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This paper surveys research on mathematical models that predict the performance of dig-
ital devices that operate with intermittent energy sources. The approach taken in this
work is based on the “Energy Packet Network” paradigm where the arrival of data to
be processed or transmitted, and the energy to operate the system, are modeled as dis-
crete random processes. Our assumption is that these devices will capture energy from
intermittent ambient sources such as vibrations, heat or light, and capture it onto electri-
cal energy that may be stored in batteries or capacitors. The devices consume this energy
intermittently for processing and for wired or wireless transmission. Thus, both the arrival
of energy to the device, and the devices workload, are modeled as random processes. Based
on these assumptions, we discuss probability models based on Markov chains that can be
used to predict the effective rates at which such devices operate. We also survey related
work that models networks of such systems.
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1. INTRODUCTION

Energy is a primary driver for the manufacturing and operation of information processing
and transmission devices such as computers, network nodes, wireless receivers and trans-
mitters, and so on. Thus, there has been increasing concern about the massive amount of
electrical energy that is being used in this context (see, e.g., Gelenbe and Caseau [17]),
which is approaching 10% of the total amount of electricity consumed worldwide.

In addition, there has been much work done on the design of systems that can exploit
“free” energy captured from the ambient environment via energy harvesting (EH) (see, e.g.,
Rodopln and Meng [35], Meshkati et al. [33], Alippi and Galperti [2], Seah, Eu, and Tan
[36]) from thermal, light, chemical, vibrational, or electromagnetic sources and converted
into electrical energy. Of course, when both the workload in a computer system and the net-
work are intermittent, and the process of acquiring energy to operate them and service the
workload is intermittent, it is important to investigate such systems in terms of stochastic
processes.

Significant work by Berl et al. [3] has addressed techniques to reduce or optimize the
energy consumption of Cloud servers, which are major consumers of electricity, and energy

c© Cambridge University Press 2017 0269-9648/17 $25.00 477

https://doi.org/10.1017/S0269964817000080 Published online by Cambridge University Press

file:y.kadioglu14@imperial.ac.uk
https://doi.org/10.1017/S0269964817000080


478 Y.M. Kadioglu

consumption in Data Centers was investigated by Newcombe [34]. Recent work that uses
queueing theory and experimentation has considered the option of an optimum workload
that will result in a compromise between the cost of energy consumption and the quality
of service of a Cloud server (see, e.g., Gelenbe, Lent, and Douratsos [26], Gelenbe and
Lent [24], and Gelenbe and Lent [25]) have discussed further how tasks can be dispatched
among several Cloud servers so as optimize energy-aware cost functions. In other work, the
optimum routing of data packets (DPs) in a packet network has been considered from a
theoretical perspective by Gelenbe and Morfopoulou [29], while Gelenbe and Mahmoodi [27]
have conducted experiments on a network test-bed so as to minimize the average energy that
is consumed per packet that is forwarded. Francois, Abdelrahman, and Gelenbe [5,6] have
shown that attacks on networks can also significantly increase their energy consumption. In
order to reduce by orders of magnitude the amount of energy that is consumed by computing
and communications, systems as in Gelenbe [12,14,16], where he energy and data are carried
by the same “packet”, that is, the spin of particles represents the data, while the charge of
the particles carries the energy.

1.1. The Energy Packet Network Paradigm

The energy packet paradigm (EPN) developed by Gelenbe [9,10] is a queueing network
approach based on G-networks theory (see, e.g., Gelenbe [7,8]), which has been used to
model a data processing or transmission network that can store and consume harvested
energy as discrete units. The analogy that drives this approach is based on the fact that
computer jobs and DPs are discrete entities that are queued and then processed in the
system. However, Gelenbe proposed [11] that it is also possible to discretize the amount
of energy being used, and electrical batteries or capacitors can also be viewed as storing
discrete units of energy. Recent work on EPNs has considered the design of optimal energy
distribution architectures (see, e.g., Ceran and Gelenbe [4]) and of optimal flows that max-
imize certain utility functions (see, e.g., Gelenbe and Ceran [18,19]). However, in this paper
we principally review work regarding a somewhat simpler paradigm.

1.2. E-Networks

While EPNs consider task service times, so that both the consumption of energy and the
processing or transmission of jobs or packets happens over some continuous time, in this
paper we will consider another paradigm, which was also introduced by Gelenbe [13,15],
motivated by energy harvesting (ES) wireless devices (see, e.g., Gelenbe et al. [20], Gelenbe
and Gunduz [21]) where processing or transmission times are very fast (and hence negligi-
ble), in comparison to the time it takes to acquire data (as in a sensor) and to acquire energy
(as through harvesting). For convenience, we will call this type of model the “E-Network”.

Just as in the EPN model, in E-Networks energy packets (EPs) are stored in a battery
or a capacitor, and are consumed both for the node’s electronics (packet sensing-storing-
processing) and for DP transmission. DPs are stored in a data buffer until they are
transmitted. While a “perfect” transmitter is assumed for some models where there is no
energy waste for node electronics, more practical models are studied by including energy
consumption for node electronics, and different transmission power levels can also be con-
sidered. Thus, in general we may consider that a finite number of DPs will be transmitted
with some (possibly other) finite number of EPs.

While in this paper we consider single hop nodes, in other work two-hop nodes have
been analyzed by Gelenbe and Marin [28]. Mixed discrete continuous models for similar
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problems can be found in Abdelrahman and Gelenbe [1], and very low-power models where
single particles are used for carrying each bit are discussed in Gelenbe [14].

2. MATHEMATICAL MODEL

We consider a system that can store DPs in a buffer whose maximum capacity is D, and
which stores EPs in an energy buffer (battery or capacitor) whose maximum capacity is E.
At any given time t ≥ 0, the number of DPs waiting for the transmission and EPs waiting in
the storage are D(t) and E(t), respectively. Thus, the state of the system at any given time
t is expressed by the pair (D(t), E(t)) so that we will be interested in p(d, e, t) = Pr[D(t) =
d,E(t) = e]. While the data sensing and formation in the data buffer is assumed to be a
Poisson process of rate λ, the ES and placement in the energy buffer is also assumed to be
a Poisson process of rate Λ.

In such nodes, the process of harvesting energy from the environment and its conversion
to electrical energy may take many milliseconds, while the packet transmission may take
shorter time period, such as microseconds, or more likely nanoseconds. Since, the data
formation and replacement in the buffer also may take a certain time period in milliseconds,
the time needed for packet transmission compared with the time needed for DP and EP
arrivals into the sensor node is very small, or negligible. Thus, we assume that the packet
transmission is instantaneous, that is, we assume an E-Network model.

Also, we assume that total K EPs are needed to sense, process, store, and transmit one
DP in a sensor node where K = Ke + Kt, Ke is the number of EPs consuming for sensor
node electronics (sensing–processing–storing), and Kt is the number of EPs consuming
for packet transmission. In the rest of the paper, we will analyze different system models
according to different Ke and Kt values.

3. PACKET TRANSMISSION BY SINGLE EP VIA PERFECT TRANSMITTER

Such systems where one DP can be transmitted by a single EP (Kt = 1) with a perfect
transmitter (Ke = 0) has been studied by Gelenbe [13,15]. To prevent interruption of DP
transmission in such sensor nodes, the energy flow into the system should somehow balance
the flow of DPs. However, Gelenbe [15] showed an unexpected result that such systems
where energy and data flows are exactly balanced exhibit unstable behavior.

Since we assume instantaneous transmission, whenever we have a state (D(t) > 0,
E(t) > 0), it will immediately transit to either (0, E(t) − D(t)) if E(t) > D(t) or (D(t) −
E(t), 0) if D(t) > E(t). Thus, the state space S is composed of integer pairs (d,e) such that:

S = {(0, 0), (0, e), (d, 0) : d, e > 0}. (1)

If we assume that energy storage and data buffer both have finite capacity, the system
can be modeled as finite Markov chain whose state transitions can be seen in Figure 1.
Moreover, [D(t), E(t) : t ≥ 0] is an irreducible and aperiodic process, so that the stationary
probabilities p(d, e) = limt→∞ Pr[D(t) = d,E(t = e)] uniquely exist and can be calculated

Figure 1. Random walk model for the system states.
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by using the following balance equations:

p(0, 0)[λ + Λ] = λp(0, 1) + Λp(1, 0), (2)

p(d, 0)[λ + Λ] = λp(d − 1, 0) + Λp(d + 1, 0), B > n > 0 (3)

p(0, e)[λ + Λ] = λp(0, e + 1) + Λp(0, e − 1), E > m > 0 (4)

p(0, E)[λ] = Λp(0, E − 1), (5)

p(B, 0)[Λ] = λp(B − 1, 0). (6)

Thus, the stationary probability distributions are calculated as:

p(d, 0) = p(0, 0)αd, B ≥ d > 0, (7)

p(0, e) = p(0, 0)βe, E ≥ e > 0, (8)

p(0, 0) =
2 − α − β

αD(1 − α) + βE(1 − β)
=

αE(1 − α)
1 − αD+E+1

, (9)

where α = λ
Λ and β = Λ

λ . Also, we can express the marginal probabilities for the queue
length of DPs and EPs as:

pd(d) =
∞∑

e=0

p(d, e) = p(d, 0) = αdp(0, 0), d > 0, (10)

pe(e) =
∞∑

d=0

p(d, e) = p(0, e) = βep(0, 0), e > 0, (11)

and

pd(0) =
∞∑

e=0

p(0, e) =
1 − βE+1

1 − β
p(0, 0), (12)

pe(0) =
∞∑

d=0

p(d, 0) =
1 − αD+1

1 − α
p(0, 0). (13)

3.1. DP and EP Losses Due to Finite Storage Capacities

Since the energy storage and data buffer are bounded by some finite capacity, the system
will have some amount of EP and DP losses. The loss rates Ld and Le in DP and EP per
second can be computed as:

Ld = λ
∞∑

e=0

p(D, e) = λp(D, 0) =
λ − Λ

1 − βD+E+1
, (14)

Le = Λ
∞∑

d=0

p(d,E) = Λp(0, E) =
Λ − λ

1 − αD+E+1
. (15)

When buffer sizes are very large, that is, D or/and E tend to infinity, we have the following
results:

Case 1: If α < 1 or β > 1, the energy is more than required for the system, so that Ld → 0
and Le → Λ − λ.
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Case 2: If α > 1 or β < 1, the energy is less than required for the system, so that
Ld → λ − Λ and Le → 0.

Case 3: If α = β = 1, the energy balances the data, so that Ld = Le = λ
D+E+1 → 0.

3.2. System Stability

Stability is a question for such systems where both energy storage and data buffer have
unlimited capacity. When the number of DPs (EPs) is finite with probability one as
t,D,E → ∞, the system is then called stable with respect to DPs (EPs). A system is
called stable if it is stable with respect to both DPs and EPs.

In the steady state, the backlog probabilities of DPs and EPs not exceeding some finite
values D′ < D and E′ < E are as follows:

Pd(D′) = lim
t→∞Pr[0 ≤ D(t) ≤ D′ ≤ D] (16)

= pd(0) +
D′∑

d=1

pd(d) (17)

=
αD′

(1 − α) + βE(1 − β)
αD(1 − α) + βE(1 − β)

(18)

and

Pe(E′) = lim
t→∞Pr[0 ≤ E(t) ≤ E′ ≤ E] (19)

= pe(0) +
E′∑

e=1

pe(e) (20)

=
αD(1 − α) + βE′

(1 − β)
αD(1 − α) + βE(1 − β)

. (21)

These lead to the following results:

Case 1: If α < 1 or β > 1 as D,E → ∞, Pd(D′) → 1 and Pe(E′) → 0, so that the system
is stable with respect to DPs and is unstable with respect to EPs.

Case 2: If α > 1 or β < 1 as D,E → ∞, Pd(D′) → 0 and Pe(E′) → 1, so that the system
is unstable with respect to DPs and is stable with respect to EPs.

These two results tell us that as long as α > 1 or β > 1, equivalently λ �= Λ, the system
shows an unstable behavior.

Case 3: If α = β = 1 as D,E → ∞, one can expect it is the best operating point for the
system, since equal flowing rates somehow indicate that the energy amount into system
matches the energy needed for transmitting all DPs.
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However, when α = β = 1, the expression for p(0, 0) is an indeterminate form. The
following is obtained by using L’Hopital’s rule:

lim
α→1

p(0, 0) = lim
α→1

αE(1 − α)
1 − αD+E+1

=
1

D + E + 1
. (22)

Accordingly, we can calculate the following:

lim
α→1

pd(d) = lim
α→1

p(0, 0), (23)

lim
α→1

pe(e) = lim
α→1

p(0, 0), (24)

and

lim
α→1

pd(0) = (E + 1) lim
α→1

p(0, 0), (25)

lim
α→1

pe(0) = (D + 1) lim
α→1

p(0, 0). (26)

Therefore, the backlog probabilities when α = 1:

lim
α→1

Pd(D′) =
D′ + E + 1
D + E + 1

, (27)

lim
α→1

Pe(E′) =
D + E′ + 1
D + E + 1

. (28)

Thus, as D,E → ∞ both Pd(D′), Pe(E′) → 0, so that the system is unstable.
An interesting result shows that any relation between λ and Λ cannot provide a stable

behavior for such systems with unlimited capacities.

3.3. DP Re-transmission

After an EP is used for transmitting a DP, the re-transmission of the same DP might be
needed because of errors caused by noise and interference. Similarly, re-transmission is also
used for reducing transmission errors by sending several duplicates of same DP. To model
these effects, we define the following probabilities:

• π indicates the probability that an EP arrival is not sufficient to transmit a DP
waiting in the queue. Thus, the DP remains in the node and waiting for another EP
to independently repeat the transmission process.

• When a DP arrives in the node, the transmission takes place immediately by con-
suming a stored EP. However, transmission may fail and another EP might be used
for re-transmission with a probability of p. This process may continue until providing
a successful transmission.

According to these probabilities, we have the following transition rates:

• Λπ : (d, 0) → (d, 0), d > 0. An EP arrives in the node, but it is not sufficient to
transmit DP with probability π, so that the DP remains at the node.

• Λ(1 − π) : (d, 0) → (d − 1, 0), d > 0. DP transmission occurs with probability 1 − π
when an EP arrives in the node.

• λp : (0, 1) → (1, 0). A stored EP is consumed for the transmission, but it fails with
probability p when a DP arrives in the node.
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• λ(1 − p) : (0, e) → (0, e − 1), e > 0. After a DP arrival, transmission will successfully
occur with probability 1 − p by consuming an EP in the storage.

• λpk−1(1 − p) : (0, e) → (0, e − k), e ≥ k After k − 1 unsuccessful attempts at trans-
mission and a successful one at the kth attempt with probability pk−1(1 − p). Total
k EPs are consumed for transmission.

• λpk : (0, e) → (1, 0), e = k. All EPs are depleted after a DP arrival, so that all
transmission attempts will fail and one DP will take place in the buffer to be
transmitted.

These transitions lead to the balance equations below:

p(0, 0)[λ + Λ] = λ

∞∑
l=1

pl−1(1 − p)p(0, l) + Λ(1 − π)p(1, 0), (29)

p(1, 0)[λ + Λ(1 − π)] = λ

∞∑
l=0

plp(0, l) + Λ(1 − π)p(2, 0), (30)

p(d, 0)[λ + Λ(1 − π)] = λp(d − 1, 0) + Λ(1 − π)p(d + 1, 0), d > 1, (31)

p(0, e)[λ + Λ] = λ

∞∑
l=1

pl−1(1 − p)p(0, e + l) + Λp(0, e − 1), e > 0. (32)

We can reach the following results by using the above equations:

Theorem 1: If p > π ≥ 0 and Λ(1 − p) < λ < Λ(1 − π), a stationary distribution exists,
and is of the form:

p(0, e) = p(0, 0)Qe, e > 0, (33)

p(d, 0) = p(1, 0)qd−1, d > 0, (34)

Q =
Λ

λ + pΛ
, (35)

q =
λ

Λ(1 − π)
, (36)

p(1, 0) =
λ + pΛ

Λ(1 − π)
p(0, 0), (37)

p(0, 0) =
[Λ(1 − π) − λ][λ − Λ(1 − p)]

Λ(p − π)[λ + pΛ]
. (38)

Proof of Theorem 1: To proceed with the proof, we substitute Eq. (33) in balance
equations stated above:

p(0, 0)[λ + Λ] =
λQ(1 − p)

1 − pQ
p(0, 0) + Λ(1 − π)p(1, 0), (39)

p(1, 0)[λ + Λ(1 − π)] =
λ

1 − pQ
p(0, 0) + Λ(1 − π)qp(1, 0), (40)

λ + Λ(1 − π) =
λ

q
+ Λ(1 − π)q, (41)

λ + Λ =
λQ(1 − p)

1 − pQ
+

Λ
Q

. (42)
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Substituting the values of Q and p:

p(0, 0)[λ + Λ] = Λ(1 − p)p(0, 0) + Λ(1 − π)p(1, 0), (43)

p(1, 0)[λ + Λ(1 − π)] = [λ + pΛ]p(0, 0) + λp(1, 0), (44)

λ + Λ(1 − π) = Λ(1 − π) + λ, (45)

λ + Λ = Λ(1 − p) + λ + pΛ. (46)

The first two equations reduce to:

p(1, 0) =
λ + pΛ

Λ(1 − π)
p(0, 0). (47)

Using the fact that the probabilities must sum to one we now have:

p(0, 0) =
[Λ(1 − π) − λ][λ − Λ(1 − p)]

Λ(p − π)[λ + pΛ]
, (48)

completing the proof. �

4. ENERGY AND DATA LOSSES THROUGH STANDBY AND LEAKAGE

Such systems as found in Section 3 store EPs in energy buffers. In fact, every storage loses
some amount of energy due to the self-discharging nature of capacitors and batteries. We
can model this effect with random EP leakage at a rate of μ when there is no DP waiting
to be transmitted. Such systems with energy leakage imperfections have been studied by
Gelenbe and Kadioglu [22,23]. In addition to energy losses, we also assume that DPs waiting
in the buffer discard themselves at a rate of γ when there is no energy in the node. After
introducing the data and energy leakages into the system, the state transitions can be seen
in Figure 2. Thus, we may write equilibrium equations as follows:

p(0, 0)[λ + Λ] = (Λ + γ)p(1, 0) + (λ + μ)p(0, 1), (49)

p(d, 0)[λ + Λ + γ] = (Λ + γ)p(d + 1, 0) + λp(d − 1, 0), (50)

p(D, 0)[Λ + γ] = λp(D − 1, 0), (51)

p(0, e)[λ + Λ + μ] = Λp(0, e − 1) + (λ + μ)p(0, e + 1), (52)

p(0, E)[λ + μ] = Λp(0, E − 1). (53)

Similar to the previous analysis, the stationary probability distributions can be calculated
as:

p(d, 0) = p(0, 0)αd, B ≥ d > 0, (54)

p(0, e) = p(0, 0)βe, E ≥ e > 0, (55)

p(0, 0) =
1 − α − β + αβ

αD+1(β − 1) + βE+1(α − 1) + 1 − αβ
, (56)

where α = λ
Λ+γ and β = Λ

λ+μ .

https://doi.org/10.1017/S0269964817000080 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000080


FINITE CAPACITY ENERGY PACKET NETWORKS 485

Figure 2. Random walk model with energy and data losses

4.1. DP and EP Losses Due to Finite Storage Capacities

After similar analysis in Section 3.1, the following results can easily be obtained:

Ld = λp(D, 0) =
ΛβE(1 − α − β + αβ)

αB+1(β − 1) + βE+1(α − 1) + 1 − αβ
, (57)

Le = Λp(0, E) =
λαD(1 − α − β + αβ)

αD+1(β − 1) + βE+1(α − 1) + 1 − αβ
. (58)

For the assumption of very large buffer sizes, that is, both D and E tend to infinity, the
following cases can be considered:

Case 1: If α > 1 and hence β < 1 or equivalently Λ < λ, so that the energy flow is not
sufficient for the data flow and Le → 0 and Ld → λ − (Λ + γ).

Case 2: If β > 1 and hence α < 1 or equivalently Λ > λ, so that the energy flow is more
than required, and Le → Λ − (λ + μ) and Ld → 0.

Case 3: If α < 1 and β < 1, in this case there is no leakage for both buffers, and Le → 0
and Ld → 0.

Case 4: If α = 1 and β < 1, the expressions for Le and Ld are in indeterminate form.
However, after applying some algebra we get Le → 0 and Ld → 0.

Case 5: If α < 1 and β = 1, the expressions for Le and Ld are again in indeterminate form.
However, after applying some algebra we get Le → 0 and Ld → 0.

4.2. Optimum Energy Efficiency of the Transmission

The sensor we consider receives Λ EPs/sec (in power units, e.g. milliwatts) from ES; however,
it cannot use all this energy due to finite capacity energy loss and the energy leakage of the
system. Similarly, the sensor cannot transmit all the DPs gathered from the environment due
to finite capacity data loss and data leakage. Thus, its energy consumption per effectively
transmitted packet is:

σ =
Λ − f(Λ)
λ − g(Λ)

. (59)

where f(Λ) = μ
∑∞

e=0 p(0, e) + Le and g(Λ) = γ
∑∞

d=0 p(d, 0) + Ld Thus, it is of interest to
see what the best operating point may be for this system, in terms of the energy it is
consuming. We therefore take the derivative of various terms in the expression with respect
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to Λ and see that:

σ′ =
(1 − f ′(Λ))(λ − g(Λ)) + g′(Λ)(Λ − f(Λ))

(λ − g(Λ))2
, (60)

so that the extremum for σ is reached for the value of Λ which gives:

(f ′(Λ) − 1)(λ − g(Λ)) = g′(Λ)(Λ − f(Λ)). (61)

In addition, we have

σ′′ =
[λ − g(Λ)][(g(Λ) − λ)f ′′(Λ) + (Λ − f(Λ))g′′(Λ)]

(λ − g(Λ))3
(62)

+
−2[λ − g(Λ)][(f ′(Λ) − 1)g′(Λ)] + 2[(Λ − f(Λ))g′(Λ)2]

(λ − g(Λ))3
, (63)

so that at the value of Λ which satisfies Eq. (61) we have:

σ′′ =
[(g(Λ) − λ)f ′′(Λ) + (Λ − f(Λ))g′′(Λ)]

(λ − g(Λ))2
. (64)

When we take derivative of Eq. (61) we have:

(g(Λ) − λ)f ′′(Λ) + (Λ − f(Λ))g′′(Λ) = 0 (65)

so that Eq. (61) is a point of inflection of the efficiency function σ.
Figure 3 shows σ versus Λ for the case of λ = 10, B = 100 and E = 100, with μ and

γ = 0.1. We see that to keep energy efficiency high, that is, to have σ as low as possible, the
power Λ that is supplied from harvesting should remain above the nominal need to satisfy
all the flow λ of DPs that are being harvested.

4.3. System Stability

After similar analysis in Section 3.2, the following results can easily be obtained:

Pd(D′) =
αD′+1(β − 1) + βE+1(α − 1) + 1 − αβ

αD+1(β − 1) + βE+1(α − 1) + 1 − αβ
, (66)

Pe(E′) =
αD+1(β − 1) + βE′+1(α − 1) + 1 − αβ

αD+1(β − 1) + βE+1(α − 1) + 1 − αβ
. (67)

This leads to the following as E → ∞ and D → ∞:

Case 1: If α > 1 and hence β < 1, Pd(D′) → 0 for all finite D′ and Pe(E′) → 1 for all finite
E′; the system is stable with respect to EPs and unstable with respect to DPs.

Case 2: If β > 1 and hence α < 1, Pd(D′) → 1 for all finite D′ and Pe(E′) → 0 for all finite
E′; the system is stable with respect to DPs and unstable with respect to EPs.
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Figure 3. σ as a function of Λ.

Case 3: If α < 1 and β < 1,

Pd(E′) → αE′+1(β − 1) + 1 − αβ

1 − αβ

and it is obviously in the interval (0,1), since −1 < αD′+1(β − 1) < 0 for all finite D′ and
similarly

Pe(E′) → βE′+1(α − 1) + 1 − αβ

1 − αβ

and similarly it is in the interval (0, 1), for all finite E′. Therefore, the system is unstable
with respect to both DPs and EPs.

Case 4: If α = 1 and hence β < 1, the expression p(0, 0) is an indeterminate form, so that
we apply L’Hospital’s rule and obtain:

lim
(D,E)→∞

[
lim
α→1

p(0, 0) =
β − 1

(D + 1)(β − 1) + βE+1 − β

]
→ 0, (68)

lim
(D,E)→∞

α→1

⎡
⎣Pd(D′) = p(0, 0)

⎛
⎝ E∑

m=0

βm +
D′∑

n=1

αn

⎞
⎠
⎤
⎦→ 0. (69)

A similar analysis can be made for the Pe(E′), which leads Pd(D′) → 0 for all finite G and
Pe(E′) → 0 for all finite E’. Therefore, the system is unstable with respect to both DPs and
EPs.

Case 5: If β = 1 and hence α < 1, the expression p(0,0) is again an indeterminate form, so
that similar from the previous analysis in case 4 we may have Pd(D′) → 0 for all finite D′

and Pe(E′) → 0 for all finite E′; the system is unstable with respect to both DPs and EPs.

https://doi.org/10.1017/S0269964817000080 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000080


488 Y.M. Kadioglu

4.4. DP Re-transmission

After considering the same error probabilities and state transitions explained in Section 3.3,
we may write the following equilibrium equations:

p(0, 0)[λ + Λ] = λ

∞∑
l=1

pl−1(1 − p)p(0, l) + (Λ(1 − π) + γ)p(1, 0) + μp(0, 1),

(70)

p(1, 0)[λ + Λ(1 − π) + γ] = λ

∞∑
l=0

plp(0, l) + (Λ(1 − π) + γ)p(2, 0), (71)

p(d, 0)[λ + Λ(1 − π) + γ] = λp(d − 1, 0) + (Λ(1 − π) + γ)p(d + 1, 0)), d > 1, (72)

p(0, e)[λ + Λ + μ] = λ

∞∑
l=1

pl−1(1 − p)p(0, e + l)

+ Λp(0, e − 1) + μp(0, e + 1), e > 0. (73)

Theorem 2: If (Λ − μ)(1 − p) < λ < Λ(1 − π) + γ, the stationary distribution exists and
is given by:

p(0, e) = p(0, 0)Qe, e > 0, (74)

p(d, 0) = p(1, 0)qd−1, d > 0, (75)

Q =
λ + μ + Λp −√(λ + μ + Λp)2 − 4μΛp

2μp
, (76)

q =
λ

Λ(1 − π) + γ
, (77)

p(1, 0) =
q

(1 − pQ)
p(0, 0), (78)

p(0, 0) =
(1 − q)(1 − Q)(1 − pQ)

q(1 − Q) + (1 − q)(1 − pQ)
. (79)

Proof of Theorem 1: To proceed with the proof, we substitute Eq. (74) into Eq. (73),
which after applying some algebra becomes:

Qe[λ + Λ + μ] = (λ(1 − p) + μ)Qe+1 1
1 − pQ

+ ΛQe−1, (80)

0 = (Q − 1)[Q2(μp) + Q(−Λp − λ − μ) + Λ], (81)

so that we have

Q1,2 =
λ + μ + Λp ±√(λ + μ + Λp)2 − 4μΛp

2μp
, (82)

note that Q has to be smaller than 1, while:

Q1 =
λ + μ + Λp +

√
(λ + μ + Λp)2 − 4μΛp

2μp
≥ λ + μ + Λp

2μp
>

1
2

(
1
p

+
Λ
μ

)
> 1, (83)

where p < 1 and μ < Λ.
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Since Q21 has to be smaller than 1, we have:

λ + μ + Λp −√(λ + μ + Λp)2 − 4μΛp

2μp
< 1, (84)

(λ + μ + Λp − 2μp)2 < (λ + μ + Λp)2 − 4μΛp, (85)

Λ + μp < (λ + μ + Λp), (86)

(Λ − μ)(1 − p) < λ. (87)

Equation (72) has a solution of the form qd−1p(1, 0) where

q =
λ

Λ(1 − π) + γ
.

Since we also have q < 1:
λ < Λ(1 − π) + γ. (88)

Also, using the fact that the probabilities must sum to one, we have:

p(0, 0) + p(1, 0) +
∞∑

d=2

p(d, 0) +
∞∑

e=1

p(0, e) = 1, (89)

p(0, 0)
[
1 + R + R

q

1 − q
+

Q

1 − Q

]
= 1, (90)

p(0, 0)
[
R

1
1 − q

+
1

1 − Q

]
= 1. (91)

where R = p(1,0)
p(0,0) . Thus, we have:

p(1, 0) =
q

(1 − pQ)
p(0, 0), (92)

p(0, 0) =
(1 − q)(1 − Q)(1 − pQ)

q(1 − Q) + (1 − q)(1 − pQ)
. (93)

�

Based on the above results, we notice that:

• The probabilities that the data queue is empty and non-empty are:

P [d = 0] =
1

1 + q
1−q

1−Q
1−pQ

, (94)

P [d > 0] =
1

1 + 1−q
q

1−pQ
1−Q

. (95)

• The probabilities that the energy queue is empty and non-empty are:

P [e = 0] =
q(1 − Q) + (1 − q)(1 − pQ)(1 − Q)

q(1 − Q) + (1 − q)(1 − pQ)
, (96)

P [e > 0] =
Q(1 − q)(1 − pQ)

q(1 − Q) + (1 − q)(1 − pQ)
. (97)

• Obviously, P [d ≥ 0] = P [e ≥ 0] = 1.
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5. PACKET TRANSMISSION VIA IMPERFECT TRANSMITTER

In Sections 3 and 4, it is assumed that the node has a perfect transmitter so that the har-
vested energy is only consumed for data transmission, not for the node electronics. However,
more practical models also consume energy for sensing information from the ambient envi-
ronment, processing and generating DPs, and storing packets in the node. A more realistic
scenario with an imperfect transmitter has been studied by Kadioglu [31].

It is assumed that DP transmission occurs by consuming one EP (Kt = 1). However,
to sense, process, and store data, a node also needs to consume another EP (Ke = 1).
Thus, without storing single an EP the sensor node cannot sense the data arrival and the
information will be lost. If there is only one EP in the storage, it is consumed for node
electronics and the DP is queued in the buffer. Whenever two or more EPs stored in the
node, DP transmission occurs immediately.

When we consider such a system model, an unbounded rise of DPs or EPs is not allowed
since the system has a finite state space. In fact, when one DP arrives to the node whose
state is (D(t) = 0, E(t) = 1), the state will change as (D(t) = 1, E(t) = 0) and it is the only
state where the data buffer is not empty. Because of such an interesting situation, instead
of considering (d, e) integer pairs, we may consider (d − e) as system states. Thus, the state
space is:

S = {−1, 0, 1, . . . , E} (98)

where E is the maximum number of EPs that can be stored in the node. Figure 4 shows
the state transitions of the system, including energy leakage at a rate of μ due to the
imperfection of energy storage. Thus, the equilibrium equations:

p(−1)[Λ] = λp(1), (99)

p(0)[Λ] = Λp(−1) + λ p(2) + μp(1), (100)

p(N)[Λ + λ + μ] = Λp(N − 1) + λp(N + 2) + μp(N + 1), (101)

p(E − 1)[Λ + λ + μ] = Λp(E − 2) + μp(E), (102)

p(E)[λ + μ] = Λp(E − 1). (103)

Equation (101) has a solution of the form:

p(N) = cϕN (104)

where c is an arbitrary constant, 0 < N < E − 1, and ϕ can be computed as:

ϕ =
−(λ + μ) +

√
(λ + μ)2 + 4Λλ

2λ
. (105)

Figure 4. Random walk model for Ke = 1.
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Thus, we may reach following conclusion:

p(−1) = c
λ

Λ
ϕ, (106)

p(0) = c

(
λ

Λ
ϕ2 +

λ + μ

Λ
ϕ

)
, (107)

p(E − 1) = c

[
1 +

λ + μ

Λ
− μ

λ + μ

]−1

ϕE−2, (108)

p(E) = c

[(
λ + μ

Λ

)(
Λ + λ + μ

Λ

)
− μ

Λ

]−1

ϕE−2. (109)

Using the fact that summation of the probabilities is one:

E∑
N=−1

p(N) = c

(
2λ + μ

Λ
ϕ +

λ

Λ
ϕ2

)
+ c

E−2∑
N=1

ϕN + c

[
λ + μ

Λ
− μ

Λ + λ + μ

]−1

ϕE−2 = 1.

(110)
After further calculations, we may reach the value for c:

c =
[
2λ + μ

Λ
ϕ +

λ

Λ
ϕ2 +

ϕ − ϕE−1

1 − ϕ
+

Λ(Λ + λ + μ)ϕE−2

(λ + μ)(Λ + λ + μ) − μΛ

]−1

. (111)

5.1. DP and EP Losses

Due to finite capacity, loss rates can be calculated as follows:

Γd = λ

−D∑
N=0

p(N) = λ(p(0) + p(−1)) = cλ

(
2λ + μ

Λ
ϕ +

λ

Λ
ϕ2

)
, (112)

Γe = Λp(E) = c

[
1
Λ

[(
λ + μ

Λ

)(
Λ + λ + μ

Λ

)
− μ

Λ

]]−1

ϕE−2. (113)

Since (d = 1, e = 0) is the only state in which the data buffer is not empty, a greater
number of excessive DPs is expected for such systems. However, we can observe that the
DP loss rate remains low for the λ < Λ in Figure 5 where we assume, Λ = 10, μ = 1, E =
100. After reaching the λ = Λ threshold, the DP loss rate increases exponentially so that
operating as λ < Λ prevents a massive amount of DP losses.

5.2. System Stability

We need to reconsider the model with unlimited capacity buffers to study the stability of
the system. Thus, we may have:

p(−1) = c′
λ

Λ
ϕ, (114)

p(0) = c′
(

λ

Λ
ϕ2 +

λ + μ

Λ
ϕ

)
, (115)
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Figure 5. DP loss rate Ld versus DP arrival rate λ.

p(N) = c′ϕN , (116)

ϕ =
−(λ + μ) +

√
(λ + μ)2 + 4Λλ

2λ
. (117)

c′ =
(λ + μ − 2Λ) +

√
(λ + μ)2 + 4Λλ

2(2λ + μ)
. (118)

We can also express the backlog probabilities as:

Pd(D′) =
D′∑

d=0

∞∑
e=0

p(e − d) = pd(1) + pd(0) = p(−1) + p(0) +
∞∑

N=1

c′ϕN = 1. (119)

and

Pe(E′) =
E′∑

e=0

∞∑
d=0

p(e − d) = pe(0) + pe(e)1[e > 0]

= p(−1) + p(0) +
E′∑

N=1

c′ϕN = 1 − c′
ϕE′+1

1 − ϕ
. (120)

Thus, we can conclude that the system with unlimited storage capacities is always stable
with respect to DPs and unstable with respect to EPs.
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5.3. Transmission Errors

Since the energy rate is calculated in units of power, the harvested energy rate Λ is the
total power entering the sensor node. Thus, the total power consumed by the node is:

ξ = Λ − Le − μ

E∑
N=1

p(N), (121)

where all power cannot be used due to EP leakages and excessive EPs. The total radiating
power from a sensor on average is simply:

φ =
ξ

2
, (122)

since half of the power is used for node electronics. The probability of correctly receiving a
DP transmitted with power level Kt is:

1 − e = f

(
ηKt

I + B

)
, (123)

where f is some increasing function of its argument, I is the interference level, B is the
noise level, and 0 ≤ η ≤ 1 represents the propagation factor of the transmission power.

The total interference level for a single node among M identical sensor nodes is:

I = I1 + I2 = η
ξ

2
κ0(M − 1) + η

ξ

2

(
M − m

M

)
1[M > m]. (124)

where κ0 is a small valued factor representing the side-band effect, I1 = η(ξ/2)κ0(M − 1) is
the interference level if the total number of sensor nodes is less than the number of separate
frequency channels m, and

I2 = η
ξ

2

(
M − α

M

)
1[M > m]

is the additional interference level if the number of nodes exceeds the number of frequency
channels. Thus, we may rewrite Eq. (123) as:

1 − e = f

(
ηKt

η ξ
2κ0(M − 1) + η ξ

2 (M−m
M )1[M > m] + B

)
. (125)

Obviously, the transmission error will rise with an increase in the number of sensor nodes
in the network due to greater effect of the interference over the transmission. On the other
hand, after a certain number of sensor nodes α is reached, the system will face an additional
level of interference I2, so that the error probabilities will increase. We observe these effects
in Figure 6, where we consider single bit transmissions with Λ = 10, λ = 10, μ = 1, E =
100, B = 0.1, η = 0.5, κ0 = 0.05, α = 20 and different values of M . Also, we assume BPSK
transmission (see, e.g., Goldsmith [30]), so that:

1 − e = Q

(√
ηKt

η ξ
2κ0(M − 1) + η ξ

2 (M−m
M )1[M > m] + B

)
, (126)

where

Q(x) =
1
2

[
1 − erf

(
x√
2

)]
.
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Figure 6. Transmission error probability versus number of sensor nodes.

6. DP TRANSMISSION WITH K EPS

In previous sections, a DP can be sent by consuming a single EP, Kt = 1, in a sensor
node. However, Kadioglu and Gelenbe [32] studied the case where exactly K > 1 EPs are
needed to successfully transmit a single DP without considering power consumption for
node electronics, Ke = 0. The reason that a transmitter tends to increase the transmission
power level may be that it prevents transmission errors caused by noise and interference.
Also, a transmitter may reduce the power level to save energy. Such systems featuring DP
transmission by means of several EPs may be modeled as a two-dimensional random walk,
which makes analysis harder. In this case, the state space is:

S = {(0, 0), (d, 0), (0, e), (l, k)}, (127)

where 1 ≤ d ≤ D, 1 ≤ e ≤ E, 1 ≤ l < D, 1 ≤ k < K. The state transitions can be seen in
Figure 7, by which we may write the following equilibrium equations:

p(0, 0)[λ + Λ] = Λp(1,K − 1) + λp(0,K), (128)

p(d, 0)[λ + Λ] = Λp(d + 1,K − 1) + λp(d − 1, 0), 1 ≤ d < D (129)

p(D, 0)[Λ] = λp(D − 1, 0), (130)

p(0, e)[λ + Λ] = Λp(0, e − 1) + λp(0, e + K)1[E ≥ e + K], 1 ≤ e < E (131)

p(0, E)[λ] = Λp(0, E − 1), (132)

p(l, k)[λ + Λ] = Λp(l, k − 1) + λp(l − 1, k), 1 ≤ l ≤ D − 1, 1 ≤ k ≤ K − 1 (133)

p(D, k)[Λ] = Λp(D, k − 1) + λp(D − 1, k), 1 ≤ k ≤ K − 1. (134)

It is not easy to express close-form formulas for the stationary probability distributions
by considering the above expressions. Thus, Kadioglu and Gelenbe [32] defined an one-to-
one and onto function to reduce random walk dimension by using cylindrical symmetry
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Figure 7. Two-dimensional random walk for the state transitions.

among the states, which is:
p(d, e) = p̃(dK − e + E). (135)

Figure 8 shows the reduced diagram of the two-dimensional Markov model. The state space
is:

S = {0, 1, 2, . . . ,DK + E}. (136)

In order to reduce complication of the analysis, states can be divided into three different
regions according to similarities of transition behaviors. Thus, we may write the following
equilibrium equations for each region:

Figure 8. One-dimensional random walk model with single index.
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• Region 1, DK + E − K < N ≤ DK + E:

p̃(DK + E)Λ = λp̃(DK + E − K), (137)

p̃(N)Λ = λp̃(N − K) + Λp̃(N + 1). (138)

• Region 2, K ≤ N ≤ DK + E − K:

p̃(N)[Λ + λ] = λp̃(N − K) + Λp̃(N + 1). (139)

• Region 3, 0 < N < K:

p̃(N)[Λ + λ] = Λp̃(N + 1), (140)

p̃(0)λ = Λp̃(1). (141)

After considering equilibrium equations for all regions and assuming a very large data
buffer capacity, that is, D → ∞, the closed-form solution is:

p̃(N) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − Θ)ΘN , K ≤ N < ∞,

(1 − Θ)ΘK

(
Λ

Λ + λ

)i

, N = K − i, 0 < i < K,

(1 − Θ)ΘK Λ
λ

(
Λ

λ + Λ

)K−1

, N = 0,

(142)

where Θ is the summation of linearly combined roots of the following equation:

ΘK+1 −
(

1 +
λ

Λ

)
ΘK +

λ

Λ
= 0. (143)

In fact, Eq. (143) is the characteristic equation of the recurrence relation in Eq. (139).
Note that Eq. (143) cannot be solved in radicals for K ≥ 4 by the Abel & Ruffini

theorem (see, e.g., Zoladek [37]), which means that an expression for the roots of such
equations as a function of the coefficients by means of algebraic operations or roots of
natural degrees does not exist.

6.1. Transmission Errors

Similar to Section 5.3, the correctly received probability of a single bit among the M identical
sensor is:

1 − e = Q

(√
ηK

ηφκ0(M − 1) + ηφ(M−m
M )1[M > m] + B

)
, (144)

where K is the transmission power level, φ = Λ − Le = Λ(1 − p̃(0)) is the average radiating
power from a sensor.

We can observe the effect of a number of sensors on the correctly received probability
for different K values in Figure 9, where we assume a single bit transmission with the
parameters η = 0.5, κ0 = 0.1, B = 0.1,m = 30,Λ = 2λ = 1. Correctly received probability
decreases with an increasing number of sensor nodes, while it increases slightly with higher
K values.
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Figure 9. Correctly received probability versus number of sensor nodes.

7. DP TRANSMISSION WITH GENERALIZED Ke AND Kt VALUES

In this section, we extend the system model by considering arbitrary Ke > 1 and Kt > 1
values. The motivation behind this idea lies in the fact that a sensor node may vary the
power levels according to speed of processing or transmission errors. This generalization
leads us to a two-dimensional random walk model similar to the one studied in Section 6
and state space:

S = {(0, 0), (d, 0), (0, e), (l, k) : 1 ≤ d ≤ D, 1 ≤ e ≤ E, 1 ≤ l < D,

1 ≤ k < K,K = Ke + Kt}. (145)

0, 0 0, 1 · · · 0, Ke · · · 0, Kt − 1 · · · 0, K − 1 0, K · · · 0, E − 1 0, E

1, 0 1, 1 1, Ke 1, Kt − 1 1, K − 1· · · · · · · · ·

...
...

...
...

...
...

...
...

D − 1, 0 D − 1, 1 D − 1, Ke D − 1, Kt − 1 D − 1, K − 1· · · · · · · · ·

D, 0 D, 1 D, Ke D, Kt − 1 D, K − 1· · · · · · · · ·

Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ Λ

Λ

Λ Λ Λ Λ Λ Λ Λ

Λ

Λ Λ Λ Λ Λ Λ Λ

Λ

λ λ λ λ

λ λ λ

λ λ λ

λ λ λ λ

λ
λ

λλ

λ λ

λ λ

λ λ

λ λ λ
λ λ

Figure 10. Two-dimensional random walk model for generalized Ke and Kt values.
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Due to the fact that energy consumption for such systems is mostly dominated by DP
transmission, we assume Kt > Ke. Figure 10 shows the state transitions of the system by
which we can write the following equilibrium equations:

p(0, 0)[Λ] = Λp(1,K − 1) + λp(0,K), (146)

p(0, e)[Λ] = Λp(0, e − 1) + λp(0, e + K)1[E ≥ e + K], 1 ≤ e < Ke (147)

p(0, e)[Λ + λ] = Λp(0, e − 1) + λp(0, e + K)1[E ≥ e + K], Ke ≤ e < E (148)

p(0, E)[λ] = Λp(0, E − 1), (149)

p(d, 0)[Λ] = Λp(d + 1,K − 1) + λp(d − 1,Ke), 1 ≤ d < D (150)

p(d, e)[Λ] = Λp(d, e − 1) + λp(d − 1, e + Ke), 1 ≤ d < D, 1 ≤ e < Ke (151)

p(d, e)[Λ + λ] = Λp(d, e − 1) + λp(d − 1, e + Ke), 1 ≤ d < D, Ke ≤ e < K − Ke

(152)

p(d, e)[Λ + λ] = Λp(d, e − 1), 1 ≤ d < D, K − Ke ≤ e < K (153)

p(D, e)[Λ] = Λp(D, e − 1) + λp(D − 1, e + Ke), Ke ≤ e < K − Ke (154)

p(D, e)[Λ] = Λp(D, e − 1), K − Ke ≤ e < K (155)

p(D, 0)[Λ] = λp(D − 1,Ke). (156)

Finding a closed-form solution by considering the above equations is elusive. To find station-
ary distributions, we obviously can use a traditional approach where we use an n-dimensional
square generator matrix. The solution complexity dramatically increases with the increasing
buffer sizes since n = E + DK + 1 for such systems. Companion matrices and matrix alge-
bra techniques are introduced to reduce solution complexity and find stationary probability
distributions.

7.1. Solution with Companion Matrices

For solution simplicity, we define new state representation Sj such that:

Sj = p(d, e) : j = dK − m + E, j ∈ {0, 1, . . . , E + DK}. (157)

Also, each row of Figure 10 is defined as a row such that:

V0 = [SE , SE−1, . . . , S1, S0], (158)

V1 = [SE+K , SE+K−1, . . . , SE+2, SE+1], (159)

V2 = [SE+2K , SE+2K−1, . . . , SE+2+K , SE+1+K ], (160)

... (161)

VD = [SE+DK , . . . , SE+2+DK−K , SE+1+DK−K ]. (162)

Besides the fact that complicated state transition behaviors exist among the states, once
we carefully observe the diagram in Figure 10, it can be seen that every row, except for
the first and the last one, has the exact same state transition behaviors. Therefore, we
might have some recurrence relations that reduce the number of total equations and system
complexity.

Figure 11 shows the state representation of the ith row of the two-dimensional state
diagram or vector Vi where 0 < i < D. We observe in Figure 11 that for vector Vi, there are
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SE+iK−K+1SE+iK−K+2· · ·SE+iK−KtSE+iK−Kt+1· · ·SE+iK−KeSE+iK−Ke+1· · ·SE+iK

· · ·· · ·· · ·· · ·

· · ·· · ·· · ·· · ·· · ·

Λ Λ Λ Λ Λ Λ Λ Λ Λ

λλλ
λ

λλλλλ
λ λRegion1 Region2 Region3

Figure 11. One-dimensional random walk model with single index.

three different transition behaviors among the states so that we can subdivide the vector
into three separate regions by which we can write following equations:

• For Region 1, 0 ≤ e < Ke:

SN+1 = SN −
(

λ

Λ

)
SN−K−Ke , (163)

• For Region 2, Ke ≤ e < Kt:

SN+1 = SN +
(

λ

Λ

)
(SN − SN−K−Ke), (164)

• For Region 3, Kt ≤ e < K:

SN+1 =
(

1 +
λ

Λ

)
SN . (165)

The linear recurrence relations in Eqs. (163) and (164) are in the order of K + Ke + 1,
whose minimum value is 8 since Kt > Ke > 1. We know that there are no solutions in
radicals for polynomial equations having an order greater than 5 in Zoladek [37]. Instead
of trying to solve these equations, we may use companion matrices to express stationary
probability distributions. We assume that each companion matrix is a square matrix with
a dimension of K + Ke + 1. Thus, we may write state transitions for V1 as:

⎡
⎢⎢⎢⎣

SE+2

SE+1

...
SE+2−K−Ke

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

(
1 +

λ

Λ

)
0 . . . 0 0

1 0 . . . 0 0
...

...
. . .

... 0
0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

SE+1

SE

...
SE+1−K−Ke

⎤
⎥⎥⎥⎦ (166)

or equivalently:
−−−→
SE+2 = C3

−−−→
SE+1. (167)

Other state vectors in Region 3 can also be expressed iteratively as follows:

−−−→
SE+3 = C3

−−−→
SE+2 = C2

3

−−−→
SE+1, (168)

... (169)
−−−−−−→
SE+Ke+1 = C3

−−−−→
SE+Ke = CKe

3

−−−→
SE+1. (170)
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Similarly, for Region 2:

−−−−−−→
SE+Ke+2 = C2

−−−−−−→
SE+Ke+1 = C2 CKe

3

−−−→
SE+1, (171)

... (172)
−−−−−−→
SE+Kt+1 = C2

−−−−−−→
SE+Kt−1 = CKt−Ke

2 CKe
3

−−−→
SE+1, (173)

and for Region 1:

−−−−−−→
SE+Kt+2 = C1

−−−−−−→
SE+Kt+1 = C1 CKt−Ke

2 CKe
3

−−−→
SE+1, (174)

... (175)
−−−−−→
SE+K+1 = C1

−−−→
SE+K = CKe

1 CKt−Ke
2 CKe

3

−−−→
SE+1, (176)

where

C1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . 0 − λ

Λ
1 0 . . . 0 0
...

...
. . .

...
0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦ , C2 =

⎡
⎢⎢⎢⎢⎢⎣

(
1 +

λ

Λ

)
0 . . . 0 − λ

Λ
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦ . (177)

After further analysis, we may write the following results:

• For the states N < K:

−→
SK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

SK

SK−1

...

S2

S1

S0

S−1

...

S−Ke

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
λ

Λ
S0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 +

λ

Λ

)K−1

(
1 +

λ

Λ

)K−2

...(
1 +

λ

Λ

)
1

Λ
λ
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
(

λ

Λ

)
S0

−→γ . (178)

• For the states K ≤ N < E + 2:

−→
SN =

⎧⎪⎪⎨
⎪⎪⎩

C2
N−K

(
λ

Λ

)
S0

−→γ K ≤ N ≤ ς2,

C1
N−ς1 C2

ς2

(
λ

Λ

)
S0

−→γ ς2 < N ≤ E + 1,
(179)

where ς1 = E − Ke + 1 and ς2 = ς1 − K.
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• For the states E + 2 ≤ N < DK + E + 1 − K:

−→
SN =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C3
α C�N−E−1

K �C ′ 0 ≤ α ≤ Ke,

C2
α−Ke C3

Ke C�N−E−1
K �C ′ Ke < α ≤ Kt,

C1
α−Kt C2

Kt−Ke C3
Ke C�N−E−1

K �C ′ Kt < α < K,

(180)

where C ′ = CKe
1 C

E+1−(K+Ke)
2 ( λ

Λ )S0
−→γ .

• For the states DK + E + 1 − K ≤ N ≤ BK + E:

−→
SN =

⎧⎨
⎩

CD−1C ′ DK + E + 1 − K ≤ N ≤ ς3,

C1
N−ς3CD−1C ′ ς3 < N ≤ DK + E,

(181)

where ς3 = DK + E − Kt + 1.

Since the normalization condition holds
∑BK+E

i=0 Si = 1, we can find stationary
probability distributions for S0 and all the other states in the system.

7.2. Transmission Errors

Since the rate of energy is in power units, the average total power consumed by the sensor
node is:

ξ = (1 − S0)Λ, (182)

where the reduction S0Λ is due to the lost energy packets when the battery or capacitor is
full. On the other hand, the average radiated power is:

φ = κξ, (183)

where κ = Kt
K . Similar to Section 5.3, the correctly received probability of a single bit among

the M identical sensor is:

1 − e = Q

(√
ηKt

ηφκ0(M − 1) + ηφ(M−m
M )1[M > m] + B

)
, (184)

Figure 12 where we assume, η = 0.5, κ0 = 0.02, B = 1,Λ = 10, λ = 2, E = 10,D = 10
shows the effect of the number of sensor nodes for different Kt = 7, 6, 5 and Ke = 2, 3, 4
values, while the summation of the two remains constant for transmission error probability.
Overall, the error characteristics are almost same, while the K is kept constant.

Also, Figure 13, where we assume that similar values for parameters shows the effect of
the number of sensor nodes for increasing K values, such that Ke = 2 and Kt = 3, 4, 7, on
transmission error probability. The higher level of K results in smaller errors.

Figure 12. Receiving error probabilities with same K and different Ke & Kt values.
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Figure 13. Receiving error probabilities with increasing Kt and K values.

8. CONCLUSIONS

This paper surveys recent work on mathematical models of digital devices where energy and
data are in discrete packet units. This abstraction is based on the EPN paradigm. While
the EPNs examine the task service times for both energy consumption and job processing,
the E-Network paradigm considers devices with zero service time. Especially in wireless
sensors, the DP transmission usually takes time on a scale of microseconds or nanoseconds,
while the packet sensing and processing in the node may take many milliseconds so that the
E-Network paradigm is applicable. Wireless sensors studied in this paper receive data from
other devices or through sensing, and gather energy through harvesting from photovoltaic
or other ambient energy sources. Buffers for DPs and EPs are assumed to have limited
capacities of D and E for data and energy buffers, respectively.

A sensor node needs energy not only for packet transmission but also for node elec-
tronics, including packet sensing, processing and storing. Therefore, the harvested energy
consumption in a sensor node is basically divided into two parts: the number of Ke and
Kt EPs for node electronics and for DP transmission, respectively. Whenever a sensor node
stores fewer than Ke EPs, it cannot sense and store the data arrival, and the information
will be lost. However, if a node stores more than Ke EPs, the data arrival can be sensed,
processed, and stored immediately by consuming Ke EPs. On the other hand, if the remain-
ing EPs are greater than Kt EPs, they can also be transmitted in zero time again when all
of Kt EPs are consumed. Thus, the successful sensing and transmission of a DP requires
exactly K = Ke + Kt EPs.

In Section 3, it is assumed that a successful DP transmission can occur by consuming
a single EP through a perfect transmitter, that is, Kt = 1 and Ke = 0. Such systems led us
to a one-dimensional random walk diagram to model the behaviour of the state transitions.
After modeling the system, we obtained closed-form formulas for the solution of stationary
probability distributions. We also studied on excessive packets due to finite buffer capacities
and obtained formulas for EP and DP loss rates. The question of system stability is also
analyzed by considering infinite buffer sizes. Analysis show that such systems with unlimited
capacity buffer can never exhibit a stable behavior. Furthermore, DP re-transmission is
studied by introducing the error probabilities π and p into the system. It is shown that
closed-form formulas for stationary probability distributions can be found under certain
conditions according to new transition rates. In the next section, energy and data leakage
caused by the standby operation of the node are introduced into the system. Such leakages
are also modeled as Poisson processes with rates μ and γ so that similar analysis in Section 3
can be studied. In Section 5, the more practical model, a packet transmission through
an imperfect transmitter is considered. Such imperfect transmitter consumes a single EP
for node electronics and another EP for transmission. As a consequence of this energy
consumption model, the DP buffer could be either empty or only store a single DP. Thus,
one may expect that there would be a great number of excessive DPs; however, this can
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be prevented for certain ratios of data and energy flows. The next section studied data
transmission with K EPs. The motivation lies in the fact that a sensor node may vary
the transmission power level to decrease the probability of unsuccessful transmissions or
prevent energy waste in some cases. This system leads to a two-dimensional random walk
to model its state behaviors. Closed-form formulas were obtained by modifying the system
where a state can be represented with a single index, not with integer pairs. In Section 7,
the generalized model with arbitrary Ke and Kt values is studied. A solution method is
proposed to reduce the computational complexity of the system by introducing companion
matrices and using linear algebra.

Future work will address multi-hop systems and different network topologies where DPs
and EPs can travel over nodes and hops.
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