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The strength of Engeler’s lemma
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A useful separation lemma for partial cm-lattices is proved equivalent to PIT, the Prime

Ideal Theorem. The relation of various versions of the Lemma to each other and to PIT is

also explored.

1. Preliminaries

In Paseka (2004), we formulated a general principle, the General Separation Lemma for

Quantales (GSLQ), stating that any element outside some Scott-open distributive filter

S in a non-trivial quantale is below a prime element outside S . GSLQ for two-sided

quantales is well known (Banaschewski and Erné 1993) to be equivalent to the Prime

Ideal Theorem. Relevant sources in that context are, for example, Erné (2000) and the

references therein.

Our concern in this paper is to introduce a more general form of GSLQ for partial

cm-lattices and to show that this form follows from Engeler’s lemma (Engeler 1959;

Erné 1997). This, in turn, implies that GSLQ is equivalent in Zermelo–Fraenkel Set

Theory to the Prime Ideal Theorem and also to the Constraint Compactness Theorem

(Cowen 1998), which is an infinite version of the constraint satisfaction problems studied

in computer science.

In addition, we prove that the Prime Ideal Theorem implies R-spatiality for any R-

semidistributive algebraic partial cm-lattice.

All unexplained facts concerning cm-lattices and quantales can be found in Erné (1997),

Rosenthal (1990) and Banaschewski and Erné (1993).

Definition 1.1.

(a) By a partial m-semilattice we mean a semilattice Q (arbitrary finite joins, including the

non-empty one, exist) equipped with a partial multiplication · : R → Q with domain

dom(·)=R ⊆ Q × Q. We shall use 1 to denote the top element of Q whenever it exists.

(b) A partial m-lattice is a partial m-semilattice that is also a lattice (arbitrary finite joins

and finite meets, including the non-empty one, exist).

(c) A partial cm-lattice is a partial m-semilattice that is also a
∨

-semilattice (arbitrary

joins exist).

† The financial support of the Grant Agency of the Czech Republic under the grant No. 201/02/0148 is

gratefully acknowledged.

https://doi.org/10.1017/S0960129506005160 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005160


J. Paseka 292

Each quantale Q is a partial cm-lattice for any R ⊆ Q×Q. Notice here that, in contrast

to the case of cm-lattices (Keimel 1972; Erné 2000), our partial multiplication · need not

be order-preserving.

Definition 1.2.

(a) An element p �= 1 of a partial m-semilattice Q is said to be R-prime if

r · l � p ⇒ r � p or l � p

for all (r, l) ∈ R.

(b) Q is called R-spatial if each of its elements is a meet of R-primes.

Example 1.3.

1. Let Q be a (distributive) lattice, R = Q×Q. The notion of an R-prime element coincides

with the standard notion of a prime for lattices (Rav 1989).

2. Let Q be a cm-lattice, R = Q×Q. The notion of an R-prime element coincides with the

standard notion of a prime for cm-lattices (Keimel 1972; Rosický 1987).

3. Let Q be a cm-lattice, R = {(x, x) : x ∈ Q}. The notion of an R-prime element coincides

with the standard notion of a semiprime element for cm-lattices (Keimel 1972).

4. Let Q be a quantale, R = R(Q) × L(Q), with R(Q) the set of right-sided elements of

Q, and L(Q) the set of left-sided elements of Q. The notion of an R-prime element

coincides with the standard notion of a prime for quantales (Kruml 2003).

Definition 1.4.

(a) A partial R-point of a partial m-semilattice Q is a non-zero ∨-preserving (including

the empty join) partial map f : Q → 2 such that f(r ∨ a) = 1 = f(l ∨ a) implies

f(r · l ∨ a) = 1 for all a ∈ Q, (r, l) ∈ R such that r ∨ a, l ∨ a, r · l ∨ a ∈ dom(f); here

2 = {0, 1} is the 2-element Boolean algebra.

(b) An R-point is a partial R-point such that dom(f) = Q.

(c) A complete R-point is an R-point f preserving arbitrary joins.

Note that, for a partial cm-lattice Q, there is a one-to-one correspondence between

R-primes and complete R-points.

Definition 1.5. Let Q be a partial m-semilattice.

(a) A non-trivial upper subset S ⊆ Q is called an R-distributive filter of Q if r∨a, l∨a ∈ S ,

a ∈ Q, (r, l) ∈ R implies r · l ∨ a ∈ S .

(b) The top element 1 of Q is said to be R-distributive if {1} is an R-distributive filter.

The notion of a distributive filter was also motivated by Rav’s notion of a semiprime

filter and Erné’s notion of a distributor.

Definition 1.6. A partial m-lattice Q is said to be

(a) R-semidistributive if (r ∨ a) ∧ (l ∨ a) � r · l ∨ a for all a ∈ Q, (r, l) ∈ R.

(b) R-distributive if (r ∨ a) ∧ (l ∨ a) = r · l ∨ a for all a ∈ Q, (r, l) ∈ R.
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Notice that as in Kruml (2003), any R-spatial partial m-lattice Q is R-semidistributive.

In particular, we have:

(i) In any R-semidistributive partial m-lattice Q, (r, 1) ∈ R implies r � r · 1 and (1, l) ∈ R

implies l � 1 · l.
(ii) In any R-distributive partial m-lattice Q, (r, 1) ∈ R implies r ∈ R(Q) and (1, l) ∈ R

implies l ∈ L(Q).

We introduce the following General R-Separation Lemmas.

Definition 1.7.

R-GSLQ. Any element outside some Scott-open R-distributive filter S in a non-trivial

quantale is below an R-prime element outside S .

R-PETQ. Any non-trivial quantale with compact R-distributive top element has an

R-prime element.

R-MPETQ. For any family (Qi)i∈I of non-trivial quantales equipped with relations

Ri ⊆ Qi × Qi, i ∈ I , with compact Ri-distributive top elements, there is a family (pi)i∈I
of Ri-prime elements.

R-GSLC. Any element outside some Scott-open R-distributive filter S in a non-trivial

partial cm-lattice is below an R-prime element outside S .

R-PETC. Any non-trivial partial cm-lattice with compact R-distributive top element

has an R-prime element.

R-MPETC. For any family (Qi)i∈I of non-trivial partial cm-lattices equipped with

relations Ri ⊆ Qi × Qi, i ∈ I , with compact Ri-distributive top elements, there is a

family (pi)i∈I of Ri-prime elements.

Clearly: R-GSLC implies R-GSLQ and R-PETC; R-MPETC implies R-PETC and R-

MPETQ; R-PETC implies R-PETQ; R-MPETQ implies R-PETQ; and, R-GSLQ implies

R-PETQ. Each of the above statements implies the Prime Ideal Theorem (Erné 2000;

Paseka 2004).

2. Engeler’s lemma implies both R-GSLC and R-MPETC

The following theorem (Engeler 1959) is well known to be equivalent to the Prime Ideal

Theorem.

Theorem 2.1 (Engeler’s lemma (PIT)). Let X be a non-empty set and E be a collection

of functions from subsets of X into a two-point boolean algebra 2 such that:

1. E has finite character (that is, a function ϕ from a subset of X into 2 is in E if and

only if for every finite F ⊆ dom(ϕ), ϕ/F is in E).

2. For all finite subsets F of X, there is a function ϕ ∈ E whose domain is F .

Then X is the domain of some ϕ ∈ E.
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Motivated by the paper Banaschewski (1985), we obtain the main result of our paper.

Theorem 2.2 (PIT). Let Q be a partial cm-lattice, dom(·) = R ⊆ Q × Q, S ⊆ Q be an

R-distributive Scott-open filter, and a ∈ Q − S . Then there is an R-prime element p ∈ Q,

p � a such that p �∈ S .

Proof. Let P = Q − S . Then P is a poset closed under the join of chains. We put, for

all x ∈ P , Q(x) = ↑x and for any E ⊆ Q(x) we use 〈E〉x to denote the ∨-subsemilattice of

Q(x) generated by E. Note that we always have x ∈ 〈E〉x, where x is the bottom element

of 〈E〉x. We also put Q(P ) = {(x, y) : x ∈ P , y ∈ Q(x)}. For Y ⊆ Q(P ), x ∈ P we put

Y (x) = {y ∈ Q(x) : (x, y) ∈ Y }, π1(Y ) = {x ∈ P : (x, y) ∈ Y }.
We define

E= {ϕ : Y → 2; Y ⊆ Q(P ) such that there is a (unique) extension ϕ : Y → 2,

where Y =
⋃

{{x} × 〈Y (x)〉x : x ∈ π1(Y )}, ϕ(x,−) : 〈Y (x)〉x → 2

is a partial R-point for all x ∈ π1(Y ) and ϕ(x, 〈Y (x)〉x ∩ ↓a)) ⊆ {0},
ϕ(x, 〈Y (x)〉x ∩ S) ⊆ {1}}.

We shall show that E is a system of finite character. Note that � ∈ E.

Let ϕ ∈ E be a function with the domain dom(ϕ). Let ϕ0 be a finite subset of

ϕ. Evidently, π1(dom(ϕ0)) ⊆ π1(dom(ϕ)), hence dom(ϕ0) ⊆ dom(ϕ). We put ϕ0 =

ϕ/dom(ϕ0). Then ϕ0 is an extension of ϕ0 ϕ0 ⊆ ϕ, ϕ0 is finite and ϕ0 ∈ E.

Conversely, let ϕ be a partial function from Q(P ) into 2 such that for any finite

subset ϕ0 ⊆ ϕ, we have ϕ0 ∈ E. We have to show that ϕ ∈ E. Note that clearly

dom(ϕ) =
⋃

{dom(ϕ0) : ϕ0 ⊆⊆ ϕ}. We put ϕ =
⋃

{ϕ0 : ϕ0 ⊆⊆ ϕ}. Obviously, ϕ is

correctly defined, since for any ϕ1, ϕ2 ⊆⊆ ϕ there is some ϕ3 ⊆⊆ ϕ containing both ϕ1

and ϕ2. Hence, for any (x, z) ∈ dom(ϕ1) ∩ dom(ϕ2), we have ϕ1(x, z) = ϕ3(x, z) = ϕ2(x, z).

Evidently, ϕ is the unique extension of ϕ from dom(ϕ) to dom(ϕ).

Let x ∈ π1(dom(ϕ)) and Z be a finite subset of 〈dom(ϕ)(x)〉x. Then there is a finite

subset ϕ0 ⊆⊆ ϕ such that Z ⊆ 〈dom(ϕ0)(x)〉x and ϕ0 = ϕ/dom(ϕ0). Hence, ϕ(x,
∨

Z) =

ϕ0(x,
∨

Z) =
∨

z∈Z ϕ0(x, z) =
∨

z∈Z ϕ(x, z).

Similarly, let x ∈ π1(dom(ϕ)), c ∈ Q, (u, v) ∈ R, u ∨ c, v ∨ c, u · v ∨ c ∈ 〈dom(ϕ)(x)〉x and

ϕ(x, u∨ c) = ϕ(x, v ∨ c) = 1. Then there is a finite subset ϕ0 ⊆⊆ ϕ such that u · v ∨ c, u∨ c,

v ∨ c ∈ 〈dom(ϕ0)(x)〉x and ϕ0(x, u ∨ c) = ϕ0(x, v ∨ c) = 1. This implies ϕ0(x, u · v ∨ c) = 1.

Hence, ϕ(x, u · v ∨ c) = 1.

Now, let x ∈ π1(dom(ϕ)), u � a (u ∈ S ) and u ∈ 〈dom(ϕ)(x)〉x. Then there is a finite

subset ϕ0 ⊆⊆ ϕ such that u ∈ 〈dom(ϕ0)(x)〉x. Hence, ϕ0(x, u) = 0 (ϕ0(x, u) = 1), and this

implies ϕ(x, u) = 0 (ϕ(x, u) = 1).

We shall prove that for any finite subset F of Q(P ), there is a function ϕF ∈ E
whose domain is F . If F = �, then ϕF = � ∈ E. Let us assume that F is non-empty.

Evidently, F is a finite non-empty subset of Q(P ) containing F . For all (finitely many)

x ∈ π1(F), we choose a maximal element axF ∈ 〈F(x)〉x − S (from a finite non-empty

subset – namely x ∈ 〈F(x)〉x − S) such that u � a, u ∈ 〈F(x)〉x implies u � axF . We

define a function ϕF : F → 2 by the prescription ϕF (x, u) = 0 (ϕF (x, u) = 1) iff u � axF
(u �� axF ) for all (x, u) ∈ F . Then the unique extension ϕF of ϕF to F is defined by the

prescription ϕF (x, z) = 0 (ϕF (x, z) = 1) iff z � axF (z �� axF ) for all (x, z) ∈ F . Notice that
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(x, axF ) ∈ F and (x, z) ∈ F ∩ S implies ϕF (x, z) = 1. Hence ϕF (x,−) preserves finite joins,

ϕF (x, 〈F(x)〉x ∩ ↓a)) ⊆ {0} and ϕF (x, 〈F(x)〉x ∩ S) ⊆ {1}. Let x ∈ π1(dom(ϕF )), c ∈ Q,

(u, v) ∈ R, u ∨ c, v ∨ c, u · v ∨ c ∈ 〈dom(ϕF )(x)〉x and ϕF (x, u ∨ c) = ϕF (x, v ∨ c) = 1. By

the maximality of axF ∈ 〈F(x)〉x − S , we have u ∨ c ∨ axF > axF and v ∨ c ∨ axF > axF . Then

u∨ c∨ axF , v ∨ c∨ axF ∈ S . Since S is an R-distributive filter, we have u · v ∨ c∨ axF ∈ S . This

in turn implies that 1 = ϕF (x, u · v ∨ c ∨ axF ) = ϕF (x, u · v ∨ c) by ϕF (x, axF ) = 0.

E satisfies the assumptions of Engeler’s lemma. Hence there is a map ϕ : Q(P ) → 2

such that dom(ϕ) = Q(P ), ϕ = ϕ and, for all x ∈ P , ϕ(x,−) : Q(x) → 2 is a ∨-semilattice

homomorphism, ϕ(x, Q(x) ∩ ↓a)) ⊆ {0}, ϕ(x, Q(x) ∩ S) ⊆ {1} and c, u, v ∈ Q, (u, v) ∈ R,

u ∨ c, v ∨ c, u · v ∨ c ∈ Q(x) and ϕ(x, u ∨ c) = ϕ(x, v ∨ c) = 1 implies ϕ(x, u · v ∨ c) = 1. Note

that Jx = ϕ(x,−)−1({0}) is an ideal in Q(x), x ∈ Jx since ϕ(x,−) preserves the bottom

element.

Let P (a) = P ∩ ↑a. Again, P (a) is closed under the join of chains. Putting σ(x) =
∨
Jx,

x ∈ P (a), we obtain a map σ : P (a) → P (a) by the Scott-openness of S . Since x � σ(x) for

each x ∈ P (a), we have, by Bourbaki’s fix point lemma, that there is an element p ∈ P (a)

such that p = σ(p). For any such p, Jp = {p}. Clearly, a � p and p �∈ S . Let us check

that p is R-prime. Let u, v ∈ Q, (u, v) ∈ R and u · v � p. Then ϕ(p, u · v ∨ p) = 0. Assume

that u �� p and v �� p. Hence p < u ∨ p and p < v ∨ p. In particular, ϕ(p, u ∨ p) = 1 and

ϕ(p, v ∨ p) = 1. Then 0 = ϕ(p, u · v ∨ p) = 1, which is a contradiction. Hence u � p or

v � p.

Theorem 2.3. (PIT) implies (R-MPETC).

Proof. Let Pi = Qi − {1i}, i ∈ I . Then Pi is a poset closed under the join of chains. We

also put Q(P , I) = {(i, x, y) : i ∈ I, x ∈ Pi, y ∈ Qi(x)}. For Y ⊆ Q(P , I), i ∈ I , x ∈ Pi, we

put Y (i, x) = {y ∈ Qi(x) : (i, x, y) ∈ Y } and π1,2(Y ) = {(i, x) : (i, x, y) ∈ Y }.
We define

E(I)={ϕ : Y → 2;Y ⊆ Q(P , I) such that there is a (unique) extension

ϕ̂ : Ŷ → 2 here Ŷ =
⋃

{{i} × {x} × 〈Y (i, x)〉x : (i, x) ∈ π1,2(Y )},
ϕ̂(i, x,−) : 〈Y (i, x)〉x → 2 is a partial Ri-point and

ϕ̂(i, x, x) = 0, ϕ̂(i, x, 1) = 1 for all (i, x) ∈ π1,2(Y )}.

Applying the same considerations as in Theorem 2.2, we can check that E(I) satisfies

the assumptions of Engeler’s lemma.

Hence there is a map ϕ : Q(P , I) → 2 such that dom(ϕ) = Q(P , I), ϕ = ϕ̂ and, for

all i ∈ I , x ∈ Pi, ϕ(i, x,−) : Qi(x) → 2 is a ∨-semilattice homomorphism, ϕ(i, x, x) = 0,

ϕ(i, x, 1) = 1 and u, v, c ∈ Qi, (u, v) ∈ Ri, u ∨ c, v ∨ c, u · v ∨ c ∈ Qi(x) and ϕ(i, x, u ∨ c) =

ϕ(i, x, v∨ c) = 1 implies ϕ(i, x, u · v∨ c) = 1. Note that Ji
x = ϕ(i, x,−)−1({0}) is a non-empty

ideal in Qi(x).

Let Q =
∑

i∈I Qi be the non-trivial sum in the category of sup-lattices, and jk : Qk →∑
i∈I Qi be the coproduct maps, for k ∈ I . Then the set P = {

∨
i∈I ji(xi) : xi ∈ Pi, i ∈ I} is a

subposet of Q and is closed under the join of chains. Putting σ(
∨

i∈I ji(xi)) =
∨

i∈I ji(
∨
Ji
xi
),

we obtain a map σ : P → P by the compactness of Qi. Since x � σ(x) for each x ∈ P , we

have, by Bourbaki’s fix point lemma, that there is an element p ∈ P such that p = σ(p).

Hence p =
∨

i∈I ji(pi) =
∨

i∈I ji(
∨
Ji
pi
). Similarly, as in Theorem 2.2, any pi is Ri-prime.
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The following proposition is obvious and follows immediately from Theorem 2.2. Recall

only that a completely prime upper set is a complement of a principal ideal.

Proposition 2.4. PIT holds if and only if every Scott-open R-distributive filter of a non-

trivial partial cm-lattice is an intersection of completely prime R-distributive filters.

We are now going to establish spatiality of continuous (algebraic) R-semidistributive

partial cm-lattices. We first prove a simple lemma.

Lemma 2.5. In any R-semidistributive partial cm-lattice Q, each Scott-open filter is a

Scott-open distributive filter.

Proof. Let S ⊆ Q be a Scott-open filter of Q, r, l, a ∈ Q, (r, l) ∈ R and r ∨ a, l ∨ a ∈ S .

Then (r ∨ a) ∧ (l ∨ a) ∈ S . Since S is an upper set and Q is R-semidistributive, we have

r · l ∨ a ∈ S .

The proofs of the following statements are mostly based on Lemma 2.5, and in the

remaining parts they mimic the proofs of the corresponding quantalic versions from

Paseka (2004). Hence we shall omit them.

Theorem 2.6. Given the Principle of Countable Dependent Choice (CDC) and PIT, every

continuous R-semidistributive partial cm-lattice is R-spatial.

Assuming stable continuity or algebraicity of Q, CDC is redundant.

Proposition 2.7. Given PIT, every stably continuous R-semidistributive partial cm-lattice

is R-spatial.

Proposition 2.8. Given PIT, every algebraic R-semidistributive partial cm-lattice is R-

spatial.

Definition 2.9. A partial cm-lattice Q is said to be conjunctive (Paseka 2004) if for each

two elements a, b ∈ Q, a �� b there is an element c ∈ Q such that a ∨ c = 1 and b ∨ c �= 1.

Proposition 2.10. Given PIT, any compact conjunctive partial cm-lattice with compact

R-distributive top is R-spatial.

Proposition 2.11. Given PIT, any conjunctive partial cm-lattice such that {1} coincides

with an intersection of Scott-open R-distributive filters containing 1 is R-spatial.

We conclude the paper with some comments.

Remark 2.12. Note that, as in Johnstone (1984), our arguments could be carried out in

the internal logic of a Boolean topos. Regarding the spatiality properties in Theorem 2.6

and Propositions 2.7 and 2.8, they should be compared with the results in Keimel (1972)

and Rosický (1987).
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