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Universidad de Concepción, Casilla 160-C, Concepción, Chile.

email: rburger@ing-mat.udec.cl, agarcia@ing-mat.udec.cl
2 Centre of Mathematics for Applications (CMA), University of Oslo, P.O. Box 1053, Blindern,

N-0316 Oslo, Norway. email: kennethk@math.uio.no
3 MiraCosta College, 3333 Manchester Avenue, Cardiff-by-the-Sea, CA 92007-1516, USA.

email: john.towers@cox.net

(Received 10 November 2005; revised 2 May 2006)

A one-dimensional model of clarifier-thickener units in engineering applications can be

expressed as a conservation law with a flux that is discontinuous with respect to the spatial

variable. This model also includes a singular feed source. In this paper, the clarifier-thickener

model studied in a previous paper (Numer. Math. 97 (2004) 25–65) is extended by a singular

sink through which material is extracted from the unit. A difficulty is that in contrast to

the singular source, the sink term cannot be incorporated into the flux function; rather, the

sink is represented by a new non-conservative transport term. To focus on the new analytical

difficulties arising due to this non-conservative term, a reduced problem is formulated, which

contains the new sink term of the extended clarifier-thickener model, but not the source term

and flux discontinuities. The paper is concerned with numerical methods for both models

(extended and reduced) and with the well-posedness analysis for the reduced problem. For the

reduced problem, a definition of entropy solutions, based on Kružkov-type entropy functions

and fluxes, is provided. Jump conditions are derived and uniqueness of the entropy solution

is shown. Existence of an entropy solution is shown by proving convergence of a monotone

difference scheme. Two variants of the numerical scheme are introduced. Numerical examples

illustrate that all three variants converge to the entropy solution, but introduce different

amounts of numerical diffusion.

1 Introduction

1.1 Scope

In recent years there has been an increased interest in the analysis and numerics of

conservation laws of the type ut+f(γ(x), u)x = 0, where γ(x) is a vector of parameters that

depend discontinuously on the spatial position x. This equation is the main ingredient

of a clarifier-thickener model [9, 12, 14, 20], but also appears in other applications

[8, 13, 17, 33, 42, 47, 49, 54]. We here study an extended clarifier-thickener model given

by the equation

ut + f
(
γ(x), u

)
x

= γ3(x)ux, (x, t) ∈ ΠT := � × (0, T ), (1.1.1)
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where γ(x) = (γ1(x), γ2(x)) is a vector of discontinuous parameters which correspond

to singular feed sources and flux discontinuities. The discontinuous function γ3(x) is the

transport coefficient of the non-conservative term γ3(x)ux, which represents a new singular

sink that models the continuous extraction of material from the clarifier-thickener. The

function γ3 is a Heaviside-type function whose jump is located at the position of the sink.

On the other hand, the functions γ1 and γ2 are continuous across the sink position. Since

their discontinuities do not interfere with the sink, and we already know from [12] how to

deal with them, we concentrate in this paper on an initial value problem for the reduced

equation

ut + ϕ(u)x − γ(x)ux = 0, (x, t) ∈ ΠT . (1.1.2)

Roughly speaking, the nonlinear function ϕ arises from evaluating f(γ(x), u) at a fixed

point of continuity of γ, and the remaining discontinuous coefficient γ represents γ3 after

the sink has been shifted to x = 0. We refer to (1.1.1) and (1.1.2) as the full equation

and the reduced equation, respectively. Together with an initial condition and further

assumptions on the nonlinearity of the flux and on the discontinuous coefficients, these

equations form the full extended clarifier-thickener model (or, in short, full model) and the

reduced problem, respectively.

In this paper, we introduce a definition of entropy solutions for the reduced problem,

which consists of two separate Kružkov-type [39] integral inequalities for the two half-

spaces on either side of x = 0. The solutions on both sides are coupled by a series of jump

conditions. We then prove that these jump conditions ensure an L1 stability property,

which implies uniqueness of an entropy solution. We introduce an explicit finite difference

scheme for the full model, which is the scheme analyzed in earlier work [12] extended by

an upwind discretization of γ3(x)ux. We prove that the numerical solution remains in the

interval [0, 1], that the scheme is monotone, that it satisfies a time continuity property,

and that, for the reduced problem, it converges to an entropy solution. Thus, the reduced

problem is well posed. Numerical examples demonstrate that several variants of the

scheme, which vary in their ease of implementation and level of non-diffusive resolution,

converge to entropy solutions of both the reduced problem and the full model.

To put the treatment in the proper perspective, let us first recall some known results

for the equation ut + f(γ(x), u)x = 0. The basic difficulty is that its well-posedness is not

a straightforward limit case of the standard theory for conservation laws with a flux

that depends smoothly on x. In fact, several extensions of the Kružkov entropy solution

concept [39] to conservation laws with a discontinuous flux were proposed in recent years

[1, 3, 4, 30, 31, 34, 36, 37, 38, 41, 50, 52, 53]. Each of these concepts is supported by

a convergence analysis of a numerical scheme; the differences between them appear in

the respective admissibility conditions for stationary jumps of the solution across the

discontinuities of γ [10].

The choice of the entropy solution concept depends on the regularizing viscous physical

model. For clarifier-thickener models, the appropriate concept emerges from the limit

ε → 0 of a viscous regularization εuxx with a diffusion constant ε > 0 [14]. Thorough

analyses and construction of exact entropy solutions for clarifier-thickener models were

advanced by Diehl [19, 20, 21, 22, 23, 24]. On the other hand, the authors with collaborators
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made a series of contributions [6, 9, 11, 12, 14, 15] to the well-posedness and numerical

analysis for these models, whose basic non-standard ingredient is a singular feed source

that produces diverging bulk flows, which causes the discontinuous x-dependence of the

flux.

We may also write the reduced equation (1.1.2) as a non-strictly hyperbolic system

at = 0, ut + F(a, u)x − G(a, u)ax = 0, x ∈ �, t � 0;

(a, u)(0, x) =
(
a0(x), u0(x)

)
, x ∈ �,

(1.1.3)

where we define a0(x) := H(x), G(a, u) := u and F(a, u) := (q + a)u + b(u). In passing,

we note that for F(a, u) := f(a, u), G ≡ 0, and a0(x) := γ(x), (1.1.3) is equivalent to the

Cauchy problem for ut + f(γ(x), u)x = 0 with a scalar discontinuous parameter γ(x). The

resulting triangular hyperbolic system has been the starting point of several analyses of

this Cauchy problem [9, 21, 25, 30, 31, 37, 38].

Systems of the type (1.1.3) with G� 0 were recently analyzed by Amadori et al. [2].

They solve the Riemann problem for (1.1.3), prove convergence of a Godunov scheme,

and address uniqueness by a Kružkov-type technique. However, our reduced model is not

a sub-case included in their analysis, since some of their structural assumptions are not

satisfied in our case. For example, their requirement (P4), stating that Fa − G� 0 for all

(a, u) with Fu(a, u) = 0, is not satisfied, since Fa − G ≡ 0 in our case. We should point

out that their uniqueness result does not hold for a discontinuous coefficient a, while our

approach does include uniqueness.

1.2 Reduced problem and full model

The novel feature of our new extended clarifier-thickener model is a singular sink through

which material may be extracted. The reduced problem emerges from the new model if

the “unit” is assumed to have a sink only, but no sources, and is defined by the reduced

equation (1.1.2) along with

u(x, 0) = u0(x), x ∈ �, u0 ∈ [0, umax], umax ∈ (0, 1], (1.1.4)

ϕ(u) = qu+ b(u), γ(x) =

{
0 for x < 0,

γ+ for x > 0,
q � 0, γ+ > 0. (1.1.5)

Here, the function b(u) is assumed to be Lipschitz continuous, positive for u ∈ (0, 1), and

to vanish for u � (0, 1). We assume that b(u) is twice differentiable in (0, 1), that b′(u) = 0

at exactly one location u = u∗
b ∈ (0, 1), where b(u) has a maximum, and that b′′(u) = 0 at

no more than one inflection point uinfl ∈ (0, 1); if such a point is present, we assume that

uinfl ∈ (u∗
b, 1). The restriction q � 0 is required in the stability and uniqueness analysis. See

§ 2 for a detailed derivation.

If we set umax = 1, then the assumptions on b(u) are satisfied by the frequently used

Richardson-Zaki [48] type function

b(u) =

{
v∞u(1 − u)n for u ∈ [0, umax],

0 otherwise,
n > 1, v∞ > 0, (1.1.6)
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where v∞ is the settling velocity of a single particle in an unbounded medium. With the

assumptions on b(u) and the sign of q, the flux ϕ(u) has a single maximum at u∗ ∈ [0, 1],

and ϕ is non-decreasing on [0, u∗] and non-increasing on [u∗, 1].

The full model is defined by (1.1.1) along with the initial condition (1.1.4) and

f
(
γ(x), u

)
:= γ1(x)b(u) + γ2(x)(u− uF), γ(x) :=

(
γ1(x), γ2(x)

)
, (1.1.7)

γ1(x) :=

{
0 for x � [xL, xR],

1 for x ∈ [xL, xR],
γ2(x) :=

{
q̃R − qF for x < 0,

q̃R for x > 0,
(1.1.8)

where uF denotes the feed concentration, xL < xD < 0 < xR are the overflow, sink, and

discharge levels, respectively, reflecting the design of the unit, and q̃R < 0 and qF > 0 are

given bulk flow velocities describing operating conditions. Thus, f(γ(x), u) incorporates

the batch flux, the source term, and the discontinuities at the discharge and overflow

levels. (The precise meaning of all variables is given in § 2.) Finally, the discontinuous

transport coefficient γ3(x) is given by

γ3(x) :=

{
0 for x < xD,

−qD > 0 for x > xD,
(1.1.9)

where qD < 0 is another velocity related to sink control (see Section 2). Observe that the

full model is defined by a conservation law with a flux that is discontinuous at the source

and transition points, but not at the location of the singular sink.

1.3 Outline of the paper

The remainder of this paper is organized as follows. The full extended clarifier-thickener

model and the reduced problem are derived in § 2. For the reduced problem, we present

in § 3 the definition of entropy solutions and, using the jump conditions, establish an L1

stability property, which implies uniqueness of an entropy solution.

In § 4, we introduce an explicit finite difference scheme for the full model, and prove that

the numerical solution remains in the interval [0, 1], that the scheme is monotone, and that

it satisfies a time continuity property. In § 5 we focus on the reduced problem and prove that

the scheme satisfies a spatial variation bound. Starting from a discrete entropy inequality,

using the monotonicity and proceeding as in the proof of the Lax-Wendroff theorem,

we then show that the scheme converges to an entropy solution of the reduced problem.

The analysis is summarized in Theorem 5.1 stating the well-posedness of the reduced

problem.

Several suitable schemes for the reduced or full equation can be formulated by combin-

ing upwind discretizations for the linear terms with an Engquist-Osher type numerical flux

for the remaining nonlinear portion. Based on this observation, we introduce in § 6 two

different variants of our scheme, which are referred to as “Scheme 1” and “Scheme 3”,

respectively, while the scheme analyzed so far is called “Scheme 2”. (This nomenclature

anticipates the observed ranking in performance.) The analysis of Scheme 2 in § 4 and

§ 5 also fully holds for Scheme 1. The convergence result also applies to Scheme 3, while
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the entropy analysis may require different arguments. Numerical examples for the three

schemes are presented in § 7 for both the reduced problem and the complete model.

§ 8 collects some conclusions that can be drawn from our well-posedness and numerical

analysis. Moreover, we comment on the numerical results of § 7. It turns out that although

all three schemes converge to the entropy solution, they significantly differ in the degree

of numerical diffusion introduced. Scheme 1 is very easy to implement, but turns out to

be very diffusive, especially for steady-state, while Scheme 3 produces sharp resolution.

2 The extended clarifier-thickener model

2.1 Clarifier-thickener models, singular sources, and singular sinks

Clarifier-thickener units are widely used in chemical engineering, wastewater treatment,

mineral processing and other applications to separate a suspension of finely divided solid

particles dispersed in a viscous fluid into its solid and liquid components. The basic

clarifier-thickener model can be derived from the scalar conservation law

ut + b(u)x = 0, x ∈ [0, L], t > 0; u(x, 0) = u0(x), x ∈ [0, L] (2.2.1)

of the kinematic sedimentation model [16, 40], which describes the settling of a suspension

of initial concentration u0(x) in a settling vessel of height L. Here, u is the sought

concentration as a function of depth x and time t, and b(u) is the hindered settling

function or batch flux density function, which is a material-dependent function. A typical

example is the function (1.1.6).

We emphasize that all manipulations performed herein to derive the final form of

the governing equation are made under the assumption that the solution u is smooth.

Of course, solutions to nonlinear conservation laws like (2.2.1) and all partial differential

equations that follow within this section are discontinuous in general. However, we provide

an appropiate concept of discontinuous solutions, including an entropy concept to ensure

uniqueness, for the final model only (see Definition 3.1 in § 3).

Suppose now that we pump the suspension into a vertical tube that is filled with water

at a feed level x = 0, and that part of the mixture flows upwards at velocity qL < 0, while

the remainder flows downwards at velocity qR > 0, as in the left diagram of Figure 1.

Consequently, if S is the cross-sectional area of the tube, then QF = (qR−qL)S. Assuming

for a moment that we inject only clear water at x = 0, we obtain the conservation law

with discontinuous flux

ut +
(
q(x)u+ b(u)

)
x

= 0, q(x) :=

{
qL < 0 for x < 0,

qR > 0 for x > 0.
(2.2.2)

Now let us inject feed suspension of a given concentration uF at a volume rate QF.

Since the feed source is concentrated at x = 0, we need to add the singular source term

δ(x)(qR − qL)uF to the right-hand side of the equation in (2.2.2), obtaining

ut +
(
q(x)u+ b(u)

)
x

= δ(x)(qR − qL)uF. (2.2.3)
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Figure 1. Basic flow variables for a singular source term (left) and a singular sink term (right).

However, using the Heaviside function H(x), we may formally write

δ(x)(qR − qL)uF =
(
H(x)(qR − qL)uF

)
x
.

Then (2.2.3) assumes the form

ut +
(
q(x)u+ b(u) −

(
H(x)(qR − qL)uF

))
x

= 0, (2.2.4)

so that the singular source is expressed as a discontinuity of the flux function. This is

possible since uF is a given constant (or possibly a given (control) function of t). Thus,

the governing conservation law can be written as

ut + g(u, x)x = 0, g(u, x) :=

{
qL(u− uF) + b(u) for x < 0,

qR(u− uF) + b(u) for x � 0.
(2.2.5)

Note that the injection of material of given concentration and at given rate leads to

a homogeneous conservation law with discontinuous flux. This property has made the

clarifier-thickener model tractable.

In the present work, we extend the clarifier-thickener model to the case that we also

extract material at a fixed location. To elucidate the problem, consider a column with an

upwards directed bulk flow of QR < 0. At depth x = 0, we divide the flow into a discharge

flow QD < 0 and the remaining upwards directed bulk flow QL with QR < QL < 0, see

the right diagram of Figure 1. Considering that the concentration u(0, t) of the suspension

extracted is unknown beforehand and defining qR := QR/S and qL := QL/S, we obtain

instead of (2.2.5) the equation

ut + h(u, x)x = δ(x)(qR − qL)u(x, t), h(u, x) =

{
qLu+ b(u) for x < 0,

qRu+ b(u) for x > 0.
(2.2.6)
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Note that we cannot use the Heaviside function in the same way as in (2.2.4), since now

the solution value u(x, t) replaces the constant uF in the singular term. This difference

justifies studying the sink term problem in its own right, rather than claiming that it

is just analogous to the source term problem. This view is further supported by the

observation that the so-called crossing condition [35], which ensures uniqueness of an

entropy solution of the initial value problem, is satisfied for (2.2.5) but may be violated

for (2.2.6), so uniqueness is not obvious here.

Note that the right-hand side of (2.2.6) includes a δ function multiplying the func-

tion u(x, t), which will be discontinuous in general. In other words, we have a non-

conservative product in (2.2.6), which is potentially ill-defined for the discontinuous

solutions we are ultimately interested in. However, since we are still in the stage of model

development, we will not deal with this problem here. In fact, the “δ(x) · u(x, t)”-type

non-conservative product will be manipulated further on in § 2.3 by a “differentiation by

parts”, for which a detailed justification is provided; finally, our solution concept stated

in Section 3 incorporates this non-conservative product in a precisely defined way.

Finally, let us mention that several researchers in chemical engineering and mineral

processing have reported experiments with separation devices that can be modelled by

the extended clarifier-thickener concept by possibly considering several discharge sink

terms located at different depths. (It is clear that if we know how to properly handle one

sink term, then we can also deal with any array of them.) References to experimental

information include [27, 28, 29, 43, 44, 45, 46, 51].

2.2 Bulk flow variables

Consider the extended clarifier-thickener drawn in Figure 2, which is supposed to have a

constant cross-sectional area S. This setup is similar to that considered earlier [9, 11, 12],

but is equipped with an additional sink located at depth xD. This (of course, idealized)

unit is operated as follows.

At x = 0, suspension is fed into the unit at a volume rate QF(t) � 0. The feed suspension

is loaded with solids of the volume fraction uF(t) ∈ [0, umax], where umax is a maximum

solids concentration. At x = 0, the feed flow divides into an upwards-directed and a

downwards-directed bulk flow. We also prescribe the underflow volume rate QR(t) � 0

with QR(t) � QF(t). Thus, the signed volume rate of the upwards-directed bulk flow

immediately above the feed source is

QM(t) = QR(t) − QF(t) � 0. (2.2.7)

At depth x = xD, xL < xD < 0, a discharge sink is located. Suspension is extracted

from the column at a signed volume rate QD(t) � 0, where we assume QD(t) � QM(t).

Above the discharge sink, for xL � x � xD, there is an upwards directed bulk flow with

the volume rate

QL(t) = QM(t) − QD(t) = QR(t) − QF(t) − QD(t) � 0. (2.2.8)

Summarizing, we prescribe the volume rates QF(t), QR(t) and QD(t) and the feed
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Figure 2. The extended clarifier-thickener setup showing the known bulk flows and control

variables.

concentration uF(t) as independent control variables. From these we calculate the de-

pendent control variables QM(t) and QL(t) by (2.2.7) and (2.2.8), respectively.

For the remainder of the paper, we assume that all control variables are constant, and

introduce the velocities qc := Qc/S, c ∈ {D,F,L,M,R}. Disregarding for a moment the

solids sources and sinks but taking into account the bulk flows and utilizing independent

control variables only, we can write the flux function as

g̃(u, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(qR − qF − qD)u for x � xL,

(qR − qF − qD)u+ b(u) for xL < x � xD,

(qR − qF)u+ b(u) for xD < x � 0,

qRu+ b(u) for 0 < x � xR,

qRu for x > xR.

(2.2.9)

2.3 Solids feed and sink terms

Including now the solids feed and sink mechanisms, we obtain the conservation law with

source terms

ut + g̃(u, x)x = qFuFδ(x) + qDu(x, t)δ(x− xD)

= qFuFH
′(x) + qD

(
H(x− xD)u(x, t)

)
x

− qDH(x− xD)ux(x, t),
(2.2.10)
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where δ(·) denotes the Dirac delta mass. Observe that the differentiation by parts used

here,

u(x, t)δ(x− xD) =
(
H(x− xD)u(x, t)

)
x

−H(x− xD)ux(x, t),

is not defined in the sense of distributions. However, we continue to use the second

equality in (2.2.10) as the defining equation of the extended clarifier-thickener model. This

is supported by the integral version of the balance law, and the desired effect of the

singular sink. Namely, if we fix a ∈ (xL, xD) and b ∈ (xD, 0), so that xD ∈ [a, b] and define

the total amount of solids

U[a,b](t) :=

∫ b

a

u(x, t) dx,

then the rate of change of U[a,b](t) should be given by the solids flux through x = a minus

the flux through x = b minus the rate at which solids are extracted through x = xD.

However, integrating the second equality in (2.2.10) over [a, b], taking into account the

definition of g(x, u) and assuming that the solution is smooth, we obtain

U ′
[a,b](t) = −

(
g̃(u(b, t), b) − g̃(u(a, t), a)

)
+ qDH(b− xD)u(b, t) − qDH(a− xD)u(a, t)

− qD

∫ b

a

H(x− xD)ux(x, t) dx

= −
(
g̃(u(b, t), b) − g̃(u(a, t), a)

)
+ qDu(b, t)

− qD

∫ b

xD

ux(x, t) dx

= g̃(u(a, t), a) − g̃(u(b, t), b) + qDu(xD, t),

which ensures equivalence at least at the level of smooth solutions between the first

equation of (2.2.10) and the full extended clarifier-thickener model (1.1.1).

Note that even for smooth solutions, it is not possible to fully include the term

qDu(x, t)δ(x − xD), or its equivalent obtained after differentiation by parts, into the flux

term (which is differentiated with respect to x) on the left-hand side of (2.2.10). Thus, the

problem cannot be written in standard conservation form.

Next, absorbing the term qFuFH
′(x) + qD(H(x − xD)u(x, t))x into the convective flux

yields the equation

ut + g(u, x)x = −qDH(x− xD)ux(x, t), (2.2.11)

where, after defining q̃R := qR − qD and adding −qLuF, we obtain the flux function

g(u, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(q̃R − qF)(u− uF) for x � xL,

(q̃R − qF)(u− uF) + b(u) for xL < x � 0,

q̃R(u− uF) + b(u) for 0 < x � xR,

q̃R(u− uF) for x > xR,

(2.2.12)
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which is continuous across x = xD. Defining the discontinuous parameters γ1(x), γ2(x)

and γ3(x) via (1.1.8) and (1.1.9) yields g(u, x) = f(γ(x), u), where f(γ(x), u) is defined by

(1.1.7), so that the governing balance law (2.2.11) takes the final form (1.1.1).

2.4 Reduced problem

The analysis in this paper is focused on the reduced problem (1.1.2), (1.1.4), (1.1.5),

which emerges from the model derived above if we consider only the vicinity of the sink

term and assume that the velocities have been normalized such that qD (in the original

problem description) equals −γ+, and that q � 0. Recall that we refer to (1.1.2), (1.1.4),

(1.1.5) as reduced problem, while (1.1.1), (1.1.4), and (1.1.7)–(1.1.9) form the full extended

clarifier-thickener model (in short, full model).

3 Entropy solution and uniqueness analysis of the reduced problem

Before stating the definition of entropy solution, we recall the notation a∨b := max{a, b},
a ∧ b := min{a, b}. Also, we use the notation D(ΠT ) to denote the set of test functions;

D(ΠT ) = C∞
c (ΠT ).

Definition 3.1 (Entropy solution) A function u : ΠT 
→ � is an entropy solution of the

initial value problem (1.1.2), (1.1.4), (1.1.5) if it satisfies the following conditions:

(D.1) u ∈ L1(ΠT ) ∩ BV (ΠT ) and u(x, t) ∈ [0, 1] for a.e. (x, t) ∈ ΠT .

(D.2) If 0 � ψ ∈ D(ΠT ) vanishes for x > 0, then∫∫
ΠT

(
|u− c|ψt + sgn(u− c)

(
ϕ(u) − ϕ(c)

)
ψx

)
dt dx � 0 ∀c ∈ �, (3.3.1)

and if 0 � ψ ∈ D(ΠT ) vanishes for x < 0, then∫∫
ΠT

(
|u− c|ψt + sgn(u− c)

(
ϕ(u) − ϕ(c) − γ+(u− c)

)
ψx

)
dt dx � 0 ∀c ∈ �. (3.3.2)

(D.3) With the abbreviation u± = u(0±, t), the following jump conditions hold at x = 0 for

a.e. t ∈ (0, T ): if u− � c � u+, then

ϕ(u+) − ϕ(c) � γ+(u+ − c), (3.3.3)

ϕ(u−) − ϕ(c) � 0, (3.3.4)

and if u− � c � u+, then

ϕ(u+) − ϕ(c) � γ+(u+ − c), (3.3.5)

ϕ(u−) − ϕ(c) � 0. (3.3.6)

(D.4) The initial condition is satisfied in the following strong L1 sense:

ess lim
t↓0

∫
�

|u(x, t) − u0(x)|dx = 0. (3.3.7)
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Remark 3.1 For the full extended clarifier-thickener model captured by equation (1.1.1),

we would have to replace the condition u ∈ BV (ΠT ) by the weaker condition u ∈ BVt(ΠT ).

Here BVt(ΠT ) is the class of functions W (x, t) with ∂tW being a finite measure. The

presence of the discontinuities in the parameter vector γ makes it difficult (in the case

of the extended model (1.1.1)) to get global control of the spatial variation of the

solution u.

Remark 3.2 It is clear from (3.3.1), (3.3.2) that if u is an entropy solution in the sense of

Definition 3.1, then for x < 0, u is an entropy solution in the usual Kružkov sense of the

conservation law ut + ϕ(u)x = 0, while for x > 0, u is an entropy solution (in the usual

Kružkov sense) of the conservation law ut + (ϕ(u) − γ+u)x = 0.

Remark 3.3 The reduced equation (1.1.2) has a so-called non-conservative product. More

specifically, we have what amounts to a δ function, ux, multiplied by a discontinuous

function γ(x). We expect a jump condition of the form

ϕ(u+) − ϕ(u−) = γ̄(u+ − u−), (3.3.8)

where γ̄ is some intermediate value of γ, i.e. 0 = γ− � γ̄ � γ+. In fact, when u− � u+, we

can take c = u− in (3.3.3) and then c = u+ in (3.3.4) to get

0 � ϕ(u+) − ϕ(u−) � γ+(u+ − u−),

which implies (3.3.8). Similarly, when u− � u+, we can take c = u− in (3.3.5) and then

c = u+ in (3.3.6) to get

γ+(u+ − u−) � ϕ(u+) − ϕ(u−) � 0,

which again implies (3.3.8).

From the jump conditions in Definition 3.1 we derive the following additional jump

conditions.

Lemma 3.1 Let u be an entropy solution of the reduced problem in the sense of Defin-

ition 3.1. The following jump conditions hold at x = 0 for a.e. t ∈ (0, T ) for which

u−(t)� u+(t):

0 �
ϕ(u+) − ϕ(u−)

u+ − u−
� γ+, (3.3.9)

u+ < u− ⇒ u+ < u− � u∗, (3.3.10)

where u∗ is the single maximum of ϕ(u) (see § 1.2).

Proof To prove (3.3.9), first take the case where u− < u+. Letting c = u− in (3.3.3), and

then c = u+ in (3.3.4), yields the inequalities

ϕ(u+) − ϕ(u−) � γ+(u+ − u−), ϕ(u+) − ϕ(u−) � 0,
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which imply inequality (3.3.9). If u+ < u−, we arrive at (3.3.9) by a similar calculation,

this time taking c = u− in (3.3.5), and then c = u+ in (3.3.6).

To prove (3.3.10), it suffices to show that neither of the orderings u+ � u∗ < u−,

u∗ < u+ < u− is possible. If u+ � u∗ < u−, letting c = u∗ in (3.3.6) results in ϕ(u∗)−ϕ(u−) �
0, which contradicts our assumptions about the shape of the graph of u 
→ ϕ(u). If

u∗ < u+ < u−, letting c = u+ in (3.3.6) yields ϕ(u+) − ϕ(u−) � 0. Since ϕ is strictly

decreasing on [u∗, 1], this is a contradiction. �

Remark 3.4 In the absence of the sink term (γ+ = 0), the jump condition (3.3.9) becomes

ϕ(u+) − ϕ(u−)

u+ − u−
= 0,

which is the usual Rankine-Hugoniot condition satisfied by a zero-speed discontinuity

for the conservation law ut + ϕ(u)x = 0. Based on this observation, it seems that (3.3.9)

is playing the role of a Rankine-Hugoniot condition for a steady jump located at x = 0

where the delta-function due to the sink term is concentrated. Maintaining for the moment

our focus on the situation where γ+ = 0, the shape of the flux function u 
→ ϕ(u), along

with the Rankine-Hugoniot condition, ϕ(u+) = ϕ(u−), requires that u∗ lies between u−
and u+. It follows from (3.3.10) that in this situation u− < u∗ < u+ if u− � u+. Thus when

γ+ = 0, the local entropy condition implied by the jump conditions (D.3) is the classical

Lax condition for a steady shock.

Remark 3.5 If we set ϕ ≡ 0, the partial differential equation (1.1.2) reduces to

ut − γ(x)ux = 0, (3.3.11)

a simple transport equation. Note that due to the form of the coefficient γ(x), the

interface values u(0−, t) and u(0+, t) are determined by the initial data alone, i.e., no

interface conditions are required. Indeed, in the limiting case where ϕ vanishes, our jump

conditions at x = 0 are satisfied trivially, i.e., they impose no restrictions on u− and u+.

Using (3.3.1), (3.3.2) and (3.3.7), we find that the solution to (3.3.11) that is dictated by

our definition of entropy solution is

u(x, t) =

{
u0(x) for x < 0,

u0(x+ γ+t) for x > 0,
(3.3.12)

as expected from the form of (3.3.11) and the definition of γ. We refer the reader to the

work of Bouchut & James [7] for a detailed study of linear transport equations with

discontinuous coefficients such as (3.3.11). Note that (3.3.11) can be written in the form

of [7, Eq. (1.1)], ut + a(x)ux = 0, if we define a(x) = −γ(x). In view of our definition of

γ(x), (1.1.5), the function a(x) is then piecewise constant with one decreasing jump. Thus,

the one-sided Lipschitz condition [7, (1.8)] is trivially satisfied, and our solution (3.3.12)

of (3.3.11) is also a solution in the sense of Bouchut & James [7].

We are now ready to prove that entropy solutions are L1 stable and hence unique.
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Theorem 3.1 (L1 stability and uniqueness) Let u and v be two entropy solutions in the sense

of Definition 3.1 of the initial value problem (1.1.2), (1.1.4), (1.1.5) with initial data u0 and

v0, respectively. Then, for a.e. t ∈ (0, T ),

∫
�

|u(x, t) − v(x, t)| dx �

∫
�

|u0(x) − v0(x)| dx.

In particular, there exists at most one entropy solution of the reduced model (1.1.2), (1.1.4),

(1.1.5).

Proof Using standard methods and in particular the doubling of variables technique [39],

one can derive from (3.3.1) and (3.3.2) the following pair of integral inequalities for

u and v:

∀ψ1 ∈ D(ΠT ), ψ1(x, t) = 0 for x > 0:∫∫
ΠT

(
|u− v|ψ1

t + sgn(u− v)
(
ϕ(u) − ϕ(v)

)
ψ1
x

)
dt dx � 0,

(3.3.13)

∀ψ2 ∈ D(ΠT ), ψ2(x, t) = 0 for x < 0:∫∫
ΠT

(
|u− v|ψ2

t + sgn(u− v)
(
ϕ(u) − ϕ(v) − γ+(u− v)

)
ψ2
x

)
dt dx � 0.

(3.3.14)

An approximation argument reveals that we may choose ψ1(x, t) = Φ(t)νh(x) and ψ2(x, t) =

Φ(t)µh(x), where Φ ∈ C2
0 (0, T ), Φ(·) � 0, and {µh}h>0 and {νh}h>0 are standard boundary

layer sequences that are assumed to satisfy µh ∈ C1(�), µh(x) = 0 for x � 0, 0 � µh(·) � 1,

µh(x) = 1 for x > h, |µ′
h(·)| � C/h, where C is a constant independent of h, and

νh(x) := 1 − µh(x + h). Since the solutions u and v possess traces with respect to x → 0,

we obtain by inserting ψ1 and ψ2 in (3.3.13) and (3.3.14), letting h → 0, and using that

for all h, ψ1 vanishes for x � 0, while ψ2 vanishes for x � 0, the inequalities

∫ 0

−∞

∫ T

0

|u− v|Φ′(t) dt dx

�

∫ T

0

sgn(v− − u−)
(
ϕ(v−) − ϕ(u−)

)
Φ(t) dt,

(3.3.15)

∫ ∞

0

∫ T

0

|u− v|Φ′(t) dt dx

� −
∫ T

0

sgn(v+ − u+)
(
ϕ(v+) − ϕ(u+) − γ+(v+ − u+)

)
Φ(t) dt.

(3.3.16)

In a standard fashion, let now ωh be a non-negative C∞ mollifier with support on (−h, h)
and ‖ωh‖L1(�) = 1. Then let 
h(x) :=

∫ x
0
ωh(ξ) dξ and take Φ(t) := 
h(t − t1) − 
h(t − t2),
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where 0 � t1 < t2 � T . Taking h → 0, we obtain∫
�

|u(·, t2) − v(·, t2)| dx−
∫

�
|u(·, t1) − v(·, t1)| dx � E,

E :=

∫ t2

t1

{
sgn(v+ − u+)

(
ϕ(v+) − ϕ(u+) − γ+(v+ − u+)

)
− sgn(v− − u−)

(
ϕ(v−) − ϕ(u−)

)}
dt.

(3.3.17)

To prove the L1 contraction property, we verify that E � 0 by showing that the jump

conditions ensure that the integrand in (3.3.17) is non-positive for almost all t ∈ (0, T ).

To this end, we give a name to this integrand:

S := sgn(v+ − u+)
(
ϕ(v+) − γ+v+ − ϕ(u+) + γ+u+

)
− sgn(v− − u−)

(
ϕ(v−) − ϕ(u−)

)
.

Our goal now is to show that S � 0. We prove this by examining the cases corresponding

to the ordering among the four numbers u−, u+, v−, v+. There are 24 such cases, but we

can eliminate half of them, since interchanging u− with v− and u+ with v+ leads to the

same proofs, only with different labels.

Case 1. u− � v− � u+ � v+. In this case

S = ϕ(v+) − γ+v+ − ϕ(u+) + γ+u+ −
(
ϕ(v−) − ϕ(u−)

)
.

Taking c = v− in (3.3.4), we get

ϕ(u−) − ϕ(v−) � 0.

Interchanging u and v and setting c = u+ in (3.3.3), we obtain ϕ(v+)−ϕ(u+)−γ+(v+−u+) �
0, which makes it clear that S � 0.

Case 2. u− � v− � v+ � u+. In this case

S = ϕ(u+) − γ+u+ − ϕ(v+) + γ+v+ −
(
ϕ(v−) − ϕ(u−)

)
� ϕ(u+) − γ+u+ − ϕ(v+) + γ+v+.

Here we have used that ϕ(v−) −ϕ(u−) � 0, which results by taking c = v− in (3.3.4). Now

letting c = v+ in (3.3.3), we get ϕ(u+) − ϕ(v+) � γ+(u+ − v+), which implies S � 0.

Case 3. u− � u+ � v− � v+. In this case

S = ϕ(v+) − γ+v+ − ϕ(u+) + γ+u+ −
(
ϕ(v−) − ϕ(u−)

)
.

From (3.3.9), ϕ(u−) − ϕ(u+) � 0, and so

S � ϕ(v+) − ϕ(v−) − γ+(v+ − u+) � ϕ(v+) − ϕ(v−) − γ+(v+ − v−).

Taking c = v− in (3.3.3), it is now clear that S � 0.
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Case 4. u− � u+ � v+ � v−. In this case

S = ϕ(v+) − γ+v+ − ϕ(u+) + γ+u+ −
(
ϕ(v−) − ϕ(u−)

)
.

From (3.3.9), ϕ(u−) − ϕ(u+) � 0, ϕ(v+) − ϕ(v−) � 0 and so

S � −γ+(v+ − u+) � 0.

Case 5. u− � v+ � v− � u+. In this case

S = ϕ(u+) − γ+u+ − ϕ(v+) + γ+v+ −
(
ϕ(v−) − ϕ(u−)

)
.

Taking c = v+ in (3.3.3), and then c = v− in (3.3.4), we find that

ϕ(u+) − ϕ(v+) − γ+(u+ − v+) � 0, ϕ(v−) − ϕ(u−) � 0,

which clearly yields S � 0.

Case 6. u− � v+ � u+ � v−. In this case

S = ϕ(u+) − γ+u+ − ϕ(v+) + γ+v+ −
(
ϕ(v−) − ϕ(u−)

)
.

Letting c = v+ in (3.3.3) results in

ϕ(u+) − ϕ(v+) � γ+(u+ − v+),

and so

S � −
(
ϕ(v−) − ϕ(u−)

)
.

Taking c = v+ in (3.3.4) gives ϕ(v+) − ϕ(u−) � 0. Also, from (3.3.9), we see that ϕ(v−) �
ϕ(v+). Combining these inequalities gives ϕ(v−) − ϕ(u−) � 0, and thus S � 0.

Case 7. u+ � u− � v− � v+. In this case

S = ϕ(v+) − γ+v+ − ϕ(u+) + γ+u+ −
(
ϕ(v−) − ϕ(u−)

)
� ϕ(v+) − γ+v+ − ϕ(u+) + γ+u+ −

(
ϕ(v−) − ϕ(u−)

)
+ γ+v− − γ+u−

= ϕ(v+) − ϕ(v−) − γ+(v+ − v−) −
(
ϕ(u+) − ϕ(u−) − γ+(u+ − u−)

)
.

By (3.3.9), we have the inequalities

ϕ(v+) − ϕ(v−) − γ+(v+ − v−) � 0, ϕ(u+) − ϕ(u−) − γ+(u+ − u−) � 0,

yielding S � 0.

Case 8. u+ � u− � v+ � v−. In this case

S = ϕ(v+) − γ+v+ − ϕ(u+) + γ+u+ −
(
ϕ(v−) − ϕ(u−)

)
.
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By (3.3.9), ϕ(v+) � ϕ(v−), which results in the inequality

S � ϕ(u−) − ϕ(u+) − γ+(v+ − u+) � ϕ(u−) − ϕ(u+) − γ+(u− − u+).

Taking c = u− in (3.3.5), we find that ϕ(u−) − ϕ(u+) − γ+(u− − u+) � 0, yielding S � 0.

Case 9. v+ � u− � v− � u+. In this case

S = ϕ(u+) − γ+u+ − ϕ(v+) + γ+v+ −
(
ϕ(v−) − ϕ(u−)

)
.

Taking c = u− in (3.3.5) gives ϕ(v+) − ϕ(u−) � γ+(v+ − u−), which we can rearrange as

−ϕ(v+) + ϕ(u−) + γ+v+ � γ+u−. From this it follows that

S � ϕ(u+) − ϕ(v−) − γ+u+ + γ+u−.

Now (3.3.10) tells us that v+ � v− � u∗. Recalling that u 
→ ϕ(u) is non-decreasing on

[0, u∗], and that v+ � u− � v−, we find that ϕ(u−) � ϕ(v−), and so

S � ϕ(u+) − ϕ(u−) − γ+u+ + γ+u−.

The right side of this last inequality is non-positive due to (3.3.9), and so S � 0.

Case 10. v+ � u− � u+ � v−. In this case

S = ϕ(u+) − γ+u+ − ϕ(v+) + γ+v+ −
(
ϕ(v−) − ϕ(u−)

)
.

Taking c = u+ in (3.3.5) gives ϕ(v+) − ϕ(u+) � γ+(v+ − u+), from which we derive

S � ϕ(u−) −ϕ(v−). From (3.3.10) we have that v+ � v− � u∗. Since also u− � v− � u∗, we

see that ϕ(u−) � ϕ(v−), yielding S � 0.

Case 11. u+ � v− � u− � v+. In this case

S = ϕ(v+) − γ+v+ − ϕ(u+) + γ+u+ −
(
ϕ(u−) − ϕ(v−)

)
.

Taking c = u− in (3.3.3) results in

ϕ(v+) − ϕ(u−) − γ+v+ � −γ+u−,

which in turn gives us

S � −ϕ(u+) + γ+u+ + ϕ(v−) − γ+u−.

From (3.3.10) we have that u+ � u− � u∗. Since also v− � u− � u∗, we have ϕ(v−) � ϕ(u−),

and so

S � −ϕ(u+) + γ+u+ + ϕ(u−) − γ+u− = ϕ(u−) − ϕ(u+) − γ+(u− − u+).

This last quantity is non-positive, due to (3.3.9), resulting in S � 0.

Case 12. u+ � v+ � u− � v−. In this case

S = ϕ(v+) − γ+v+ − ϕ(u+) + γ+u+ −
(
ϕ(v−) − ϕ(u−)

)
.
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Taking c = v+ in (3.3.5) results in

ϕ(v+) − ϕ(u+) − γ+(v+ − u+) � 0,

which in turn gives us S � ϕ(u−) −ϕ(v−). From (3.3.10) we have that v+ � v− � u∗. Since

also u− � v− � u∗, we have ϕ(u−) � ϕ(v−), making it clear that S � 0. �

4 Numerical scheme and some properties

In this section we discuss a difference scheme that applies to the full model (1.1.1). We

begin the definition of the algorithm by discretizing the spatial domain � into cells

Ij := [xj−1/2, xj+1/2), j ∈ �, where xk = k∆x for k = 0,±1/2,±1,±3/2, . . . . Similarly, the

time interval (0, T ) is discretized via tn = n∆t for n = 0, . . . , N, where N = �T/∆t� + 1,

which results in the time strips In := [tn, tn+1), n = 0, . . . , N − 1. Here ∆x > 0 and ∆t > 0

denote the spatial and temporal discretization parameters, respectively. These parameters

are chosen so that the following CFL condition holds:

λ max
u∈[0,1],x∈�

|fu
(
γ(x), u

)
| + λmax

x∈�
γ3(x) �

1

2
, λ :=

∆t

∆x
. (4.4.1)

When sending ∆ ↓ 0 we will do so with the ratio λ kept constant. We use the symbol ∆

to refer to the discretization parameters collectively: ∆ = (∆x,∆t).

We propose a scheme that is a direct modification of the one described in [12]. Let Un
j

denote our approximation to u(xj, t
n). Then the marching formula for our new scheme is

Un+1
j = Un

j − λ∆−h
(
γj+1/2, U

n
j+1, U

n
j

)
+ λγ3

j ∆+U
n
j . (4.4.2)

Here γj+1/2 = γ(xj+1/2−), and γ3
j := γ3(xj−). In (4.4.2) the symbols ∆± are spatial

difference operators:

∆−h
(
γj+1/2, U

n
j+1, U

n
j

)
= h

(
γj+1/2, U

n
j+1, U

n
j

)
− h

(
γj−1/2, U

n
j , U

n
j−1

)
,

and ∆+U
n
j = Un

j+1 −Un
j .

The main difference between (4.4.2) and the scheme defined in [12] is the new term

λγ3
j ∆+U

n
j that incorporates the sink feature. The use of the forward difference ∆+ in this

new sink term is deliberate; we bias this difference to preserve the upwind nature of the

scheme. Here we are explicitly using the assumption that γ3(x) � 0. The function h(γ, v, u)

is the Engquist-Osher (EO henceforth) numerical flux [26]

h(γ, v, u) :=
1

2

(
f(γ, u) + f(γ, v)

)
− 1

2

∫ v

u

|fu(γ, w)| dw. (4.4.3)

To define an approximate solution not just at the mesh points, but on all of ΠT , we let

χnj denote the indicator for the rectangle Ij × In and introduce

u∆(x, t) :=

N∑
n=0

∑
j∈�

χnj (x, t)U
n
j .
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Although the scheme is not conservative, several important properties of monotonicity

are preserved. The following lemma is adapted from Lemma 3.1 of Bürger et al. [12].

Lemma 4.1 The computed solution Un
j belongs to the interval [0, 1]. Moreover, the difference

scheme (4.4.2) is monotone.

Proof We start by noting that the marching formula (4.4.2) defines Un+1
j as a function

of the three independent variables Un
j−1, U

n
j , U

n
j+1 Using (4.4.2), we compute the partial

derivatives of Un+1
j with respect to these variables:

∂Un+1
j

∂Un
j+1

= −λf−
u

(
γj+1/2, U

n
j+1

)
+ λγ3

j � 0,
∂Un+1

j

∂Un
j−1

= λf+
u

(
γj−1/2, U

n
j−1

)
� 0,

∂Un+1
j

∂Un
j

= 1 + λf−
u

(
γj−1/2, U

n
j

)
− λf+

u

(
γj+1/2, U

n
j

)
− λγ3

j .

Thus, Un+1
j is a non-decreasing function of the conserved variables at tn if

1 + λf−
u

(
γj−1/2, U

n
j

)
− λf+

u

(
γj+1/2, U

n
j

)
− λγ3

j � 0.

This will hold if Un
j ∈ [0, 1] for all j and the CFL condition (4.4.1) is satisfied. The rest

of the proof is similar to the proof of Lemma 3.1 of [12], and is omitted. �

Next we establish a fundamental time-continuity estimate.

Lemma 4.2 There exists a constant C , independent of ∆ and n, such that

∆x
∑
j∈�

|Un+1
j −Un

j | � ∆x
∑
j∈�

|U1
j −U0

j | � C∆t. (4.4.4)

Proof Starting from the marching formula (4.4.2), we can express the time differences as

follows:

Un+1
j −Un

j = Un
j −Un−1

j − λ∆−
[
h
(
γj+1/2, U

n
j+1, U

n
j

)
− h

(
γj+1/2, U

n−1
j+1 , U

n−1
j

)]
+ λγ3

j∆+U
n
j − λγ3

j∆+U
n−1
j

=
(
1 − λC

n−1/2

j+1/2 + λB
n−1/2

j−1/2 − λγ3
j

)(
Un
j −Un−1

j

)
− λB

n−1/2

j+1/2

(
Un
j+1 −Un−1

j+1

)
+ λC

n−1/2

j−1/2

(
Un
j−1 −Un−1

j−1

)
+ λγ3

j

(
Un
j+1 −Un−1

j+1

)
,

where we define

B
n−1/2

j+1/2 :=

∫ 1

0

f−
u

(
γj+1/2, θU

n
j+1 + (1 − θ)Un−1

j+1

)
dθ � 0,

C
n−1/2

j+1/2 :=

∫ 1

0

f+
u

(
γj+1/2, θU

n
j + (1 − θ)Un−1

j

)
dθ � 0.
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Due to the CFL condition (4.4.1),

1 − λC
n−1/2

j+1/2 + λB
n−1/2

j−1/2 − λγ3
j � 0.

Thus, we conclude that

|Un+1
j −Un

j | �
(
1 − λC

n−1/2

j+1/2 + λB
n−1/2

j−1/2 − λγ3
j

)
|Un

j −Un−1
j |

− λB
n−1/2

j+1/2 |Un
j+1 −Un−1

j+1 | + λC
n−1/2

j−1/2 |Un
j−1 −Un−1

j−1 |

+ λγ3
j |Un

j+1 −Un−1
j+1 |

�
(
1 − λC

n−1/2

j+1/2 + λB
n−1/2

j−1/2 − λγ3
j

)
|Un

j −Un−1
j |

− λB
n−1/2

j+1/2 |Un
j+1 −Un−1

j+1 | + λC
n−1/2

j−1/2 |Un
j−1 −Un−1

j−1 |

+ λγ3
j+1|Un

j+1 −Un−1
j+1 |.

Here we have used the fact that x 
→ γ3(x) in non-decreasing when replacing γ3
j by γ3

j+1.

Summing this inequality over j and multiplying by ∆x gives

∆x
∑
j∈�

|Un+1
j −Un

j | � ∆x
∑
j∈�

|Un
j −Un−1

j |.

Applying this last inequality inductively, we arrive at

∆x
∑
j∈�

|Un+1
j −Un

j | � ∆x
∑
j∈�

|U1
j −U0

j |.

The rest of the proof is similar to the proof of Lemma 3.2 of [12] and is omitted. �

Lemmas 4.1 and 4.2 provide several important stability properties of our new difference

scheme. We will not pursue the analysis for the full model (1.1.1), but focus on the reduced

problem described in Section 2.4.

5 Convergence to an entropy solution for the reduced problem

We can write the scheme for the reduced problem (1.1.2) as

Un+1
j = Un

j − λ∆−h
(
Un
j+1, U

n
j

)
+ λγj∆+U

n
j . (5.5.1)

Here we are abusing the notation slightly by continuing to use the symbol h of § 4 for the

numerical flux, i.e.

h(v, u) =
1

2

(
ϕ(v) + ϕ(u)

)
− 1

2

∫ v

u

|ϕ′(w)| dw.

The appropriate CFL condition for our reduced problem is

λ max
u∈[0,1],x∈�

|ϕ′(u)| + λmax
x∈�

γ(x) �
1

2
, λ :=

∆t

∆x
. (5.5.2)
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Lemmas 4.1 and 4.2 remain valid in this setting, and need not be repeated. In order to

establish compactness, we will also need a spatial variation bound, which is provided by

the following lemma. Let TV (z) denote the total variation of a function z ∈ L1
loc(�).

Lemma 5.1 For any t ∈ [0, T ] we have the spatial variation bound

TV
(
u∆(·, t)

)
� C, (5.5.3)

where C is independent of ∆ and t for t ∈ [0, T ].

Proof We start by writing the scheme (5.5.1) in incremental form

Un+1
j = Un

j + Cn
j+1/2∆+U

n
j − Dnj−1/2∆−U

n
j ,

where

Cn
j+1/2 = λ

(
ϕ(Un

j ) − h(Un
j+1, U

n
j )

∆+U
n
j

+ γj

)
, Dnj−1/2 = λ

ϕ(Un
j ) − h(Un

j , U
n
j−1)

∆−U
n
j

.

Using the monotonicity of the numerical flux h, that γj � 0, and the CFL condition (5.5.2),

one can easily check that

Cn
j+1/2 � 0, Dnj+1/2 � 0, Cn

j+1/2 + Dnj+1/2 � 1.

It now follows from Harten’s lemma (Lemma 2.2 of [32]) that∑
j∈�

|Un+1
j+1 −Un+1

j | �
∑
j∈�

|Un
j+1 −Un

j |.

Continuing by induction, we conclude that

TV
(
u∆(·, t)

)
� TV

(
u∆(·, 0)

)
� TV (u0),

and the proof is complete. �

In what follows, we will employ the following regularizations of the function γ(x).

γε(x) :=

⎧⎪⎪⎨
⎪⎪⎩

0 for x � −ε,
((x+ ε)/ε)γ+ for −ε � x � 0,

γ+ for x � 0,

γε(x) :=

⎧⎪⎪⎨
⎪⎪⎩

0 for x � 0,

(x/ε)γ+ for 0 � x � ε,

γ+ for x � ε.

Observe that γε(x) � γ(x) � γε(x) for all x ∈ �. When discretizing γε and γε, we do so in

the same manner as γ, thus preserving the ordering γε
j

� γj � γεj .

https://doi.org/10.1017/S0956792506006619 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792506006619


Extended clarifier-thickener model 277

One more preliminary issue before we discuss entropy conditions is the existence

of traces along the line x = 0, t ∈ [0, T ]. Our spatial BV bounds carry over to the

limit solution u, guaranteeing that we have limits from both the left and right, denoted

u−(t), u+(t) or simply u−, u+, for a.e. t ∈ [0, T ].

Lemma 5.2 Any (subsequential) limit u of the scheme (5.5.1) satisfies the entropy conditions

(3.3.1)–(3.3.6).

Proof The proof of the Kružkov-type entropy inequalities (3.3.1), (3.3.2) is standard [18],

and is omitted.

We now turn to the proof of (3.3.3). The following discrete entropy inequality holds for

any c ∈ �; this follows from the monotonicity of the scheme:

Un+1
j ∨ c � Un

j ∨ c− λ∆+h
(
Un
j ∨ c,Un

j−1 ∨ c
)

+ λγj∆+

(
Un
j ∨ c

)
. (5.5.4)

Now let

Vn
j :=

{
c for j � 0,

Un
j ∨ c for j > 0,

v(x, t) :=

{
c for x < 0,

u(x, t) ∨ c for x > 0.

Note that

∆+V
n
0 = Un

1 ∨ c− c � 0. (5.5.5)

Since γj = 0 for j � 0, and ∆+V
n
j = ∆+(Un

j ∨ c) for j > 0, we can replace inequality (5.5.4)

by

Un+1
j ∨ c � Un

j ∨ c− λ∆+h
(
Un
j ∨ c,Un

j−1 ∨ c
)

+ λγj∆+V
n
j . (5.5.6)

Since γεj � γj = 0 for j � 0 and γεj = γj = γ+ for j > 0, in view of (5.5.5) we can replace

inequality (5.5.6) by

Un+1
j ∨ c � Un

j ∨ c− λ∆+h
(
Un
j ∨ c,Un

j−1 ∨ c
)

+ λγεj∆+V
n
j . (5.5.7)

Employing the identity

Aj∆+Bj = ∆+

(
AjBj

)
− Bj+1∆+Aj, (5.5.8)

we can rewrite (5.5.7) in the form

Un+1
j ∨ c � Un

j ∨ c− λ∆+

(
h
(
Un
j ∨ c,Un

j−1 ∨ c
)

− γεjV
n
j

)
− λV n

j+1∆+γ
ε
j . (5.5.9)

Let 0 � ψ ∈ D(ΠT ), and ψnj = ψ(xj, t
n). Proceeding as in the proof of the Lax-Wendroff

theorem, we move all terms in (5.5.9) to the left-hand side of the inequality, multiply by
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ψnj ∆x, and sum over j ∈ �, n � 0, and finally sum by parts to get

∆x∆t
∑
j∈�

∑
n�0

(
Un
j ∨ c

) ψn+1
j − ψnj

∆t

+ ∆x∆t
∑
j∈�

∑
n�0

[
h
(
Un
j ∨ c,Un

j−1 ∨ c
)

− γεjV
n
j

] ∆+ψ
n
j

∆x

− ∆x∆t
∑
j∈�

∑
n�0

∆+γ
ε
j

∆x
Vn
j+1ψ

n
j � 0.

(5.5.10)

When ∆ ↓ 0, the bounded convergence theorem yields∫∫
ΠT

(
(u ∨ c)ψt + (ϕ(u ∨ c) − γε(x)v)ψx

)
dx dt−

∫∫
ΠT

(γε)′(x) v ψ dx dt � 0. (5.5.11)

With the observation that

(γε)′(x) =

{
γ+/ε for x ∈ (−ε, 0),

0 for x � (−ε, 0),

when ε ↓ 0 we obtain

∫∫
ΠT

(γε)′(x) v ψ dx dt → γ+c

∫ T

0

ψ(0, t) dt.

Combining this with an application of the bounded convergence theorem, when ε ↓ 0,

(5.5.11) yields the inequality

∫∫
ΠT

(
(u ∨ c)ψt +

(
ϕ(u ∨ c) − γ(x)v

)
ψx

)
dx dt− γ+c

∫ T

0

ψ(0, t) dt � 0. (5.5.12)

By applying a standard test function argument to (5.5.12), we find that for a.e. t ∈ (0, T ),

ϕ(u−(t) ∨ c) − γ−c−
(
ϕ(u+(t) ∨ c) − γ+(u+(t) ∨ c)

)
− γ+c � 0.

Recalling that γ− = 0, u− � c � u+, dropping the dependence on t, and rearranging, this

inequality becomes

ϕ(u+) − ϕ(c) � γ+(u+ − c),

and the proof of (3.3.3) is complete.

For the proof of (3.3.4) we use the monotonicity of the scheme to derive the discrete

entropy inequality

Un+1
j ∧ c � Un

j ∧ c− λ∆+h
(
Un
j ∧ c,Un

j−1 ∧ c
)

+ λγj∆+

(
Un
j ∧ c

)
. (5.5.13)

Let

Wn
j :=

{
c for j � 0,

Un
j ∧ c for j > 0,

, w(x, t) :=

{
c for x < 0,

u(x, t) ∧ c for x > 0.
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Observing that

∆+(Un
0 ∧ c) = Un

1 ∧ c−Un
0 ∧ c � ∆+W

n
0 = Un

1 ∧ c− c � 0,

we find that the following inequality holds:

Un+1
j ∧ c � Un

j ∧ c− λ∆+h
(
Un
j ∧ c,Un

j−1 ∧ c
)

+ λγj∆+W
n
j .

Using 0 � γj � γεj and ∆+W
n
0 � 0, we also have

Un+1
j ∧ c � Un

j ∧ c− λ∆+h
(
Un
j ∧ c,Un

j−1 ∧ c
)

+ λγεj∆+W
n
j .

Proceeding as in the proof of (3.3.3), we find that

∫∫
ΠT

(
(u ∧ c)ψt +

(
ϕ(u ∧ c) − γε(x)w

)
ψx

)
dx dt−

∫∫
ΠT

(γε)′(x)w ψ dx dt � 0,

from which it follows that

ϕ(u−(t) ∧ c) − γ−c−
(
ϕ(u+(t) ∧ c) − γ+(u+(t) ∧ c)

)
− γ+c � 0,

and this holds for a.e. t ∈ [0, T ]. Recalling that γ− = 0, and then observing that the terms

involving γ+(u+(t) ∧ c) and γ+c cancel, the proof of (3.3.4) is complete.

For the proof of (3.3.6), we start from the discrete entropy inequality (5.5.4), and then

apply the identity (5.5.8) to get

Un+1
j ∨ c � Un

j ∨ c− λ∆+

(
h
(
Un
j ∨ c,Un

j−1 ∨ c
)

− γj(U
n
j ∨ c)

)
− λ(Un

j+1 ∨ c)∆+γj .
(5.5.14)

We then define

Ṽ n
j :=

{
Un
j ∨ c for j � 0,

c for j > 0,
ṽ(x, t) :=

{
u(x, t) ∨ c for x < 0,

c for x > 0,

and observe that it is possible to replace the inequality (5.5.14) by

Un+1
j ∨ c � Un

j ∨ c− λ∆+

(
h
(
Un
j ∨ c,Un

j−1 ∨ c
)

− γj(U
n
j ∨ c)

)
− λṼ n

j+1∆+γj .

More specifically, this inequality holds because ∆+γj = 0, except at j = 0, and Un
1 ∨ c �

Ṽ1 = c. Another application of the identity (5.5.8) yields

Un+1
j ∨ c � Un

j ∨ c− λ∆+

(
h
(
Un
j ∨ c,Un

j−1 ∨ c
)

− γj(U
n
j ∨ c) + γjṼ

n
j

)
+ λγj∆+Ṽ

n
j .

(5.5.15)

Since ∆+Ṽ
n
j = 0 for j > 0, ∆+Ṽ

n
0 � 0, γε

j
= γj for j < 0, and γε

j
� γj for j � 0, we can
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replace (5.5.15) by

Un+1
j ∨ c � Un

j ∨ c− λ∆+

(
h
(
Un
j ∨ c,Un

j−1 ∨ c
)

− γj(U
n
j ∨ c) + γjṼ

n
j

)
+ λγε

j
∆+Ṽ

n
j .

A final application of (5.5.8) results in

Un+1
j ∨ c � Un

j ∨ c− λ∆+

(
h
(
Un
j ∨ c,Un

j−1 ∨ c
)

− γj(U
n
j ∨ c) + (γj − γε

j
)Ṽ n

j

)
− λṼ n

j+1∆+γ
ε

j
.

The rest of the proof of (3.3.6) is similar to the proofs of (3.3.3) and (3.3.4), and so we

omit the details.

The proof of (3.3.5) is similar to that of (3.3.6), the main difference being that one

starts from the discrete entropy inequality (5.5.13) and uses the modified functions

W̃ n
j :=

{
Un
j ∧ c for j � 0,

c for j > 0,
, w̃(x, t) :=

{
u(x, t) ∧ c for x < 0,

c for x > 0.

We omit the details. �

We can now state and prove our main theorem.

Theorem 5.1 As ∆ ↓ 0, the approximations u∆ generated by the scheme (5.5.1) converge in

L1(ΠT ) and a.e. in ΠT to the unique entropy solution u of the initial value problem (1.1.2),

(1.1.4), (1.1.5).

Proof For the approximations u∆, we have an L∞ bound (Lemma 4.1), a time continuity

bound (Lemma 4.2), and a spatial variation bound (Lemma 5.1). In addition, it is a

straightforward exercise using the time continuity bound provided by Lemma 4.2 to

derive a bound for the approximations u∆ in the L1(ΠT ) norm. Moreover, these bounds

are independent of ∆, for (x, t) ∈ ΠT . It follows from standard compactness arguments

that there is a subsequential limit, converging in L1(ΠT ), and a.e. in ΠT , which we will

denote u. A proof of (3.3.7), i.e. that the initial values are assumed in the strong L1

sense is standard and is thus omitted. The proof is completed with an application of our

Lemma 5.2, which guarantees that the subsequential limit u is an entropy solution. By

our uniqueness result (Theorem 3.1), the entire sequence converges to u. �

Theorem 5.1 shows that there exists a unique entropy solution to the initial value

problem (1.1.2), (1.1.4), (1.1.5), i.e. that this problem is well-posed.

6 Variants of the difference scheme

The scheme described herein for the full problem has the slight inconvenience that to

evaluate the Engquist-Osher flux function, one has to determine the extrema of the
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composite flux function q(u− uF)+ b(u) for q ∈ {qL, q̃R} numerically. This can be avoided

if we determine the Engquist-Osher flux function for the function b(u) only, and discretize

the linear portion q(u− uF) by a properly oriented upwind stencil. The resulting scheme,

to which we shall refer as “Scheme 1”, then reads

Un+1
j = Un

j − λ∆−h
1
(
γ1
j+1/2, U

n
j+1, U

n
j

)
− λw

(
γ2
j−1/2, γ

2
j+1/2, U

n
j−1, U

n
j , U

n
j+1

)
+ λγ3

j∆+U
n
j ,

where γ1, γ2, γ3 are defined in (1.1.8) and (1.1.9), and the function h1 is the EO flux applied

to the function γ1b(u), i.e.

h1(γ1, v, u) =
γ1

2

(
b(u) + b(v) −

∫ v

u

|b′(s)| ds
)
,

and the function w arises from determining the EO flux for the linear term γ2(x)(u− uF),

followed by differencing with respect to x, i.e.

w
(
γ2
j−1/2, γ

2
j+1/2, U

n
j−1, U

n
j , U

n
j+1

)
:= ∆−h̃

(
γ2
j+1/2, U

n
j+1 − uF, Uj − uF

)
,

where we define

h̃(γ2, v, u) :=
1

2

(
γ2(u+ v) −

∫ v

u

|γ2| ds
)
.

This yields the upwind formula

w
(
γ2
j−1/2, γ

2
j+1/2, U

n
j−1, U

n
j , U

n
j+1

)

=

⎧⎪⎪⎨
⎪⎪⎩
γ2
j+1/2

(
Un
j − uF

)
− γ2

j−1/2

(
Un
j−1 − uF

)
if γ2

j−1/2 � 0 and γ2
j+1/2 � 0,

γ2
j+1/2

(
Un
j+1 − uF

)
− γ2

j−1/2

(
Un
j − uF

)
if γ2

j−1/2 < 0 and γ2
j+1/2 < 0,(

γ2
j+1/2 − γ2

j−1/2

)(
Un
j − uF

)
if γ2

j+1/2 � 0 and γ2
j−1/2 < 0.

For easy reference, let us refer to the scheme (4.4.2), (4.4.3), which is analyzed in this

paper, as “Scheme 2”. Clearly, Scheme 1 emerges from Scheme 2 by applying a direct

upwind linearization, and avoiding the EO formula, for as many terms as possible. As

we shall see, the performance of Scheme 1 is much inferior to that of Scheme 2 in terms

of numerical viscosity. On the other hand, this observation suggests that an even better

scheme can possibly be produced if we replace Scheme 2 by a new scheme, called Scheme 3,

if we avoid any explicit linear upwind differences at all, and express the numerical flux

on all segments as one EO flux. Thus, the marching formula for Scheme 3 is

Un+1
j =

{
Un
j − λ∆−h

3
(
γ̃j+1/2, γ

3
j+1/2, U

n
j+1, U

n
j

)
for j > 0,

Un
j − λ∆−h

2
(
γ̃j+1/2, U

n
j+1, U

n
j

)
for j � 0,
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Figure 3. Numerical examples with ∆x = 0.0125 for the reduced problem.

where we define γ̃ := (γ1, γ2) and

h2(γ̃, v, u) :=
1

2

(
f(γ̃, u) + f(γ̃, v) −

∫ v

u

|fu(γ̃, w)| dw
)
,

h3(γ̃, γ3, v, u) :=
1

2

(
f(γ̃, u) + f(γ̃, v) − γ3(u+ v) −

∫ v

u

|fu(γ̃, w) − γ3| dw
)
.

For the simplified version of Scheme 1 that applies to the reduced problem (1.1.2), (1.1.4),

(1.1.5), it is possible to prove convergence to an entropy solution by repeating the analysis

in Section 5. For Scheme 3, the convergence proof still goes through, but it is not clear

that our proof of convergence to an entropy solution (Lemma 5.2) is directly applicable.

However, our numerical experiments seem to indicate that approximations generated by

Scheme 3 converge to the same (entropy) solutions as provided by Schemes 1 and 2.

7 Numerical results

7.1 Numerical solutions of the reduced problem

In the first series of examples, Cases 1 to 4, we consider the reduced problem (1.1.2), (1.1.4),

(1.1.5). We assume that the function b(u) is given by (1.1.6) with v∞ = 6.75, umax = 1

and n = 2. The plots of Figure 3 correspond to the parameters given in Table 1. The
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Table 1. Parameters for the numerical examples for the reduced problem shown in

Figure 3

Case q −γ+ u0(x) λ

1 −4.9 −4.3 0.1χ[−2,2](x) 0.03125

2 −2.8 −2.6 0.1χ[−1,1](x) 0.04

3 −4.9 0 0.1χ[−2,−0.4](x) 0.04

4 −4.9 −4.9 0.1χ[−2,−0.4](x) 0.025

Figure 4. Numerical examples with ∆x = 0.0125 for the full extended clarifier-thickener model.

simulations have been made with Scheme 3, ∆x = 1/80, and the values of λ = ∆t/∆x

indicated in Table 1. Note that the sink term in Case 3 is switched off. This solution of

a standard nonlinear conservation law has been included to illustrate the difference to

Case 4, where the sink term is included, but all other parameters are the same.

7.2 Numerical solutions of the full problem

Next, we consider the full extended clarifier-thickener model (1.1.1), (1.1.4), (1.1.7)–(1.1.9).

The parameters of four different simulations shown in Figure 4, Cases 5 to 8, are shown
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Table 2. Parameters for the numerical examples for the reduced problem shown in

Figure 4

Case qL qD qR uF λ

5 0.0 −1.0 0.6 0.7 0.05333

6 −0.7 −0.3 0.6 0.7 0.06250

7 −2.25 −2.25 1.35 0.3 0.03922

8 −3.6 −2.25 1.35 0.3 0.03968

−1 −0.8 −0.6 −0.4−0.2 −1 −0.8 −0.6 −0.4−0.20 0.2 0.4 0.6 0.8 1.0
−0.05

0

0.05

0.1

0.15

(a) Case 1, t = 0.5, ∆x = 1/40 (b) Case 1, t = 0.5, ∆x = 1/80

(c) Case 1, t = 2, ∆x = 1/40 (b) Case 1, t = 2, ∆x = 1/80
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Figure 5. Comparison of Scheme 1 (�), Scheme 2 (�) and Scheme 3 (�) applied to Case 1. The

solid line is a reference solution with ∆x = 1/1600.

in Table 2. In all cases, we start from an initially empty clarifier-thickener unit (u0 ≡ 0),

and consider the same function b(u) as for Cases 1 to 4. The simulations have been made

with ∆x = 1/80 and the values of λ given in Table 2.

7.3 Error study

We consider first Case 1, which corresponds to the reduced problem. Figure 5 shows the

numerical solution produced by Schemes 1, 2 and 3 for t = 0.5 and t = 2, while Table 3

displays the approximate L1 error for this case, measured over the interval [−1, 1].
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Table 3. Approximate L1 errors for Case 1

t = 0.5 t = 2

approx. conv. approx. conv.

J = 1/∆x L1 error rate L1 error rate

Scheme 1

20 1.715e-2 6.214e-2

40 1.195e-2 0.522 4.418e-2 0.492

80 8.363e-3 0.515 2.616e-2 0.756

160 5.610e-3 0.576 1.510e-2 0.793

320 3.571e-3 0.652 8.573e-3 0.817

Scheme 2

20 7.785e-3 8.310e-3

40 5.285e-3 0.559 4.332e-3 0.940

80 3.422e-3 0.627 2.221e-3 0.963

160 2.081e-3 0.718 1.107e-3 1.005

320 1.174e-3 0.826 5.171e-4 1.098

Scheme 3

20 8.067e-3 7.033e-3

40 5.045e-3 0.677 3.694e-3 0.929

80 3.003e-3 0.749 1.903e-3 0.957

160 1.674e-3 0.843 9.476e-4 1.006

320 8.487e-4 0.980 4.379e-4 1.114

Next, we consider Case 5, which corresponds to the full problem. Figure 6 shows the

numerical solution produced by Schemes 1, 2 and 3 for t = 1, t = 2 and t = 4, respectively,

while Table 4 displays the approximate L1 error for this case, measured over the interval

[−2.1, 1.1] (so that all flux discontinuities are included). Finally, we present in Figure 7

numerical solutions generated by all three schemes for Case 7 and t = 0.3 and t = 10.

The corresponding approximate L1 errors are shown in Table 5.

8 Conclusion

8.1 Discussion of the numerical results

Figure 3 illustrates that the sink term gives rise to a variety of stationary discontinuities.

In fact, the reduced problem models how material whose flow is otherwise governed by the

conservation law ut +ϕ(u)x = 0 is absorbed by a singular sink. In Cases 1 and 4, the sink

produces a decreasing step (in the direction of increasing x), while in Case 2, an increasing

step is generated. Observe that in Case 2, roughly at t = 2, the stationary discontinuity

at x = 0 ceases to exist, and is followed by a curved shock moving in direction of

x > 0.

https://doi.org/10.1017/S0956792506006619 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792506006619


286 R. Bürger et al.

–2 –1.5 –1 –0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

u

x
–2 –1.5 –1 –0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

u

x

(a) Case 5, t = 1, ∆x = 1/40 (b) Case 5, t = 1, ∆x = 1/80

–2 –1.5 –1 –0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

u

x
–2 –1.5 –1 –0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

u

x

(c) Case 5, t = 2, ∆x = 1/40 (d) Case 5, t = 2, ∆x = 1/80

–2 –1.5 –1 –0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

u

x
–2 –1.5 –1 –0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

u

x

(e) Case 5, t = 4, ∆x = 1/40 (f) Case 5, t = 4, ∆x = 1/80

Figure 6. Comparison of Scheme 1 (�), Scheme 2 (�) and Scheme 3 (�) applied to Case 5. The

solid line is a reference solution with ∆x = 1/1600.

The parameters in Figure 4 have been chosen in such a way that either the solid

material flowing into the clarifier zone is fully absorbed by the singular sink term (Cases 5

and 7), or material is extracted through the sink without affecting the solution in the

clarifier zone (Cases 6 and 8). The absence of a discontinuity across x = xD = −1 in

these cases can be made plausible if we look at the associated reduced problem for the

parameters given in these cases. For instance, Case 6 corresponds to q = qL = −0.7. We
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Table 4. Approximate L1 errors for Case 5

t = 1 t = 2 t = 4

approx. conv. approx. conv. approx. conv.

J = 1/∆x L1 error rate L1 error rate L1 error rate

Scheme 1

20 1.139e-1 9.123e-2 7.228e-2

40 6.561e-2 0.796 4.836e-2 0.916 2.739e-2 1.400

80 4.000e-2 0.714 3.178e-2 0.605 1.488e-2 0.880

160 2.587e-2 0.628 2.123e-2 0.582 8.269e-2 0.848

320 1.665e-2 0.636 1.383e-2 0.619 4.521e-3 0.871

Scheme 2

20 7.118e-2 6.616e-2 5.614e-2

40 2.876e-2 1.308 2.201e-2 1.588 1.856e-2 1.597

80 1.268e-2 1.182 1.106e-2 0.994 1.001e-2 0.891

160 7.428e-3 0.771 5.740e-3 0.946 5.577e-3 0.844

320 4.713e-3 0.656 4.111e-3 0.482 3.025e-3 0.882

Scheme 3

20 3.483e-2 3.151e-2 2.466e-2

40 1.990e-2 0.808 1.753e-2 0.846 1.241e-2 0.991

80 1.101e-2 0.854 9.637e-3 0.863 6.164e-3 1.009

160 6.118e-3 0.847 3.984e-3 1.274 2.979e-3 1.049

320 3.128e-3 0.968 1.906e-3 1.064 1.352e-3 1.140

observe in Figure 4 (b) that the solution in the clarification zone after the solids break

through the feed level assumes at least a value of 0.78. However, inspecting the shape of

u 
→ b(u) it is easy to see that we have

sup
u+∈[0.78,1]

max
u−∈[0,1]

ϕ(u+) − ϕ(u−)

u+ − u−

= q + sup
u+∈[0.78,1]

max
u−∈[0,1]

b(u+) − b(u−)

u+ − u−

� q +
b(0.78) − b(0)

0.78
= −0.7 + 6.75 × 0.222 = −0.3733,

so for this value and u+ � 0.78 (in fact, we may choose this lower bound even smaller),

the left-hand inequality in jump condition (3.3.9) is never satisfied. In other words, from

an engineering point of view, jump condition (3.3.9) helps to predict under which flow

conditions extracting material from a sink affects the bulk concentration (i.e. causes a

concentration jump) and under which conditions this does not happen (as in our Cases 6

and 8).
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Figure 7. Comparison of Scheme 1 (�), Scheme 2 (�) and Scheme 3 (�) applied to Case 7. The

solid line is a reference solution with ∆x = 1/1600.

Figures 5 to 7 and Tables 3 to 5 illustrate that all schemes converge to the unique

entropy solution of the reduced problem or the full extended clarifier-thickener model.

However, all these results also show that Scheme 1, though it has the convenience of being

easy to implement, suffers from excessive numerical viscosity, which becomes apparent in

smearing of transient shocks travelling at nonzero speed (for example, near x = 0.5 in

Figures 6 (a) and (b)) and the formation of one-sided boundary layers near discontinuities

of the flux function (for example, near x = 0 in Figures 7 (c) and (d)). Scheme 2 exhibits

smaller numerical viscosity, while Scheme 3 sharply resolves all flux discontinuities. Both

Schemes 2 and 3 sharply resolve the solution near xD = −1. Let us comment that the

superiority of Scheme 3 is in part balanced by the slightly increased effort needed to

evaluate the flux functions h2 and h3, which need to be calculated anew (by a discussion

of extrema) for each value of the control variables qR, qF, qD and uF.

8.2 Discussion of the entropy condition

From the proof of Lemma 5.2, it is evident that the entropy jump conditions (D.3)

that hold at the interface ultimately result from the dissipation built into the monotone

difference scheme described in Section 4. To be more specific, in the proof of Lemma 5.2 we
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Table 5. Approximate L1 errors for Case 7

t = 0.3 t = 10

approx. conv. approx. conv.

J = 1/∆x L1 error rate L1 error rate

Scheme 1

20 9.406e-2 1.946e-1

40 6.394e-2 0.557 1.069e-1 0.864

80 4.255e-2 0.588 6.332e-2 0.756

160 2.685e-2 0.664 3.694e-2 0.778

320 1.609e-2 0.739 2.084e-2 0.826

Scheme 2

20 7.619e-2 1.365e-1

40 5.023e-2 0.601 7.423e-2 0.879

80 3.176e-2 0.661 4.303e-2 0.787

160 1.888e-2 0.751 2.465e-2 0.804

320 1.069e-2 0.821 1.358e-2 0.860

Scheme 3

20 3.092e-2 4.109e-2

40 1.738e-2 0.831 2.041e-2 1.010

80 9.185e-3 0.920 1.000e-2 1.029

160 4.420e-3 1.055 4.766e-3 1.069

320 2.134e-3 1.051 2.131e-3 1.161

employ two different Lipschitz-continuous regularizations, γε(x) � γ(x) and γε(x) � γ(x),

which approximate the parameter function γ(x). Examining that proof, it is clear that

the entropy conditions (D.3) can be derived by employing monotone schemes for each of

the two regularized conservation laws that result by replacing γ by γε and γε. This yields

ε-dependent entropy conditions. The entropy conditions (D.3) then result by letting the

regularization parameter ε → 0.

8.3 An open problem

Using the monotone difference scheme (5.5.1), we have established well-posedness of the

reduced model. Our ultimate interest is the more complicated scheme (4.4.2) which we

use to construct approximate solutions of the full model. We have focused on the reduced

model and its associated scheme in order to highlight the aspects of the problem that

are more or less unique to the sink portion of the model. We leave as an open problem

the task of combining the definition of entropy solution and the results of the present

paper with those of [12]. The goal would be to prove that the version of Theorem 5.1

that applies to the full problem is also true.
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