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Abstract Let q be an anisotropic quadratic form defined over a general field F . In this article, we

formulate a new upper bound for the isotropy index of q after scalar extension to the function field of an

arbitrary quadric. On the one hand, this bound offers a refinement of an important bound established
in earlier work of Karpenko–Merkurjev and Totaro; on the other hand, it is a direct generalization of

Karpenko’s theorem on the possible values of the first higher isotropy index. We prove its validity in

two key cases: (i) the case where char(F) 6= 2, and (ii) the case where char(F) = 2 and q is quasilinear
(i.e., diagonalizable). The two cases are treated separately using completely different approaches, the

first being algebraic–geometric, and the second being purely algebraic.
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1. Introduction

A basic, yet fundamental tool in the study of quadratic forms over general fields is that

of scalar extension. Among its many uses, perhaps the most significant is that of forcing

some quadratic form of interest to acquire a non-trivial zero, assuming that none exist in

the base field (that is, forcing an anisotropic form to become isotropic). This has the effect

of lowering the ‘anisotropic dimension’ of the form, which, apart from providing a natural

means by which to argue inductively, can often lead one to witness non-trivial behaviour

in other quadratic forms of interest as the field of definition is enlarged. In order to draw

meaningful conclusions, the challenge is typically then one of determining restrictions of

a general nature on this kind of behaviour. What those restrictions are, however, will

depend heavily on the particular choice of extension field. In order to maintain as much

control as possible, it is often desirable to choose an extension for which the restrictions

are most severe. Philosophically, this means that one should choose an extension which,

in the sense of valuation theory, is ‘generic’ for the problem at hand. For the purpose

of forcing an anisotropic quadratic form to become isotropic, there is a canonical choice

of extension having this property; namely, the function field of the projective quadric
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defined by the vanishing of that form. For these and other reasons, studying the effect

of scalar extension to function fields of quadrics has been a dominant theme in much of

the research carried out in the algebraic theory of quadratic forms since the early 1970s.

One problem of central interest in this area is the following: let p and q be anisotropic

quadratic forms of dimension > 2 over a general field F , and let P and Q denote the

projective F-quadrics defined by the vanishing of p and q, respectively. Under what

circumstances does q become isotropic over the function field F(p) of the quadric P?

From an algebraic–geometric perspective, this simply amounts to asking for necessary

and sufficient conditions in order for there to exist a rational map P 99K Q over F .

Nevertheless, the fact that we impose no constraints on the triple (F, q, p) endows the

problem with a depth and complexity which belies its initial appearance. In fact, it

is entirely unreasonable to hope for a complete solution in this generality; as a vast

literature accumulated over the past three decades amply demonstrates, the problem is

already considerably involved in low-dimensional situations (see, e.g., [11, § 8.2]).

In the present article, we will thus be concerned with a weaker variant of this problem

which seeks to investigate restrictions of a particular kind on the isotropy index i0(qF(p))

of q after scalar extension to the field F(p). Recall here that if φ is a quadratic form

defined on a finite-dimensional vector space V over a field, then its isotropy index i0(φ) is

defined as the maximal dimension of a subspace of V on which q is uniformly zero (that is,

a totally isotropic subspace of V ). As such, the integer i0(qF(p)) can not only detect the

isotropy of q over F(p), but measure the extent to which it persists; in the language

of algebraic geometry, our problem is not only concerned with identifying necessary

conditions in order for there to exist a rational map from P to Q, but from P to the

variety of totally isotropic subspaces of any prescribed dimension in Q.

The restrictions which we are interested in here are of a very general nature; namely,

those imposed by only the most basic discrete invariants of p and q. In this respect, our

problem has a long and rich history dating back to the late 1960s and the classic ‘subform

theorem’ of Cassels and Pfister. While many important contributions have been made

over the years by a large number of authors, one of the most notable results established to

date in this direction is a penetrating upper bound for the integer i0(qF(p)) involving just

three invariants of p and q: the dimension of q, the dimension of p, and the first higher

isotropy index of p, defined as the integer i1(p) := i0(pF(p)). Originally conjectured by

Izhboldin [10], and having its origin in the seminal work of Hoffmann [6], the bound

was first established in the case where char(F) 6= 2 by Karpenko and Merkurjev [15,

Corollary 4.2], and later in full generality by Totaro (see [24, Theorem 5.2]):

Theorem 1.1 (Karpenko–Merkurjev, Totaro). Let p and q be anisotropic quadratic forms

of dimension > 2 over a field F. If qF(p) is isotropic, then

i0(qF(p)) 6 dim(q)− dim(p)+ i1(p).

Unlike much of the work which came before it, Theorem 1.1 was established using

methods of algebraic geometry. Indeed, both sets of authors exploited the aforementioned

geometric interpretation of the integer i0(qF(p)) in order to bring the theory of algebraic

cycles to bear on the problem. This built upon foundational ideas of Vishik, who had
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earlier obtained non-trivial results in the same direction [26]. The theorem is all the

more significant due to the fact that a considerable amount is known concerning the

integer i1(p). In fact, there is a precise conjectural description of its possible values due

to Hoffmann, and this conjecture has been verified in the case where char(F) 6= 2 by

Karpenko [12]. Unfortunately, Karpenko’s proof makes essential use of a powerful fact

which is not yet available in characteristic 2: the existence of Steenrod-type operations

on the Chow groups of smooth projective varieties with Z/2Z coefficients. Hoffmann’s

conjecture therefore remains open in the latter setting. In recent work of the author,

however, completely different (and purely algebraic) methods were used to settle the

conjecture for a special class of forms in characteristic 2. More specifically, it was shown

in [22, Theorem 1.3] that if char(F) = 2, then Hoffmann’s conjecture on i1(p) holds in

the case where p is quasilinear, meaning that p is isometric to a form of Fermat type,

i.e., a weighted sum of squares a1 X2
1 + a2 X2

2 + · · ·+ an X2
n . We are left with the following

general result:

Theorem 1.2 (Karpenko, Scully). Let p be an anisotropic quadratic form of dimension

> 2 over a field F, and let s = v2(dim(p)− i1(p)). Assume that either:

(1) the characteristic of F is not 2; or

(2) the characteristic of F is 2 and p is quasilinear.

Then i1(p) 6 2s .

Here the notation v2(n) stands for the 2-adic order of the integer n. It is worth remarking

that while Hoffmann’s conjecture is essentially wide open for non-quasilinear forms in

characteristic 2, non-trivial partial results have been obtained by Hoffmann–Laghribi [9]

and also by Haution as a by-product of his efforts to develop the geometric machinery

which is currently absent from the characteristic-2 setting (see [4, 5]).

Theorems 1.1 and 1.2 represent important landmarks for the theory of quadratic forms.

Put together, they lead to the (highly applicable) conclusion that i0(qF(p)) is typically

not much more than dim(q)− dim(p). Geometrically speaking, this may be interpreted

more concretely as the fact that an anisotropic quadric cannot be ‘rationally compressed’

to another quadric of ‘sufficiently lower’ dimension. This striking behaviour was already

observed in the aforementioned work of Hoffmann, who proved a less refined variant of

Theorem 1.1 in which the integer dim(p)− i1(p) is replaced by the largest power of 2

strictly less than dim(p) (at least when char(F) 6= 2 – see [6]). It should be noted that

this observation has since gone on to have a great influence on developments in closely

related topics within the theory of algebraic groups (see, e.g., [13]).

The main aim of the current article is to present a new upper bound for

the integer i0(qF(p)) which is, on the one hand, complementary to that of

Karpenko–Merkurjev–Totaro, and, on the other, is a direct generalization of Hoffmann’s

conjecture on the possible values of the first higher isotropy index. As such, it both

strengthens and unifies an important part of the existing literature. As per Theorem 1.2,

however, we must limit our considerations to quasilinear forms when working in the

characteristic-2 setting; nevertheless, the results which we do obtain give a firm indication

that the bound should hold without restriction. Our main theorem is thus the following;
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as the reader will readily observe, Theorem 1.2 above is nothing else but the special case

in which q = p:

Theorem 1.3. Let p and q be anisotropic quadratic forms of dimension > 2 over a field

F, and let s = v2(dim(p)− i1(p)). Assume that either:

(1) the characteristic of F is not 2; or

(2) the characteristic of F is 2 and q is quasilinear.

Then

i0(qF(p)) 6 max(dim(q)− dim(p), 2s).

Although we restrict to quasilinear forms in characteristic 2, it is worth stressing that it

is the proof of this case of Theorem 1.3 which is, to the author’s mind, the most striking

part of the paper. Furthermore, contrary to the more traditional order of events, the

characteristic 6= 2 case of the theorem was in fact preceded by the quasilinear case; indeed,

the stated bound was only discovered by way of a conceptual trivialization established

in the quasilinear setting. This is an effective advertisement for the study of quasilinear

quadratic forms; intrinsic interest aside, the quasilinear case can sometimes serve as a

guiding light for investigations into the general theory.

To give an another illustration of the unifying power of Theorem 1.3, we show how it

may be used to give a short proof of a well-known and deep result in characteristic 6= 2
which was originally conjectured by Knebusch in [17] and proven by Fitzgerald in [2]:1,2

Example 1.4 (Fitzgerald, see [2, Theorem 1.6]). Let p and q be anisotropic quadratic

forms of dimension > 2 over a field F of characteristic 6= 2. If q becomes hyperbolic over

F(p) (i.e., i0(qF(p)) =
1
2 dim(q)), and dim(p) > 1

2 dim(q), then q is similar to a Pfister form.

Proof. Fitzgerald’s original proof involved rather subtle manipulations of the

Cassels–Pfister subform theorem [1, Theorem 22.5], among other standard results from

the classical algebraic theory of quadratic forms. Given Theorem 1.3, however, the

statement follows in a straightforward manner. Indeed, since

i0(qF(p)) =
1
2 dim(q) > dim(q)− dim(p)

by hypothesis, the theorem tells us in this case that

dim(q) = 2i0(qF(p)) 6 2s+1,

where s = v2(dim(p)− i1(p)). Now, as q becomes hyperbolic over F(p), the

Cassels–Pfister subform theorem implies that dim(p) 6 dim(q). By the definition of s,

we therefore have

2s < dim(p), dim(q) 6 2s+1. (1.1)

Suppose now that q is not similar to a Pfister form. Then there exists an extension L of

F such that (i) qL is isotropic and (ii) its anisotropic kernel (qL)an is similar to a Pfister

1Another generalization of Fitzgerald’s theorem has recently been established in [23].
2An analogue of Fitzgerald’s theorem holds for quasilinear forms in characteristic 2 (see [18,
Proposition 1.7]), and this may also be deduced from Theorem 1.3 in a similar way.
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form (for example, we can take L to be the penultimate entry in the generic splitting

tower of q – see [1, § 25]). In particular, we have dim((qL)an) 6 2s . Since (qL)an becomes

hyperbolic over L(pL), however, this is impossible. Indeed, another application of the

Cassels–Pfister subform theorem tells us that dim((qL)an) > dim(pL) > 2s . We therefore

conclude that q is similar to a Pfister form, as desired.

The characteristic 6= 2 case of Theorem 1.3 is proved in § 4 below (in fact, we get

a slightly more refined assertion – see Theorem 4.1). The argument makes use of the

theory of Chow correspondences in a similar way to the proofs of the aforementioned

results of Karpenko–Merkurjev–Totaro and Karpenko, though we present it using the

more conceptual language of Chow motives. Here we rely on the most recent advance in

the study of motivic decompositions of quadrics due to Vishik [28]. Since Vishik’s work

involves heavy use of the aforementioned Steenrod operations on Chow groups modulo 2,

this approach to Theorem 1.3 is certainly limited to characteristic 6= 2 at present.

In order to treat the case where char(F) = 2 and q is quasilinear, we are therefore forced

to proceed in an entirely different manner. Here we follow the pattern of ideas developed in

[22]. Primary to Theorem 1.3, our main result in this setting concerns a certain structural

decomposition of the anisotropic kernel of the form qF(p) – see Theorem 6.4 below. This

result (which may be viewed as a generalization of [22, Theorem 5.1]) takes place on the

level of quadratic forms themselves, and the quasilinear part of Theorem 1.3 emerges as

nothing more than a dimension-theoretic consequence of its validity (again, we actually

get a slightly better statement – see Corollaries 6.16 and 6.18). Most interestingly,

the quasilinear cases of Theorems 1.1 and 1.2 are also immediate dimension-theoretic

consequences of Theorem 6.4, as are some additional new results which seem to have no

known analogues in the characteristic 6= 2 theory, conjectural or otherwise (see § 6.C).

We are therefore left with a conceptually satisfying unification of several important

statements in this setting, both old and new. Taking all of this into account, it would

be interesting to know whether this algebraic approach to the isotropy problem (and

Theorem 6.4 in particular) admits some kind of generalization beyond the quasilinear

case.

For the convenience of the reader, the proofs of the two cases of Theorem 1.3 are

each preceded by a separate section of preliminaries particular to the relevant situation.

Definitions, basic concepts and results common to both are given in the next section.

Finally, we remark that, just as in [22], the proofs of our main results on quasilinear

quadratic forms readily generalize to give analogous results for quasilinear p-forms of

any prime degree p (i.e., Fermat-type forms of degree p in characteristic p). For the sake

of transparency, however, we refrain from working in this generality here.

Terminology. In this text, the word scheme means a scheme of finite-type over a field.

The word variety then means an integral scheme.

2. Diagonalizable quadratic forms

Let F be a field and V a finite-dimensional F-vector space. By a quadratic form on V , we

mean a map q : V → F such that (i) q(λv) = λ2q(v) for all (λ, v) ∈ F × V , and (ii) the

associated ‘polar form’ bq : V × V → F given by bq(v,w) = q(v+w)− q(v)− q(w) is
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F-bilinear. If the F-linear map from V to its dual space given by v 7→ bq(v,−) is bijective,

then we say that q is non-degenerate. The present article is concerned with quadratic

forms which are diagonalizable, in the sense that they arise as the diagonal part of a

symmetric bilinear form over their field of definition. More precisely, q is said to be

diagonalizable if there exists a symmetric bilinear form b on V such that q(v) = b(v, v)
for all v ∈ V . If char(F) 6= 2, then every quadratic form over F has this property; indeed,

we can (and must) take b = 1
2 bq in this case. By contrast, if char(F) = 2, then q is

diagonalizable if and only if it is quasilinear, i.e., if and only if q(v+w) = q(v)+ q(w) for

all v,w ∈ V . As such our discussion will concern the entire theory of quadratic forms over

fields of characteristic 6= 2, but only the quasilinear part of the characteristic-2 theory.

Terminology. In this section, by a quadratic form over F (or simply a form over F), we

shall mean a diagonalizable quadratic form on some finite-dimensional F-vector space.

We now recall some basic concepts and results concerning diagonalizable quadratic

forms over arbitrary fields. The reader is referred to [1] for a comprehensive discussion.

2.A. Basic concepts

Let q be a quadratic form over F . The F-vector space on which q is defined will be

denoted by Vq . The dimension of this vector space will be called the dimension of q,

and will be denoted by dim(q). The set {q(v) | v ∈ Vq} consisting of all elements of F
represented by q will be denoted by D(q). Given a field extension L of F , there is a

unique quadratic form on the L-vector space Vq ⊗F L which extends q and whose polar

form extends bq . We denote this form by qL . If R is a subring of L containing F , then

D(qR) will denote the subset {q(w) | w ∈ Vq ⊗F R} of D(qL)∩ R. Given a ∈ F∗, we will

write aq for the quadratic form v 7→ aq(v) on the vector space Vq .

Let p be another quadratic form over F . If there exists a bijective F-linear map f :
Vp → Vq such that q( f (v)) = p(v) for all v ∈ Vp, then we will say that p and q are

isometric, and write p ' q. If p ' aq for some a ∈ F∗, then we will say that p and q are

similar. An element a ∈ F∗ for which aq ' q is said to be a similarity factor of q. The

set G(q)∗ = {a ∈ F∗ | aq ' q} of all similarity factors of q is evidently a subgroup of F∗.
We will write G(q) for the union G(q)∗ ∪ {0}. Note that we have F2

⊆ G(q).
The assignment v+w 7→ p(v)+ q(w) ((v,w) ∈ Vp × Vq) defines a quadratic form p ⊥

q on Vp ⊕ Vq called the orthogonal sum of p and q. Given a positive integer n, n · q
will denote the orthogonal sum of n copies of q (note that n · q 6= nq). If there exists a

quadratic form r over F such that q ' p ⊥ r , then we will say that p is a subform of q.

The tensor product p⊗ q is the unique quadratic form on Vp ⊗ Vq such that (i) the polar

form of p⊗ q is given by the Kronecker product bp ⊗ bq , and (ii) for all (v,w) ∈ Vp × Vq ,

p⊗ q maps the element v⊗w to p(v)q(w). If there exists a quadratic form r over F such

that q ' p⊗ r , then we will say that q is divisible by p.

Given elements a1, . . . , an ∈ F , we write 〈a1, . . . , an〉 for the quadratic form

(λ1, . . . , λn) 7→
∑n

i=1 aiλ
2
i on the F-vector space F⊕n . Every quadratic form over F (in

the sense we are considering) is clearly isometric to one of this type.

A vector v ∈ Vq is said to be isotropic (with respect to q) if q(v) = 0. An F-linear

subspace of Vq consisting entirely of isotropic vectors is said to be totally isotropic. We will
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say that q is isotropic if Vq contains a non-zero isotropic vector, and anisotropic otherwise.

Equivalently, q is anisotropic if the projective quadric Q = {q = 0} ⊂ P(Vq) has no

F-rational points. If char(F) 6= 2, then this implies that Q is smooth [1, Proposition 22.1].

By contrast, if char(F) = 2 and q is non-zero, then Q is totally singular (in the sense

that it has no smooth points at all), irrespective of whether q is anisotropic or not.

The isotropy index of q, denoted by i0(q), is defined to be the maximal dimension of

a totally isotropic subspace of Vq . If char(F) 6= 2, then i0(q) is more commonly known

as the Witt index of q. In any characteristic, the integer i0(q) is insensitive to making

purely transcendental extensions of the base field (see [1, Lemma 7.15]).

2.B. Decomposition of isotropic forms

To any quadratic form q over F , one may associate an anisotropic quadratic form qan
over F known as the anisotropic part of q. The precise nature of this form depends on

the characteristic of F .

If char(F) 6= 2, then the assignment (x, y) 7→ xy defines a quadratic form H on the

F-vector space F⊕2 known as the hyperbolic plane over F . Up to isometry, H is the unique

non-degenerate isotropic form of dimension 2 over F . If, in this case, q is non-degenerate,

then the Witt decomposition theorem (see [1, Theorem 8.5]) characterizes qan as the

unique anisotropic form over F (up to isometry) such that q ' i0(q) ·H ⊥ qan. Note, in

particular, that we have dim(qan) = dim(q)− 2i0(q) in this situation.

If char(F) = 2 (so that q is quasilinear), then the additivity of q implies that the set

U of all isotropic vectors in Vq is, in fact, an F-linear subspace of Vq . In particular, the

isotropy index of q, i0(q), is nothing else but the dimension of U . In this case, the form

qan may be defined as the restriction of q to the quotient space Vq/U . Up to isometry, qan
is then the unique anisotropic form over F such that q ' i0(q) · 〈0〉 ⊥ qan. From another

point of view, the additivity of q also implies that the set D(q) consisting of all elements

of F represented by q is an F2-linear subspace of F . The form qan may then also be

characterized up to isometry as the unique anisotropic form over F such that D(qan) =

D(q) (see Proposition 5.1 below). It is important to note that in this setting we have

dim(qan) = dim(q)− i0(q), as opposed to the aforementioned dim(qan) = dim(q)− 2i0(q)
which prevails for non-degenerate forms in characteristic 6= 2.

Nevertheless, in all characteristics, we see that the dimension of qan measures the extent

to which q is isotropic. If dim(qan) 6 1, then we say that q is split. Note that if F is

algebraically closed, then every quadratic form over F is split. Moreover, if char(F) = 2,

then one only requires that F be perfect in order to make the same conclusion. For

example, there are no non-split forms over a finite field of characteristic 2.

2.C. Function fields of quadrics

Let q be a quadratic form over F . If q is not split, then it is irreducible as an element of

the symmetric algebra S(V ∗q ), and so the projective quadric Q is an integral F-scheme,

as is its affine cone {q = 0} ⊂ A(Vq) (see [1, Ch. IV]). In this case, we will write F(q)
for the function field of the former and F[q] for that of the latter. The field F[q] is of

course a degree-1 purely transcendental extension of F(q). If L is a field extension of
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F , then we will simply write L(q) instead of L(qL) whenever it is defined. Note that if

q ' 〈a0, a1, . . . , an〉 for some ai ∈ F with a0, a1 6= 0, then we have F-isomorphisms

F(q) ' F(S)
(√

a−1
0 (a1+ a2S2

2 + · · ·+ an S2
n)

)
and

F[q] ' Frac(F[T ]/(a0T 2
0 + · · ·+ anT 2

n )) ' F(U )
(√

a−1
0 (a1U 2

1 + · · ·+ anU 2
n )

)
,

where S = (S2, . . . , Sn), T = (T0, . . . , Tn) and U = (U1, . . . ,Un) are systems of

algebraically independent variables over F . Evidently, the form qF(q) is isotropic.

2.D. The Knebusch splitting pattern

Let q be a non-zero quadratic form over F . In [16], Knebusch introduced the following

construction (at least in the case where char(F) 6= 2): set F0 = F , q0 = qan, and recursively

define:

• Fr = Fr−1(qr−1) (provided qr−1 is not split); and

• qr = (qFr )an (provided Fr is defined).

Note that if qr is defined, then dim(qr ) < dim(qr−1), since an anisotropic quadratic

form becomes isotropic over the function field of the quadric which it defines. As

such, Knebusch’s process is finite, terminating at the first non-negative integer h(q)
for which qh(q) is split. The integer h(q) is called the height of q, and the tower

of fields F = F0 ⊂ F1 ⊂ · · · ⊂ Fh(q) is called the Knebusch splitting tower of q. For

each 0 6 r 6 h(q), we set jr (q) = i0(qFr ). If q is not split and r > 1, then the integer

jr (q)− jr−1(q) will be called the rth higher isotropic index of q, and will be denoted by

ir (q). In this case, the form qr will be called the rth higher anisotropic kernel of q. When

char(F) 6= 2, the tower F = F0 ⊂ F1 ⊂ · · · ⊂ Fh(q) is usually referred to as the generic

splitting tower of q, as it is generic (in a valuation-theoretic sense) among all towers of

extensions of F which ultimately split q. In particular, if K is any field extension of F ,

then there exists in this case an integer r ∈ [0, h(q)] such that i0(qK ) = i0(qFr ). This is

easily deduced from the following more specific statement:

Lemma 2.1 (See [16, § 5]). Let q be a quadratic form over a field F of characteristic

6= 2 with Knebusch splitting tower F = F0 ⊂ F1 ⊂ · · · ⊂ Fh(q), and let r be an integer

in [0, h(q)− 1]. If K is a field extension of F such that i0(qK ) > jr (q), then the free

compositum K · Fr+1 is a purely transcendental extension of K .

Lemma 2.1 follows from the fact that any smooth projective quadric which admits a

rational point is a rational variety [1, Proposition 22.9]. This is not the case for totally

singular quadrics (see [7, Remark 7.4(iii)]), whence the characteristic restriction.

2.E. Pfister and quasi-Pfister forms

Let n be a positive integer. Given a1, . . . , an ∈ F∗, we write 〈〈a1, . . . , an〉〉 for the

2n-dimensional quadratic form over F defined as the n-fold tensor product 〈1,−a1〉⊗

· · ·⊗ 〈1,−an〉. If char(F) 6= 2, then forms of this type are known as (n-fold) Pfister forms.
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If char(F) = 2, they are more commonly referred to as (n-fold) quasi-Pfister forms (in

order to distinguish them from the symmetric bilinear forms which also bear Pfister’s

name). In either case, any such form π is round (or multiplicative), meaning that

G(π) = D(π). If char(F) = 2, then the only round anisotropic forms over F are those

which are quasi-Pfister [7, Propisition 7.14]. By contrast, if char(F) 6= 2, there can be

non-Pfister anisotropic round forms; in this case, the anisotropic Pfister forms over F
are precisely those anisotropic forms π which are strongly multiplicative in the sense that

G(πK ) = D(πK ) for every field extension K of F (see [1, Theorem 23.2]).

3. Some preliminaries in characteristic 6= 2

We begin our investigations with the case of fields of characteristic different from 2. Here

we will make use of a certain interplay which exists in this setting between the Knebusch

splitting pattern of an anisotropic quadratic form and some discrete motivic invariants

of its associated quadric. We therefore begin by recalling some basic concepts and results

concerning this interaction. For the remainder of this section, F will denote an arbitrary

field of characteristic 6= 2.

3.A. Motivic decomposition type and upper motives

For readable introductions to the theory of Chow motives, with particular emphasis on

motives of quadrics, the reader is referred to [27] or [1]. If k is a field, then we write

Chow(k) for the additive category of Grothendieck–Chow motives over k with integral

coefficients (as defined, for example, in [27, § 1]). If X is a smooth projective variety

over k, then we will write M(X) to denote its motive as an element of Chow(k). In the

special case where X = Spec(k), we simply write Z instead of M(X), thus suppressing its

dependency on the base field k. Given an integer i and an object M of Chow(k), we will

write M{i} for the ith Tate twist of M . In particular, Z{i} will denote the Tate motive with

shift i in Chow(k). If K is a field extension of k, we write MK to denote the image of an

object M in Chow(k) under the natural scalar extension functor Chow(k)→ Chow(K ).
Now, let X be a smooth projective quadric of dimension n > 1 over our fixed field F

of characteristic 6= 2. By a result of Vishik (see [25] or [27, § 3]), any direct summand

of M(X) decomposes into a finite direct sum of indecomposable objects in Chow(F).
Furthermore, this decomposition is unique up to reordering of the summands. In the case

where X is split (i.e., X is the vanishing locus of a split quadratic form over F), the full

decomposition of M(X) was obtained by Rost [19], who showed that M(X) decomposes

into a certain direct sum of Tate motives. Since every smooth projective quadric over an

algebraically closed field is split, it follows that M(X F ) decomposes into a direct sum of

Tate motives in Chow(F), where F denotes a fixed algebraic closure of F . The precise

statement is the following:

M(X F ) '



n⊕
i=0

Z{i} if n is odd

( n⊕
i=0

Z{i}
)
⊕Z

{
n
2

}
if n is even

(3.1)
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(see [27, Proposition 2.2]). If N is an indecomposable direct summand of M(X), then

it follows that NF uniquely decomposes into a direct sum of a subset of the Tate

motives appearing in the decomposition of M(X F ). Moreover, the subsets which arise

from distinct indecomposable summands of M(X) are necessarily disjoint (see [27, § 4]).

The complete motivic decomposition of X over F therefore determines a partition of the

Tate motives which appear in (3.1). This partition is an important discrete invariant of X
known as its motivic decomposition type. The motivic decomposition type of X interacts

non-trivially with other known discrete invariants of X . In particular, it interacts with the

Knebusch splitting pattern of its underlying form, and this interaction has been exploited

to obtain deep results concerning the latter invariant in recent years. In order to prove

the characteristic 6= 2 part of Theorem 1.3, we will need the most recent advance in the

study of the motivic decomposition type of anisotropic quadrics, which is a far-reaching

result due to Vishik [28]. First, following [14], we define the upper motive of X to be the

unique indecomposable direct summand U (X) of M(X) such that the trivial Tate motive

Z is isomorphic to a direct summand of U (X)F . Vishik’s result then gives the following

information regarding U (X) in the anisotropic case (we recall that an anisotropic quadric

in characteristic 6= 2 is necessarily smooth – see § 2.A above):

Theorem 3.1 (Vishik, see [28, Theorem 2.1]). Let φ be an anisotropic quadratic form of

dimension > 2 over F with associated (smooth) projective quadric X . Write

dim(φ)− i1(φ) = 2r1 − 2r2 + · · ·+ (−1)t−12rt

for uniquely determined integers r1 > r2 > · · · > rt−1 > rt + 1 > 1, and, for each 1 6 l 6
t, set

Dl =

l−1∑
i=1

(−1)i−12ri−1
+ ε(l)

t∑
j=l

(−1) j−12r j ,

where ε(l) = 1 if l is even and ε(l) = 0 if l is odd. Then, for any 1 6 l 6 t, the Tate

motive Z{Dl} is isomorphic to a direct summand of U (X)F .

We will also make use of the following more elementary observation (also due to Vishik)

which relates two anisotropic quadrics on the motivic level in the situation where one of

the quadrics is stably birational to the variety of totally isotropic subspaces of prescribed

dimension in the other (see also [27, Theorem 4.17] for a strengthening of this result):

Theorem 3.2 (Vishik, cf. [26, Proposition 1], [27, Theorem 4.15]). Let p and q be

anisotropic quadratic forms of dimension > 2 over F with associated (smooth) projective

quadrics P and Q, respectively. Suppose that, for every field extension K of F, we have

i0(pK ) > 0 ⇔ i0(qK ) > l.

Then U (P){l} is isomorphic to a direct summand of M(Q).

3.B. A criterion for stable birational equivalence of smooth projective

quadrics

Let p and q be anisotropic quadratic forms of dimension > 2 over F . If qF(p) is

isotropic, then i0(qF(p)) > i1(q) (see § 2.D), and so dim(q)− i1(q) > dim(p)− i1(p) by an
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application of Theorem 1.1. In order to make use of Theorem 3.2 above in the situation of

Theorem 1.3, we will need the following complementary statement, also due to Karpenko

and Merkurjev:

Theorem 3.3 (Karpenko–Merkurjev, see [15, Theorem 4.1]). Let p and q be anisotropic

quadratic forms of dimension > 2 over F. If qF(p) is isotropic, and dim(q)− i1(q) =
dim(p)− i1(p), then pF(q) is isotropic as well.

Remark 3.4. In [24], Totaro showed that Theorem 3.3 is also valid in characteristic 2

(irrespective of any smoothness assumptions). We shall not need this result here.

4. Main results: the characteristic 6= 2 case

In this section, we show that Theorem 1.3 is valid in characteristic 6= 2. Following the

previous section, F will denote an arbitrary field of characteristic 6= 2 throughout. Note

that if p is an anisotropic quadratic form of dimension > 2 over F , then Theorem 1.2

asserts that the integer i1(p)− 2v2(dim(p)−i1(p)) is non-positive. The characteristic 6= 2 case

of Theorem 1.3 therefore follows from the following more refined statement:

Theorem 4.1. Let p and q be anisotropic quadratic forms of dimension > 2 over F, and

let s = v2(dim(p)− i1(p)). Then

i0(qF(p)) 6 max(dim(q)− dim(p)+ i1(p)− 2s, 2s).

Proof. In order to simplify the notation, set i := i0(qF(p)). Our assertion then reads

i 6 max(dim(q)− dim(p)+ i1(p)− 2s, 2s). (4.1)

The idea of the proof is now the following: Let P and Q be the (necessarily smooth)

projective F-quadrics defined by the vanishing of p and q, respectively. Assuming that

(4.1) fails to holds, we show (modulo an inductive assumption) that a certain shift of the

upper motive of P is a direct summand of the motive of Q (see § 3.A above). We then

show that this is not possible by using Theorem 3.1 to analyse the motivic decomposition

types of P and Q. The key observation here is the following:

Lemma 4.2. Suppose, in the above situation, that (4.1) does not hold. Then, for any field

extension K of F, we have

i0(pK ) > 0 ⇔ i0(qK ) > i.

Proof. Let F = F0 ⊂ F1 ⊂ · · · ⊂ Fh(q) be the Knebusch splitting tower of q and let

q1, . . . , qh(q) be its higher anisotropic kernel forms (see § 2.D). Recall that for each integer

k ∈ [0, h(q)], jk(q) denotes the isotropy index i0(qFk ) of q over Fk . Since (4.1) fails to hold

by hypothesis, we have i > 1. In particular, qF(p) is isotropic. Thus, by the genericity of

Knebusch’s construction, there exists an integer r ∈ [0, h(q)− 1] such that jr+1(q) = i

(again, see § 2.D). We claim that pFr+1 is isotropic. In order to prove this claim, we may

clearly assume that pFr is anisotropic (in fact, one can show that this is indeed the case,
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but we do not need to know that here). Working under this assumption, let us now set

µ := dim(qr )− i1(qr )− (dim(pFr )− i1(pFr )).

Since i = jr+1(q) > jr (q), qr becomes isotropic over Fr (p). As Fr+1 = Fr (qr ) by definition,

Karpenko and Merkurjev’s Theorem 3.3 shows that, to prove our claim, it suffices to check

that µ = 0. By the remarks preceding Theorem 3.3, we certainly have µ > 0. To see that

equality holds here, let us first note that Fr (p) is a purely transcendental extension

of F(p) by Lemma 2.1. Since isotropy indices are insensitive to purely transcendental

extensions (§ 2.A), it follows that i1(pFr ) = i1(p). In particular, we have

µ = dim(qr )− i1(qr )− (dim(p)− i1(p)). (4.2)

Now, since i > dim(q)− dim(p)+ i1(p)− 2s by hypothesis, we see that

(dim(p)− i1(p))+µ = dim(qr )− i1(qr )

= dim(q)− 2jr (q)− ir+1(q)

= dim(q)− jr+1(q)− jr (q)

= dim(q)− i− jr (q)

< (dim(p)− i1(p))+ 2s
− jr (q),

and so µ < 2s
− jr (q). On the other hand, since we are also assuming that i > 2s , we have

i1(qr ) = jr+1(q)− jr (q) = i− jr (q) > 2s
− jr (q).

By Karpenko’s theorem (see Theorem 1.2), it follows that dim(qr )− i1(qr ) is divisible by

2t for some integer t satisfying 2t > i1(qr ) > 2s
− jr (q). But, by (4.2), we have

dim(qr )− i1(qr ) = (dim(p)− i1(p))+µ.

As dim(p)− i1(p) is (by definition) divisible by 2s , it follows that µ is divisible by

min(2s, 2t ). Since 0 6 µ < 2s
− jr (q) < min(2t , 2s), this shows that µ = 0, and thus proves

our initial claim that pFr+1 is isotropic. Finally, to complete the proof, let K be any field

extension of F . If i0(pK ) > 0, then K (p) is, by Lemma 2.1, a purely transcendental

extension of K , and so i0(qK ) = i0(qK (p)) > i0(qF(p)) > i. Conversely, if i0(qK ) > i, then

Lemma 2.1 again shows that the compositum L := K · Fr+1 is a purely transcendental

extension of K , and so i0(pK ) = i0(pL) > i0(pFr+1) > 0. The conditions i0(pK ) > 0 and

i0(qK ) > i are therefore equivalent, which is what we wanted to prove.

We now return to the proof of Theorem 4.1. We will argue by induction on dim(q), the

case where dim(q) = 2 being trivial. Assume now that dim(q) > 2 and that the theorem

is valid for all forms of dimension <dim(q) over F . Under this inductive hypothesis, we

will show that (4.1) is valid for q. For this, we will use the following simple observation:

Lemma 4.3. Let q be a quadratic form over F and let K be a field extension of F. Then,

for any integer i ∈ [0, i0(qK )], there exists a subform q ′ ⊂ q such that:

(1) dim(q ′) 6 dim(q)− i ; and

(2) i0(q ′K ) = i0(qK )− i .
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Proof. We may assume that K = F and that q = 〈a1, . . . , an〉 for non-zero scalars a j ∈ F .

If i = 0, then the statement holds trivially. Assume now that i > 1. Observe first that

i0(q)− 1 6 i0(〈a1, . . . , an−1〉) (4.3)

(the intersection of a maximal totally isotropic subspace of Vq with a hyperplane H ⊂ Vq
is a totally isotropic subspace of H having codimension at most 1). By a simple induction,

we therefore have that

i0(q)− i 6 i0(〈a1, . . . , an−i 〉).

Now, let m 6 n− i be minimal so that i0(q)− i 6 i0(〈a1, . . . , am〉). Then we must in fact

have that i0(q)− i = i0(〈a1, . . . , am〉). Indeed, as per (4.3), strict inequality would imply

that i0(q)− i 6 i0(〈a1, . . . , am−1〉), contradicting the minimality of m. It follows that q ′ =
〈a1, . . . , am〉 has the needed properties.

Now, suppose, for the sake of contradiction, that inequality (4.1) is not valid for q.

Then i > 2s , and so, by Lemma 4.3, there exists a subform q ′ of codimension at least

i− (2s
+ 1) in q such that i0(q ′F(p)) = 2s

+ 1. But then the statement of our theorem fails to

hold for the pair (q ′, p). By our inductive assumption, we therefore conclude that q ′ = q,

and so i = 2s
+ 1. Now, since (4.1) fails to hold, Lemma 4.2 shows that the condition

of Theorem 3.2 is satisfied with l = i− 1 = 2s , and hence U (P){2s
} is isomorphic to a

direct summand of M(Q). Note, however, that U (P){2s
} is not isomorphic to the upper

motive U (Q) of Q. Indeed, since 2s > 1, the trivial Tate motive Z is not isomorphic

to a direct summand of U (P){2s
}F . Thus, U (Q) and U (P){2s

} are (isomorphic to)

distinct indecomposable direct summands of M(Q). To complete the proof, we will now

obtain a contradiction to our initial supposition by showing that U (P){2s
}F and U (Q)F

have a common Tate motive in their respective decompositions (this cannot happen for

non-isomorphic direct summands of M(Q) – see § 3.A above). For this, we use Vishik’s

Theorem 3.1. More specifically, we will use Vishik’s result to show that Z{m} is isomorphic

to a direct summand of both U (P){2s
}F and U (Q)F , where m := (dim(p)− i1(p)+ 2s)/2.

In the former case, this follows immediately from Theorem 3.1. Indeed, the reader will

quickly check that, for X = P, the l = t case of the latter result states precisely that

Z{m− 2s
} is isomorphic to a direct summand of U (P)F . To see that Z{m} is isomorphic to

a direct summand of U (Q)F , however, we first need to analyse the alternating 2-expansion

of the integer dim(q)− i1(q). More specifically, we need the following observation:

Lemma 4.4. Suppose we are in the above situation, and write

dim(q)− i1(q) = 2r1 − 2r2 + · · ·+ (−1)t−12rt

for uniquely determined integers r1 > r2 > · · · > rt−1 > rt + 1 > 1. Then there exists an

even integer k ∈ [1, t − 1] such that

2m = 2r1 − 2r2 + · · ·+ 2rk−1 − 2rk

(where m = (dim(p)− i1(p)+ 2s)/2).

Given this assertion, we obtain that Z{m} is isomorphic to a direct summand of

U (Q)F by applying Theorem 3.1 to the case where X = Q and l = k+ 1. Before proving

Lemma 4.4, we make an intermediate calculation:
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Sublemma 4.5. In the above situation, the integer

α := (dim(q)− dim(p)+ i1(p)− 2s)− i1(q)

is positive.

Proof. Let F = F0 ⊂ F1 ⊂ · · · ⊂ Fh(q) be the Knebusch splitting tower of q, and let r ∈
[0, h(q)− 1] be such that jr+1(q) = i (see § 2.D). Since we are assuming that (4.1) does

not hold, the proof of Lemma 4.2 shows that

dim(p)− i1(p) = dim(qr )− i1(qr )

= dim(q)− i− jr (q)

= dim(q)− (2s
+ 1)− jr (q), (4.4)

and so α = jr (q)− i1(q)+ 1. Since jr (q) > i1(q) if and only if r > 1, the claim therefore

amounts to the assertion that r 6= 0. Suppose, for the sake of contradiction, that this is

not the case. Then we have

i1(q) = j1(q) = i = 2s
+ 1.

On the other hand, since j0(q) = 0, (4.4) then becomes

dim(q)− i1(q) = dim(p)− i1(p),

and so i1(q) 6 2s by Karpenko’s theorem (see Theorem 1.2) and the definition of s. We

thus conclude that our supposition was incorrect, and so the original claim is valid.

Proof of Lemma 4.4. We begin by observing that we can write

dim(q)− i1(q) = (dim(p)− i1(p)+ 2s)+α, (4.5)

where, as above,

α = (dim(q)− dim(p)+ i1(p)− 2s)− i1(q).

By Sublemma 4.5, α is positive. On the other hand, since (4.1) fails to hold, the integer

(dim(q)− dim(p)+ i1(p)− 2s) is strictly less than i = 2s
+ 1. Since i1(q) > 1, we conclude

that 0 < α < 2s . Now, by the very definition of s, we have

dim(p)− i1(p) = 2b1 − 2b2 + · · ·+ (−1)u−22bu−1 + (−1)u−12s

for unique integers b1 > b2 > · · · > bu−1 > s+ 1 > 1. Adding 2s , we see that

dim(p)− i1(p)+ 2s
=

 2b1 − 2b2 + · · ·+ 2bu−1 if u is even

2b1 − 2b2 + · · ·− 2bu−1 + 2s+1 if u is odd.

Irrespective of whether u is odd or even, it follows that

dim(p)− i1(p)+ 2s
= 2r1 − 2r2 + · · ·+ 2rk−1 − 2rk

for some even integer k and integers r1 > r2 > · · · > rk−1 > rk > s. At the same time,

since 0 < α < 2s , we can write

α = 2rk+1 − 2rk+2 + · · ·+ (−1)t−12rt
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for uniquely determined integers s > rk+1 > rk+2 > · · · > rt−1 > rt + 1 > 1. By (4.5), we

then have

dim(q)− i1(q) = (2r1 − 2r2 + · · ·+ 2rk−1 − 2rk )+ (2rk+1 − 2rk+2 + · · ·+ (−1)t−12rt ),

and this is precisely the description of dim(q)− i1(q) as an alternating sum of 2-powers

which appears in the statement of the lemma. Since m = (dim(p)− i1(p)+ 2s)/2 by

definition, we are done.

With the lemma proved, we have shown that the non-isomorphic indecomposable

direct summands U (Q) and U (P){2s
} of M(Q) admit a common Tate motive in their

respective decompositions after scalar extension to F , thus providing us with the needed

contradiction. This completes the induction step and so the theorem is proved.

Theorem 4.1 is indeed a non-trivial refinement of Theorem 1.3 in the characteristic

6= 2 setting. For instance, if p is odd-dimensional, then the integer i1(p)− 2s is negative

by Theorem 1.2, and so we get a slightly better result in this case. Another situation in

which we get a more significant refinement is found in the following example:

Example 4.6. If dim(p) = 2n
+ 1 for some non-negative integer n, then i1(p) = 1 (by

[6, Corollary 1] or Theorem 1.2) and so s = n. Theorem 4.1 therefore yields

i0(qF(p)) 6 max(dim(q)− 2n+1, 2n) (4.6)

(as opposed to the bound of max(dim(q)− 2n
− 1, 2n) given by Theorem 1.3).

It is worth noting here that since i0(qF(p)) 6 i0(qF(p′)) for any subform p′ ⊂ p (see

[16, § 3]), inequality (4.6) in fact holds whenever dim(p) > 2n :

Corollary 4.7. 3 Let p and q be anisotropic quadratic forms of dimension > 2 over F,

and let n be the unique non-negative integer such that 2n < dim(p) 6 2n+1. Then

i0(qF(p)) 6 max(dim(q)− 2n+1, 2n).

5. Some preliminaries in characteristic 2

We now turn to the case of quasilinear quadratic forms in characteristic 2. We begin by

collecting some preliminary results to be used later on. For detailed expositions of the

basic theory of quasilinear quadratic forms, the reader is referred to [7] and [22]. For the

remainder of this section, F will now denote an arbitrary field of characteristic 2.

5.A. The representation theorem

It is well known that an anisotropic quadratic form over an arbitrary field can be recovered

(up to isometry) from the set of values that it represents over every extension of that

field (see [1, Theorem 17.12]). In the quasilinear setting, an anisotropic form can already

be recovered from the set of values that it represents over the base field. Indeed, we have

the following simple observation:

3A more detailed study of the relationship existing between the integers dim(q), n and i0(qF(p)) has
recently been undertaken in [23].
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Proposition 5.1 (Cf. [8, Proposition 8.1]). Let p and q be quasilinear quadratic forms

over F. Then pan ⊂ qan if and only if D(p) ⊆ D(q). In particular, pan ' qan if and only

if D(p) = D(q).

We will need the following easy consequence of Proposition 5.1:

Corollary 5.2 (Cf. [8, Proposition 8.1]). Let q be a quasilinear quadratic form over F and

let L be a field extension of F. Then there exists a subform r ⊂ qan such that rL ' (qL)an.

Proof. D(qL) is obviously spanned as an L2-vector space by elements of D(q). If

a1, . . . , an ∈ D(q) form a basis of D(qL) over L2, then Proposition 5.1 shows that

r = 〈a1, . . . , an〉 is a subform of qan having the required property.

5.B. Inseparable quadratic extensions

We will make use of some basic results concerning the behaviour of quasilinear quadratic

forms under scalar extension to an inseparable quadratic extension of the ground field.

We first note the following statement, which is a direct consequence of the additivity

property of quasilinear quadratic forms.

Lemma 5.3 (Cf. [21, Lemma 3.8]). Let q be a quasilinear quadratic form over F, and let

K = F(
√

a) for some a ∈ F \ F2. Then D(qK ) = D(q)+ aD(q) (as subsets of K ).

The following result elaborates upon Lemma 5.2 in the case where L is an inseparable

quadratic extension of F , and is directly analogous to a standard result in the

characteristic 6= 2 theory (see [1, Corollary 22.12]):

Lemma 5.4 (Cf. [7, Proposition 5.10]). Let q be an anisotropic quasilinear quadratic form

over F and let K = F(
√

a) for some a ∈ F \ F2. If i0(qK ) = n, and r ⊂ q is such that

rK ' (qK )an, then there exist elements b1, . . . , bn ∈ D(r) such that

q ' r ⊥ a〈b1, . . . , bn〉.

5.C. Quasi-Pfister forms

Let π be a quasi-Pfister form over F (see § 2.E above). Then π is round, i.e, D(q) = G(q).
In particular, the set D(q) is not only an F2-linear subspace of F , it is an F2-linear subfield

of F (recall that the similarity factors of any form over F constitute a subgroup of F∗).
Moreover, this property characterizes anisotropic quasi-Pfister forms over F , since such

forms are characterized by their roundness.

5.D. The norm form

(see [8, § 8], [7, § 4]) Let q be a quasilinear quadratic form over F . The norm field of

q, denoted by N (q), is defined as the smallest subfield of F containing all ratios of

non-zero elements of D(q). Evidently, we have N (aq) = N (q) for all a ∈ F∗. Note also

that F2
⊆ N (q) by definition. Thus, by § 5.C, there exists, up to isometry, a unique

anisotropic quasi-Pfister form qnor over F with the property that D(qnor) = N (q). This

form is called the norm form of q. Note that if a is any non-zero element of F
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represented by q, then aqan ⊂ qnor. Indeed, this follows from Proposition 5.1 in light

of the obvious inclusion D(aqan) = aD(q) ⊆ N (q) = D(qnor). The dimension of qnor is an

important invariant known as the norm degree of q. In what follows, it will be more

convenient to work with its base-2 logarithm which we denote by lndeg(q). In other

words, lndeg(q) = log2(dim(qnor)) = log2[N (q) : F2
]. We will need the following lemma

on the evolution of this invariant over Knebusch’s splitting tower (see § 2.D above).

Lemma 5.5 (Cf. [8, Theorem 8.11(i)]). Let p be a quasilinear quadratic form over F. Then

lndeg(pi ) = lndeg(p)− i for all 1 6 i 6 h(p) (where pi denotes the ith higher anisotropic

kernel of p).

5.E. Similarity factors

(See [7, § 6]) Another direct consequence of Proposition 5.1 is the following statement

concerning similarity factors:

Lemma 5.6 (Cf. [7, Lemma 6.3]). Let q be a quasilinear quadratic form over F, and let

a ∈ F∗. Then a ∈ G(q) if and only if aD(q) = D(q).

Note that because q is quasilinear, the condition of the preceding lemma is closed under

addition. Since G(q) \ {0} is a subgroup of F∗, it follows that G(q) is a subfield of F .

5.F. Divisibility by quasi-Pfister forms

Our main results on the isotropy behaviour of quasilinear quadratic forms over function

fields of quadrics will be obtained by studying the extent to which certain forms are

divisible by quasi-Pfister forms. With this in mind, it is useful to introduce some related

terminology (see [22, § 2.11]):

Given a quasilinear quadratic form q over F , we define its divisibility index, denoted

by d0(q), to be the largest non-negative integer s such that qan is divisible by an s-fold

quasi-Pfister form. The higher divisibility indices of q, d1(q), d2(q), . . . , dh(q)(q), are

defined as the divisibility indices of the higher anisotropic kernel forms q1, q2, . . . , qh(q),

respectively. It will be worth recording the following easy calculation from [22]:

Lemma 5.7 (Cf. [22, Lemma 2.35]). Let q be a quasilinear quadratic form over F and

let L be a purely transcendental field extension of F. Then d0(qL) = d0(q). In particular,

the higher divisibility indices of any quasilinear quadratic form are insensitive to purely

transcendental field extensions.

We will need some further observations regarding the above notion of divisibility. The

first of these is analogous to a standard result [11, Corollary 2.1.11] regarding divisibility

of non-degenerate quadratic forms by Pfister forms over fields of characteristic 6= 2:

Lemma 5.8 (Cf. [7, Proposition 4.19]). Let q be a quasilinear quadratic form and π an

anisotropic quasi-Pfister form over F. If q is divisible by π , then qan is also divisible

by π .
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Next, it is well known that if char(F) 6= 2, then an anisotropic quadratic form q over F
is divisible by an anisotropic Pfister form π if and only if D(πK ) ⊆ G(qK ) for every field

extension K/F (see [1, Theorem 20.16 and Corollary 23.6]). In the quasilinear setting,

this condition can already be checked over the base field (compare Proposition 5.1):

Proposition 5.9 (Cf. [7, Proposition 6.4], [22, Corollary 2.20]). Let q be an anisotropic

quasilinear quadratic form and π an anisotropic quasi-Pfister form over F. Then q is

divisible by π if and only if D(π) ⊆ G(q).

This has the following consequence:

Corollary 5.10. Let q and p be anisotropic quasilinear quadratic forms over F. Then q
is divisible by pnor if and only if (q ⊗ p)an is similar to q.

Proof. Let a0, a1, . . . , an ∈ F∗ be such that p ' 〈a0, a1, . . . , an〉. By Proposition 5.9 and

the definition of pnor, q is divisible by pnor if and only if N (p) ⊆ G(q). But N (p) =
F2( a1

a0
, . . . , an

a0

)
, and, since G(q) is a subfield of F containing F2 (see § 5.E), we see that

q is divisible by pnor if and only if ai a−1
0 ∈ G(q) for all 1 6 i 6 n. By Lemma 5.6, this

is equivalent to the assertion that ai a−1
0 D(q) = D(q) for all 1 6 i 6 n. Since D(q) is a

finite-dimensional F2-linear subspace of F , these equalities hold if and only if

n∑
i=0

ai a−1
0 D(q) ⊆ D(q).

But
∑n

i=0 ai a−1
0 D(q) = D(a−1

0 q ⊗ p), so by Proposition 5.1, the preceding inclusion

amounts to the assertion that (q ⊗ p)an ⊂ a0q. On the other hand, Proposition 5.1 also

shows that a0q is a subform of (q ⊗ p)an. Thus, we see that q is divisible by pnor if and

only if a0q ' (q ⊗ p)an, which proves the desired assertion.

5.G. Isotropy of quasilinear quadratic forms under field extensions

We record here some basic observations regarding the isotropy behaviour of quasilinear

quadratic forms under field extensions. The first concerns separable extensions (here,

when we say that L is a separable extension of F , we mean that for any algebraic closure

F of F , the ring L ⊗F F has no nilpotent elements):

Lemma 5.11 (Cf. [7, Proposition 5.3]). Let q be an anisotropic quasilinear quadratic form

over F. If L is a separable field extension of F, then qL is anisotropic.

In particular, anisotropic forms remain anisotropic under purely transcendental field

extensions. Second, we will need a slightly more subtle result regarding function fields

of (affine) hypersurfaces. Let T = (T1, . . . , Tm) be a system of algebraically independent

variables over F , let g ∈ F[T ] be an irreducible polynomial and let F[g] denote the

fraction field of the integral domain F[T ]/(g) (i.e., the function field of the integral affine

hypersurface {g = 0} ⊂ Am
F ). Given an element f ∈ F[T ], let us write multg( f ) for the

largest non-negative integer s such that f = gsh for some h ∈ F[T ] (with the added
convention that multg(0) = +∞). Then we have the following:
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Lemma 5.12 (Cf. [22, Proposition 2.33]). In the above situation, let q be a quasilinear

quadratic form and let f ∈ F[T ]. Suppose that f ∈ D(qF(T )) and that qF[g] is anisotropic.

Then multg( f ) ≡ 0 (mod 2).

For m = 1, the assertion of Lemma 5.12 holds for arbitrary quadratic forms in

arbitrary characteristic. Indeed, this may be deduced as an easy consequence of the

fundamental ‘representation theorem’ of Cassels and Pfister [1, Theorem 17.3]. For m > 1,

however, the statement is peculiar to the quasilinear case; as observed by Hoffmann [7,

Corollary 3.4], one may use here the additivity of quasilinear quadratic forms to generalize

the Cassels–Pfister theorem to the following stronger multi-variable statement:

Theorem 5.13 (Hoffmann, cf. [7, Corollary 3.4]). Let q be a quasilinear quadratic form

over F, let T = (T1, . . . , Tn) be a system of algebraically independent variables over F
and let f ∈ F[T ]. If f ∈ D(qF(T )), then f ∈ D(qF[T ]).

6. Main results: the quasilinear case

In this final section we prove several new results concerning the isotropy behaviour

of quasilinear quadratic forms over function fields of (totally singular) quadrics. The

main result is Theorem 6.4, from which a number of interesting statements, including

the quasilinear part of Theorem 1.3, follow formally. This theorem is essentially a

generalization of [22, Theorem 5.1], and its proof follows that of the latter closely.

However, certain adjustments are needed along the way to facilitate the extra generality.

Among them, we need to work with certain ‘generic subforms’ of a given anisotropic

form.

6.A. Generic subforms

We prove the following existence statement which will be needed for the proof of

Theorem 6.4 below:

Lemma 6.1. Let p be an anisotropic quasilinear quadratic form of dimension > 3 over F
such that 1 ∈ D(p). Then there exist a purely transcendental field extension L of F and

a codimension-1 subform p′ ⊂ pL such that:

(1) pL ' 〈1〉 ⊥ p′;

(2) L[p′] is a purely transcendental extension of F(p).

Remark 6.2. We remind the reader that L[p′] denotes here the function field of the affine

(as opposed to projective) hypersurface defined by the vanishing of p′ over L.

Proof. The most general such pair (L , p′) may be constructed as the generic fibre of a

certain incidence scheme over the variety of hyperplanes in Vp. The following more direct

construction of a pair (L , p′) with the needed properties was kindly suggested by the

referee: We can assume that p = 〈1, a, b, c1, . . . , cm〉 for some m > 0 and non-zero scalars

a, b, c1, . . . , cm ∈ F . Let L = F(X) be the rational function field over F in the variable
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X , and consider the form

p′ = 〈a, 1+ bX2, c1, . . . , cm〉

over L. It is clear that D(〈1〉 ⊥ p′) = D(pL) (as L2-vector spaces, both sets are obviously

generated by the elements 1, a, b, c1, . . . , cm). Since pL is anisotropic (because L/F is

purely transcendental – see Lemma 5.11), Proposition 5.1 then implies that pL ' 〈1〉 ⊥ p′

(note that both forms have the same dimension). It remains to show that (L , p′) also

satisfies condition (2). We use here the explicit presentation of the function field of a

projective quadric given in § 2.C. Let Y = (Y1, . . . , Ym) be an m-tuple of algebraically

independent variables over L. Then we have F-linear isomorphisms

L(p′) ' L(Y )
(√

a−1((1+ bX2)+ c1Y 2
1 + · · ·+ cmY 2

m)

)
' L(Y )

(√
a+ abX2+ ac1Y 2

1 + · · ·+ acmY 2
m

)
= F(X, Y )

(√
a+ abX2+ ac1Y 2

1 + · · ·+ acmY 2
m

)
' F(〈1, a, ab, ac1, . . . , acm〉).

Now

〈1, a, ab, ac1, . . . , acm〉 ' a〈a−1, 1, b, c1, . . . , cm〉 ' a〈1, a, b, c1, . . . , cm〉 = ap,

and since F(p) is canonically F-isomorphic to F(ap), we see that L(p′) is F-isomorphic

to F(p). As L[p′] is a degree-1 purely transcendental extension of L(p′), the claim

follows.

Remark 6.3. In the situation of Lemma 6.1, let p̂ ⊂ p be such that p ' 〈1〉 ⊥ p̂. If i1(p) >
1, then it has been shown by Totaro [24, Theorem 6.4] that assertion (2) holds with L = F
and p′ = p̂, i.e., that F[ p̂] is F-isomorphic to F(p) (see also [22, Corollary 3.9]). We will

not use this fact in what follows.

6.B. A subform condition for isotropy of quasilinear quadratic forms over

the function field of a quadric

The following theorem is the main result of this section; we remark that if i1(p) > 1, then

the ‘up to replacing F with a purely transcendental extension of itself’ qualification may

be removed – see Remark 6.8 below:

Theorem 6.4. Let p and q be anisotropic quasilinear quadratic forms of dimension > 2
over F. If qF(p) is isotropic, then, up to replacing F with a purely transcendental extension

of itself, there exists an anisotropic quasilinear quadratic form τ over F(p) such that:

(1) dim(τ ) = i0(qF(p)); and

(2) (p1⊗ τ)an ⊂ (qF(p))an.

Proof. If dim(p) = 2, then the theorem simply asserts that dim((qF(p))an) > i0(qF(p)),

which is true by Lemma 5.4. Suppose now that dim(p) > 3. After multiplying q and
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p by appropriate scalars if necessary, we may assume that both forms represent 1. By

Lemma 6.1, we can then find a purely transcendental field extension L of F and a

subform p′ ⊂ pL such that pL ' 〈1〉 ⊥ p′ and such that the affine function field L[p′] is

a purely transcendental extension of F(p). We fix such a pair (L , p′) for the remainder

of the proof. Now, let us choose elements a1, . . . , an ∈ L∗ such that p′ ' 〈a1, . . . , an〉,

and set p′(T ) =
∑n

i=1 ai T 2
i ∈ L[T ], where T = (T1, . . . , Tn) is a system of algebraically

independent variables over L. Then the field L[p′] may be identified with the fraction

field of the integral domain L[T ]/
(

p′(T )
)

(see § 2.C above). Fixing this identification

henceforth, we will write f for the image of a given polynomial f ∈ L[T ] under the

canonical projection L[T ] → L[p′]. For such a polynomial f , we will also write m( f ) for

the multiplicity of p′(T ) in f , i.e., the largest integer k such that f = p′(T )kh for some

h ∈ L[T ]. Note that we have m( f ) = 0 if and only if f 6= 0 in L[p′].
To simplify the notation, we now let i = i0(qF(p)). By hypothesis, we have i > 0. The

proof of Theorem 6.4 begins with the following lemma:

Lemma 6.5. Assume we are in the above situation. Then there exist a subform r ⊂ q and

elements f1, . . . , fi ∈ D(rL[T ]) such that:

(1) rF(p) ' (qF(p))an;

(2) rL[p′] is anisotropic;

(3) qL(T ) ' rL(T ) ⊥ p′(T )〈 f1, . . . , fi〉;

(4) the form τ = 〈 f1, . . . , fi〉 (defined over L[p′]) is anisotropic.

Proof. The existence of a subform r ⊂ q satisfying (1) is ensured by Corollary 5.2. Since

L[p′] is a purely transcendental extension of F(p), any such r also satisfies (2) in view

of Lemma 5.11. Now, as L is a purely transcendental extension of F , the field L[p]
is a purely transcendental extension of F[p], and hence of F(p). Another application

of Lemma 5.11 therefore shows that rL[p] ' (qL[p])an. Since L[p] is L-isomorphic to

L(T )(
√

p′(T )) (see § 2.C above), Lemma 5.4 then implies that

qL(T ) ' rL(T ) ⊥ p′(T )〈 f1, . . . , fi〉

for some f1, . . . , fi ∈ D(rL(T )). Multiplying the f j by squares in L[T ] if necessary, we

may arrange it so that f j ∈ D(rL[T ]) for all j . Thus, there exists a sequence f1, . . . , fi ∈
D(rL[T ]) for which (3) holds. Among all such sequences, let us choose one for which∑i

j=1 degT1
f j is minimal (where, for a non-zero polynomial f ∈ L[T ], degT1

( f ) denotes

the degree of f viewed as a polynomial in the variable T1 over the field L(T2, . . . , Tn)).

We claim that for this choice of f1, . . . , fi, (4) also holds. Suppose, for the sake of

contradiction, that this is not the case, i.e., that the form 〈 f1, . . . , fi〉 is isotropic over

L[p′]. Then there exist polynomials h1, . . . , hi, h ∈ L[T ] such that:

(i)
∑n

j=1 h2
j f j = p′(T )h in L[T ];

(ii) degT1
(h j ) < 2 for all j ;

(iii) h j 6= 0 for at least one j .

Indeed, (i) and (iii) amount to the stated isotropy of the form, while (ii) can be

arranged because T 2
1 =

∑n
j=2

a j
a1

T 2
j in the field L[p′]. Now, as D(rL(T )) is closed
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under addition, we have p′(T )h ∈ D(rL(T )) by (i) and the choice of f j . Since rL[p′]
is anisotropic, Lemma 5.12 implies that h = p′(T )h′ for some h′ ∈ L[T ]. Note here

that h′ 6= 0. Indeed, if this were not the case, then (i) and (iii) would imply

that 〈 f1, . . . , fi〉 is isotropic over L(T ); since the latter form is similar to a

subform of the anisotropic form qL(T ), this is not so. Furthermore, since p′(T )2h′ =
p′(T )h ∈ D(rL(T )), and since D(rL(T )) is closed under multiplication by squares in

L(T ), we have h′ ∈ D(rL(T )). Taking the generalized Cassels–Pfister representation

theorem for quasilinear quadratic forms into account (Theorem 5.13), we see that,

in fact, h′ ∈ D(rL[T ]). Now, by (iii), there exists an integer l ∈ {1, . . . , i} such that

hl 6= 0. Among all such l, let us choose one so that the integer degT1
(h2

l fl) is

maximal. Since hl , h′ 6= 0, Proposition 5.1 (together with (i)) implies that 〈 f1, . . . , fi〉 '
〈 f1, . . . , fl−1, p′(T )2h′, fl+1, . . . , fi〉 ' 〈 f1, . . . , fl−1, h′, fl+1, . . . , fi〉 as forms over L(T ).
In other words, f1, . . . , fl−1, h′, fl+1, . . . , fi is a sequence of non-zero elements in D(rL[T ])

satisfying condition (3). But, since degT1
(p′(T )) = 2, (i), (ii) and the choice of l imply

that degT1
(h′) < degT1

( fl), and this contradicts our original choice of the f j . We conclude

that our supposition was incorrect, and so the lemma is proved.

Let us now fix a subform r ⊂ q and elements f1, . . . , fi ∈ D(rL[T ]) satisfying the four

conditions of Lemma 6.5. Since L[p′] is a purely transcendental extension of F(p),
Theorem 6.4 now follows from the following more precise lemma:

Lemma 6.6. Let K = L[p′]. Then, in the above situation, we have

((p1)K ⊗〈 f1, . . . , fi〉)an ⊂ (qK )an.

Proof. By Proposition 5.1, the statement is equivalent to the assertion that

D((p1)K ⊗〈 f1, . . . , fi〉) ⊂ D(qK ).

As both sides are K 2-vector spaces, it suffices to show that the right-hand side contains

a set of generators for the left-hand side. Since D((p1)K ) is generated by D(pL) over K 2,

it is therefore sufficient to show that b f j ∈ D(qK ) for all b ∈ D(pL) and all 1 6 j 6 i. In

fact, it suffices to show this in the case where b ∈ D(pL) \ D(p′). Indeed, if b ∈ D(p′),
then 1+ b ∈ D(pL) \ D(p′); since D(qK ) is a K 2-vector space which (by construction)

contains f j , we have b f j ∈ D(qK )⇔ (1+ b) f j ∈ D(qK ). Now, in order to check that the

statement holds, we first need the following preliminary calculation:

Sublemma 6.7. Assume we are in the above situation, and let b ∈ D(pL) \ D(p′) and

1 6 j 6 i. Then there exist s j,k ∈ D(rL[T ]) and t j,k ∈ L[T ] \ {0} (0 6 k 6 1) such that:

(1) b f j =
s j,0

t2
j,0
+

s j,1

t2
j,1

p′(T )
b in L(T );

(2) for each k ∈ {0, 1}, at least one of s j,k and t j,k is a non-zero element of K = L[p′].

Proof. For simplicity of notation, let f = f j . Consider the field M = L(T )(
√

p′(T )
b ).

By § 2.C, M may be identified with the function field L[η] of the affine quadric

over L defined by the vanishing of η = 〈b〉 ⊥ p′. Since pL = 〈1〉 ⊥ p′, and since b ∈
D(pL) \ D(p′), we have D(η) = D(pL). In view of Proposition 5.1, it follows that η ' pL .
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In particular, M is a degree-1 purely transcendental extension of L(p) (see § 2.C), and

is thus a purely transcendental extension of F(p). By Lemma 5.11 and the choice of r ,

it follows that rM ' (qM )an. Again, by Proposition 5.1, this means that D(qM ) = D(rM ).

Now, since u = p′(T )
b is a square in M , we have b f = p′(T ) f

u ∈ D(qM ), and so b f ∈ D(rM ).

Since

D(rM ) = D(rL(T ))+ u D(rL(T )) = D(rL(T ))+
p′(T )

b
D(rL(T ))

as a subset of L(T ) (see Lemma 5.3), it follows that we can write b f = q0+ q1
p′(T )

b
for some q0, q1 ∈ D(rL(T )). Because every element of D(rL(T )) is evidently the ratio of

an element of D(rL[T ]) and a non-zero square in L[T ], we can therefore find elements

sk ∈ D(rL[T ]) and tk ∈ L[T ] \ {0} (0 6 k 6 1) so that

b f =
s0

t2
0
+

s1

t2
1

p′(T )
b

(6.1)

in L(T ). Now, for each k ∈ {0, 1}, let mk = min(m(sk), 2m(tk)) (with m(sk), m(tk) defined

as in the first paragraph of the proof of Theorem 6.4). Since rK is anisotropic, Lemma 5.12

shows that the m(sk), and hence the mk , are even. In particular, if we let

s′k =
sk

p′(T )mk
and t ′k =

tk
p′(T )mk/2

,

then s′k ∈ D(rL[T ]) and t ′k ∈ L[T ] \ {0} for each k. Replacing the pair (s0, t0) with (s′0, t ′0)
and the pair (s1, t1) with (s′1, t ′1) (this does not alter (6.1)), we arrive at the situation where

each of the pairs (s0, t0) and (s1, t1) has at least one non-zero entry, as we wanted.

Returning to the proof of Lemma 6.6, let b ∈ D(pL) \ D(p′) and let 1 6 j 6 i. By

Sublemma 6.7, we have

b f j =
s j,0

t2
j,0
+

s j,1

t2
j,1

p′(T )
b

for some s j,k ∈ D(rL[T ]) and t j,k ∈ L[T ] \ {0} (0 6 k 6 1) such that each of the pairs

(s j,0, t j,0) and (s j,1, t j,1) has at least one non-zero entry. We claim that both t j,0 and

t j,1 are non-zero, or, equivalently, that m(t j,k) = 0 for each k. To see this, let us first clear

denominators in the preceding equation to obtain the equality

b f j t2
j,0t2

j,1 = s j,0t2
j,1+ s j,1t2

j,0
p′(T )

b
(6.2)

in the polynomial ring L[T ]. Now, let m = min(m(t j,0),m(t j,1)). Our claim is then

equivalent to the assertion that m = m(t j,0)+m(t j,1). Suppose that this is not the case,

and let c ∈ {0, 1} be minimal so that m(t j,c) = m, where c is the integer complementary

to c in {0, 1}. Then, reducing both sides of (6.2) modulo p′(T )2m+c+1, we see that s j,c ≡ 0
(mod p′(T )), i.e., that s j,c = 0. Since the pair (s j,c, t j,c) has at least one non-zero entry,

it follows that t j,c 6= 0, or, equivalently, that m(t j,c) = 0. But then m = m(t j,0)+m(t j,1),

which contradicts our supposition. The claim is therefore valid, and so, reducing (6.2)

modulo p′(T ) and dividing through by (t j,0t j,1)
2, we obtain that

b f j = s j,0/t j,0
2

in K . As s j,0 ∈ D(rL[T ]) ⊂ D(qL[T ]), this shows that b f j ∈ D(qK ), as we needed.
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As per the above discussion, Theorem 6.4 is now proved.

Remark 6.8. As already mentioned, if i1(p) > 1, then ‘up to replacing F with a purely

transcendental extension of itself’ may be removed from the statement of Theorem 6.4.

Indeed, if p ' 〈1〉 ⊥ p̂ and i1(p) > 1, then we can choose (F, p̂) for the pair (L , p′) which

was used throughout the proof – see Remark 6.3 above. It is unclear to the author whether

the qualification is really needed when i1(p) = 1. In any case, the statement which we

have proved is sufficient for the basic applications.

6.C. Applications

We now provide some concrete applications of Theorem 6.4 to the problem of

understanding the splitting behaviour of quasilinear quadratic forms under scalar

extension to the function field of a quadric. In particular, we will prove the quasilinear

case of Theorem 1.3. The reader will note that, in this case, the form p1 plays a similar role

to that played by the upper motive of the quadric P in the proof of the characteristic

6= 2 case given in § 4 above. It will be of particular importance to remember that p1
has dimension dim(p)− i1(p) in the quasilinear setting, as opposed to the more familiar

dim(p)− 2i1(p); indeed, if φ is any non-zero quasilinear quadratic form over F , then

dim(φan) = dim(φ)− i0(φ) (see § 2.B above). The ‘divisibility indices’ introduced in § 5.F

will also have a key role to play here; in effect, the study of these indices replaces the

(implicit) use of mod-2 Steenrod operations on Chow groups in the characteristic 6= 2
setting. Before proceeding, we make a general remark:

Remark 6.9. Let p and q be anisotropic quadratic forms of dimension > 2 over F with

q quasilinear. If p is not quasilinear, then its associated quadric is generically smooth,

which amounts to the assertion that its function field F(p) is a separable extension of F
(see [3, (17.15.9)]). In view of Lemma 5.11, we therefore have i0(qF(p)) = 0 in this case.

As a result, when studying the isotropy behaviour of the quasilinear form q under scalar

extension to the field F(p), the only case of interest is that where p is also quasilinear.

The first interesting application of Theorem 6.4 is Theorem 6.12 below, from which one

obtains a short proof of the quasilinear part of Theorem 1.1. Before proving Theorem 6.12,

we first make the following quick observation:

Lemma 6.10. Let ψ and φ be anisotropic quasilinear quadratic forms over F, and let L
be a purely transcendental field extension of F. If ψL is similar to a subform of φL , then

ψ is similar to a subform of φ.

Proof. If F is finite, then F is perfect and so ψ and φ are necessarily split (i.e.,

1-dimensional). Since the statement is trivial in this case, we may assume that F is

infinite. Furthermore, the problem can be easily reduced to the case where L has finite

transcendence degree over F using Proposition 5.1. We can therefore also assume that

L = F(T ), where T = (T1, . . . , Tn) is a system of algebraically independent variables over

F . Now, if ψL is similar to a subform of φL , then we can evidently find a polynomial
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f (T ) ∈ F[T ] such that f (T )ψL ⊂ φL . Since F is infinite, there exist scalars a1, . . . , an ∈ F
such that f (a1, . . . , an) 6= 0. Letting a = f (a1, . . . , an), we now claim that aψ ⊂ φ. By

Proposition 5.1, it suffices to show that ab ∈ D(φ) for all b ∈ D(ψ). Since f (T )ψL ⊂ φL ,

we certainly have f (T )b ∈ D(φL). By the generalized Cassels–Pfister representation

theorem for quasilinear forms (Theorem 5.13), it follows that f (T )b ∈ D(φF[T ]). The

claim then follows by performing the specialization (T1, . . . , Tn) 99K (a1, . . . , an), which is

well defined on the polynomial ring F[T ].

Remark 6.11. In fact, the quasilinearity hypothesis is not necessary here; one may

show that the statement holds for an arbitrary pair of anisotropic quadratic forms

over a field of any characteristic using induction on the transcendence degree of L and

the general representation theorems of Pfister [1, Theorem 17.12] and Cassels–Pfister

[1, Theorem 17.3]. We refrain from going into the details here.

Theorem 6.12. Let p and q be anisotropic quasilinear quadratic forms of dimension > 2
over F. If qF(p) is isotropic, then p1 is similar to a subform of (qF(p))an.

Proof. By Lemma 6.10, it is sufficient to show this after replacing F with a purely

transcendental extension of itself. By Theorem 6.4, we may therefore assume that there

exists an anisotropic form τ of dimension i0(qF(p)) > 1 over F(p) such that (p1⊗ τ)an ⊂

(qF(p))an. If a ∈ D(τ ), then D(ap1) ⊆ D(p1⊗ τ) ⊂ D(qF(p)). Since p1 is anisotropic,

Proposition 5.1 then implies that ap1 ⊂ (qF(p))an, which proves the theorem.

As a consequence of Theorem 6.12, we get an elegant explanation for the quasilinear

part of Theorem 1.1. This result was originally proved by Totaro in [24] using the basic

machinery of Chow groups (see [24, Theorem 5.2]); a more elementary proof (rather

different to the one presented here) was later given in [20]:

Corollary 6.13 (Totaro). Let p and q be anisotropic quasilinear quadratic forms of

dimension > 2 over F. If qF(p) is isotropic, then i0(qF(p)) 6 dim(q)− dim(p)+ i1(p).

Proof. By Theorem 6.12, p1 is similar to a subform of (qF(p))an. In particular, we have

dim(p)− i1(p) = dim(p1) 6 dim((qF(p))an) = dim(q)− i0(qF(p)).

Rearranging this inequality, we obtain the desired assertion.

The next applications make use of the fact that the form τ appearing in the statement

of Theorem 6.4 has dimension i0(qF(p)). We begin by re-deriving the main result of [22].

This result was used in [22, § 6.1] to determine all possible values of the Knebusch splitting

pattern for quasilinear forms. This includes the quasilinear part of Theorem 1.2, which

is an immediate dimension-theoretic consequence:

Corollary 6.14 [22, Theorem 5.1]. Let p be an anisotropic quasilinear quadratic form

of dimension > 2 over F. Then 2d1(p) > i1(p). In other words, p1 is divisible by a

quasi-Pfister form of dimension > i1(p).

Proof. By Lemma 5.7, the statement is insensitive to replacing F with a purely

transcendental extension of itself. Applying Theorem 6.4 in the case where q = p, we
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can therefore assume that we have an anisotropic form τ of dimension i1(p) over F(p)
such that (p1⊗ τ)an ⊂ p1. As per the proof of Theorem 6.12, however, p1 is similar to a

subform of (p1⊗ τ)an. For dimension reasons, we therefore conclude that p1 ' (p1⊗ τ)an.

By Corollary 5.10, this implies that p1 is divisible by the quasi-Pfister form τnor. But,

since τ is anisotropic, τ is similar to a subform of τnor (see § 5.D). In particular, we have

dim(τnor) > dim(τ ) = i1(p), and this completes the proof.

Given Corollary 6.14, we can now generalize it as follows:

Theorem 6.15. Let p and q be anisotropic quasilinear quadratic forms of dimension > 2
over F such that qF(p) is isotropic. If i0(qF(p)) > dim(q)− dim(p), then 2d1(p) > i0(qF(p)).

In other words, p1 is divisible by a quasi-Pfister form of dimension > i0(qF(p)) under the

given hypotheses.

Proof. Again, by Lemma 5.7, the statement is insensitive to replacing F with a purely

transcendental extension of itself. Thus, by Theorem 6.4, we may assume that there exists

an anisotropic form τ of dimension i0(qF(p)) over F(p) such that (p1⊗ τ)an ⊂ (qF(p))an.

Let η = (p1⊗ τ)an. As in the proof of Corollary 6.14, p1 is similar to a subform of η,

and the theorem will follow (by exactly the same arguments) if we can show that the

two forms have the same dimension under the given hypotheses. Suppose, for the sake

of contradiction, that this is not the case. Then dim(η) > dim(p1)+ 2d1(p). Indeed, since

p1 is, by definition, divisible by an anisotropic quasi-Pfister form of dimension 2d1(p),

Lemma 5.8 implies that the same is true of η. Thus, both dim(p1) and dim(η) are divisible

by 2d1(p), and so our claim follows. In particular, since η ⊂ (qF(p))an, we have

dim(p)− i1(p)+ 2d1(p) = dim(p1)+ 2d1(p)6 dim(η) 6 dim((qF(p))an) = dim(q)− i0(qF(p)).

Now Corollary 6.14 asserts that 2d1(p) > i1(p). Together with the previous inequality,

this gives

i0(qF(p)) 6 dim(q)− dim(p),

which contradicts our original hypothesis and thus completes the proof of the theorem.

Taking dimensions, we obtain the quasilinear part of Theorem 1.3 (in light of

Remark 6.9, it is enough to treat the case where both p and q are quasilinear):

Corollary 6.16. Let p and q be anisotropic quasilinear quadratic forms of dimension

> 2 over F. Then i0(qF(p)) 6 max(dim(q)− dim(p), 2d1(p)). In particular, setting s =
v2(dim(p)− i1(p)), we have

i0(qF(p)) 6 max(dim(q)− dim(p), 2s).

Proof. The first statement follows immediately from Theorem 6.15. The second follows

from the first, since 2d1(p) is, by definition, a divisor of dim(p1) = dim(p)− i1(p).

Remark 6.17. In the situation of Corollary 6.16, the inequality d1(p) 6 s need not be an

equality. For example, if p is ‘generic’ of dimension 2n
+ 1 for some positive integer n,

then d1(p) = 0 (see [22, Lemma 2.46]), while s = n by Theorem 1.2. Interestingly, we do

not know of an analogue of the integer d1(p) in the characteristic 6= 2 theory.
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In fact, the proof of Theorem 6.15 shows that Corollary 6.16 may be refined as follows

(compare Theorem 4.1 in the characteristic 6= 2 setting):

Corollary 6.18. Let p and q be anisotropic quasilinear quadratic forms of dimension > 2
over F. Then 2d1(p) > i1(p) and

i0(qF(p)) 6 max(dim(q)− dim(p)+ i1(p)− 2d1(p), 2d1(p)).

Remark 6.19. This refinement is non-trivial if 2d1(p) > i1(p), which happens, for example,

if p is odd-dimensional and i1(p) > 1. Indeed, in that case, i1(p) is odd by Corollary 6.14.

Corollary 6.16 above was deduced from the statement of Theorem 6.4 by identifying

a certain situation in which the subform (p1⊗ τ)an of (qF(p))an is similar to p1. Another

interesting problem is to find circumstances under which (p1⊗ τ)an is similar to τ . As the

proof of the next proposition shows, one situation in which this happens is that where

i0(qF(p)) is ‘close’ to attaining its maximal possible value of dim(q)/2. Unfortunately,

formulating what this means in general terms necessitates a certain degree of technicality;

we hope, however, that the subsequent discussion will help to illuminate the more concrete

meaning of our observation. Before stating the proposition, we recall (see § 5.D) that if p is

an anisotropic quasilinear form over F , then lndeg(p) denotes the integer log2(dim(pnor)).

Since p is similar to a subform of pnor, we have dim(p) 6 2lndeg(p).

Proposition 6.20. Let p and q be anisotropic quasilinear quadratic forms of dimension

> 2 over F and let ε be the unique integer in [1, 2d1(p)] such that i0(qF(p))+ ε ≡ 0
(mod 2d1(p)). If dim(q)− 2i0(qF(p)) < ε, then, after possibly replacing F with a purely

transcendental extension of itself, (qF(p))an contains a subform r such that:

(1) dim(r) = i0(qF(p));

(2) d0(r) > lndeg(p)− 1, i.e., r is divisible by a quasi-Pfister form of dimension

2lndeg(p)−1.

Proof. By Theorem 6.4, we may assume that there exists an anisotropic form τ of

dimension i0(qF(p)) over F(p) such that (p1⊗ τ)an ⊂ (qF(p))an. We claim that, under

the given hypotheses, τ is similar to η := (p1⊗ τ)an. Exactly as in the proof of

Theorem 6.12, τ is certainly similar to a subform of η. It therefore suffices to show that

dim(τ ) = dim(η). Suppose, for the sake of contradiction, that this is not the case. Then

dim(η) > i0(qF(p))+ ε. Indeed, p1 is, by definition, divisible by a quasi-Pfister form of

dimension 2d1(p). By Lemma 5.8, the same is therefore true of η. Thus dim(η) is divisible

by 2d1(p). Since dim(τ ) = i0(qF(p)), the inequality dim(η) > i0(qF(p))+ ε then follows by

the very definition of ε. But, since η is a subform of (qF(p))an, this yields

i0(qF(p))+ ε 6 dim(η) 6 dim((qF(p))an) = dim(q)− i0(qF(p)),

which contradicts our hypothesis. We can therefore conclude that τ is similar to η =

(p1⊗ τ)an. By Corollary 5.10, it follows that τ is divisible by the quasi-Pfister form

(p1)nor. But the latter form has dimension 2lndeg(p)−1 by Lemma 5.5. Thus, choosing any

a ∈ D(p1), we see that r := aτ has the required properties.

https://doi.org/10.1017/S1474748018000051 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000051


448 S. Scully

Proposition 6.20 immediately gives the following result:

Theorem 6.21. Let p and q be anisotropic quasilinear quadratic forms of dimension

> 2 over F and let ε be the unique integer in [1, 2d1(p)] such that i0(qF(p))+ ε ≡ 0
(mod 2d1(p)). Then either:

(1) i0(qF(p)) 6
dim(q)−ε

2 ; or

(2) i0(qF(p)) is divisible by 2lndeg(p)−1 and dim(q) = 2lndeg(p)a+ δ for some non-negative

integer a and some 0 6 δ < ε.

Remark 6.22. By Corollary 6.14, we have 2d1(p) > i1(p). Thus, the larger is i1(p), the

more interesting the restrictions of Theorem 6.21 become.

Example 6.23. Let p and q be anisotropic quasilinear quadratic forms of dimension > 2
over F such that i0(qF(p)) =

1
2 dim(q) (this is the maximal possible value of i0(qF(p)),

and the situation is analogous to that in characteristic 6= 2 where one form becomes

hyperbolic over the function field of the other – see [22, Corollary 2.32]). Then

v2(dim(q)) > lndeg(p) > log2(dim(p)),

i.e., dim(q) is divisible by a power of 2 which is at least as large as 2lndeg(p), and hence

dim(p) (see § 5.D). Indeed, in this situation, we are necessarily in case (2) of Theorem 6.21.

Since dim(q) = 2i0(qF(p)), the claim follows immediately (in fact, in this case, one can

show that q is divisible by the quasi-Pfister form pnor of dimension 2lndeg(p) – see [7,

Theorem 7.7]). Theorem 6.21 may therefore be viewed as a generalization of this result,

giving us necessary conditions in order for i0(qF(p)) to be ‘close’ to its maximal value.

Again, the index being ‘close’ to its maximal value is analogous to the situation in

characteristic 6= 2 where one form becomes ‘almost hyperbolic’ over the function field of

another quadric.4

Example 6.24. We can illuminate Theorem 6.21 further by working through a concrete

example, namely, that in which p is an (n+ 1)-fold quasi-Pfister neighbour, i.e., dim(p) >
2n and p is similar to a subform of an anisotropic (n+ 1)-fold quasi-Pfister form (for

example, p could itself be a quasi-Pfister form). In this case, we have d1(p) = n and

lndeg(p) = n+ 1 (see [22, Corollary 3.11] for details). Theorem 6.21 therefore implies
that if q is an anisotropic quasilinear quadratic form of dimension > 2 over F , then

either:

(1) i0(qF(p)) 6
dim(q)−ε

2 ; or

(2) i0(qF(p)) is divisible by 2n and dim(q) = 2n+1a+ δ for some non-negative integer a
and some 0 6 δ < ε,

where ε is the unique integer in [1, 2n
] such that i0(qF(p))+ ε ≡ 0 (mod 2n). Over fields of

characteristic 6= 2, the same statement is known to hold in the (very special) case where

4In the characteristic 6= 2 setting, the author has recently established new results in this direction [23];
previously, no general results in the spirit of Theorem 6.21 had been known.
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i0(qF(p)) =
1
2 dim(q); indeed, a classical result due to Arason and Pfister asserts that a

quadratic form which becomes hyperbolic over the function field of a Pfister quadric is

necessarily divisible by the corresponding Pfister form (see [1, Corollary 23.6]). However,

a generalization of this result similar to the one just given for quasilinear forms is not

yet known in that setting.5
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Mathématique de France, Paris, 2008).

12. N. A. Karpenko, On the first Witt index of quadratic forms, Invent. Math. 153(2) (2003),
455–462.

13. N. A. Karpenko, Canonical dimension, in Proceedings of the International Congress of
Mathematicians, Volume II, pp. 146–161 (Hindustan Book Agency, New Delhi, 2010).

14. N. A. Karpenko, Upper motives of algebraic groups and incompressibility of
Severi–Brauer varieties, J. Reine Angew. Math. 677 (2013), 179–198.

15. N. Karpenko and A. Merkurjev, Essential dimension of quadrics, Invent. Math. 153(2)
(2003), 361–372.

5Again, such a generalization has recently been proposed (and proven in various cases) in [23].

https://doi.org/10.1017/S1474748018000051 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000051


450 S. Scully

16. M. Knebusch, Generic splitting of quadratic forms. I, Proc. Lond. Math. Soc. (3) 33(1)
(1976), 65–93.

17. M. Knebusch, Generic splitting of quadratic forms. II, Proc. Lond. Math. Soc. (3) 34(1)
(1977), 1–31.

18. A. Laghribi, Quasi-hyperbolicity of totally singular quadratic forms, in Algebraic and
Arithmetic Theory of Quadratic Forms, Contemporary Mathematics, Volume 344, pp.
237–248 (American Mathematical Society, Providence, RI, 2004).

19. M. Rost, Some new results on the Chow groups of quadrics. Preprint (1990).
20. S. Scully, Rational maps between quasilinear hypersurfaces, Compos. Math. 149(3)

(2013), 333–355.
21. S. Scully, On the splitting of quasilinear p-forms, J. Reine Angew. Math. 713 (2016),

49–83.
22. S. Scully, Hoffmann’s conjecture for totally singular forms of prime degree, Algebra

Number Theory 10(5) (2016), 1091–1132.
23. S. Scully, Hyperbolicity and near hyperbolicity of quadratic forms over function fields

of quadrics, Preprint, 2017, arXiv:1609.07100v2, 18 pages.
24. B. Totaro, Birational geometry of quadrics in characteristic 2, J. Algebraic Geom. 17(3)

(2008), 577–597.
25. A. Vishik, Integral motives of quadrics, MPIM Preprint, 1998-13.
26. A. Vishik, Direct summands in the motives of quadrics, Preprint, 1999, https://www.m

aths.nottingham.ac.uk/personal/av/papers.html.
27. A. Vishik, Motives of quadrics with applications to the theory of quadratic forms,

in Geometric Methods in the Algebraic Theory of Quadratic Forms, Lecture Notes in
Mathematics, Volume 1835, pp. 25–101 (Springer, Berlin, 2004).

28. A. Vishik, Excellent connections in the motives of quadrics, Ann. Sci. Éc. Norm.
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