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Abstract. We study 2-generated subgroups 〈 f, g〉< Homeo+(I ) such that 〈 f 2, g2
〉 is

isomorphic to Thompson’s group F , and such that the supports of f and g form a chain
of two intervals. We show that this class contains uncountably many isomorphism types.
These include examples with non-abelian free subgroups, examples which do not admit
faithful actions by C2 diffeomorphisms on 1-manifolds, examples which do not admit
faithful actions by P L homeomorphisms on an interval, and examples which are not
finitely presented. We thus answer questions due to Brin. We also show that many
relatively uncomplicated groups of homeomorphisms can have very complicated square
roots, thus establishing the behavior of square roots of F as part of a general phenomenon
among subgroups of Homeo+(I ).
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1. Introduction
Thompson’s group F is a remarkable group of piecewise linear (abbreviated P L)
homeomorphisms of the interval I = [0, 1] that occurs naturally and abundantly as a group
of homeomorphisms of the real line, and that has been extensively studied since the 1970s.
The group F has been shown to satisfy various exotic properties, and has been proposed
as a counterexample to well-known conjectures in group theory [2, 9, 12]. Among the
best-known facts about Thompson’s group F are the following theorems.
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THEOREM 1.1. (Brin and Squier [7]) The group F satisfies no law and contains no non-
abelian free subgroups.

THEOREM 1.2. (Ghys and Sergiescu [19]) The group F admits a faithful action by C∞

diffeomorphisms of the circle.

THEOREM 1.3. (Thompson; see [12]) The group F is finitely presented.

THEOREM 1.4. (See [8, 10, 12, 20, 21]) The commutator subgroup of F is an infinite
simple group.

In this paper we study a certain class of groups which we call square roots of
Thompson’s group F . These are 2-generated subgroups 〈 f, g〉< Homeo+(I ) of the group
of orientation-preserving homeomorphisms of the interval, which satisfy

〈 f 2, g2
〉 ∼= 〈A, B | [A, (AB)−k B(AB)k] for k ∈ {1, 2}〉 ∼= F,

and for which the supports supp f and supp g of f and g respectively form a 2-chain of
intervals. That is, supp f and supp g are both open intervals, and the intersection supp f ∩
supp g is a proper subinterval of both supp f and supp g.

Among other things, we demonstrate that (the second part of) Theorems 1.1, 1.2, and 1.3
all fail for square roots of F . In particular, we show that there are square roots of F which
contain non-abelian free subgroups, that there are square roots of F which do not admit
faithful actions by C2 diffeomorphisms on the interval, circle, or real line, and that there
are uncountably many isomorphism types of square roots of F .

1.1. Main results. We denote the set of isomorphism classes of square roots of F by
S . The goal of this paper is to produce interesting elements of S . Note that S contains
F for example, since squaring the generators in the standard presentation for F as given
above results in a group isomorphic to F .

In this paper we use two different finite presentations of the group F . The first
presentation, mentioned above, is

〈A, B | [A, (AB)−1 B(AB)], [A, (AB)−2 B(AB)2]〉 ∼= F.

The second presentation is obtained by performing a Tietze transformation to produce
generators a = AB, b = B, and is given by

〈a, b | [ab−1, a−1ba], [ab−1, a−2ba2
]〉 ∼= F.

Next, we describe a certain subgroup P of F , which will be needed to state and prove
our results. We fix two copies of F :

F1 = 〈p1, p2 | [p1 p−1
2 , p−1

1 p2 p1], [p1 p−1
2 , p−2

1 p2 p2
1]〉,

F2 = 〈q1, q2 | [q1q−1
2 , q−1

1 q2q1], [q1q−1
2 , q−2

1 q2q2
1 ]〉.

We will write P for the subgroup of F1 × F2 generated by (p1, q2) and (p2, q1). Note that
the group P is isomorphic to a subgroup of F which itself contains an isomorphic copy
of F as a subgroup. The fact that P is isomorphic to a subgroup of F is an elementary
exercise that we leave to the reader, and that F is isomorphic to a subgroup of P is a direct
consequence of Brin’s ubiquity theorem (see [5]).
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We denote the free group on two generators by F2, and we call a group H = 〈h1, h2〉 a
marked extension of P if there exists a surjective homomorphism H → P where

h1 7→ (p1, q2), h2 7→ (p2, q1).

Even though the map H → P may be suppressed from the notation, we always think of a
marked extension of P as equipped with such a homomorphism.

A (countable) group is left orderable if it admits a left invariant total ordering, or
equivalently if it admits a faithful action by orientation-preserving homeomorphisms of
the real line (see [15, Proposition 1.1.8] or [24, Theorem 2.2.19]). Our main result is the
following theorem.

THEOREM 1.5. Let H be a marked, left orderable extension of P. Then there exists a
square root of Thompson’s group G ∈S such that H < G.

Since the free group F2 is left orderable and is naturally a marked extension of P , we
immediately obtain the following corollary.

COROLLARY 1.6. There exists a square root G ∈S such that F2 < G.

We will show that square roots of F can contain torsion-free nilpotent groups of
arbitrary nilpotence degree. As a consequence of Theorem 1.5 and the Plante–Thurston
theorem [25], we have the following result.

COROLLARY 1.7. There exists a square root G ∈S such that G does not admit a faithful
action by C2 diffeomorphisms on a compact 1-manifold or on the real line.

Corollary 1.7 gives an example of a subgroup 〈 f, g〉< Homeo+(I ) which admits no
faithful C2 action on the interval, the circle, or the real line, but where 〈 f 2, g2

〉 admits a
faithful C∞ action on every 1-manifold (cf. [19, 22]).

Non-abelian nilpotent groups cannot act by piecewise linear homeomorphisms on I or
on S1.

COROLLARY 1.8. There exists a square root G ∈S such that G does not admit a faithful
action by P L homeomorphisms of a compact 1-manifold.

Corollary 1.8 stands in contrast to the standard definition of F , which is as a group of
P L homeomorphisms of the interval. Corollary 1.8 answers a question due to Brin [6].

In order to show that square roots of F may not be finitely presented, we prove the
following result which is similar in spirit to some of the methods in [22].

THEOREM 1.9. The class S contains uncountably many distinct isomorphism types.

Since there are only countably many isomorphism types of finitely presented groups,
we immediately obtain the following corollary.

COROLLARY 1.10. There exists an element G ∈S which admits no finite presentation.
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Analogues of Theorem 1.4 for square roots of F are not the primary topic of this
paper, though we can give the following statement which follows immediately from the
discussion of commutator subgroups of chain groups in [22]. Recall that the action of a
group on a topological space is minimal if every point has a dense orbit.

PROPOSITION 1.11. Let G ∈S act minimally on its support. Then the commutator
subgroup [G, G] is simple.

It follows from Proposition 1.11 that if G = 〈 f, g〉, and if f 2 and g2 generate a copy
of Thompson’s group F which acts minimally on the interior of I , then the commutator
subgroup of G is simple.

1.2. Square roots of other groups. Essential in the discussion of square roots of F in
this paper is the dynamical realization of F on a 2-chain of intervals, which is a dynamical
setup in which F occurs naturally (see §2.1, cf. [15, Proposition 1.1.8]). If one abandons
the dynamical framework of chains of intervals, the group-theoretic diversity phenomena
witnessed by Theorems 1.5 and 1.9 become so common as to be a general feature of
homeomorphism groups.

To be precise, let H = 〈h1, . . . , hn〉< Homeo+(I ) be a finitely generated subgroup.
An n-generated subgroup G = 〈g1, . . . , gn〉< Homeo+(I ) is called a square root of H if

H ∼= 〈g2
1, . . . , g2

n〉.

We note that the definition of a square root of H depends implicitly on a choice of
generators for H , and is therefore really a square root of a marked group.

If H = 〈h1, . . . , hn〉 is a generating set for a group H , we will define the skew subdirect
product of H to be the subgroup of H × H generated by {(hi , h−1

i )}ni=1, and we will
denote this group by Ĥ .

THEOREM 1.12. Let Z= 〈t1, . . . , tn+1 | t1 = · · · = tn+1〉, and let H < Homeo+(I ) be an
n-generated group. Then there exists a square root G of Z such that Ĥ < G.

COROLLARY 1.13. There exist uncountably many isomorphism types of 3-generated
subgroup of Homeo+(I ) such that the squares of the generators generate a cyclic group.
Moreover, there exists a 3-generated subgroup of Homeo+(I ) such that the squares of the
generators generate a cyclic group and which contains a non-abelian free group.

THEOREM 1.14. Let L = Z o Z be the lamplighter group, equipped with standard cyclic
generators of the two factors of the wreath product. Then L has uncountably many
isomorphism types of (marked) square roots.

In §4.5 we will define the notion of a formal square root of a finitely generated group.
We will show that formal square roots of left orderable groups are again left orderable, and
generally contain non-abelian free groups.
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1.3. Notes and references.

1.3.1. Remarks on context. The bulk of the present work could just as well be a
discussion of the very general setup of 2-generated subgroups of Homeo+(I ) whose
generators are supported on intervals J1 and J2, which in turn form a chain. It is well
known that under suitable dynamical hypotheses (cf. §1.3.2 below), the resulting subgroup
is isomorphic to F . The class S of square roots of F is merely the first instance of
interesting algebraic behavior for such homeomorphism groups which does not follow
from the properties of Thompson’s group F . In particular, the results of this paper apply
to higher roots of F beyond the square root.

1.3.2. Relation to other authors’ work. To the authors’ knowledge, it was Brin [6]
who first asked what sorts of groups can occur as square roots of F , and in particular if
square roots of F can contain non-abelian free groups, whether they can fail to be finitely
presented, and whether they can fail to act by P L homeomorphisms on the interval. The
main results of this paper form a natural complement to the joint work of the authors with
Kim in [22]. In that paper, Kim and the authors introduced the notions of a prechain group
and of a chain group. In the terminology of [22], square roots of F form a restricted
subclass of 2-prechain groups, namely those which square to become 2-chain groups. The
class of 2-chain groups in turn consists of just one isomorphism type (i.e. Thompson’s
group F). Chain groups with ‘fast’ dynamics also fall into very few isomorphism types
(namely the Higman–Thompson groups {Fn}n≥2), and their subgroup structure has been
studied independently by Bleak, Brin, Kassabov, Moore, and Zarmesky [3] (cf. [8]). For
generalities on Thompson’s group F , the reader is directed to the classical Cannon–Floyd–
Parry notes [12], as well as Burillo’s book [10].

1.3.3. Bi-orderability. We briefly remark that many of the groups we construct in this
paper, though they are manifestly orderable, will fail to be bi-orderable. Indeed, bi-
orderable groups are known to have the unique root property. That is, if f n

= gn for some
elements f and g in a biorderable group for some n 6= 0, then f = g (see [15, §1.4.2]).
One of the themes of this paper is the non-uniqueness of roots of homeomorphisms. Thus,
the moment a given element in a left orderable group has two distinct square roots, the
group cannot be bi-orderable. See, for instance, Corollary 1.13.

2. Square roots of F
In this section we establish the main result, after gathering some relevant preliminary facts
and terminology.

2.1. 2-prechain groups and variations thereupon. Let J = {J1, J2} be two non-empty
open subintervals of R. We call J a chain of intervals if J1 ∩ J2 is a proper non-empty
subinterval of J1 and of J2. See Figure 1.

If f ∈ Homeo+(R), we write supp f = {x ∈ R | f (x) 6= x}. Let f and g satisfy
supp f = J1 and supp g = J2. In the terminology of [22], the group 〈 f, g〉 is a 2-prechain
group. Note that, up to replacing f and g by their inverses, we may assume f (x), g(x)≥ x
for x ∈ R.
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FIGURE 1. A chain of two intervals.

Writing J1 = (a, c) and J2 = (b, d) with a < b < c < d , we have the following basic
dynamical stability result, a proof of which can be found as a special case of [22,
Lemma 3.1].

LEMMA 2.1. Suppose g ◦ f (b)≥ c. Then 〈 f, g〉 ∼= F.

Under the dynamical hypotheses of Lemma 2.1, the group 〈 f, g〉 is a chain group. There
is another configuration of intervals and homeomorphisms closely related to chain groups,
which naturally gives rise to F , which we will need in the sequel, and which we will
describe in the next subsection.

2.2. Nested generators for F. A natural generating set for F emerges as
homeomorphisms supported on a nested pair of intervals, satisfying elementary dynamical
conditions. This will be useful in our construction to follow.

LEMMA 2.2. Let [a, b1] and [a, b2] be compact intervals in R such that b1 < b2. Let f, g
be homeomorphisms satisfying the following conditions.
(1) The supports of g and f are contained in [a, b1] and [a, b2], respectively.
(2) f is a decreasing map on (a, b2).
(3) f, g agree on the interval [a, f (b1)].
Then 〈 f, g〉 ∼= F.

LEMMA 2.3. Let [a1, b] and [a2, b] be compact intervals in R such that a1 < a2. Let f, g
be homeomorphisms satisfying satisfying the following conditions.
(1) The supports of f and g are contained in [a1, b] and [a2, b], respectively.
(2) f is an increasing map on (a1, b).
(3) f, g agree on the interval [ f (a2), b].
Then 〈 f, g〉 ∼= F.

Proofs of Lemmas 2.2 and 2.3. The proofs of both lemmas above follow from checking
that the homeomorphisms f and g in each lemma satisfy the relations

[ f g−1, f −1g f ] = 1, [ f g−1, f −2g f 2
] = 1.

Since f and g do not commute, and since every proper quotient of F is abelian (see [12,
Theorem 4.3]), they generate a group isomorphic to F . �

2.3. Orderable extensions of P. We will use the following standard facts from the
theory of orderable groups.

LEMMA 2.4. (See [15, Remark 2.1.5]) Let 1→ K → G→ Q→ 1 be an exact sequence
of groups, and suppose that Q and K are left orderable. Then G admits a left ordering
which agrees with any prescribed ordering on K . Moreover, any countable, left orderable
group can be embedded in Homeo+(I ).
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The second claim of the lemma is implied by the fact that R∼= (0, 1). The following
lemma is obvious, after the observation that F × F is left orderable, applying the Brin–
Squier theorem [7], and Brin’s ubiquity theorem [5].

LEMMA 2.5. The group P is a 2-generated sub-direct product of F × F. It is a left
orderable group which contains no free subgroups.

Let R < F2 = 〈A, B〉 be such that F2/R ∼= P . Here, the generators A and B of F2 get
sent to the generators (p1, q2) and (p2, q1), respectively. Note that since P < F × F , we
have R 6= 1. Let Rk denote the kth term of the derived series of R and let Rk denote the
kth term of the lower central series of R, with the convention R1 =R1

=R.

LEMMA 2.6. For each k ≥ 1, the groups

Sk = 〈A, B |Rk〉 and Nk = 〈A, B |Rk
〉

are marked, left orderable extensions of P.

Proof. It is clear that for each k, the groups Sk and Nk are quotients of the free group
F2 via the canonical map. Since Rk,Rk

⊂R, we have that Sk and Nk both surject to P
simply by imposing the relations in R. It therefore suffices to show that Sk and Nk are
both left orderable, which since P is left orderable, reduces to showing that R/Rk and
R/Rk are left orderable by Lemma 2.4.

Since R is an infinitely generated free group, these quotients are merely the universal
k-step solvable and nilpotent quotients of the infinitely generated free group. We proceed
by induction on k. The case k = 1 is trivial, and in the case k = 2, we obtain the group
Z∞ which is easily seen to be left orderable. By induction, R/Rk (respectively, R/Rk) is
left orderable, and Rk/Rk+1 (respectively, Rk/Rk+1) is again isomorphic to Z∞, so the
conclusion follows by applying Lemma 2.4 again. �

2.4. Building square roots of F. In this section we provide a recipe that produces a
square root of F that contains a given group H as a subgroup, provided H is an orderable
marked extension of P .

Step 1: Partition [1, 2) into left closed, right open intervals {J1, . . . , J16} so that Ji

occurs to the left of J j in R whenever i < j . Moreover, we require that these intervals are
of the same length. For ease of notation, we denote by JX for some X ⊂ {1, . . . , 16} the
union

⋃
i∈X Ji . For example,

J{1,...,4} = J1 ∪ J2 ∪ J3 ∪ J4.

Step 2: Construct homeomorphisms f and g of the real line that satisfy the following
conditions.
(1) f and g are increasing maps on (0, 2) and on (1, 3), respectively, and equal the

identity outside these respective intervals.
(2) f maps Ji isometrically onto Ji+4 for 1≤ i ≤ 11.
(3) g maps Ji isometrically onto Ji+4 for 2≤ i ≤ 12.
(4) The map g f −1 has two components of support, which are

[0, 1] ∪ J1, J{12,...,16} ∪ [2, 3].
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It is elementary to construct homeomorphisms f and g that satisfy (1)–(3) above. If
f and g satisfy (1)–(3), then that g f −1 is the identity on J{2,...,11}. Hence the support of
g f −1 is contained in

[0, 1] ∪ J1 ∪ J{12,...,16} ∪ [2, 3].

To ensure that the components of support of g f −1 are precisely as stated in (4), we choose
g such that it is sufficiently slow on J1, and f so that it is sufficiently slow on J{12,...,16}.
Note that g f −1 is decreasing on the interior of [0, 1] ∪ J1 and increasing on the interior of
J{12,...,16} ∪ [2, 3].

Step 3: Let H = 〈h1, h2〉 be a marked, left orderable extension of P . We identify
the elements h1 and h2 with their dynamical realizations, both supported on the interval
J6. Here, by dynamical realization of a countable left orderable group H , we mean an
embedding of H into Homeo+(I ) (see [15, Proposition 1.1.8] or [24, Theorem 2.2.19]).
Define a map h3 as

h3 = g−1h2g = f −1h2 f.

By definition, h3 is supported on the interval J10. Finally, we define homeomorphisms

λ1 = h−1
1 h−1

3 f, λ2 = g.

Our goal for the rest of this section will be to demonstrate the following result.

PROPOSITION 2.7. The group 〈λ1, λ2〉 is a marked square root of F which contains H as
a subgroup.

The group 〈λ1, λ2〉 is manifestly orderable, since it is presented as a group of
orientation-preserving homeomorphisms of the interval. It is clear by our construction
that λ2

1 and λ2
2 satisfy the dynamical condition of Lemma 2.1, and hence generate a copy

of F . So it suffices to show that H < 〈λ1, λ2〉.

PROPOSITION 2.8. The elements λ2λ
−1
1 and λ−1

1 λ2 generate an isomorphic copy of H.

Proof. The element λ2λ
−1
1 has four components of support:

[0, 1] ∪ J1, J6, J10, J{12,...,16} ∪ [2, 3].

Note that
λ2λ
−1
1 � J6 = h1, λ2λ

−1
1 � J10 = h3 = f −1h2 f.

We denote by p2 the restriction

λ2λ
−1
1 � [0, 1] ∪ J1 = g f −1 � [0, 1] ∪ J1.

We denote by q1 the restriction

λ2λ
−1
1 � J{12,...,16} ∪ [2, 3] = g f −1 � J{12,...,16} ∪ [2, 3].

The element λ−1
1 λ2 has four components of support:

[0, 1] ∪ J{1,...,5}, J10, J14, J16 ∪ [2, 3].

Note that
λ−1

1 λ2 � J10 = f −1h1 f.
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Denote by p1 the restriction

λ−1
1 λ2 � [0, 1] ∪ J{1,...,5} = f −1g � [0, 1] ∪ J{1,...,5}.

Denote by q2 the restriction

λ−1
1 λ2 � J{14,...,16} ∪ [2, 3].

First observe that the restrictions on J10 are

λ−1
1 λ2 � J10 = f −1h1 f � J10, λ2λ

−1
1 � J10 = h3 � J10 = f −1h2 f � J10.

It follows that this restriction to J10 corresponds to the isomorphism

H → 〈λ−1
1 λ2 � J10, λ2λ

−1
1 � J10〉,

given by
h2 7→ λ2λ

−1
1 � J10, h1 7→ λ−1

1 λ2 � J10,

since these restrictions generate a dynamical realization of H on J10.
Next observe that

λ2λ
−1
1 � J6 = h1 � J6, λ−1

1 λ2 � J6 = id � J6.

Since H is a marked extension of P , every relation in H is necessarily a product of
commutators. It follows that the abelianization of H is Z2. We then have that this
restriction to J6 corresponds to the quotient

H → 〈λ−1
1 λ2 � J6, λ2λ

−1
1 � J6〉,

given by
h2 7→ λ2λ

−1
1 � J6, h1 7→ λ−1

1 λ2 � J6.

which is a homomorphism whose kernel is the normal closure of h1 in H .
Next, we observe that by construction, the maps p1, p2 and q1, q2 satisfy the dynamical

conditions described in Lemmas 2.2 and 2.3, respectively. Define

j1 = sup(J1), j2 = inf(J14).

By construction, we have

p1( j1)= λ−1
1 λ2( j1)= f −1g( j1)= g( f −1( j1)) < 1

and

p1 � [0, 1] = λ−1
1 λ2 � [0, 1] = f −1 � [0, 1] = λ2λ

−1
1 � [0, 1] = p2 � [0, 1].

It follows that

〈p1, p2〉 ∼= 〈p1, p2 | [p1 p−1
2 , p−1

1 p2 p1], [p1 p−1
2 , p−2

1 p2 p2
1]〉
∼= F.

Next, observe that by construction we have

q1( j2)= λ2λ
−1
1 ( j2)= g f −1( j2)= f −1(g( j2)) > 2

and
q2 � [2, 3] = λ−1

1 λ2 � [2, 3] = g � [2, 3] = λ2λ
−1
1 � [2, 3] = q1 � [2, 3].
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It follows that

〈q1, q2〉 ∼= 〈q1, q2 | [q1q−1
2 , q−1

1 q2q1], [q1q−1
2 , q−2

1 q2q2
1 ]〉
∼= F.

In particular, the subgroup of 〈p1, p2〉 × 〈q1, q2〉 generated by the elements (p1, q2) and
(p2, q1) is isomorphic to P .

Now we claim that the map

h2 7→ λ2λ
−1
1 , h1 7→ λ−1

1 λ2

extends to an embedding
〈h1, h2〉 → 〈λ1, λ2〉.

This is true for the component J10, where this is a dynamical realization of H . So it suffices
to show that each relation in h1 and h2 is satisfied by the restrictions of λ−1

1 λ2 and λ2λ
−1
1

on other components. As we saw before, for J6, this via the Z-quotient given by killing
the normal closure of the generator h1 ∈ H , which factors through the abelianization map.
For the components

[0, 1] ∪ J{1,...,5}, J{12,...,16} ∪ [2, 3],

the action of H is precisely as P , and since H is a marked extension of P , whence the
desired conclusion. �

2.5. Smoothability. To construct square roots of F which are not conjugate into
Diff2(I ) or Diff2(R), the group of C2 orientation-preserving diffeomorphisms of the
interval and the real line respectively, we use the following result.

THEOREM 2.9. (See [16, 25]) Let N < Diff2(M) be a finitely generated nilpotent
subgroup, where M is a compact and connected 1-manifold. Then N is abelian. Moreover,
any nilpotent subgroup of Diff2(R) is metabelian.

Proof of Corollary 1.7. Let Nk = F2/Rk be as in Lemma 2.6. Then R/Rk < Nk . Taking
a finite subset of a free generating set S for R, we have that the image of S in Nk generates
a nilpotent subgroup 0S < Nk . It is straightforward to check that 0S is a retract of
R/Rk , and is therefore a non-abelian nilpotent subgroup of Nk whenever k ≥ 3. Applying
Theorems 1.5 and 2.9 gives the desired conclusion in the case where M is compact.
Choosing a k� 0 such that Nk contains a nilpotent subgroup which is not metabelian,
we get the desired conclusion for R as well. �

Corollary 1.8 similarly follows from [16, Theorems 1.5 and 4.1].

3. Uncountability of S and infinitely presented examples
In this section we prove Theorem 1.9. For this, we retain the notation from the previous
discussion.

3.1. Sources of uncountability. A construction of P. Hall (sometimes attributed to
B. Neumann) on the existence of uncountably many distinct isomorphism classes of 2-
generated groups as outlined by de la Harpe in [13, part III.C.40] has the advantage that
the resulting groups are all left orderable, as observed in [22]. We summarize the relevant
conclusions here.
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PROPOSITION 3.1. There exists an uncountable class N of pairwise non-isomorphic
groups such that if N ∈N then N is 2-generated, left orderable, and N ab

= Z2. In
particular, N can be realized as a subgroup of Homeo+(R).

The reader will also find groups in the class N described explicitly below in the proof
of Corollary 1.13.

3.2. Equations over Homeo+(R). In order to prove Theorem 1.9, we will construct
an explicit orderable marked extension of P which contains a given element of N as a
subgroup. To do this, we will need to solve equations over Homeo+(R).

Let { f1, . . . , fk, g} ⊂ Homeo+(R) be given, and let w ∈ Fn be a reduced word in
the free group on n fixed generators, where k < n. An equation over Homeo+(R) is an
expression of the form

w( f1, . . . , fk, x1, . . . , xn−k)= g.

A tuple {y1, . . . , yn−k} ⊂ Homeo+(R) is a solution to the equation if this expression
becomes an equality after substituting yi for xi for each i , and interpreting the expression
in Homeo+(R).

We will restrict out attention to the case where n = 2. Even here, equations may not
admit solutions. A trivial example can be given by taking f 6= g and setting w to be the
first free generator. A slightly less trivial example can be given by taking f to be fixed
point free, taking g to have at least one fixed point, and setting w to be a conjugate of the
first free generator.

We will concern ourselves with a particular commutator word w with free generators s
and t , so that under the map F2→ P given by s 7→ (p1, q2) and t 7→ (p2, q1), the element
w lies in the kernel.

The following lemma is key in proving Theorem 1.9.

LEMMA 3.2. Fix a group N ∈N and let τ be the map τ(t)= t + 1. There exist a
homeomorphism κ ∈ Homeo+(I ) and a non-trivial commutator word w ∈ ker{F2→ P}
such that:
(1) the group 〈κ, τ 〉 contains N as a subgroup;
(2) the equation w(τ, x)= κ admits a solution y ∈ Homeo+(R).

We first show how Lemma 3.2 implies Theorem 1.9.

Proof of Theorem 1.9. We recall some of the notation and the construction in §2.4. We
will use informal language below, since we already have a precise description in that
subsection.

Given any h1, h2 ∈ Homeo+(I ), we can build a square root G ∈S generated by λ1, λ2

such that the group H = 〈λ−1
1 λ2, λ2λ

−1
1 〉 satisfies the following properties.
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(1) H acts as a dynamical realization of P on

([0, 1] ∪ J{1,...,5}) ∪ (J{12,...,16} ∪ [2, 3]).

(2) The group 〈λ2λ
−1
1 〉 acts faithfully by Z on the interval J6 and the element λ−1

1 λ2 acts
trivially on the interval J6.

(3) The element λ−1
1 λ2 acts as h1 on J10 and the element λ2λ

−1
1 acts as h2 on J10.

(4) The action of H outside the above intervals is trivial.
Let τ, κ and y be the homeomorphisms of the real line from Lemma 3.2. For the

rest of the proof, we fix dynamical realizations of τ, κ on J10 obtained from conjugating
by a homeomorphism of R to the interior of J10. We shall now denote by τ, κ, y these
homeomorphisms supported on J10.

We use the input h1 = τ and let h2 = y to produce a square root G of F . Consider the
subgroup K of H generated by

k1 = λ
−1
1 λ2, k2 = w(λ

−1
1 λ2, λ2λ

−1
1 ).

We check the following properties.
(1) k1 � J10 = τ and k2 � J10 = κ .
(2) k2 acts trivially outside J10 since w(s, t) represents the identity in P under the map

s 7→ (p1, q2) and t 7→ (p2, q1).
(3) Any commutator vanishes on J6.
(4) k1 acts trivially on J6 and by Z on

([0, 1] ∪ J{1,...,5}) ∪ (J{12,...,16} ∪ [2, 3]).

By our assumption, N < 〈k1, k2〉 � J10. We claim that in fact N < 〈k1, k2〉. This follows
from the fact that the relations in N are elements of the commutator subgroup of the
free group, and since 〈k1, k2〉 acts by Z outside J10. Therefore N < G where G is the
corresponding square root of F .

We thus obtain that if N ∈N is given, then there is a square root G N ∈S which
contains N as a subgroup. Since the class N contains uncountably many different
isomorphism types and since any element of S is 2-generated and hence countable, the
class {G N | N ∈N } ⊂S consists of uncountably many different isomorphism types. �

Proof of Lemma 3.2. We shall use the commutator word

w(s, t)= [w1(s, t), w2(s, t)],

where
w1 = [st−1, s−2ts2

], w2 = t[st−1, t−1s−1t]t−1.

It is straightforward to check that for the map F2→ P given by s 7→ (p1, q2) and t 7→
(p2, q1), the element w lies in the kernel.

Let φ, ψ ∈ Homeo+(I ) be given generators of N . We first choose homeomorphisms
µ, ν ∈ Homeo+(I ) such that ψ = [µ, ν−1

] and homeomorphisms χ, ξ ∈ Homeo+(I )
such that φ = [ξ, χ−1

]. Such choices are possible, since every element of Homeo+(I )
is a commutator (see, for example, [11, Theorem 2.65]).
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Identify I with the unit interval [0, 1] ⊂ R. Recall that τ is translation by 1 on R. We
set κ ∈ Homeo+(R) as

κ = (τ−2ψτ 2)(τ−102φτ 102).

Intuitively, κ acts by ψ on the interval [2, 3], by φ on the interval [102, 103], and by the
identity otherwise. We now verify that κ satisfies the conditions of the lemma. We set

y = (τ−1µτ 1)(τ−2ντ 2)(τ−101χτ 101)(τ−102ξτ 102).

Intuitively, the homeomorphism y acts by µ on [1, 2], by ν on [2, 3], by χ on [101, 102],
and by ξ on [102, 103]. We check that y is the solution to the equation. We proceed
by analyzing the two inner commutators separately, and then considering the outer
commutator.

Consider the commutator [τ y−1, τ−2 yτ 2
]. First, note that since y−1 has disjoint

support from τ−2 yτ 2, they commute, and hence

[τ y−1, τ−2 yτ 2
] = [τ, τ−2 yτ 2

].

We can now easily check that the action of the resulting homeomorphism is as follows.
(1) It acts by µ on [2, 3], by νµ−1 on [3, 4], and by ν−1 on [4, 5].
(2) It acts by χ on [102, 103], by ξχ−1 on [103, 104], and by ξ−1 on [104, 105].
We denote this homeomorphism by α.

Next, consider the commutator

[τ y−1, y−1τ−1 y].

First, note that
[τ y−1, y−1τ−1 y] = [τ, y−2

][τ−1, y−1
].

It is straightforward to check that the homeomorphism resulting from the product of
these commutators is as follows.
(1) It acts by µ−2 on [0, 1], by ν−2µ3 on [1, 2], by ν2µ−1ν on [2, 3], and by ν−1 on

[3, 4].
(2) It acts by χ−2 on [100, 101], by ξ−2χ3 on [101, 102], by ξ2χ−1ξ on [102, 103],

and by ξ−1 on [103, 104].
We denote by β the homeomorphism t[τ y−1, y−1τ−1 y]t−1.

Finally, we consider the homeomorphism [α, β]. Observe that the supports of α and β
intersect in the intervals [2, 3] and [102, 103]. Since ψ = [µ, ν−1

], we see that [α, β] acts
by ψ on [2, 3]. Similarly, since φ = [χ, ξ−1

], we have that [α, β] acts by φ on [102, 103].
It follows that [α, β] agrees with κ , whence y is a solution to the equation as claimed.

Finally, we show that N < 〈κ, τ 〉. Indeed, the group generated by τ−100κτ 100 and κ
acts as N on the interval [102, 103] and as Z outside this interval. Since the relations in
N are elements of the commutator subgroup of the free group, it follows that this group is
isomorphic to N . �

4. General square root phenomena
In this section, we pass to the completely general setup of finitely generated subgroups of
Homeo+(I ) and address the results in §1.2.
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4.1. Roots of homeomorphisms. We begin with a completely general construction in
Homeo+(I ) for producing roots of homeomorphisms. The following is a well-known fact,
whose proof we recall for the convenience of the reader.

LEMMA 4.1. Let f ∈ Homeo+(I ). Then for all n ∈ N, there exists an element g = gn ∈

Homeo+(I ) such that gn
= f . Moreover, there are uncountably many possible choices of

such a map g.

Proof. By considering the components of the support of f separately, we may consider
the case where f has no fixed points in the interval (0, 1). In this case, f is topologically
conjugate to the homeomorphism of R ∪ {±∞} given by x 7→ x + 1.

We now build an nth root of f defined on all of R in the following manner. First, we
choose arbitrary orientation-preserving homeomorphisms

hm :

[
m
n
,

m + 1
n

]
→

[
m + 1

n
,

m + 2
n

]
for 0≤ m ≤ n − 2. Next, we inductively define homeomorphisms

hm :

[
m
n
,

m + 1
n

]
→

[
m + 1

n
,

m + 2
n

]
for all m ∈ Z, such that

hk+(n−1) ◦ · · · ◦ hk = x + 1

for each k ∈ Z. It is clear then that the homeomorphisms hm piece together to give a
homeomorphism g of R ∪ {±∞}, whose nth power is translation by 1. Moreover, the
arbitrariness of the choices made guarantees that there are uncountably many choices
for g. �

4.2. Free groups. Classical results from combinatorial and geometric group theory
show that there exist 2-generated groups 〈a, b〉 which are not free, but such that 〈a2, b2

〉

is free. Moreover, one can arrange for these groups to be left orderable, and hence to
be realized as subgroups of Homeo+(I ). For instance, we take the braid group on three
strands,

B3 = 〈a, b | aba = bab〉.

All braid groups are left orderable (in fact the reader may consult [14] as a book dedicated
entirely to this subject), and it is a standard fact that the squares of the standard braids
generate a free group (see [17, Ch. 3, §5]).

4.3. The lamplighter group. Using square roots of F , we can produce many square
roots of the lamplighter group L = Z o Z. Recall that

Z o Z∼= Z n
(⊕

i∈Z
Zi

)
,

where the natural action of Z is by translating the index Zi 7→ Zi+1. The group L is
naturally realized as a subgroup of Homeo+(R) < Homeo+(I ) as follows. We choose
an arbitrary homeomorphism ψ such that supp ψ = (0, 1)⊂ R, and then we consider the
group generated by ψ and τ , where as before τ(x)= x + 1. It is clear that 〈ψ, τ 〉 ∼= L .
The following result clearly implies Theorem 1.14, in light of Theorem 1.9.
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THEOREM 4.2. Let G be a left orderable marked extension of P. Then there exists a
square root of L containing an isomorphic copy of G.

Sketch of proof. Let T ∈ Homeo+(R) be given by T (x)= x + 1/2. Note that the intervals
(0, 1) and T ((0, 1)) together form a chain of intervals.

Let G be a given left orderable marked extension of P , with distinguished generators
g1 and g2. Let ψ be a homeomorphism supported on (0, 1) satsifying the following
conditions.
(1) ψ(1/2)= 1/2.
(2) The group 〈ψ, TψT−1

〉< Homeo+(R) contains a copy of G.
It is easy to see that such a ψ exists, since besides the two conditions above it is

otherwise arbitrary, and its action on the two halves of (0, 1) can be chosen independently.
Thus, one may arrange that the action on (0, 1/2) recovers the generator g1 and the action
on (1/2, 1) recovers the generator g2. It is clear that squaringψ and T gives rise to a group
isomorphic to the lamplighter group. If one wanted the copy of G to lie in a square root
of F , one could further compose ψ with a suitably chosen increasing homeomorphism of
(0, 1). The reader should compare with §2.4 for the details of the latter construction. �

4.4. Square roots of Z. In this section we give a recipe for producing many n-generated
groups of homeomorphisms of the interval, so that the squares of the generators generate
a cyclic group.

Proof of Theorem 1.12. Let τ1, . . . , τn+1 be n + 1 copies of the translation τ(x)= x + 1
viewed as a homeomorphism of R, and let

〈h1, . . . , hn〉 = H < Homeo+(I )

be an arbitrary n-generated subgroup. We set Tn+1(x)= x + 1/2.
Lemma 4.1 constructs all possible roots τ , and we follow the construction given there.

We first scale down H to be a group of homeomorphisms of [0, 1/2], and we abuse
notation and label the generators of H by {h1, . . . , hn}. We now define Ti to be the
homeomorphism Tn+1 ◦ hi on [0, 1/2]. The requirement T 2

i = τ determines the values of
Ti on the rest of R.

Now let Si = T−1
n+1 ◦ Ti for 1≤ i ≤ n. Observe that Si acts by hi on each interval of the

form [k, k + 1/2] and by h−1
i on each interval of the form [k − 1/2, k], where k ∈ Z. It is

clear then that Ĥ ∼= 〈S1, . . . , Sn〉< 〈T1, . . . , Tn+1〉. �

Proof of Corollary 1.13. First, note that if H is free then the skew subdirect product Ĥ is
also free, which establishes the second part of the corollary. For the first part, we perform
a mild modification of the Hall–Neumann groups as discussed in Proposition 3.1 (see [22]
for a detailed discussion of these groups). All the Hall–Neumann groups are quotients of
a single 2-generated group 0 = 〈t, s0〉, which is itself left orderable. The element of N

are given as quotients of 0 by certain central normal subgroups NX < 0.
We recall the definition of 0 for the convenience of the reader, following III.C.40 of de

la Harpe’s book [13] (cf. [22, Lemma 5.1]). We begin with a set S = {si }i∈Z. Then we
define

R = {[[si , s j ], sk] =}i, j,k∈Z ∪ {[si , s j ] = [si+k, s j+k]}i, j,k∈Z.
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The group 00 is defined by 〈S | R〉, and 0 is defined as a semidirect product of Z with 00,
where the generator t of the Z-factor acts by t−1si t = si+1. One sets ui = [s0, si ], and if
X ⊂ Z \ {0}, we write NX = 〈{ui }i∈X 〉.

Note that the group 0 is generated by t and s0. It is straightforward to check that
the map given by t 7→ t−1 and s0 7→ s−1

0 extends to a well-defined automorphism of 0,
whence 0̂ ∼= 0. Moreover, the subgroups NX are all stable under this automorphism of 0.
In particular, it follows that if N ∈N is one of the Hall–Neumann groups, then N ∼= N̂ .
The first claim of the corollary follows from Theorem 1.12. �

4.5. General groups. For a general finitely generated group H = 〈x1, . . . , xn | R〉, one
can formally take the square root of H by setting

G = 〈y1, . . . , yn, x1, . . . , xn | R, x1 = y2
1 , . . . , xn = y2

n〉.

Note that this definition depends on the presentation of H which is given. If H is given as
a free group with no relations then G will be free of the same rank. However, if H is not
freely presented then G can be very complicated. We will call a presentation for a group
H reduced if xi is non-trivial in H for each i .

THEOREM 4.3. Let H be a left orderable finitely generated group with a reduced
presentation. Then the formal square root G of H is left orderable.

Proof. If H = 〈x1, . . . , xn | R〉, set

K = 〈y, x1, . . . , xn | R, x1 = y2
〉.

If we can prove that K is left orderable then the result will follow by induction on n.
To this end, note that K admits a description as an amalgamated product via

K = Z ∗2Z=〈x1〉 H.

Since we can order Z either positively or negatively, we may assume that the isomorphism
2Z∼= 〈x1〉 is order preserving. Then, a result of Bludov and Glass [4] (cf. Bergman [1])
implies that the corresponding amalgamated product is again orderable. �

Note that the assumption that the presentation for H in Theorem 4.3 is reduced was
essential, since otherwise the formal square root would contain torsion. Moreover, we
need not assume that H be finitely generated in Theorem 4.3, and this hypothesis could
be replaced by countable generation. We include this hypothesis since nearly all groups
under consideration in this paper are finitely generated.

Finally, we show that formal square roots generally contain non-abelian free groups,
so that free subgroups are in some precise sense a general phenomenon in square roots of
groups of homeomorphisms.

THEOREM 4.4. Let H = 〈x1, . . . , xn | R〉 be a reduced presentation for a non-cyclic
finitely generated left orderable group, and let K = 〈y, x1, . . . , xn | R, x1 = y2

〉. Then
K contains a non-abelian free group.

Thus, Theorem 4.4 implies that the formal square root of a non-cyclic group always
contains non-abelian free groups.
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Proof of Theorem 4.4. The result follows from general Bass–Serre theory. One can
construct free subgroups explicitly using the standard theory of normal forms for
amalgamated products (see [23, 26] for general introductions to combinatorial group
theory, and in particular [23, Theorem 2.6] for the normal form theorem for amalgamated
products). To do this, let z ∈ H \ 〈x1〉, which exists since H is assumed not to be cyclic.
Note that z has infinite order since H is left orderable. Consider the group 〈z, yzy−1

〉. An
arbitrary word in these generators will be of the form

zn1 yzm1 y−1
· · · znk yzmk y−1,

where all these exponents are non-zero except possibly n1 and mk . This word cannot
collapse to the identity since it is in normal form. It follows that the group 〈z, yzy−1

〉 is
free. �

Kassabov has pointed out to the authors that if H is given a presentation with at least
three generators then the formal square root G of H surjects onto

Z/2Z ∗ Z/2Z ∗ Z/2Z,

which contains a non-abelian free group.
Finally, we remark that there appears to be little general compatibility between formal

square roots of groups and ‘dynamical’ square roots of groups, such as in our discussion
of square roots of F in this paper. That is, let G = 〈 f, g〉 ∈S be a square root of F , so
that the supports of f and g form a 2-chain. Then it is never the case that G is the formal
square root of F . Indeed, by Theorem 4.4, we would have that g and h = f −1g f generate
a free group. This cannot happen, since there is an endpoint x of supp g which is fixed by
both g and h, and where the germs of these two homeomorphisms at x agree. By suitably
conjugating g or h, one can obtain a homeomorphism k such that supp k is contained in a
neighborhood of x on which g and h agree. But then g−1kg = h−1kh, violating the fact
that 〈g, h〉 is free.

If, on the other hand, f and g are fully supported homeomorphisms, then fairly easy
Baire category methods as in [18, Proposition 4.5] show that by choosing generic square
roots of f and g, one obtains a group which is isomorphic to the formal square root of
〈 f, g〉.
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