit by the
Boussinesq equations (3.1a)–(3.1c) is given by

Ψ∗ = q
∫ q

qmin

B∗(s, b)
s2

ds, (A 3)

where B∗ = Ek∗(q, b)− bZ∗(q, b)+ P∗(q, b) is the Bernoulli head of the ground state
expressed in natural coordinates.
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First of all, it is trivial to see that for a quiescent ground state (A 3) is satisfied.
Thus, we proceed assuming that the ground state is not quiescent, and thus Ψ∗,qq 6= 0.

Assuming that the ground state is not quiescent, we introduce the natural set of
coordinates, which include the buoyancy, the potential vorticity and the time-like
coordinate, in terms of which the volume 3-form is V = Ψ,qqdb ∧ dq ∧ dt (see
§ A.2 below). The total vorticity 2-form Ω = d(v[) + Ξ , where v[ = vidxi is the
1-form associated via the musical isomorphism with the velocity field v = vi∂ i (here
understood as a differential operator) is the sum of the relative vorticity and Ξ , the
frame vorticity. The isomorphism [ is completely defined by its action on the basis
vectors, that is ∂[i = gijdxj. The vorticity in natural coordinates reads

Ω =Ωbdq∧ dt+Ωqdt ∧ db+Ω tdb∧ dq. (A 4)

Since Ω is closed by definition

(Ωb),b + (Ω
q),q + (Ω

t),t = 0. (A 5)

From the definition of potential vorticity,

q= ?(db∧Ω)=Ωb ? (db∧ dq∧ dt)=Ωb(Ψ,qq)
−1. (A 6)

We introduce Ψ ∗ = qΨ∗,q −Ψ∗. Taking the Hodge star of

[−Z + (Ψ∗ − qΨ∗,q),b]V−Ψ∗,qqdq∧Ω = 0, (A 7)

(which is (3.8a) rewritten in exterior calculus), and using (A 2) we get

Ψ ∗,b = −(Z∗ +Ωq), (A 8a)
Ψ ∗,q = Ωb, (A 8b)

where we have used the fact that Ψ ∗,q = qΨ∗,qq and (A 6). These two equations can
be combined into a single equation

d(Ψ ∗ + Z∗b)= bdZ −Ωqdb+Ωbdq= bdZ∗ − iv∗Ω∗. (A 9)

We have derived the above expression in natural coordinates, where v∗ has the simple
expression v∗= ∂/∂t, but (A 9) is coordinate free. Thus, comparing (A 9) with (3.1a),
which in exterior calculus reads

∂v[

∂t
=−ivΩ − d(Ek+ P)+ bdZ, (A 10)

we see immediately that Ψ ∗ is, up to a constant, the Bernoulli head of the ground
state, and thus we have proven the theorem. (For a proof using standard vector
calculus see (Holm 2008).)
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A.2. The volume element in natural coordinates

Consider the three 1-forms φi
=dxi

− vi
∗
dt, i=1, . . . ,3 defined on 4-dimensional space

D×R. The 3-form

O =
√

gφ1
∧ φ2
∧ φ3

=
√

g(dx1
∧ dx2

∧ dx3
− v1

∗
dx2
∧ dx3

∧ dt− v2
∗
dx3
∧ dx1

∧ dt− v3
∗
dx1
∧ dx2

∧ dt)
= V− (iv∗V)dt=V−Φ∗ ∧ dt=V−Ψ∗,qqdb∧ dq∧ dt. (A 11)

Here, Φ∗ is the flux 2-form, which associates with a two-dimensional surface in D
the flux across it, and the last equality follows from (3.8b), which in exterior calculus
reads

Φ∗ =Ψ∗,qqdb∧ dq. (A 12)

Let (b, q, t)
ζ
−→ (x1, x2, x3) the (local) map from natural to geometric coordinates, and

(b, q, t)
ζ̂
−→ (ζ (b, q, t), t) the map that embeds D into D×R. Then, since ζ is the local

solution to the Pfaffian system φi
= 0, i= 1, . . . , 3, under the pullback ζ̂ ∗O= 0, thus

V=Ψ∗,qqdb∧ dq∧ dt, (A 13)
which shows that indeed Ψ∗,qqdb∧ dq∧ dt is the volume form in natural coordinates.
Note that the Pfaffian system is integrable since it satisfies the integrability conditions
(Flanders 1989)

dφi
∧O= 0, i= 1, . . . , 3. (A 14)

A.3. The vorticity of the ground state expressed in terms of the acceleration along
streamlines

From (3.8b) we know that in an inertial system, the vorticity of the ground state

ω∗ = ∇× (Ψ∗,qq∇b×∇q)
= ∇× (gbt∇b+ gqt∇q+ gtt∇t)

= ωt
∇b×∇q+ωq

∇t×∇b+ωb
∇q×∇t, (A 15)

where gXY = xi
,Xxj

,Ygij is the XY component of the metric expressed in natural
coordinates, and here X and Y are placeholders for b, q or t. Hence,

ωt
= gqt,b − gbt,q, (A 16a)

ωq
= gbt,t − gtt,b, (A 16b)

ωb
= gtt,q − gqt,t. (A 16c)

Recalling that we can always write gij,X = gij,kxk
,X , and gijxi

,tx
j
,t = 2Ek∗, we have the

following

gtt,X = 2Ek∗,X, (A 17a)
gXt,t = gij,txi

,Xxj
,t + gijxi

,Xtx
j
,t + gijxi

,Xxj
,tt

=
1
2
(xi
,tx

j
,tgij),q −

1
2

xi
,tx

j
,tgij,X + gij,txi

,Xxj
,t + gijxi

,qxj
,tt

= Ek∗,X + gijxi
,qxj

,tt +
1
2
(gij,kxk

,t + gji,kxk
,t)x

i
,Xxj

,t −
1
2

gij,kxk
,Xxi

,tx
j
,t

= Ek∗,X + xi
,Xgij(xj

,tt + Γ
j

mpxm
,t x

p
,t)= Ek∗,X +

∂

∂X
· ∇v∗v∗. (A 17b)
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Thus

ωq
=

∂

∂b
· ∇v∗v∗ − Ek∗,b, (A 18a)

ωb
= Ek∗,q −

∂

∂q
· ∇v∗v∗. (A 18b)

A.4. The ground state of geostrophic rotating channels: mathematical details

Along a streamline extending from one end of the domain to the other,
∫

dt =
Lx/
√

2Ek. From the definition of mass distribution function

Lx
√

2Ek
Ψ,qq = V,qb, (A 19)

which, combined with (A 8b) gives

fy∗,q =
pV,qb

Lx
. (A 20)

A second equation involving the coordinates is (3.26),∣∣∣∣∂(Z∗, y∗)
∂(b, q)

∣∣∣∣= Z∗,by∗,q − Z∗,qy∗,b =
V,qb

Lx
. (A 21)

In choosing the sign, we assume that f > 0. We seek solutions of (A 20)–(A 21) in
power series of (b− bmin) as follows

Z∗ =
∞∑

n=1

Zn(q)(b− bmin)
n, (A 22a)

y∗ =
∞∑

n=0

yn(q)(b− bmin)
n, (A 22b)

where we assume that the level of zero motion is the flat isopycnal b= bmin. We also
write

V,qb

Lx
=

∞∑
n=0

Fn(q)(b− bmin)
n (A 23)

as a power series. (From a computational point of view, it may be more advantageous
to use orthogonal polynomials. Here, we use a simple power series for convenience.)
Inserting (A 22b) into (A 20) we obtain the coefficients of the power series for y as

yn = f−1
∫ q

qmin

sFn(s)ds, (A 24)

while combining (A 20) and (A 21)

∞∑
l=0

l+1∑
n=1

(nZnyl+1−n,q − (l+ 1− n)Zn,qyl+1−n)(b− bmin)
l
=

∞∑
l=0

Fl(b− bmin)
l, (A 25)
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which yields the following upper triangular set of algebraic equations for the
coefficients Zn of the series for Z

l+1∑
n=1

(nZnyl+1−n,q − (l+ 1− n)Zn,qyl+1−n)= Fl. (A 26)

The equation for the first term

Z1y0,q = F0 (A 27)

can be readily solved using (A 24)

Z1 =
f
q
, (A 28)

while the other terms satisfy the following recurrence relation

Zl+1 = [(l+ 1)y0,q]
−1

[
lZ1,qyl −

l∑
n=2

(nZnyl+1−n,q − (l+ 1− n)Zn,qyl+1−n)

]
, l > 1.

(A 29)
Note how Zl+1 depends on the yn with n > 1.

Having determined the map from natural to physical coordinates, we now calculate
the kinetic energy of the ground state, by solving the thermal wind equation (3.38),
which expressed in (b, q) coordinates reads

(
√

2Ek),qy,b − (
√

2Ek),by,q = f−1Z,q. (A 30)

Once again, we look for a power series solution

√
2Ek=

∞∑
l=0

vl(q)(b− bmin)
l, (A 31)

and, since we have assumed that b=bmin is the level of no motion, v0=0. Substituting
into (A 30) and rearranging we again obtain a triangular algebraic set of equations for
the vl values (no surprise here, as we are dealing with the same nonlinear operator)

v1 = 0, (A 32a)

vl+1 =

−Zl,q + f
l∑

n=1

(nvl+1−n,qyn − (l+ 1− n)vl+1−nyn,q)

f (l+ 1)y0,q
, l > 1. (A 32b)

As before, the vl with l > 3 depend on the yn with n > 1. In particular,

fy0,qv2 =
f

2q2
. (A 33)

A special case is when Fn= 0, n> 0, i.e. the mass distribution function is linear in
the buoyancy. In this case, the solution has the very simple form

y∗ = f−1
∫ q

qmin

sF0(s)ds, Z∗ = f
b− bmin

q
,

√
2Ek∗ =

f (b− bmin)
2

2q2
[qF0(q)]−1.

 (A 34)
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