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Recently, Pellerey, Shaked, and Zinn [6] introduced a discrete-time analogue of the
nonhomogeneous Poisson process. The purpose of this article is to provide some
results for stochastic comparisons of the epoch times and the interepoch times of
those processes. Also, we show the relationships between these processes and dis-
crete record values and we provide several results for discrete weak record values.

1. INTRODUCTION

Recently, Pellerey, Shaked, and Zinn [6] introduced a discrete-time analogue of the
nonhomogeneous Poisson process. They considered a discrete-time process, in which,
at any time i, there is a jump of size one or there is no jump. Also, the probability
of a jump depends only on the calendar time i.
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Formally, let {B;}?2, be a sequence of independent Bernoulli random variables
such that

P(Bizl):ri,

i=12,...,
P(B;=0)=1-r,
and define the counting process Z(j) = X/_, B;,j =1,2,....
Let

S, =min{j:Z(j) = n}, n=12,... 1)

(8o =0); that is, S, is the discrete-time of the nth jump.

This model corresponds to the following situation. Consider a device that
executes sequentially a list of tasks, numbered 1,2, . ... Associated with any task j,
there is a probability, r;, of failure of the device during the execution of the task.
The tasks are executed sequentially until the failure at, say, task i; of the device.
Upon failure, the device is replaced by a similar life device, which then proceeds to
execute task i; + 1 until the next failure at task i,. Again, the device is replaced by
a similar life device, which then proceeds to execute task i, + 1 and the following
tasks, and so forth. Then, the sequence S; = i;,j = 1,2,..., corresponds to the one
defined in Eq. (1). The nonhomogenous Poisson process (NHPP) is well known in
reliability because the epoch times correspond to the times of repair of a unit, which
is being repaired under a minimal repair policy, that is, when the unit fails, it is
restored to a working condition just prior to the failure (see Ascher and Feingold
[1]). By this reason, the previously discussed discrete process is also known as the
discrete-time minimal repair process.

For the discrete-time analogue of the NHPP, Pellerey et al. [6] found condi-
tions under which the epoch times and the interepoch intervals of these discrete-
time processes have logconcave discrete probability mass functions.

The purpose of this article is to consider two of these processes and to find
conditions under which the epoch times and the interepoch intervals can be sto-
chastically compared in several senses. It is also important to notice, as we will see
in Section 2, that the epoch times of a discrete-time minimal repair process corre-
spond to the record values associated with a proper discrete distribution, and the
results can be applied in this context too. We will show that similar results can be
stated for “weak” record values in the discrete case. The organization of the article
is as follows. In Section 2 we consider several distributional properties of the discrete-
time minimal repair process, which will be used throughout the article, and the
relationship with discrete record values. We will recall the definition of discrete
“weak” record values. In Sections 3 and 4 we find conditions to compare the epoch
times and the interepoch intervals of those processes. Similar results will be given
for “weak” record values.

Throughout the article, for any discrete random variable X, we will assume that
P(X <n) < forall n € Z,. Also, we will denote equality in law by “=.”
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2. PRELIMINARIES ON DISCRETE-TIME MINIMAL REPAIR MODELS

In this section we recall and derive some properties of the discrete-time minimal
repair process that will be used throughout. First, we recall the distribution of the
discrete epoch time S,. We will assume that [I72,(1 — r;) = 0,i=1,2,...; this
ensures (see Pellerey et al. [6]) that the probability mass function of S| is given by

pIEP(Slzl):rl’
i—1
piEP(Slzi):riH(l_rj)’ i=2,3,....
=1

We will denote the distribution function by P and the corresponding probabil-
ity mass function by {p,};=,. This distribution function will be called the underly-
ing distribution of the discrete-time minimal repair process.

The relationship between the p;’s and the r;’s is the following:

r=——,  i=12,...;

1 OO ’
> pj
j=i

therefore, the values r;’s can be interpreted as the hazard rate (in discrete time) of S,
(see Salvia and Bollinger [7] and Shaked, Shanthikumar, and Valdez-Torres [9—-11]).
Finally, if we denote by

li = b ) 1= 1,2, 5
2 V4
j=i+1
L,(i)= L, i=1
j=1
and, by induction,
0 ifi<n
L(i)=19Z n=2,

D LL,(j-1) ifi=n,
j=1

then the probability mass function of S, for all n = 2 is given by
pui)=p, L, (i—1), i=nn=2.

Next, we derive a property that will be used throughout.
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LeEmMA 2.1: For a discrete-time minimal repair process with underlying distribu-
tion P and with epoch times S;, i = 1,

{8181 =xp,.. .Sy = x 1} = AXIX > x4}, =2, (2)
where X is a random variable with distribution function P.
Proor: First, we observe the following chain of equalities:

{X|X>x} :sl{S1|Sl > x}

min{h:Z(h) =1|Z(x) = 0}

min{h: é Bk=1}.

k=x+1
Also, we have

S8, =x, .., S = x4}

min{h:Z(h) =i|Z(x,_,) =i—1}

k=x;_;+1

From the two previous equalities we get the result. u

Now from Eq. (2), we get the joint probability mass function of the random
vector (S;,...,S,) as

J

P(S;=x,i=1,...,n)=P(S;=x) [ P(S;=x;1S,=x,....8_1=x,_))
j=2

n Py
=Dy H PR A

[ee]

j=2
2 pxk-f—]

k=j—1
n—1
=[14,p,, forallx,<...<x,€Z,. 3)
J=1

In a similar way, the joint probability mass function of the random vector of
interepoch intervals times (U,,...,U,), where U; =8, — S;_, for i = 1,2...,n and
So =0, is given by

n—1

PU =x;,i=1,...,n)= Hléxkpixk forallx, EZ,,i=1,...,n.

j=1 &=1 k

On the other hand, Eq. (3) also indicates the relationship between the epoch
times of a discrete-time minimal repair process and the record values associated
with a discrete distribution.
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Formally, let X, X,, ... be a sequence of independent and identically distrib-
uted (i.i.d.) random variables, having the same distribution as the random variable
X. We denote by

L(1) =1,
L(n+1) =min{j > L(n):X; > X, }
the record times, and the record values are defined as

{RL(n)}n 1

If we suppose that X is a discrete random variable taking only nonnegative
integer values, such that P(X < n) < 1, and denoting it by X(n) = Ry ,), then the
joint distribution of the first n record values is given as follows (see Nevzorov [4]
and Nevzorov and Balakrishnan [35, p. 528]):

1 p(X =],
P(X(1)=j,...,X(n) =j,) = P(X = J”)Hf>((x—>j;

forallj, < -.- <j,€Z,.

Therefore, they are more equally distributed than the first n epoch times of a
discrete-time minimal repair process, where r; = P(X = j)/P(X = j).

In the context of record values, a repetition of a record value can be considered
a new record, and this makes sense when the underlying distributions are discon-
tinuous. This leads to the notion of weak records (see Vervaat [14] and Stepanov
[12,13]).

Formally, let X, X,,... be a sequence of i.i.d. random variables, having the
same distribution as the random variable X. We denote by

L,()=1
L,(n+1)=min{j > L, (n):X; = max{X,,X,,....,X;_, }}
the weak record times, and the weak record values are defined as

{RLw(n)}ZOZI

For weak record values and denoting it by X,,(n) = R, _(,), then the joint dis-
tribution of weak record values is given as follows (see Nevzorov and Balakrishnan
[5, p. 529]):

n— lP X .
P(XW(I) :j]"..’Xw(n) :-]Vl) P(X .]n) H P((X >j ;’

0=ji= =j,€{0}UZ,.
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The discrete weak record values also satisfy the Markovian property (see
Nevzorov and Balakrishnan [5, p. 529] and Vervaat [14]); that is,

) . P(X=))
P(X,(n+1)=j|X (n)=1i)= PX=i)

3. STOCHASTIC COMPARISONS OF EPOCH TIMES
AND RECORD VALUES

In this section we study conditions under which epoch times of two discrete-time
minimal repair processes are ordered, in the sense of the hazard rate order and the
likelihood ratio order. Similar results will be given for weak record values.

3.1. Epoch Times of Discrete-Time Minimal Repair Processes

Let us consider two discrete-time minimal repair processes with underlying distri-
butions P and Q, and we denote by (S,...,S,) and (T},...,T,) the random vector
of the first n discrete epoch times. The purpose is to obtain conditions under which
it is possible to compare (Si,...,S,) and (T},...,T,), as well as the marginal
distributions.

We begin by considering the usual multivariate stochastic order. Given two
random vectors X and Y, we say that X is less than Y in the multivariate stochastic
order (denoted by X =, Y) if E[p(X)] = E[¢(Y)] for all increasing functions ¢,
for which the previous expectations exist. In the univariate case, let two random
variables X and Y with distribution functions F and G be given. Then X = Y if
F(x) = G(x) for all x € R, and it can be denoted by F = G.

It is possible to prove, by construction on the same probability space, that
(Si,...,S,) =« (T1,...,T,), under the assumption that P and Q are ordered in the
hazard rate order. However, under this assumption, it is possible to prove a stronger
result for the multivariate hazard rate order. First, we recall the definition of the
(univariate and multivariate) hazard rate order in the discrete case.

In order to define the multivariate hazard rate order, we need to introduce the
concept of history of a random vector. Let us consider a random vector X of dimen-
sion n that takes values on Z’;.. Given t € Z ., let h, be the event

h, =X, =x,,X; = 1te},

where X; denotes the list of components of X with index in /, for some
1C{1,2,...,n} and x; < re, where e is a vector of 1’s and the dimension is deter-
mined from the context in which it appears. If the components of X denote the
discrete times in which the events A;,A,,...,A, occur and given that the set of
indexes of events A; that have occurred at time ¢ is I, then &, denotes the list of
times, X;, in which the events with index in I occur, whether for the remaining
components X; = te. The event h, usually is called a history at time t of X.
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Given a history h,, we can define the discrete multivariate conditional hazard
rate at time ¢ for a component with index in [ as (see Shaked et al. [9-11])

/\i\l(t‘tl) =P(X;=t|h,).

Also, given a discrete random variable X, the previous concept corresponds to the
discrete hazard rate at time t defined by (see Salvia and Bollinger [7])

B P(X=1)
" px=1)

Now we define the discrete multivariate hazard rate order. We will see later a
result for the multivariate hazard rate order of (S,,...,S,) and (T},...,T,); in this
case, the components are strictly ordered in increasing order. If, for two random
vectors X = (X, X,,...,X,) and Y = (V},Y,,...,Y,), there cannot be ties for the
components of X and for the components of Y, then the definition of the multivar-
iate hazard rate order reduces to the following (see Shaked et al. [10]).

DEeFINITION 3.1: Let X and Y be two discrete random vectors of dimension n tak-
ing values on Z";. Let A |.(-|-) and .,.(-|-) be the multivariate conditional hazard
rates of X and Y, respectively. We say that X is less than Y in the multivariate
hazard rate order (denoted by X =, Y) if

Aijos (t1X0,) = 0y, (tly)),
where x; =y, <te,x;, <te,INJ=0,andi €U J.

In the univariate case, given two discrete random variables X and Y taking val-
ues on Z, with discrete hazard rates r and s, then the multivariate hazard rate order
reduces to

r,=s, foralli€zZ™

In the univariate case, the previous condition is equivalent to the monotonicity
of the ratio of the survival functions; that is, X =, Y if and only if

P(X=1i)

—— — is decreasingini E Z, .
P(Y=1i) g N

Again, if X and Y have distribution functions F and G, respectively, then the
hazard rate order will be denoted by F' =, G. It is well known that the hazard rate
order is stronger than the stochastic order; that is, =, = =,.

THEOREM 3.2: For two discrete-time minimal repair processes, as above, with under-
lying distributions P and Q, then P =, Q if and only if

s,...,S8,) =, (T,,...,T,) foralln=1. (€))]
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ProoF: First we prove that P <, Q is a sufficient condition for Eq. (4). Given that

T, < --- <T,, as., then, for a history at time [ of (T},...,T,), the set of indexes I
of the epoch times that have occurred until the time point / must be of the form / =
{1,2,...,m}, for some m = 1, or I = 0.

If we denote by 1.|.(/|-) the multivariate conditional hazard rate of (T3, ...,T,)
at time [ with 7 ={1,2,...,m} and by s the discrete hazard rate for the distribution
function Q, then

P(T =T, =y, T;= le)
n,(lly,) = =P(T,=UT,=y,,T;=1)=s ifi=m+1.
0 ifi>m+1,

where the value for i = m + 1 follows from Lemma 2.1 and for i > m + 1 given that
T<-..-<T,as.
In a similar way, if we denote by A.|.(/|-) the multivariate conditional hazard

rate of (S,...,S,) at time [ for a history in the set of components I U J =
{1,2,...,m,m+1,...,k} and by r the discrete hazard rate for the distribution func-
tion P, then

P(S;, =1|S,=x,,S07 = le)
A(x,0,) = =P(S,=1|S,=x,8,=1)=r, ifi=k+1
0 ifi>k+1.
Giveni € 1 U J (i.e., i > k) if m < k, then
NUxp0,) =r=0=x(ly,) ifi=k+1,
A (Ux,0,) =0=mn(y,) ifi>k+1.
If m = k, since F =, G, then
N x,0) =r=s,=n,y,) ifi=m+1,
A (x,0,) =0=mn(y,) ifi>m+1.

So, Eq. (4) holds.
On the other hand, P =, Q is a necessary condition taking n = 1 in Eq. (4).
|

Given that the hazard rate order is stronger than the stochastic order and from
the fact that the stochastic order is preserved under marginalization (see Shaked
and Shanthikumar [8]), we have the following corollary.

COROLLARY 3.3: For two discrete-time minimal repair processes, as above, with
underlying distributions P and Q, if P =y, O, then

Sy =uT,

n

foralln = 1.
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In particular, we can get bounds for the distribution function of the epoch time
of a discrete-time minimal repair process.

Next we get a stronger result related to the multivariate likelihood ratio order
of two discrete-time minimal repair processes. In particular, we get the multivariate
likelihood rate order between (S, ...,S,) and (Ty,...,T,) with stronger conditions
on the underlying distributions P and Q.

First, we recall the definition of the multivariate likelihood rate order in the
discrete case.

DEFINITION 3.4: Let X and Y be two discrete random vectors of dimension n tak-
ing values on 7';.. Let f and g be the joint probability density function of X and Y,
respectively. We say that X is less than Y in the multivariate likelihood rate order
(denoted by X =, Y) if

f(xl Ay17x2Ay27---’xn/\yn)g(xl vyl7x2vy27---’xnvyn)
Zf(xl’XZ’"'7xn)g(yl’y2""7yn)

for all (xy,x5,...,x,) and (y{,Y2,...,y,) on Z'., where A and v denote the mini-
mum and the maximum, respectively.

If X and Y are discrete random variables with distribution functions F and G
and probability mass functions f and g, respectively, then X =, Y if and only if g/f
is increasing, and in this case, it will be denoted by F =, G.

Finally, we observe that the likelihood rate order and the stochastic order are
preserved under marginalization, but for the hazard rate order, this property does
not hold.

Next we fix the following notation. Given two distribution functions P and Q,
with probability mass functions p and ¢, respectively, we will denote

L= iy 5)

ij

j=i+1

and

m, = i=12,.... (6)

2%‘

j=it1

Also, we will consider the values
0 ifi<n
L,(i)= i n=2
D LL, (j—1) ifi=n

Jj=1
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and
0 ifi<n
M, (i)=19 n=2.
>mM, (j—1) ifi=n

Jj=1

The following lemma will be used to provide some sufficient conditions for the
likelihood rate order of the underlying distributions of two discrete-time minimal
repair processes. Its proof is immediate from Egs. (5) and (6).

LEMMA 3.5: For two discrete distribution functions P and Q, if P =<y, Q and m;/I;
is increasing in i = 1, then P =, Q.

THEOREM 3.6: For two discrete-time minimal repair processes, as above, with under-
lying distributions P and Q, if P =y, Q and m;/l; is increasing in i = 1, then

(Sl""9Sn) Slr(’rl""yrrn) forallnzl'

Proor: For n = 1, the result is trivial from Lemma 3.5 and by the fact that P and Q
have the same distribution as S; and T}, respectively.
Let us assume that n = 2. From the definition of the multivariate likelihood
rate order and Eq. (3) we have to prove that
n—1 n—1 n—1 n—1
1—-[1 ZX_,-Ay,-panyn 1_[1 My, Dx, vy, = 1—-[1 lepxn 1_[1 my.dy,,
J= J=

Jj= j=

forallx; < .- <x,andy; < .-+ <y,.
If we denote E = {i = n — 1:x; = y;}, then the last inequality becomes

H l}jpxn/\"n H mxj qxn\/yn = H lepxn H myz' q)’n' (7)
JEE JEE JEE JEE
From Lemma 3.5, we have that P =, Q and, therefore,

Dayny, ey, = P, 9y, ¥

On the other hand, from the condition that m;//; is increasing in i = 1, for all
j € E we have that

=1, my. 9
Now, from Egs. (8) and (9), Eq. (7) holds. u

A consequence of the preservation property under marginalization of the like-
lihood rate order (see Shaked and Shanthikumar [8, Thm. 4.E.3(b)]) and the last
theorem is the following corollary in the univariate case.
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COROLLARY 3.7: For two discrete-time minimal repair processes, as above, with
underlying distributions P and Q, if P =<y, Q and m;/l; is increasing in i = 1, then
S, =, T, foralln=1.

However, it is possible to give a stronger result with an independent proof.

THEOREM 3.8: For two discrete-time minimal repair processes, as above, with under-
lying distributions P and Q, if P <. Q and M,,(i)/L,(i) is increasing in i = n, then
S, =T, foralln=1.

Proor: Forn =1, the result is trivial. Let us assume that n = 2 and let us denote by
p, and g, the probability function of S, and 7,,, respectively. In order to prove that
q,(i)/p,(i) is increasing in i = n, we observe that

a,(0) _ g M, (i = 1)
pa(i) pi L,o(i—1) ’

where ¢; /p; is increasing by the hypothesis P <, Q and M,,_ (i — 1)/L,,_,(i — 1) is
increasing in i = n by hypothesis. So, the result holds. u

At this point, the next step is to find out if the conditions of Theorem 3.8 are
weaker than those of Theorem 3.6. In order to see this and from Lemma 3.5, it
would be sufficient to prove that the condition m;/I; is increasing in i = 1 implies
that M,,(i)/L,(i) is increasing in i = n. The next lemma states this conclusion.

LeEmMA 3.9: For two discrete-time minimal repair processes with underlying dis-
tributions P and Q, if m; /1, is increasing in i = 1, then M,,(i)/L,(i) is increasing in

i=n.
ProoF: We proceed by induction in n. For n = 1, we have to prove that

MG+ M) _
LG+1)  LG)

(10)

From the definitions of M, and L, we have that

i+1

i
> m; > m;
j=1

R R O N=
LG+1) L) i+ i

2L 2

L
=1 =1

i i i i
:sgnzlj mj<mi+lzlj_li+12mj>’
Jj=1 Jj=1

Jj=1 Jj=1

where =, denotes the equality in sign.
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Therefore, Eq. (10) is equivalent to the condition

m; liv _
E m; E l/
j=1 j=1
that is,
i liy L m; m;_, my
— t— e — = + + o+ am
i1 L livy My My m;iy
Now from the hypothesis we have that
l; m;
— = foralll=j=i+1, 12)

liy My

and then Eq. (11) holds.
Next, let us assume that the result holds for n and we will prove it for n + 1. We
have to prove that
Mo +1) M, (i)
Ln+](i+ 1) Ln+](i)

=0 fori=n+l. 13)

From the definitions of M, and L, we have that

M, ,G+1) M, i) i
- =en M1 M, (i LL,(j—1)—1,.,L,(i
Ln+1(i + 1) Ln+1(i) sgn Mi+ n(l)jgl i n(.] ) i+1 n(l)

X > m;M,(j—1).
Jj=1
Therefore, Eq. (13) is equivalent to the condition
LL,(i—=1) i L,(i—2) L L,(0)
—+ e
Livi L, (i) lizi L, (i) Livi L, (i)
mM,(i—1) m,_ M,(i—2) m, M, (0)
> e —
m; M, (i) m; M, (i) m; M, (i)

(14)

Now from the induction hypothesis we have that

L,(Jj) _ M,(j)
L,Gi)  M,(i)

forn=j=i. (15)

Therefore, from Egs. (12) and (15), Eq. (14) holds. u
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As we have observed in Section 2, these results provide stochastic compari-
sons for discrete record values; next we will provide results for discrete “weak”
record values.

3.2. Discrete Weak Record Values

In this subsection we consider two sequences of discrete weak record values and
provide conditions under which the first n weak record values of the two sequences
can be ordered in the stochastic and likelihood ratio orders.

Let {X,}:2, and {Y,}72, be two sequences of i.i.d. random variables taking on

values 1,2, ..., with distribution functions P and Q, respectively, and let us denote
by {X,, (i)}, and {Y,, (i)}, the corresponding sequences of discrete weak record
values.

First, we observe that we have not been able to provide a result for the hazard
rate as in Theorem 3.2. However, it is possible to provide the following result for
the stochastic order.

Now we recall the CIS notion, which will be used in the next theorem. Given
a random vector X = (X,,...,X,), X is said to be conditionally increasing in
sequence (CIS) (see Lehman [3]) if, fori = 2,3,...,n,

(XX =xp, 0 X =2 ) = (X[ X =x],.., X =x/))

whenever x; = x/, j = 1,2,...,i — 1.

THEOREM 3.10: For two sequences {X,,(i)}i=, and {Y,,(i)}72, of discrete weak
record values, as above, from distribution functions P and Q, if P =, Q, then

(X, (1),....,X,(n) =, (Y, (1),...,Y,(n) foralln=1.

ProOF: The proof follows from Theorem 4.B.4 in Shaked and Shanthikumar [8].
Provided that (X,,(1),...,X,,(n)) and (Y,,(1),...,Y,(n)) are CIS, we just need to
prove that

X, (1) =, ¥, (1), (16)
and fori =2,3,...,n,
X, HX,1) =x,.... X, (i —1)=x,_,}
=AY, O|r, (1) =x,,....Y, (- 1) =x,_,} forallx,j=12,...,i—1.
a7)

The CIS property of (X,,(1),...,X,(n)) and (¥,,(1),...,Y,,(n)) follows from
the Markovian property of the sequence of weak record values (see Section 2),
where the transition probabilities P(X,,(n + 1) = j|X,,(n) = i) are clearly increas-
ing in i.
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Equation (16) follows from the fact that X,,(1) and Y,,(1) have distribution func-
tions P and Q, respectively, and the fact that the hazard rate order is stronger than
the stochastic order.

Finally, Eq. (17) follows from the previously mentioned Markovian prop-
erty and, again, the fact that the hazard rate order is stronger than the stochastic
order. [ ]

Next we consider the likelihood hazard rate order. Under arguments similar to
those in Lemma 3.5 and Theorem 3.6, we can prove the following results.

LeEmMMA 3.11: For two discrete distribution functions P and Q, with hazard rates r
and s, respectively, if P =<y, Q and s;/r; is increasing in i = 1, then P =, Q.

THEOREM 3.12: For two sequences of discrete weak record values, as above, from
distribution functions P and Q, if P =y, Q and s;/r; is increasing in i = 1, then

(X,,(1),...,X,,(n) =, (Y, (1),....,Y,(n) foralln=1.

4. STOCHASTIC COMPARISONS OF INTEREPOCH TIMES
AND INTERRECORD VALUES

In this section we consider conditions under which we can give stochastic compar-
isons of interepoch times of two discrete-time minimal repair processes and inter-
record values. First, we derive results for two discrete-time minimal repair processes
and then we will give similar results (without proofs) for weak record values.

4.1. Interepoch Times of Discrete-Time Minimal Repair Processes

Again consider two discrete-time minimal repair processes with underlying distri-
butions P and Q and denote by (S,...,S,) and (T},...,T,) the random vector of
the first n discrete epoch times. Let (U, ...,U,) and (V,,...,V,) be the correspond-
ing random vectors of interepoch times; thatis, U; =S, — S;_yand V; =T, — T;_,,
for i = 1,2,...,n, where Uy = V,, = 0. The purpose is to study whether we can
compare in the stochastic and likelihood ratio orders the random vectors (U, ...,U,)
and (V,,...,V,).

Next we give conditions under which (U, ...,U,) and (V,,...,V,) are ordered
in the stochastic order. In order to give the result first, we need to give the decreas-
ing failure rate (DFR) notion.

Let X be a discrete random variable taking values in {0} U Z ., with distribu-
tion function P and hazard rate r; we say that X is DFR if r is decreasing. It is well
known that X is DFR if and only if P(X > ¢ + x|X > x) is increasing in x € {0} U
Z, forallt €{0}UZ,.

THEOREM 4.1: For two discrete-time minimal repair processes, as above, with under-
lying distributions P and Q, if P =<y, Q and either P or Q are DFR, then

u,...,U0)=,(vV,,...,V,) foralln=1.
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ProOF: From Theorem 4.B.4 in Shaked and Shanthikumar [8], the proof follows if
u,,...,U,) or (V,...,V,) are CIS, and

U, =8 =.Vi=T, (18)
and fori =2,3,...,n,
{Ui|U1 =Xp,ee Uiy :xi—l}

= VIV =x,..., Vi =x_,} forallx,j=12,....i—1.  (19)

1

We observe that, fori = 2,...,n,

J=1 J

i—1 i—1
{[]i|Ul:xl""’Ui—l:xi—l} st {Sl—EleSl> ‘xj}
=1
and, similarly,

i1 i1
WilVi=x,.0 Vi =x, =4 {Tl_zxj|T1> xj}-
j=1

Jj=1

Then, from previous equalities, the CIS property of (U, ...,U,) (or (V,,...,V,))
follows from the DFR property of P (or Q) and Egs. (18) and (19) follows from the
hypothesis P =, Q. [ |

Again, given that the stochastic order is preserved under marginalization, we
can get the comparison in the stochastic order of U, and V,,.

COROLLARY 4.2: For two discrete-time minimal repair processes as above, with
underlying distributions P and Q, if P =<, Q and P or Q or both are DFR, then

U,=,V, foralln=1. 20)

n

Next we consider the likelihood rate order between (Uy, ...,U,) and (V4,...,V,).
THEOREM 4.3: For two discrete-time minimal repair processes with underlying dis-

tributions P and Q, if P <y, Q and m;/l; is increasing in i =1, P or Q have log-
convex probability mass functions, and l; or m; is logconvex in i, then

(U,...,U0,) = (Vy,...,V,) foralln=1.

Proor: Let us assume that the probability mass function p of P and [ are logconvex
functions. The proof in other cases is similar.
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Let us consider u, vy > 0, k = 1,...,n, and fix the following notation for

j=1...,n
J J
a;:E”k’ b_/'ZEMA/\Uk’
k=1 k=1
J J
A ’
a_Evk’ bj_Zukvuk’
k=1 k=1
and

G

r__ — b — 4.
aj—b;=b;—a,

where the last equality is easy to prove and also a; = b;, b} = a;}, and ¢; = 0.
The logconvex property of / implies forj=1,...,n — 1 that

laj+cj lbi = laj lbj+cj (21)
and the logconvex property of p implies
pa,,+c,,pb,, = pa”pb,,Jrc,,' (22)

So, we have to prove that

n—1 n—1

H lh Pb, H mpy; qp, = H lu Pa,, H My qa), (23)

where g is the probability function of Q. From Egs. (21) and (22), we have that

n_l n-l — a] b +cj pa,,pb,l-%-c,l
I1 Ly, ps, I1 My qp;, = H I my, qp),- (24)
Jj=1 Jj=1 Jj= aj+c; Pa,+c,

On the other hand, from the hypothesis and Lemma 3.5,

nol luj lbj+cj pu,,plz,,Jrc,l n-l mb Qb,/,
l mpy qh,’, - H i laj la,’ pa,,pa;,
j=1 aj+c; pu,,+c,, Jj=1 b; .
n—1m q. n—1
a; a, .
= I laj la/'» pa,,pa,', - H maj{ la_/ qa,’,pan'
j=1 ta; Pa! Jj=1

n

Therefore, from Eq. (24) and the last inequality, Eq. (23) is true and the result
holds. |

4.2. Weak Interrecord Values

By following the same notation as in Section 3.2, we consider the random vectors
(u,),...,U,(n)) and (V,,(1),...,V,(n)) of interrecord values for discrete weak
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record values, where U, (i) =X, (i) — X,,(i — 1) and V,,(i) = Y,,(i) — ¥,,(i — 1), for
i=1,2,...,n, where U,(0) = V,,(0) = 0. In this subsection we get similar results to
those of Section 4.1; the proofs are similar and are therefore omitted.

THEOREM 4.4: For two sequences of discrete weak record values, as above, with
underlying distributions P and Q, if P =, Q and P or Q is DFR, then

(U, (1),...,U0,(n) =, (V,,(1),...,V,,(n))  foralln=1.

THEOREM 4.5: For two sequences of discrete weak record values, as above, with
underlying distributions P and Q and failure rates r and s, respectively, if P =<, Q
and s; [r; is increasing in i = 1, F or G have logconvex probability mass functions,
and r; or s; is logconvex in i, then

(U, (1),...,U0,n) =, (V,,(1),...,V,(n)) foralln=1.

Remark 4.6: Some of the results stated in this article can be used to also provide
results of positive association for random vectors of record values or interrecord
values. For example, it is well known that given a random vector X, X is said to be
MTP2 (multivariate totally positive of order 2; see Karlin and Rinot [2]) if and only
if X =, X. Now, from Theorem 4.3, given a random vector of interepoch times
(U, ...,U,) from a discrete-time minimal repair process with underlying distribu-
tion P and values {/;}?2,, defined as in Section 2, if P has a logconvex density
function and /; is logconvex, then (Uj,...,U,) is MTP2. A similar result can be
obtained from Theorem 4.5. By the same arguments and from Theorems 3.6 and
3.12, arandom vector of epoch times of a discrete-time minimal repair process and
a random vector of discrete weak record values, respectively, is always MTP2.
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